cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

dax.c (46241B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * fs/dax.c - Direct Access filesystem code
      4 * Copyright (c) 2013-2014 Intel Corporation
      5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
      6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
      7 */
      8
      9#include <linux/atomic.h>
     10#include <linux/blkdev.h>
     11#include <linux/buffer_head.h>
     12#include <linux/dax.h>
     13#include <linux/fs.h>
     14#include <linux/highmem.h>
     15#include <linux/memcontrol.h>
     16#include <linux/mm.h>
     17#include <linux/mutex.h>
     18#include <linux/pagevec.h>
     19#include <linux/sched.h>
     20#include <linux/sched/signal.h>
     21#include <linux/uio.h>
     22#include <linux/vmstat.h>
     23#include <linux/pfn_t.h>
     24#include <linux/sizes.h>
     25#include <linux/mmu_notifier.h>
     26#include <linux/iomap.h>
     27#include <linux/rmap.h>
     28#include <asm/pgalloc.h>
     29
     30#define CREATE_TRACE_POINTS
     31#include <trace/events/fs_dax.h>
     32
     33static inline unsigned int pe_order(enum page_entry_size pe_size)
     34{
     35	if (pe_size == PE_SIZE_PTE)
     36		return PAGE_SHIFT - PAGE_SHIFT;
     37	if (pe_size == PE_SIZE_PMD)
     38		return PMD_SHIFT - PAGE_SHIFT;
     39	if (pe_size == PE_SIZE_PUD)
     40		return PUD_SHIFT - PAGE_SHIFT;
     41	return ~0;
     42}
     43
     44/* We choose 4096 entries - same as per-zone page wait tables */
     45#define DAX_WAIT_TABLE_BITS 12
     46#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
     47
     48/* The 'colour' (ie low bits) within a PMD of a page offset.  */
     49#define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
     50#define PG_PMD_NR	(PMD_SIZE >> PAGE_SHIFT)
     51
     52/* The order of a PMD entry */
     53#define PMD_ORDER	(PMD_SHIFT - PAGE_SHIFT)
     54
     55static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
     56
     57static int __init init_dax_wait_table(void)
     58{
     59	int i;
     60
     61	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
     62		init_waitqueue_head(wait_table + i);
     63	return 0;
     64}
     65fs_initcall(init_dax_wait_table);
     66
     67/*
     68 * DAX pagecache entries use XArray value entries so they can't be mistaken
     69 * for pages.  We use one bit for locking, one bit for the entry size (PMD)
     70 * and two more to tell us if the entry is a zero page or an empty entry that
     71 * is just used for locking.  In total four special bits.
     72 *
     73 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
     74 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
     75 * block allocation.
     76 */
     77#define DAX_SHIFT	(4)
     78#define DAX_LOCKED	(1UL << 0)
     79#define DAX_PMD		(1UL << 1)
     80#define DAX_ZERO_PAGE	(1UL << 2)
     81#define DAX_EMPTY	(1UL << 3)
     82
     83static unsigned long dax_to_pfn(void *entry)
     84{
     85	return xa_to_value(entry) >> DAX_SHIFT;
     86}
     87
     88static void *dax_make_entry(pfn_t pfn, unsigned long flags)
     89{
     90	return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
     91}
     92
     93static bool dax_is_locked(void *entry)
     94{
     95	return xa_to_value(entry) & DAX_LOCKED;
     96}
     97
     98static unsigned int dax_entry_order(void *entry)
     99{
    100	if (xa_to_value(entry) & DAX_PMD)
    101		return PMD_ORDER;
    102	return 0;
    103}
    104
    105static unsigned long dax_is_pmd_entry(void *entry)
    106{
    107	return xa_to_value(entry) & DAX_PMD;
    108}
    109
    110static bool dax_is_pte_entry(void *entry)
    111{
    112	return !(xa_to_value(entry) & DAX_PMD);
    113}
    114
    115static int dax_is_zero_entry(void *entry)
    116{
    117	return xa_to_value(entry) & DAX_ZERO_PAGE;
    118}
    119
    120static int dax_is_empty_entry(void *entry)
    121{
    122	return xa_to_value(entry) & DAX_EMPTY;
    123}
    124
    125/*
    126 * true if the entry that was found is of a smaller order than the entry
    127 * we were looking for
    128 */
    129static bool dax_is_conflict(void *entry)
    130{
    131	return entry == XA_RETRY_ENTRY;
    132}
    133
    134/*
    135 * DAX page cache entry locking
    136 */
    137struct exceptional_entry_key {
    138	struct xarray *xa;
    139	pgoff_t entry_start;
    140};
    141
    142struct wait_exceptional_entry_queue {
    143	wait_queue_entry_t wait;
    144	struct exceptional_entry_key key;
    145};
    146
    147/**
    148 * enum dax_wake_mode: waitqueue wakeup behaviour
    149 * @WAKE_ALL: wake all waiters in the waitqueue
    150 * @WAKE_NEXT: wake only the first waiter in the waitqueue
    151 */
    152enum dax_wake_mode {
    153	WAKE_ALL,
    154	WAKE_NEXT,
    155};
    156
    157static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
    158		void *entry, struct exceptional_entry_key *key)
    159{
    160	unsigned long hash;
    161	unsigned long index = xas->xa_index;
    162
    163	/*
    164	 * If 'entry' is a PMD, align the 'index' that we use for the wait
    165	 * queue to the start of that PMD.  This ensures that all offsets in
    166	 * the range covered by the PMD map to the same bit lock.
    167	 */
    168	if (dax_is_pmd_entry(entry))
    169		index &= ~PG_PMD_COLOUR;
    170	key->xa = xas->xa;
    171	key->entry_start = index;
    172
    173	hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
    174	return wait_table + hash;
    175}
    176
    177static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
    178		unsigned int mode, int sync, void *keyp)
    179{
    180	struct exceptional_entry_key *key = keyp;
    181	struct wait_exceptional_entry_queue *ewait =
    182		container_of(wait, struct wait_exceptional_entry_queue, wait);
    183
    184	if (key->xa != ewait->key.xa ||
    185	    key->entry_start != ewait->key.entry_start)
    186		return 0;
    187	return autoremove_wake_function(wait, mode, sync, NULL);
    188}
    189
    190/*
    191 * @entry may no longer be the entry at the index in the mapping.
    192 * The important information it's conveying is whether the entry at
    193 * this index used to be a PMD entry.
    194 */
    195static void dax_wake_entry(struct xa_state *xas, void *entry,
    196			   enum dax_wake_mode mode)
    197{
    198	struct exceptional_entry_key key;
    199	wait_queue_head_t *wq;
    200
    201	wq = dax_entry_waitqueue(xas, entry, &key);
    202
    203	/*
    204	 * Checking for locked entry and prepare_to_wait_exclusive() happens
    205	 * under the i_pages lock, ditto for entry handling in our callers.
    206	 * So at this point all tasks that could have seen our entry locked
    207	 * must be in the waitqueue and the following check will see them.
    208	 */
    209	if (waitqueue_active(wq))
    210		__wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
    211}
    212
    213/*
    214 * Look up entry in page cache, wait for it to become unlocked if it
    215 * is a DAX entry and return it.  The caller must subsequently call
    216 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
    217 * if it did.  The entry returned may have a larger order than @order.
    218 * If @order is larger than the order of the entry found in i_pages, this
    219 * function returns a dax_is_conflict entry.
    220 *
    221 * Must be called with the i_pages lock held.
    222 */
    223static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
    224{
    225	void *entry;
    226	struct wait_exceptional_entry_queue ewait;
    227	wait_queue_head_t *wq;
    228
    229	init_wait(&ewait.wait);
    230	ewait.wait.func = wake_exceptional_entry_func;
    231
    232	for (;;) {
    233		entry = xas_find_conflict(xas);
    234		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
    235			return entry;
    236		if (dax_entry_order(entry) < order)
    237			return XA_RETRY_ENTRY;
    238		if (!dax_is_locked(entry))
    239			return entry;
    240
    241		wq = dax_entry_waitqueue(xas, entry, &ewait.key);
    242		prepare_to_wait_exclusive(wq, &ewait.wait,
    243					  TASK_UNINTERRUPTIBLE);
    244		xas_unlock_irq(xas);
    245		xas_reset(xas);
    246		schedule();
    247		finish_wait(wq, &ewait.wait);
    248		xas_lock_irq(xas);
    249	}
    250}
    251
    252/*
    253 * The only thing keeping the address space around is the i_pages lock
    254 * (it's cycled in clear_inode() after removing the entries from i_pages)
    255 * After we call xas_unlock_irq(), we cannot touch xas->xa.
    256 */
    257static void wait_entry_unlocked(struct xa_state *xas, void *entry)
    258{
    259	struct wait_exceptional_entry_queue ewait;
    260	wait_queue_head_t *wq;
    261
    262	init_wait(&ewait.wait);
    263	ewait.wait.func = wake_exceptional_entry_func;
    264
    265	wq = dax_entry_waitqueue(xas, entry, &ewait.key);
    266	/*
    267	 * Unlike get_unlocked_entry() there is no guarantee that this
    268	 * path ever successfully retrieves an unlocked entry before an
    269	 * inode dies. Perform a non-exclusive wait in case this path
    270	 * never successfully performs its own wake up.
    271	 */
    272	prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
    273	xas_unlock_irq(xas);
    274	schedule();
    275	finish_wait(wq, &ewait.wait);
    276}
    277
    278static void put_unlocked_entry(struct xa_state *xas, void *entry,
    279			       enum dax_wake_mode mode)
    280{
    281	if (entry && !dax_is_conflict(entry))
    282		dax_wake_entry(xas, entry, mode);
    283}
    284
    285/*
    286 * We used the xa_state to get the entry, but then we locked the entry and
    287 * dropped the xa_lock, so we know the xa_state is stale and must be reset
    288 * before use.
    289 */
    290static void dax_unlock_entry(struct xa_state *xas, void *entry)
    291{
    292	void *old;
    293
    294	BUG_ON(dax_is_locked(entry));
    295	xas_reset(xas);
    296	xas_lock_irq(xas);
    297	old = xas_store(xas, entry);
    298	xas_unlock_irq(xas);
    299	BUG_ON(!dax_is_locked(old));
    300	dax_wake_entry(xas, entry, WAKE_NEXT);
    301}
    302
    303/*
    304 * Return: The entry stored at this location before it was locked.
    305 */
    306static void *dax_lock_entry(struct xa_state *xas, void *entry)
    307{
    308	unsigned long v = xa_to_value(entry);
    309	return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
    310}
    311
    312static unsigned long dax_entry_size(void *entry)
    313{
    314	if (dax_is_zero_entry(entry))
    315		return 0;
    316	else if (dax_is_empty_entry(entry))
    317		return 0;
    318	else if (dax_is_pmd_entry(entry))
    319		return PMD_SIZE;
    320	else
    321		return PAGE_SIZE;
    322}
    323
    324static unsigned long dax_end_pfn(void *entry)
    325{
    326	return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
    327}
    328
    329/*
    330 * Iterate through all mapped pfns represented by an entry, i.e. skip
    331 * 'empty' and 'zero' entries.
    332 */
    333#define for_each_mapped_pfn(entry, pfn) \
    334	for (pfn = dax_to_pfn(entry); \
    335			pfn < dax_end_pfn(entry); pfn++)
    336
    337/*
    338 * TODO: for reflink+dax we need a way to associate a single page with
    339 * multiple address_space instances at different linear_page_index()
    340 * offsets.
    341 */
    342static void dax_associate_entry(void *entry, struct address_space *mapping,
    343		struct vm_area_struct *vma, unsigned long address)
    344{
    345	unsigned long size = dax_entry_size(entry), pfn, index;
    346	int i = 0;
    347
    348	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
    349		return;
    350
    351	index = linear_page_index(vma, address & ~(size - 1));
    352	for_each_mapped_pfn(entry, pfn) {
    353		struct page *page = pfn_to_page(pfn);
    354
    355		WARN_ON_ONCE(page->mapping);
    356		page->mapping = mapping;
    357		page->index = index + i++;
    358	}
    359}
    360
    361static void dax_disassociate_entry(void *entry, struct address_space *mapping,
    362		bool trunc)
    363{
    364	unsigned long pfn;
    365
    366	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
    367		return;
    368
    369	for_each_mapped_pfn(entry, pfn) {
    370		struct page *page = pfn_to_page(pfn);
    371
    372		WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
    373		WARN_ON_ONCE(page->mapping && page->mapping != mapping);
    374		page->mapping = NULL;
    375		page->index = 0;
    376	}
    377}
    378
    379static struct page *dax_busy_page(void *entry)
    380{
    381	unsigned long pfn;
    382
    383	for_each_mapped_pfn(entry, pfn) {
    384		struct page *page = pfn_to_page(pfn);
    385
    386		if (page_ref_count(page) > 1)
    387			return page;
    388	}
    389	return NULL;
    390}
    391
    392/*
    393 * dax_lock_page - Lock the DAX entry corresponding to a page
    394 * @page: The page whose entry we want to lock
    395 *
    396 * Context: Process context.
    397 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
    398 * not be locked.
    399 */
    400dax_entry_t dax_lock_page(struct page *page)
    401{
    402	XA_STATE(xas, NULL, 0);
    403	void *entry;
    404
    405	/* Ensure page->mapping isn't freed while we look at it */
    406	rcu_read_lock();
    407	for (;;) {
    408		struct address_space *mapping = READ_ONCE(page->mapping);
    409
    410		entry = NULL;
    411		if (!mapping || !dax_mapping(mapping))
    412			break;
    413
    414		/*
    415		 * In the device-dax case there's no need to lock, a
    416		 * struct dev_pagemap pin is sufficient to keep the
    417		 * inode alive, and we assume we have dev_pagemap pin
    418		 * otherwise we would not have a valid pfn_to_page()
    419		 * translation.
    420		 */
    421		entry = (void *)~0UL;
    422		if (S_ISCHR(mapping->host->i_mode))
    423			break;
    424
    425		xas.xa = &mapping->i_pages;
    426		xas_lock_irq(&xas);
    427		if (mapping != page->mapping) {
    428			xas_unlock_irq(&xas);
    429			continue;
    430		}
    431		xas_set(&xas, page->index);
    432		entry = xas_load(&xas);
    433		if (dax_is_locked(entry)) {
    434			rcu_read_unlock();
    435			wait_entry_unlocked(&xas, entry);
    436			rcu_read_lock();
    437			continue;
    438		}
    439		dax_lock_entry(&xas, entry);
    440		xas_unlock_irq(&xas);
    441		break;
    442	}
    443	rcu_read_unlock();
    444	return (dax_entry_t)entry;
    445}
    446
    447void dax_unlock_page(struct page *page, dax_entry_t cookie)
    448{
    449	struct address_space *mapping = page->mapping;
    450	XA_STATE(xas, &mapping->i_pages, page->index);
    451
    452	if (S_ISCHR(mapping->host->i_mode))
    453		return;
    454
    455	dax_unlock_entry(&xas, (void *)cookie);
    456}
    457
    458/*
    459 * Find page cache entry at given index. If it is a DAX entry, return it
    460 * with the entry locked. If the page cache doesn't contain an entry at
    461 * that index, add a locked empty entry.
    462 *
    463 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
    464 * either return that locked entry or will return VM_FAULT_FALLBACK.
    465 * This will happen if there are any PTE entries within the PMD range
    466 * that we are requesting.
    467 *
    468 * We always favor PTE entries over PMD entries. There isn't a flow where we
    469 * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
    470 * insertion will fail if it finds any PTE entries already in the tree, and a
    471 * PTE insertion will cause an existing PMD entry to be unmapped and
    472 * downgraded to PTE entries.  This happens for both PMD zero pages as
    473 * well as PMD empty entries.
    474 *
    475 * The exception to this downgrade path is for PMD entries that have
    476 * real storage backing them.  We will leave these real PMD entries in
    477 * the tree, and PTE writes will simply dirty the entire PMD entry.
    478 *
    479 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
    480 * persistent memory the benefit is doubtful. We can add that later if we can
    481 * show it helps.
    482 *
    483 * On error, this function does not return an ERR_PTR.  Instead it returns
    484 * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
    485 * overlap with xarray value entries.
    486 */
    487static void *grab_mapping_entry(struct xa_state *xas,
    488		struct address_space *mapping, unsigned int order)
    489{
    490	unsigned long index = xas->xa_index;
    491	bool pmd_downgrade;	/* splitting PMD entry into PTE entries? */
    492	void *entry;
    493
    494retry:
    495	pmd_downgrade = false;
    496	xas_lock_irq(xas);
    497	entry = get_unlocked_entry(xas, order);
    498
    499	if (entry) {
    500		if (dax_is_conflict(entry))
    501			goto fallback;
    502		if (!xa_is_value(entry)) {
    503			xas_set_err(xas, -EIO);
    504			goto out_unlock;
    505		}
    506
    507		if (order == 0) {
    508			if (dax_is_pmd_entry(entry) &&
    509			    (dax_is_zero_entry(entry) ||
    510			     dax_is_empty_entry(entry))) {
    511				pmd_downgrade = true;
    512			}
    513		}
    514	}
    515
    516	if (pmd_downgrade) {
    517		/*
    518		 * Make sure 'entry' remains valid while we drop
    519		 * the i_pages lock.
    520		 */
    521		dax_lock_entry(xas, entry);
    522
    523		/*
    524		 * Besides huge zero pages the only other thing that gets
    525		 * downgraded are empty entries which don't need to be
    526		 * unmapped.
    527		 */
    528		if (dax_is_zero_entry(entry)) {
    529			xas_unlock_irq(xas);
    530			unmap_mapping_pages(mapping,
    531					xas->xa_index & ~PG_PMD_COLOUR,
    532					PG_PMD_NR, false);
    533			xas_reset(xas);
    534			xas_lock_irq(xas);
    535		}
    536
    537		dax_disassociate_entry(entry, mapping, false);
    538		xas_store(xas, NULL);	/* undo the PMD join */
    539		dax_wake_entry(xas, entry, WAKE_ALL);
    540		mapping->nrpages -= PG_PMD_NR;
    541		entry = NULL;
    542		xas_set(xas, index);
    543	}
    544
    545	if (entry) {
    546		dax_lock_entry(xas, entry);
    547	} else {
    548		unsigned long flags = DAX_EMPTY;
    549
    550		if (order > 0)
    551			flags |= DAX_PMD;
    552		entry = dax_make_entry(pfn_to_pfn_t(0), flags);
    553		dax_lock_entry(xas, entry);
    554		if (xas_error(xas))
    555			goto out_unlock;
    556		mapping->nrpages += 1UL << order;
    557	}
    558
    559out_unlock:
    560	xas_unlock_irq(xas);
    561	if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
    562		goto retry;
    563	if (xas->xa_node == XA_ERROR(-ENOMEM))
    564		return xa_mk_internal(VM_FAULT_OOM);
    565	if (xas_error(xas))
    566		return xa_mk_internal(VM_FAULT_SIGBUS);
    567	return entry;
    568fallback:
    569	xas_unlock_irq(xas);
    570	return xa_mk_internal(VM_FAULT_FALLBACK);
    571}
    572
    573/**
    574 * dax_layout_busy_page_range - find first pinned page in @mapping
    575 * @mapping: address space to scan for a page with ref count > 1
    576 * @start: Starting offset. Page containing 'start' is included.
    577 * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
    578 *       pages from 'start' till the end of file are included.
    579 *
    580 * DAX requires ZONE_DEVICE mapped pages. These pages are never
    581 * 'onlined' to the page allocator so they are considered idle when
    582 * page->count == 1. A filesystem uses this interface to determine if
    583 * any page in the mapping is busy, i.e. for DMA, or other
    584 * get_user_pages() usages.
    585 *
    586 * It is expected that the filesystem is holding locks to block the
    587 * establishment of new mappings in this address_space. I.e. it expects
    588 * to be able to run unmap_mapping_range() and subsequently not race
    589 * mapping_mapped() becoming true.
    590 */
    591struct page *dax_layout_busy_page_range(struct address_space *mapping,
    592					loff_t start, loff_t end)
    593{
    594	void *entry;
    595	unsigned int scanned = 0;
    596	struct page *page = NULL;
    597	pgoff_t start_idx = start >> PAGE_SHIFT;
    598	pgoff_t end_idx;
    599	XA_STATE(xas, &mapping->i_pages, start_idx);
    600
    601	/*
    602	 * In the 'limited' case get_user_pages() for dax is disabled.
    603	 */
    604	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
    605		return NULL;
    606
    607	if (!dax_mapping(mapping) || !mapping_mapped(mapping))
    608		return NULL;
    609
    610	/* If end == LLONG_MAX, all pages from start to till end of file */
    611	if (end == LLONG_MAX)
    612		end_idx = ULONG_MAX;
    613	else
    614		end_idx = end >> PAGE_SHIFT;
    615	/*
    616	 * If we race get_user_pages_fast() here either we'll see the
    617	 * elevated page count in the iteration and wait, or
    618	 * get_user_pages_fast() will see that the page it took a reference
    619	 * against is no longer mapped in the page tables and bail to the
    620	 * get_user_pages() slow path.  The slow path is protected by
    621	 * pte_lock() and pmd_lock(). New references are not taken without
    622	 * holding those locks, and unmap_mapping_pages() will not zero the
    623	 * pte or pmd without holding the respective lock, so we are
    624	 * guaranteed to either see new references or prevent new
    625	 * references from being established.
    626	 */
    627	unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
    628
    629	xas_lock_irq(&xas);
    630	xas_for_each(&xas, entry, end_idx) {
    631		if (WARN_ON_ONCE(!xa_is_value(entry)))
    632			continue;
    633		if (unlikely(dax_is_locked(entry)))
    634			entry = get_unlocked_entry(&xas, 0);
    635		if (entry)
    636			page = dax_busy_page(entry);
    637		put_unlocked_entry(&xas, entry, WAKE_NEXT);
    638		if (page)
    639			break;
    640		if (++scanned % XA_CHECK_SCHED)
    641			continue;
    642
    643		xas_pause(&xas);
    644		xas_unlock_irq(&xas);
    645		cond_resched();
    646		xas_lock_irq(&xas);
    647	}
    648	xas_unlock_irq(&xas);
    649	return page;
    650}
    651EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
    652
    653struct page *dax_layout_busy_page(struct address_space *mapping)
    654{
    655	return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
    656}
    657EXPORT_SYMBOL_GPL(dax_layout_busy_page);
    658
    659static int __dax_invalidate_entry(struct address_space *mapping,
    660					  pgoff_t index, bool trunc)
    661{
    662	XA_STATE(xas, &mapping->i_pages, index);
    663	int ret = 0;
    664	void *entry;
    665
    666	xas_lock_irq(&xas);
    667	entry = get_unlocked_entry(&xas, 0);
    668	if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
    669		goto out;
    670	if (!trunc &&
    671	    (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
    672	     xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
    673		goto out;
    674	dax_disassociate_entry(entry, mapping, trunc);
    675	xas_store(&xas, NULL);
    676	mapping->nrpages -= 1UL << dax_entry_order(entry);
    677	ret = 1;
    678out:
    679	put_unlocked_entry(&xas, entry, WAKE_ALL);
    680	xas_unlock_irq(&xas);
    681	return ret;
    682}
    683
    684/*
    685 * Delete DAX entry at @index from @mapping.  Wait for it
    686 * to be unlocked before deleting it.
    687 */
    688int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
    689{
    690	int ret = __dax_invalidate_entry(mapping, index, true);
    691
    692	/*
    693	 * This gets called from truncate / punch_hole path. As such, the caller
    694	 * must hold locks protecting against concurrent modifications of the
    695	 * page cache (usually fs-private i_mmap_sem for writing). Since the
    696	 * caller has seen a DAX entry for this index, we better find it
    697	 * at that index as well...
    698	 */
    699	WARN_ON_ONCE(!ret);
    700	return ret;
    701}
    702
    703/*
    704 * Invalidate DAX entry if it is clean.
    705 */
    706int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
    707				      pgoff_t index)
    708{
    709	return __dax_invalidate_entry(mapping, index, false);
    710}
    711
    712static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos)
    713{
    714	return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset);
    715}
    716
    717static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter)
    718{
    719	pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos);
    720	void *vto, *kaddr;
    721	long rc;
    722	int id;
    723
    724	id = dax_read_lock();
    725	rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, DAX_ACCESS,
    726				&kaddr, NULL);
    727	if (rc < 0) {
    728		dax_read_unlock(id);
    729		return rc;
    730	}
    731	vto = kmap_atomic(vmf->cow_page);
    732	copy_user_page(vto, kaddr, vmf->address, vmf->cow_page);
    733	kunmap_atomic(vto);
    734	dax_read_unlock(id);
    735	return 0;
    736}
    737
    738/*
    739 * By this point grab_mapping_entry() has ensured that we have a locked entry
    740 * of the appropriate size so we don't have to worry about downgrading PMDs to
    741 * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
    742 * already in the tree, we will skip the insertion and just dirty the PMD as
    743 * appropriate.
    744 */
    745static void *dax_insert_entry(struct xa_state *xas,
    746		struct address_space *mapping, struct vm_fault *vmf,
    747		void *entry, pfn_t pfn, unsigned long flags, bool dirty)
    748{
    749	void *new_entry = dax_make_entry(pfn, flags);
    750
    751	if (dirty)
    752		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
    753
    754	if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
    755		unsigned long index = xas->xa_index;
    756		/* we are replacing a zero page with block mapping */
    757		if (dax_is_pmd_entry(entry))
    758			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
    759					PG_PMD_NR, false);
    760		else /* pte entry */
    761			unmap_mapping_pages(mapping, index, 1, false);
    762	}
    763
    764	xas_reset(xas);
    765	xas_lock_irq(xas);
    766	if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
    767		void *old;
    768
    769		dax_disassociate_entry(entry, mapping, false);
    770		dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
    771		/*
    772		 * Only swap our new entry into the page cache if the current
    773		 * entry is a zero page or an empty entry.  If a normal PTE or
    774		 * PMD entry is already in the cache, we leave it alone.  This
    775		 * means that if we are trying to insert a PTE and the
    776		 * existing entry is a PMD, we will just leave the PMD in the
    777		 * tree and dirty it if necessary.
    778		 */
    779		old = dax_lock_entry(xas, new_entry);
    780		WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
    781					DAX_LOCKED));
    782		entry = new_entry;
    783	} else {
    784		xas_load(xas);	/* Walk the xa_state */
    785	}
    786
    787	if (dirty)
    788		xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
    789
    790	xas_unlock_irq(xas);
    791	return entry;
    792}
    793
    794static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
    795		struct address_space *mapping, void *entry)
    796{
    797	unsigned long pfn, index, count, end;
    798	long ret = 0;
    799	struct vm_area_struct *vma;
    800
    801	/*
    802	 * A page got tagged dirty in DAX mapping? Something is seriously
    803	 * wrong.
    804	 */
    805	if (WARN_ON(!xa_is_value(entry)))
    806		return -EIO;
    807
    808	if (unlikely(dax_is_locked(entry))) {
    809		void *old_entry = entry;
    810
    811		entry = get_unlocked_entry(xas, 0);
    812
    813		/* Entry got punched out / reallocated? */
    814		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
    815			goto put_unlocked;
    816		/*
    817		 * Entry got reallocated elsewhere? No need to writeback.
    818		 * We have to compare pfns as we must not bail out due to
    819		 * difference in lockbit or entry type.
    820		 */
    821		if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
    822			goto put_unlocked;
    823		if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
    824					dax_is_zero_entry(entry))) {
    825			ret = -EIO;
    826			goto put_unlocked;
    827		}
    828
    829		/* Another fsync thread may have already done this entry */
    830		if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
    831			goto put_unlocked;
    832	}
    833
    834	/* Lock the entry to serialize with page faults */
    835	dax_lock_entry(xas, entry);
    836
    837	/*
    838	 * We can clear the tag now but we have to be careful so that concurrent
    839	 * dax_writeback_one() calls for the same index cannot finish before we
    840	 * actually flush the caches. This is achieved as the calls will look
    841	 * at the entry only under the i_pages lock and once they do that
    842	 * they will see the entry locked and wait for it to unlock.
    843	 */
    844	xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
    845	xas_unlock_irq(xas);
    846
    847	/*
    848	 * If dax_writeback_mapping_range() was given a wbc->range_start
    849	 * in the middle of a PMD, the 'index' we use needs to be
    850	 * aligned to the start of the PMD.
    851	 * This allows us to flush for PMD_SIZE and not have to worry about
    852	 * partial PMD writebacks.
    853	 */
    854	pfn = dax_to_pfn(entry);
    855	count = 1UL << dax_entry_order(entry);
    856	index = xas->xa_index & ~(count - 1);
    857	end = index + count - 1;
    858
    859	/* Walk all mappings of a given index of a file and writeprotect them */
    860	i_mmap_lock_read(mapping);
    861	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) {
    862		pfn_mkclean_range(pfn, count, index, vma);
    863		cond_resched();
    864	}
    865	i_mmap_unlock_read(mapping);
    866
    867	dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
    868	/*
    869	 * After we have flushed the cache, we can clear the dirty tag. There
    870	 * cannot be new dirty data in the pfn after the flush has completed as
    871	 * the pfn mappings are writeprotected and fault waits for mapping
    872	 * entry lock.
    873	 */
    874	xas_reset(xas);
    875	xas_lock_irq(xas);
    876	xas_store(xas, entry);
    877	xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
    878	dax_wake_entry(xas, entry, WAKE_NEXT);
    879
    880	trace_dax_writeback_one(mapping->host, index, count);
    881	return ret;
    882
    883 put_unlocked:
    884	put_unlocked_entry(xas, entry, WAKE_NEXT);
    885	return ret;
    886}
    887
    888/*
    889 * Flush the mapping to the persistent domain within the byte range of [start,
    890 * end]. This is required by data integrity operations to ensure file data is
    891 * on persistent storage prior to completion of the operation.
    892 */
    893int dax_writeback_mapping_range(struct address_space *mapping,
    894		struct dax_device *dax_dev, struct writeback_control *wbc)
    895{
    896	XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
    897	struct inode *inode = mapping->host;
    898	pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
    899	void *entry;
    900	int ret = 0;
    901	unsigned int scanned = 0;
    902
    903	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
    904		return -EIO;
    905
    906	if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
    907		return 0;
    908
    909	trace_dax_writeback_range(inode, xas.xa_index, end_index);
    910
    911	tag_pages_for_writeback(mapping, xas.xa_index, end_index);
    912
    913	xas_lock_irq(&xas);
    914	xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
    915		ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
    916		if (ret < 0) {
    917			mapping_set_error(mapping, ret);
    918			break;
    919		}
    920		if (++scanned % XA_CHECK_SCHED)
    921			continue;
    922
    923		xas_pause(&xas);
    924		xas_unlock_irq(&xas);
    925		cond_resched();
    926		xas_lock_irq(&xas);
    927	}
    928	xas_unlock_irq(&xas);
    929	trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
    930	return ret;
    931}
    932EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
    933
    934static int dax_iomap_pfn(const struct iomap *iomap, loff_t pos, size_t size,
    935			 pfn_t *pfnp)
    936{
    937	pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
    938	int id, rc;
    939	long length;
    940
    941	id = dax_read_lock();
    942	length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
    943				   DAX_ACCESS, NULL, pfnp);
    944	if (length < 0) {
    945		rc = length;
    946		goto out;
    947	}
    948	rc = -EINVAL;
    949	if (PFN_PHYS(length) < size)
    950		goto out;
    951	if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
    952		goto out;
    953	/* For larger pages we need devmap */
    954	if (length > 1 && !pfn_t_devmap(*pfnp))
    955		goto out;
    956	rc = 0;
    957out:
    958	dax_read_unlock(id);
    959	return rc;
    960}
    961
    962/*
    963 * The user has performed a load from a hole in the file.  Allocating a new
    964 * page in the file would cause excessive storage usage for workloads with
    965 * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
    966 * If this page is ever written to we will re-fault and change the mapping to
    967 * point to real DAX storage instead.
    968 */
    969static vm_fault_t dax_load_hole(struct xa_state *xas,
    970		struct address_space *mapping, void **entry,
    971		struct vm_fault *vmf)
    972{
    973	struct inode *inode = mapping->host;
    974	unsigned long vaddr = vmf->address;
    975	pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
    976	vm_fault_t ret;
    977
    978	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
    979			DAX_ZERO_PAGE, false);
    980
    981	ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
    982	trace_dax_load_hole(inode, vmf, ret);
    983	return ret;
    984}
    985
    986#ifdef CONFIG_FS_DAX_PMD
    987static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
    988		const struct iomap *iomap, void **entry)
    989{
    990	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
    991	unsigned long pmd_addr = vmf->address & PMD_MASK;
    992	struct vm_area_struct *vma = vmf->vma;
    993	struct inode *inode = mapping->host;
    994	pgtable_t pgtable = NULL;
    995	struct page *zero_page;
    996	spinlock_t *ptl;
    997	pmd_t pmd_entry;
    998	pfn_t pfn;
    999
   1000	zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
   1001
   1002	if (unlikely(!zero_page))
   1003		goto fallback;
   1004
   1005	pfn = page_to_pfn_t(zero_page);
   1006	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
   1007			DAX_PMD | DAX_ZERO_PAGE, false);
   1008
   1009	if (arch_needs_pgtable_deposit()) {
   1010		pgtable = pte_alloc_one(vma->vm_mm);
   1011		if (!pgtable)
   1012			return VM_FAULT_OOM;
   1013	}
   1014
   1015	ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
   1016	if (!pmd_none(*(vmf->pmd))) {
   1017		spin_unlock(ptl);
   1018		goto fallback;
   1019	}
   1020
   1021	if (pgtable) {
   1022		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
   1023		mm_inc_nr_ptes(vma->vm_mm);
   1024	}
   1025	pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
   1026	pmd_entry = pmd_mkhuge(pmd_entry);
   1027	set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
   1028	spin_unlock(ptl);
   1029	trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
   1030	return VM_FAULT_NOPAGE;
   1031
   1032fallback:
   1033	if (pgtable)
   1034		pte_free(vma->vm_mm, pgtable);
   1035	trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
   1036	return VM_FAULT_FALLBACK;
   1037}
   1038#else
   1039static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
   1040		const struct iomap *iomap, void **entry)
   1041{
   1042	return VM_FAULT_FALLBACK;
   1043}
   1044#endif /* CONFIG_FS_DAX_PMD */
   1045
   1046static int dax_memzero(struct dax_device *dax_dev, pgoff_t pgoff,
   1047		unsigned int offset, size_t size)
   1048{
   1049	void *kaddr;
   1050	long ret;
   1051
   1052	ret = dax_direct_access(dax_dev, pgoff, 1, DAX_ACCESS, &kaddr, NULL);
   1053	if (ret > 0) {
   1054		memset(kaddr + offset, 0, size);
   1055		dax_flush(dax_dev, kaddr + offset, size);
   1056	}
   1057	return ret;
   1058}
   1059
   1060static s64 dax_zero_iter(struct iomap_iter *iter, bool *did_zero)
   1061{
   1062	const struct iomap *iomap = &iter->iomap;
   1063	const struct iomap *srcmap = iomap_iter_srcmap(iter);
   1064	loff_t pos = iter->pos;
   1065	u64 length = iomap_length(iter);
   1066	s64 written = 0;
   1067
   1068	/* already zeroed?  we're done. */
   1069	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
   1070		return length;
   1071
   1072	do {
   1073		unsigned offset = offset_in_page(pos);
   1074		unsigned size = min_t(u64, PAGE_SIZE - offset, length);
   1075		pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
   1076		long rc;
   1077		int id;
   1078
   1079		id = dax_read_lock();
   1080		if (IS_ALIGNED(pos, PAGE_SIZE) && size == PAGE_SIZE)
   1081			rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
   1082		else
   1083			rc = dax_memzero(iomap->dax_dev, pgoff, offset, size);
   1084		dax_read_unlock(id);
   1085
   1086		if (rc < 0)
   1087			return rc;
   1088		pos += size;
   1089		length -= size;
   1090		written += size;
   1091		if (did_zero)
   1092			*did_zero = true;
   1093	} while (length > 0);
   1094
   1095	return written;
   1096}
   1097
   1098int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
   1099		const struct iomap_ops *ops)
   1100{
   1101	struct iomap_iter iter = {
   1102		.inode		= inode,
   1103		.pos		= pos,
   1104		.len		= len,
   1105		.flags		= IOMAP_DAX | IOMAP_ZERO,
   1106	};
   1107	int ret;
   1108
   1109	while ((ret = iomap_iter(&iter, ops)) > 0)
   1110		iter.processed = dax_zero_iter(&iter, did_zero);
   1111	return ret;
   1112}
   1113EXPORT_SYMBOL_GPL(dax_zero_range);
   1114
   1115int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
   1116		const struct iomap_ops *ops)
   1117{
   1118	unsigned int blocksize = i_blocksize(inode);
   1119	unsigned int off = pos & (blocksize - 1);
   1120
   1121	/* Block boundary? Nothing to do */
   1122	if (!off)
   1123		return 0;
   1124	return dax_zero_range(inode, pos, blocksize - off, did_zero, ops);
   1125}
   1126EXPORT_SYMBOL_GPL(dax_truncate_page);
   1127
   1128static loff_t dax_iomap_iter(const struct iomap_iter *iomi,
   1129		struct iov_iter *iter)
   1130{
   1131	const struct iomap *iomap = &iomi->iomap;
   1132	loff_t length = iomap_length(iomi);
   1133	loff_t pos = iomi->pos;
   1134	struct dax_device *dax_dev = iomap->dax_dev;
   1135	loff_t end = pos + length, done = 0;
   1136	ssize_t ret = 0;
   1137	size_t xfer;
   1138	int id;
   1139
   1140	if (iov_iter_rw(iter) == READ) {
   1141		end = min(end, i_size_read(iomi->inode));
   1142		if (pos >= end)
   1143			return 0;
   1144
   1145		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
   1146			return iov_iter_zero(min(length, end - pos), iter);
   1147	}
   1148
   1149	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
   1150		return -EIO;
   1151
   1152	/*
   1153	 * Write can allocate block for an area which has a hole page mapped
   1154	 * into page tables. We have to tear down these mappings so that data
   1155	 * written by write(2) is visible in mmap.
   1156	 */
   1157	if (iomap->flags & IOMAP_F_NEW) {
   1158		invalidate_inode_pages2_range(iomi->inode->i_mapping,
   1159					      pos >> PAGE_SHIFT,
   1160					      (end - 1) >> PAGE_SHIFT);
   1161	}
   1162
   1163	id = dax_read_lock();
   1164	while (pos < end) {
   1165		unsigned offset = pos & (PAGE_SIZE - 1);
   1166		const size_t size = ALIGN(length + offset, PAGE_SIZE);
   1167		pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
   1168		ssize_t map_len;
   1169		bool recovery = false;
   1170		void *kaddr;
   1171
   1172		if (fatal_signal_pending(current)) {
   1173			ret = -EINTR;
   1174			break;
   1175		}
   1176
   1177		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
   1178				DAX_ACCESS, &kaddr, NULL);
   1179		if (map_len == -EIO && iov_iter_rw(iter) == WRITE) {
   1180			map_len = dax_direct_access(dax_dev, pgoff,
   1181					PHYS_PFN(size), DAX_RECOVERY_WRITE,
   1182					&kaddr, NULL);
   1183			if (map_len > 0)
   1184				recovery = true;
   1185		}
   1186		if (map_len < 0) {
   1187			ret = map_len;
   1188			break;
   1189		}
   1190
   1191		map_len = PFN_PHYS(map_len);
   1192		kaddr += offset;
   1193		map_len -= offset;
   1194		if (map_len > end - pos)
   1195			map_len = end - pos;
   1196
   1197		if (recovery)
   1198			xfer = dax_recovery_write(dax_dev, pgoff, kaddr,
   1199					map_len, iter);
   1200		else if (iov_iter_rw(iter) == WRITE)
   1201			xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
   1202					map_len, iter);
   1203		else
   1204			xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
   1205					map_len, iter);
   1206
   1207		pos += xfer;
   1208		length -= xfer;
   1209		done += xfer;
   1210
   1211		if (xfer == 0)
   1212			ret = -EFAULT;
   1213		if (xfer < map_len)
   1214			break;
   1215	}
   1216	dax_read_unlock(id);
   1217
   1218	return done ? done : ret;
   1219}
   1220
   1221/**
   1222 * dax_iomap_rw - Perform I/O to a DAX file
   1223 * @iocb:	The control block for this I/O
   1224 * @iter:	The addresses to do I/O from or to
   1225 * @ops:	iomap ops passed from the file system
   1226 *
   1227 * This function performs read and write operations to directly mapped
   1228 * persistent memory.  The callers needs to take care of read/write exclusion
   1229 * and evicting any page cache pages in the region under I/O.
   1230 */
   1231ssize_t
   1232dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
   1233		const struct iomap_ops *ops)
   1234{
   1235	struct iomap_iter iomi = {
   1236		.inode		= iocb->ki_filp->f_mapping->host,
   1237		.pos		= iocb->ki_pos,
   1238		.len		= iov_iter_count(iter),
   1239		.flags		= IOMAP_DAX,
   1240	};
   1241	loff_t done = 0;
   1242	int ret;
   1243
   1244	if (iov_iter_rw(iter) == WRITE) {
   1245		lockdep_assert_held_write(&iomi.inode->i_rwsem);
   1246		iomi.flags |= IOMAP_WRITE;
   1247	} else {
   1248		lockdep_assert_held(&iomi.inode->i_rwsem);
   1249	}
   1250
   1251	if (iocb->ki_flags & IOCB_NOWAIT)
   1252		iomi.flags |= IOMAP_NOWAIT;
   1253
   1254	while ((ret = iomap_iter(&iomi, ops)) > 0)
   1255		iomi.processed = dax_iomap_iter(&iomi, iter);
   1256
   1257	done = iomi.pos - iocb->ki_pos;
   1258	iocb->ki_pos = iomi.pos;
   1259	return done ? done : ret;
   1260}
   1261EXPORT_SYMBOL_GPL(dax_iomap_rw);
   1262
   1263static vm_fault_t dax_fault_return(int error)
   1264{
   1265	if (error == 0)
   1266		return VM_FAULT_NOPAGE;
   1267	return vmf_error(error);
   1268}
   1269
   1270/*
   1271 * MAP_SYNC on a dax mapping guarantees dirty metadata is
   1272 * flushed on write-faults (non-cow), but not read-faults.
   1273 */
   1274static bool dax_fault_is_synchronous(unsigned long flags,
   1275		struct vm_area_struct *vma, const struct iomap *iomap)
   1276{
   1277	return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
   1278		&& (iomap->flags & IOMAP_F_DIRTY);
   1279}
   1280
   1281/*
   1282 * When handling a synchronous page fault and the inode need a fsync, we can
   1283 * insert the PTE/PMD into page tables only after that fsync happened. Skip
   1284 * insertion for now and return the pfn so that caller can insert it after the
   1285 * fsync is done.
   1286 */
   1287static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn)
   1288{
   1289	if (WARN_ON_ONCE(!pfnp))
   1290		return VM_FAULT_SIGBUS;
   1291	*pfnp = pfn;
   1292	return VM_FAULT_NEEDDSYNC;
   1293}
   1294
   1295static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf,
   1296		const struct iomap_iter *iter)
   1297{
   1298	vm_fault_t ret;
   1299	int error = 0;
   1300
   1301	switch (iter->iomap.type) {
   1302	case IOMAP_HOLE:
   1303	case IOMAP_UNWRITTEN:
   1304		clear_user_highpage(vmf->cow_page, vmf->address);
   1305		break;
   1306	case IOMAP_MAPPED:
   1307		error = copy_cow_page_dax(vmf, iter);
   1308		break;
   1309	default:
   1310		WARN_ON_ONCE(1);
   1311		error = -EIO;
   1312		break;
   1313	}
   1314
   1315	if (error)
   1316		return dax_fault_return(error);
   1317
   1318	__SetPageUptodate(vmf->cow_page);
   1319	ret = finish_fault(vmf);
   1320	if (!ret)
   1321		return VM_FAULT_DONE_COW;
   1322	return ret;
   1323}
   1324
   1325/**
   1326 * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault.
   1327 * @vmf:	vm fault instance
   1328 * @iter:	iomap iter
   1329 * @pfnp:	pfn to be returned
   1330 * @xas:	the dax mapping tree of a file
   1331 * @entry:	an unlocked dax entry to be inserted
   1332 * @pmd:	distinguish whether it is a pmd fault
   1333 */
   1334static vm_fault_t dax_fault_iter(struct vm_fault *vmf,
   1335		const struct iomap_iter *iter, pfn_t *pfnp,
   1336		struct xa_state *xas, void **entry, bool pmd)
   1337{
   1338	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
   1339	const struct iomap *iomap = &iter->iomap;
   1340	size_t size = pmd ? PMD_SIZE : PAGE_SIZE;
   1341	loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT;
   1342	bool write = vmf->flags & FAULT_FLAG_WRITE;
   1343	bool sync = dax_fault_is_synchronous(iter->flags, vmf->vma, iomap);
   1344	unsigned long entry_flags = pmd ? DAX_PMD : 0;
   1345	int err = 0;
   1346	pfn_t pfn;
   1347
   1348	if (!pmd && vmf->cow_page)
   1349		return dax_fault_cow_page(vmf, iter);
   1350
   1351	/* if we are reading UNWRITTEN and HOLE, return a hole. */
   1352	if (!write &&
   1353	    (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) {
   1354		if (!pmd)
   1355			return dax_load_hole(xas, mapping, entry, vmf);
   1356		return dax_pmd_load_hole(xas, vmf, iomap, entry);
   1357	}
   1358
   1359	if (iomap->type != IOMAP_MAPPED) {
   1360		WARN_ON_ONCE(1);
   1361		return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS;
   1362	}
   1363
   1364	err = dax_iomap_pfn(&iter->iomap, pos, size, &pfn);
   1365	if (err)
   1366		return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err);
   1367
   1368	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, entry_flags,
   1369				  write && !sync);
   1370
   1371	if (sync)
   1372		return dax_fault_synchronous_pfnp(pfnp, pfn);
   1373
   1374	/* insert PMD pfn */
   1375	if (pmd)
   1376		return vmf_insert_pfn_pmd(vmf, pfn, write);
   1377
   1378	/* insert PTE pfn */
   1379	if (write)
   1380		return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
   1381	return vmf_insert_mixed(vmf->vma, vmf->address, pfn);
   1382}
   1383
   1384static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
   1385			       int *iomap_errp, const struct iomap_ops *ops)
   1386{
   1387	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
   1388	XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
   1389	struct iomap_iter iter = {
   1390		.inode		= mapping->host,
   1391		.pos		= (loff_t)vmf->pgoff << PAGE_SHIFT,
   1392		.len		= PAGE_SIZE,
   1393		.flags		= IOMAP_DAX | IOMAP_FAULT,
   1394	};
   1395	vm_fault_t ret = 0;
   1396	void *entry;
   1397	int error;
   1398
   1399	trace_dax_pte_fault(iter.inode, vmf, ret);
   1400	/*
   1401	 * Check whether offset isn't beyond end of file now. Caller is supposed
   1402	 * to hold locks serializing us with truncate / punch hole so this is
   1403	 * a reliable test.
   1404	 */
   1405	if (iter.pos >= i_size_read(iter.inode)) {
   1406		ret = VM_FAULT_SIGBUS;
   1407		goto out;
   1408	}
   1409
   1410	if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
   1411		iter.flags |= IOMAP_WRITE;
   1412
   1413	entry = grab_mapping_entry(&xas, mapping, 0);
   1414	if (xa_is_internal(entry)) {
   1415		ret = xa_to_internal(entry);
   1416		goto out;
   1417	}
   1418
   1419	/*
   1420	 * It is possible, particularly with mixed reads & writes to private
   1421	 * mappings, that we have raced with a PMD fault that overlaps with
   1422	 * the PTE we need to set up.  If so just return and the fault will be
   1423	 * retried.
   1424	 */
   1425	if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
   1426		ret = VM_FAULT_NOPAGE;
   1427		goto unlock_entry;
   1428	}
   1429
   1430	while ((error = iomap_iter(&iter, ops)) > 0) {
   1431		if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) {
   1432			iter.processed = -EIO;	/* fs corruption? */
   1433			continue;
   1434		}
   1435
   1436		ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false);
   1437		if (ret != VM_FAULT_SIGBUS &&
   1438		    (iter.iomap.flags & IOMAP_F_NEW)) {
   1439			count_vm_event(PGMAJFAULT);
   1440			count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
   1441			ret |= VM_FAULT_MAJOR;
   1442		}
   1443
   1444		if (!(ret & VM_FAULT_ERROR))
   1445			iter.processed = PAGE_SIZE;
   1446	}
   1447
   1448	if (iomap_errp)
   1449		*iomap_errp = error;
   1450	if (!ret && error)
   1451		ret = dax_fault_return(error);
   1452
   1453unlock_entry:
   1454	dax_unlock_entry(&xas, entry);
   1455out:
   1456	trace_dax_pte_fault_done(iter.inode, vmf, ret);
   1457	return ret;
   1458}
   1459
   1460#ifdef CONFIG_FS_DAX_PMD
   1461static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas,
   1462		pgoff_t max_pgoff)
   1463{
   1464	unsigned long pmd_addr = vmf->address & PMD_MASK;
   1465	bool write = vmf->flags & FAULT_FLAG_WRITE;
   1466
   1467	/*
   1468	 * Make sure that the faulting address's PMD offset (color) matches
   1469	 * the PMD offset from the start of the file.  This is necessary so
   1470	 * that a PMD range in the page table overlaps exactly with a PMD
   1471	 * range in the page cache.
   1472	 */
   1473	if ((vmf->pgoff & PG_PMD_COLOUR) !=
   1474	    ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
   1475		return true;
   1476
   1477	/* Fall back to PTEs if we're going to COW */
   1478	if (write && !(vmf->vma->vm_flags & VM_SHARED))
   1479		return true;
   1480
   1481	/* If the PMD would extend outside the VMA */
   1482	if (pmd_addr < vmf->vma->vm_start)
   1483		return true;
   1484	if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end)
   1485		return true;
   1486
   1487	/* If the PMD would extend beyond the file size */
   1488	if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff)
   1489		return true;
   1490
   1491	return false;
   1492}
   1493
   1494static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
   1495			       const struct iomap_ops *ops)
   1496{
   1497	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
   1498	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
   1499	struct iomap_iter iter = {
   1500		.inode		= mapping->host,
   1501		.len		= PMD_SIZE,
   1502		.flags		= IOMAP_DAX | IOMAP_FAULT,
   1503	};
   1504	vm_fault_t ret = VM_FAULT_FALLBACK;
   1505	pgoff_t max_pgoff;
   1506	void *entry;
   1507	int error;
   1508
   1509	if (vmf->flags & FAULT_FLAG_WRITE)
   1510		iter.flags |= IOMAP_WRITE;
   1511
   1512	/*
   1513	 * Check whether offset isn't beyond end of file now. Caller is
   1514	 * supposed to hold locks serializing us with truncate / punch hole so
   1515	 * this is a reliable test.
   1516	 */
   1517	max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE);
   1518
   1519	trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0);
   1520
   1521	if (xas.xa_index >= max_pgoff) {
   1522		ret = VM_FAULT_SIGBUS;
   1523		goto out;
   1524	}
   1525
   1526	if (dax_fault_check_fallback(vmf, &xas, max_pgoff))
   1527		goto fallback;
   1528
   1529	/*
   1530	 * grab_mapping_entry() will make sure we get an empty PMD entry,
   1531	 * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
   1532	 * entry is already in the array, for instance), it will return
   1533	 * VM_FAULT_FALLBACK.
   1534	 */
   1535	entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
   1536	if (xa_is_internal(entry)) {
   1537		ret = xa_to_internal(entry);
   1538		goto fallback;
   1539	}
   1540
   1541	/*
   1542	 * It is possible, particularly with mixed reads & writes to private
   1543	 * mappings, that we have raced with a PTE fault that overlaps with
   1544	 * the PMD we need to set up.  If so just return and the fault will be
   1545	 * retried.
   1546	 */
   1547	if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
   1548			!pmd_devmap(*vmf->pmd)) {
   1549		ret = 0;
   1550		goto unlock_entry;
   1551	}
   1552
   1553	iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT;
   1554	while ((error = iomap_iter(&iter, ops)) > 0) {
   1555		if (iomap_length(&iter) < PMD_SIZE)
   1556			continue; /* actually breaks out of the loop */
   1557
   1558		ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true);
   1559		if (ret != VM_FAULT_FALLBACK)
   1560			iter.processed = PMD_SIZE;
   1561	}
   1562
   1563unlock_entry:
   1564	dax_unlock_entry(&xas, entry);
   1565fallback:
   1566	if (ret == VM_FAULT_FALLBACK) {
   1567		split_huge_pmd(vmf->vma, vmf->pmd, vmf->address);
   1568		count_vm_event(THP_FAULT_FALLBACK);
   1569	}
   1570out:
   1571	trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret);
   1572	return ret;
   1573}
   1574#else
   1575static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
   1576			       const struct iomap_ops *ops)
   1577{
   1578	return VM_FAULT_FALLBACK;
   1579}
   1580#endif /* CONFIG_FS_DAX_PMD */
   1581
   1582/**
   1583 * dax_iomap_fault - handle a page fault on a DAX file
   1584 * @vmf: The description of the fault
   1585 * @pe_size: Size of the page to fault in
   1586 * @pfnp: PFN to insert for synchronous faults if fsync is required
   1587 * @iomap_errp: Storage for detailed error code in case of error
   1588 * @ops: Iomap ops passed from the file system
   1589 *
   1590 * When a page fault occurs, filesystems may call this helper in
   1591 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
   1592 * has done all the necessary locking for page fault to proceed
   1593 * successfully.
   1594 */
   1595vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
   1596		    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
   1597{
   1598	switch (pe_size) {
   1599	case PE_SIZE_PTE:
   1600		return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
   1601	case PE_SIZE_PMD:
   1602		return dax_iomap_pmd_fault(vmf, pfnp, ops);
   1603	default:
   1604		return VM_FAULT_FALLBACK;
   1605	}
   1606}
   1607EXPORT_SYMBOL_GPL(dax_iomap_fault);
   1608
   1609/*
   1610 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
   1611 * @vmf: The description of the fault
   1612 * @pfn: PFN to insert
   1613 * @order: Order of entry to insert.
   1614 *
   1615 * This function inserts a writeable PTE or PMD entry into the page tables
   1616 * for an mmaped DAX file.  It also marks the page cache entry as dirty.
   1617 */
   1618static vm_fault_t
   1619dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
   1620{
   1621	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
   1622	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
   1623	void *entry;
   1624	vm_fault_t ret;
   1625
   1626	xas_lock_irq(&xas);
   1627	entry = get_unlocked_entry(&xas, order);
   1628	/* Did we race with someone splitting entry or so? */
   1629	if (!entry || dax_is_conflict(entry) ||
   1630	    (order == 0 && !dax_is_pte_entry(entry))) {
   1631		put_unlocked_entry(&xas, entry, WAKE_NEXT);
   1632		xas_unlock_irq(&xas);
   1633		trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
   1634						      VM_FAULT_NOPAGE);
   1635		return VM_FAULT_NOPAGE;
   1636	}
   1637	xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
   1638	dax_lock_entry(&xas, entry);
   1639	xas_unlock_irq(&xas);
   1640	if (order == 0)
   1641		ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
   1642#ifdef CONFIG_FS_DAX_PMD
   1643	else if (order == PMD_ORDER)
   1644		ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
   1645#endif
   1646	else
   1647		ret = VM_FAULT_FALLBACK;
   1648	dax_unlock_entry(&xas, entry);
   1649	trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
   1650	return ret;
   1651}
   1652
   1653/**
   1654 * dax_finish_sync_fault - finish synchronous page fault
   1655 * @vmf: The description of the fault
   1656 * @pe_size: Size of entry to be inserted
   1657 * @pfn: PFN to insert
   1658 *
   1659 * This function ensures that the file range touched by the page fault is
   1660 * stored persistently on the media and handles inserting of appropriate page
   1661 * table entry.
   1662 */
   1663vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
   1664		enum page_entry_size pe_size, pfn_t pfn)
   1665{
   1666	int err;
   1667	loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
   1668	unsigned int order = pe_order(pe_size);
   1669	size_t len = PAGE_SIZE << order;
   1670
   1671	err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
   1672	if (err)
   1673		return VM_FAULT_SIGBUS;
   1674	return dax_insert_pfn_mkwrite(vmf, pfn, order);
   1675}
   1676EXPORT_SYMBOL_GPL(dax_finish_sync_fault);