cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

keysetup_v1.c (9511B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Key setup for v1 encryption policies
      4 *
      5 * Copyright 2015, 2019 Google LLC
      6 */
      7
      8/*
      9 * This file implements compatibility functions for the original encryption
     10 * policy version ("v1"), including:
     11 *
     12 * - Deriving per-file encryption keys using the AES-128-ECB based KDF
     13 *   (rather than the new method of using HKDF-SHA512)
     14 *
     15 * - Retrieving fscrypt master keys from process-subscribed keyrings
     16 *   (rather than the new method of using a filesystem-level keyring)
     17 *
     18 * - Handling policies with the DIRECT_KEY flag set using a master key table
     19 *   (rather than the new method of implementing DIRECT_KEY with per-mode keys
     20 *    managed alongside the master keys in the filesystem-level keyring)
     21 */
     22
     23#include <crypto/algapi.h>
     24#include <crypto/skcipher.h>
     25#include <keys/user-type.h>
     26#include <linux/hashtable.h>
     27#include <linux/scatterlist.h>
     28
     29#include "fscrypt_private.h"
     30
     31/* Table of keys referenced by DIRECT_KEY policies */
     32static DEFINE_HASHTABLE(fscrypt_direct_keys, 6); /* 6 bits = 64 buckets */
     33static DEFINE_SPINLOCK(fscrypt_direct_keys_lock);
     34
     35/*
     36 * v1 key derivation function.  This generates the derived key by encrypting the
     37 * master key with AES-128-ECB using the nonce as the AES key.  This provides a
     38 * unique derived key with sufficient entropy for each inode.  However, it's
     39 * nonstandard, non-extensible, doesn't evenly distribute the entropy from the
     40 * master key, and is trivially reversible: an attacker who compromises a
     41 * derived key can "decrypt" it to get back to the master key, then derive any
     42 * other key.  For all new code, use HKDF instead.
     43 *
     44 * The master key must be at least as long as the derived key.  If the master
     45 * key is longer, then only the first 'derived_keysize' bytes are used.
     46 */
     47static int derive_key_aes(const u8 *master_key,
     48			  const u8 nonce[FSCRYPT_FILE_NONCE_SIZE],
     49			  u8 *derived_key, unsigned int derived_keysize)
     50{
     51	int res = 0;
     52	struct skcipher_request *req = NULL;
     53	DECLARE_CRYPTO_WAIT(wait);
     54	struct scatterlist src_sg, dst_sg;
     55	struct crypto_skcipher *tfm = crypto_alloc_skcipher("ecb(aes)", 0, 0);
     56
     57	if (IS_ERR(tfm)) {
     58		res = PTR_ERR(tfm);
     59		tfm = NULL;
     60		goto out;
     61	}
     62	crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
     63	req = skcipher_request_alloc(tfm, GFP_KERNEL);
     64	if (!req) {
     65		res = -ENOMEM;
     66		goto out;
     67	}
     68	skcipher_request_set_callback(req,
     69			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
     70			crypto_req_done, &wait);
     71	res = crypto_skcipher_setkey(tfm, nonce, FSCRYPT_FILE_NONCE_SIZE);
     72	if (res < 0)
     73		goto out;
     74
     75	sg_init_one(&src_sg, master_key, derived_keysize);
     76	sg_init_one(&dst_sg, derived_key, derived_keysize);
     77	skcipher_request_set_crypt(req, &src_sg, &dst_sg, derived_keysize,
     78				   NULL);
     79	res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
     80out:
     81	skcipher_request_free(req);
     82	crypto_free_skcipher(tfm);
     83	return res;
     84}
     85
     86/*
     87 * Search the current task's subscribed keyrings for a "logon" key with
     88 * description prefix:descriptor, and if found acquire a read lock on it and
     89 * return a pointer to its validated payload in *payload_ret.
     90 */
     91static struct key *
     92find_and_lock_process_key(const char *prefix,
     93			  const u8 descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE],
     94			  unsigned int min_keysize,
     95			  const struct fscrypt_key **payload_ret)
     96{
     97	char *description;
     98	struct key *key;
     99	const struct user_key_payload *ukp;
    100	const struct fscrypt_key *payload;
    101
    102	description = kasprintf(GFP_KERNEL, "%s%*phN", prefix,
    103				FSCRYPT_KEY_DESCRIPTOR_SIZE, descriptor);
    104	if (!description)
    105		return ERR_PTR(-ENOMEM);
    106
    107	key = request_key(&key_type_logon, description, NULL);
    108	kfree(description);
    109	if (IS_ERR(key))
    110		return key;
    111
    112	down_read(&key->sem);
    113	ukp = user_key_payload_locked(key);
    114
    115	if (!ukp) /* was the key revoked before we acquired its semaphore? */
    116		goto invalid;
    117
    118	payload = (const struct fscrypt_key *)ukp->data;
    119
    120	if (ukp->datalen != sizeof(struct fscrypt_key) ||
    121	    payload->size < 1 || payload->size > FSCRYPT_MAX_KEY_SIZE) {
    122		fscrypt_warn(NULL,
    123			     "key with description '%s' has invalid payload",
    124			     key->description);
    125		goto invalid;
    126	}
    127
    128	if (payload->size < min_keysize) {
    129		fscrypt_warn(NULL,
    130			     "key with description '%s' is too short (got %u bytes, need %u+ bytes)",
    131			     key->description, payload->size, min_keysize);
    132		goto invalid;
    133	}
    134
    135	*payload_ret = payload;
    136	return key;
    137
    138invalid:
    139	up_read(&key->sem);
    140	key_put(key);
    141	return ERR_PTR(-ENOKEY);
    142}
    143
    144/* Master key referenced by DIRECT_KEY policy */
    145struct fscrypt_direct_key {
    146	struct hlist_node		dk_node;
    147	refcount_t			dk_refcount;
    148	const struct fscrypt_mode	*dk_mode;
    149	struct fscrypt_prepared_key	dk_key;
    150	u8				dk_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
    151	u8				dk_raw[FSCRYPT_MAX_KEY_SIZE];
    152};
    153
    154static void free_direct_key(struct fscrypt_direct_key *dk)
    155{
    156	if (dk) {
    157		fscrypt_destroy_prepared_key(&dk->dk_key);
    158		kfree_sensitive(dk);
    159	}
    160}
    161
    162void fscrypt_put_direct_key(struct fscrypt_direct_key *dk)
    163{
    164	if (!refcount_dec_and_lock(&dk->dk_refcount, &fscrypt_direct_keys_lock))
    165		return;
    166	hash_del(&dk->dk_node);
    167	spin_unlock(&fscrypt_direct_keys_lock);
    168
    169	free_direct_key(dk);
    170}
    171
    172/*
    173 * Find/insert the given key into the fscrypt_direct_keys table.  If found, it
    174 * is returned with elevated refcount, and 'to_insert' is freed if non-NULL.  If
    175 * not found, 'to_insert' is inserted and returned if it's non-NULL; otherwise
    176 * NULL is returned.
    177 */
    178static struct fscrypt_direct_key *
    179find_or_insert_direct_key(struct fscrypt_direct_key *to_insert,
    180			  const u8 *raw_key, const struct fscrypt_info *ci)
    181{
    182	unsigned long hash_key;
    183	struct fscrypt_direct_key *dk;
    184
    185	/*
    186	 * Careful: to avoid potentially leaking secret key bytes via timing
    187	 * information, we must key the hash table by descriptor rather than by
    188	 * raw key, and use crypto_memneq() when comparing raw keys.
    189	 */
    190
    191	BUILD_BUG_ON(sizeof(hash_key) > FSCRYPT_KEY_DESCRIPTOR_SIZE);
    192	memcpy(&hash_key, ci->ci_policy.v1.master_key_descriptor,
    193	       sizeof(hash_key));
    194
    195	spin_lock(&fscrypt_direct_keys_lock);
    196	hash_for_each_possible(fscrypt_direct_keys, dk, dk_node, hash_key) {
    197		if (memcmp(ci->ci_policy.v1.master_key_descriptor,
    198			   dk->dk_descriptor, FSCRYPT_KEY_DESCRIPTOR_SIZE) != 0)
    199			continue;
    200		if (ci->ci_mode != dk->dk_mode)
    201			continue;
    202		if (!fscrypt_is_key_prepared(&dk->dk_key, ci))
    203			continue;
    204		if (crypto_memneq(raw_key, dk->dk_raw, ci->ci_mode->keysize))
    205			continue;
    206		/* using existing tfm with same (descriptor, mode, raw_key) */
    207		refcount_inc(&dk->dk_refcount);
    208		spin_unlock(&fscrypt_direct_keys_lock);
    209		free_direct_key(to_insert);
    210		return dk;
    211	}
    212	if (to_insert)
    213		hash_add(fscrypt_direct_keys, &to_insert->dk_node, hash_key);
    214	spin_unlock(&fscrypt_direct_keys_lock);
    215	return to_insert;
    216}
    217
    218/* Prepare to encrypt directly using the master key in the given mode */
    219static struct fscrypt_direct_key *
    220fscrypt_get_direct_key(const struct fscrypt_info *ci, const u8 *raw_key)
    221{
    222	struct fscrypt_direct_key *dk;
    223	int err;
    224
    225	/* Is there already a tfm for this key? */
    226	dk = find_or_insert_direct_key(NULL, raw_key, ci);
    227	if (dk)
    228		return dk;
    229
    230	/* Nope, allocate one. */
    231	dk = kzalloc(sizeof(*dk), GFP_KERNEL);
    232	if (!dk)
    233		return ERR_PTR(-ENOMEM);
    234	refcount_set(&dk->dk_refcount, 1);
    235	dk->dk_mode = ci->ci_mode;
    236	err = fscrypt_prepare_key(&dk->dk_key, raw_key, ci);
    237	if (err)
    238		goto err_free_dk;
    239	memcpy(dk->dk_descriptor, ci->ci_policy.v1.master_key_descriptor,
    240	       FSCRYPT_KEY_DESCRIPTOR_SIZE);
    241	memcpy(dk->dk_raw, raw_key, ci->ci_mode->keysize);
    242
    243	return find_or_insert_direct_key(dk, raw_key, ci);
    244
    245err_free_dk:
    246	free_direct_key(dk);
    247	return ERR_PTR(err);
    248}
    249
    250/* v1 policy, DIRECT_KEY: use the master key directly */
    251static int setup_v1_file_key_direct(struct fscrypt_info *ci,
    252				    const u8 *raw_master_key)
    253{
    254	struct fscrypt_direct_key *dk;
    255
    256	dk = fscrypt_get_direct_key(ci, raw_master_key);
    257	if (IS_ERR(dk))
    258		return PTR_ERR(dk);
    259	ci->ci_direct_key = dk;
    260	ci->ci_enc_key = dk->dk_key;
    261	return 0;
    262}
    263
    264/* v1 policy, !DIRECT_KEY: derive the file's encryption key */
    265static int setup_v1_file_key_derived(struct fscrypt_info *ci,
    266				     const u8 *raw_master_key)
    267{
    268	u8 *derived_key;
    269	int err;
    270
    271	/*
    272	 * This cannot be a stack buffer because it will be passed to the
    273	 * scatterlist crypto API during derive_key_aes().
    274	 */
    275	derived_key = kmalloc(ci->ci_mode->keysize, GFP_KERNEL);
    276	if (!derived_key)
    277		return -ENOMEM;
    278
    279	err = derive_key_aes(raw_master_key, ci->ci_nonce,
    280			     derived_key, ci->ci_mode->keysize);
    281	if (err)
    282		goto out;
    283
    284	err = fscrypt_set_per_file_enc_key(ci, derived_key);
    285out:
    286	kfree_sensitive(derived_key);
    287	return err;
    288}
    289
    290int fscrypt_setup_v1_file_key(struct fscrypt_info *ci, const u8 *raw_master_key)
    291{
    292	if (ci->ci_policy.v1.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY)
    293		return setup_v1_file_key_direct(ci, raw_master_key);
    294	else
    295		return setup_v1_file_key_derived(ci, raw_master_key);
    296}
    297
    298int fscrypt_setup_v1_file_key_via_subscribed_keyrings(struct fscrypt_info *ci)
    299{
    300	struct key *key;
    301	const struct fscrypt_key *payload;
    302	int err;
    303
    304	key = find_and_lock_process_key(FSCRYPT_KEY_DESC_PREFIX,
    305					ci->ci_policy.v1.master_key_descriptor,
    306					ci->ci_mode->keysize, &payload);
    307	if (key == ERR_PTR(-ENOKEY) && ci->ci_inode->i_sb->s_cop->key_prefix) {
    308		key = find_and_lock_process_key(ci->ci_inode->i_sb->s_cop->key_prefix,
    309						ci->ci_policy.v1.master_key_descriptor,
    310						ci->ci_mode->keysize, &payload);
    311	}
    312	if (IS_ERR(key))
    313		return PTR_ERR(key);
    314
    315	err = fscrypt_setup_v1_file_key(ci, payload->raw);
    316	up_read(&key->sem);
    317	key_put(key);
    318	return err;
    319}