dax.c (46241B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * fs/dax.c - Direct Access filesystem code 4 * Copyright (c) 2013-2014 Intel Corporation 5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> 6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com> 7 */ 8 9#include <linux/atomic.h> 10#include <linux/blkdev.h> 11#include <linux/buffer_head.h> 12#include <linux/dax.h> 13#include <linux/fs.h> 14#include <linux/highmem.h> 15#include <linux/memcontrol.h> 16#include <linux/mm.h> 17#include <linux/mutex.h> 18#include <linux/pagevec.h> 19#include <linux/sched.h> 20#include <linux/sched/signal.h> 21#include <linux/uio.h> 22#include <linux/vmstat.h> 23#include <linux/pfn_t.h> 24#include <linux/sizes.h> 25#include <linux/mmu_notifier.h> 26#include <linux/iomap.h> 27#include <linux/rmap.h> 28#include <asm/pgalloc.h> 29 30#define CREATE_TRACE_POINTS 31#include <trace/events/fs_dax.h> 32 33static inline unsigned int pe_order(enum page_entry_size pe_size) 34{ 35 if (pe_size == PE_SIZE_PTE) 36 return PAGE_SHIFT - PAGE_SHIFT; 37 if (pe_size == PE_SIZE_PMD) 38 return PMD_SHIFT - PAGE_SHIFT; 39 if (pe_size == PE_SIZE_PUD) 40 return PUD_SHIFT - PAGE_SHIFT; 41 return ~0; 42} 43 44/* We choose 4096 entries - same as per-zone page wait tables */ 45#define DAX_WAIT_TABLE_BITS 12 46#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS) 47 48/* The 'colour' (ie low bits) within a PMD of a page offset. */ 49#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1) 50#define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT) 51 52/* The order of a PMD entry */ 53#define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT) 54 55static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES]; 56 57static int __init init_dax_wait_table(void) 58{ 59 int i; 60 61 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++) 62 init_waitqueue_head(wait_table + i); 63 return 0; 64} 65fs_initcall(init_dax_wait_table); 66 67/* 68 * DAX pagecache entries use XArray value entries so they can't be mistaken 69 * for pages. We use one bit for locking, one bit for the entry size (PMD) 70 * and two more to tell us if the entry is a zero page or an empty entry that 71 * is just used for locking. In total four special bits. 72 * 73 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE 74 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem 75 * block allocation. 76 */ 77#define DAX_SHIFT (4) 78#define DAX_LOCKED (1UL << 0) 79#define DAX_PMD (1UL << 1) 80#define DAX_ZERO_PAGE (1UL << 2) 81#define DAX_EMPTY (1UL << 3) 82 83static unsigned long dax_to_pfn(void *entry) 84{ 85 return xa_to_value(entry) >> DAX_SHIFT; 86} 87 88static void *dax_make_entry(pfn_t pfn, unsigned long flags) 89{ 90 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT)); 91} 92 93static bool dax_is_locked(void *entry) 94{ 95 return xa_to_value(entry) & DAX_LOCKED; 96} 97 98static unsigned int dax_entry_order(void *entry) 99{ 100 if (xa_to_value(entry) & DAX_PMD) 101 return PMD_ORDER; 102 return 0; 103} 104 105static unsigned long dax_is_pmd_entry(void *entry) 106{ 107 return xa_to_value(entry) & DAX_PMD; 108} 109 110static bool dax_is_pte_entry(void *entry) 111{ 112 return !(xa_to_value(entry) & DAX_PMD); 113} 114 115static int dax_is_zero_entry(void *entry) 116{ 117 return xa_to_value(entry) & DAX_ZERO_PAGE; 118} 119 120static int dax_is_empty_entry(void *entry) 121{ 122 return xa_to_value(entry) & DAX_EMPTY; 123} 124 125/* 126 * true if the entry that was found is of a smaller order than the entry 127 * we were looking for 128 */ 129static bool dax_is_conflict(void *entry) 130{ 131 return entry == XA_RETRY_ENTRY; 132} 133 134/* 135 * DAX page cache entry locking 136 */ 137struct exceptional_entry_key { 138 struct xarray *xa; 139 pgoff_t entry_start; 140}; 141 142struct wait_exceptional_entry_queue { 143 wait_queue_entry_t wait; 144 struct exceptional_entry_key key; 145}; 146 147/** 148 * enum dax_wake_mode: waitqueue wakeup behaviour 149 * @WAKE_ALL: wake all waiters in the waitqueue 150 * @WAKE_NEXT: wake only the first waiter in the waitqueue 151 */ 152enum dax_wake_mode { 153 WAKE_ALL, 154 WAKE_NEXT, 155}; 156 157static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas, 158 void *entry, struct exceptional_entry_key *key) 159{ 160 unsigned long hash; 161 unsigned long index = xas->xa_index; 162 163 /* 164 * If 'entry' is a PMD, align the 'index' that we use for the wait 165 * queue to the start of that PMD. This ensures that all offsets in 166 * the range covered by the PMD map to the same bit lock. 167 */ 168 if (dax_is_pmd_entry(entry)) 169 index &= ~PG_PMD_COLOUR; 170 key->xa = xas->xa; 171 key->entry_start = index; 172 173 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS); 174 return wait_table + hash; 175} 176 177static int wake_exceptional_entry_func(wait_queue_entry_t *wait, 178 unsigned int mode, int sync, void *keyp) 179{ 180 struct exceptional_entry_key *key = keyp; 181 struct wait_exceptional_entry_queue *ewait = 182 container_of(wait, struct wait_exceptional_entry_queue, wait); 183 184 if (key->xa != ewait->key.xa || 185 key->entry_start != ewait->key.entry_start) 186 return 0; 187 return autoremove_wake_function(wait, mode, sync, NULL); 188} 189 190/* 191 * @entry may no longer be the entry at the index in the mapping. 192 * The important information it's conveying is whether the entry at 193 * this index used to be a PMD entry. 194 */ 195static void dax_wake_entry(struct xa_state *xas, void *entry, 196 enum dax_wake_mode mode) 197{ 198 struct exceptional_entry_key key; 199 wait_queue_head_t *wq; 200 201 wq = dax_entry_waitqueue(xas, entry, &key); 202 203 /* 204 * Checking for locked entry and prepare_to_wait_exclusive() happens 205 * under the i_pages lock, ditto for entry handling in our callers. 206 * So at this point all tasks that could have seen our entry locked 207 * must be in the waitqueue and the following check will see them. 208 */ 209 if (waitqueue_active(wq)) 210 __wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key); 211} 212 213/* 214 * Look up entry in page cache, wait for it to become unlocked if it 215 * is a DAX entry and return it. The caller must subsequently call 216 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry() 217 * if it did. The entry returned may have a larger order than @order. 218 * If @order is larger than the order of the entry found in i_pages, this 219 * function returns a dax_is_conflict entry. 220 * 221 * Must be called with the i_pages lock held. 222 */ 223static void *get_unlocked_entry(struct xa_state *xas, unsigned int order) 224{ 225 void *entry; 226 struct wait_exceptional_entry_queue ewait; 227 wait_queue_head_t *wq; 228 229 init_wait(&ewait.wait); 230 ewait.wait.func = wake_exceptional_entry_func; 231 232 for (;;) { 233 entry = xas_find_conflict(xas); 234 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 235 return entry; 236 if (dax_entry_order(entry) < order) 237 return XA_RETRY_ENTRY; 238 if (!dax_is_locked(entry)) 239 return entry; 240 241 wq = dax_entry_waitqueue(xas, entry, &ewait.key); 242 prepare_to_wait_exclusive(wq, &ewait.wait, 243 TASK_UNINTERRUPTIBLE); 244 xas_unlock_irq(xas); 245 xas_reset(xas); 246 schedule(); 247 finish_wait(wq, &ewait.wait); 248 xas_lock_irq(xas); 249 } 250} 251 252/* 253 * The only thing keeping the address space around is the i_pages lock 254 * (it's cycled in clear_inode() after removing the entries from i_pages) 255 * After we call xas_unlock_irq(), we cannot touch xas->xa. 256 */ 257static void wait_entry_unlocked(struct xa_state *xas, void *entry) 258{ 259 struct wait_exceptional_entry_queue ewait; 260 wait_queue_head_t *wq; 261 262 init_wait(&ewait.wait); 263 ewait.wait.func = wake_exceptional_entry_func; 264 265 wq = dax_entry_waitqueue(xas, entry, &ewait.key); 266 /* 267 * Unlike get_unlocked_entry() there is no guarantee that this 268 * path ever successfully retrieves an unlocked entry before an 269 * inode dies. Perform a non-exclusive wait in case this path 270 * never successfully performs its own wake up. 271 */ 272 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE); 273 xas_unlock_irq(xas); 274 schedule(); 275 finish_wait(wq, &ewait.wait); 276} 277 278static void put_unlocked_entry(struct xa_state *xas, void *entry, 279 enum dax_wake_mode mode) 280{ 281 if (entry && !dax_is_conflict(entry)) 282 dax_wake_entry(xas, entry, mode); 283} 284 285/* 286 * We used the xa_state to get the entry, but then we locked the entry and 287 * dropped the xa_lock, so we know the xa_state is stale and must be reset 288 * before use. 289 */ 290static void dax_unlock_entry(struct xa_state *xas, void *entry) 291{ 292 void *old; 293 294 BUG_ON(dax_is_locked(entry)); 295 xas_reset(xas); 296 xas_lock_irq(xas); 297 old = xas_store(xas, entry); 298 xas_unlock_irq(xas); 299 BUG_ON(!dax_is_locked(old)); 300 dax_wake_entry(xas, entry, WAKE_NEXT); 301} 302 303/* 304 * Return: The entry stored at this location before it was locked. 305 */ 306static void *dax_lock_entry(struct xa_state *xas, void *entry) 307{ 308 unsigned long v = xa_to_value(entry); 309 return xas_store(xas, xa_mk_value(v | DAX_LOCKED)); 310} 311 312static unsigned long dax_entry_size(void *entry) 313{ 314 if (dax_is_zero_entry(entry)) 315 return 0; 316 else if (dax_is_empty_entry(entry)) 317 return 0; 318 else if (dax_is_pmd_entry(entry)) 319 return PMD_SIZE; 320 else 321 return PAGE_SIZE; 322} 323 324static unsigned long dax_end_pfn(void *entry) 325{ 326 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE; 327} 328 329/* 330 * Iterate through all mapped pfns represented by an entry, i.e. skip 331 * 'empty' and 'zero' entries. 332 */ 333#define for_each_mapped_pfn(entry, pfn) \ 334 for (pfn = dax_to_pfn(entry); \ 335 pfn < dax_end_pfn(entry); pfn++) 336 337/* 338 * TODO: for reflink+dax we need a way to associate a single page with 339 * multiple address_space instances at different linear_page_index() 340 * offsets. 341 */ 342static void dax_associate_entry(void *entry, struct address_space *mapping, 343 struct vm_area_struct *vma, unsigned long address) 344{ 345 unsigned long size = dax_entry_size(entry), pfn, index; 346 int i = 0; 347 348 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 349 return; 350 351 index = linear_page_index(vma, address & ~(size - 1)); 352 for_each_mapped_pfn(entry, pfn) { 353 struct page *page = pfn_to_page(pfn); 354 355 WARN_ON_ONCE(page->mapping); 356 page->mapping = mapping; 357 page->index = index + i++; 358 } 359} 360 361static void dax_disassociate_entry(void *entry, struct address_space *mapping, 362 bool trunc) 363{ 364 unsigned long pfn; 365 366 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 367 return; 368 369 for_each_mapped_pfn(entry, pfn) { 370 struct page *page = pfn_to_page(pfn); 371 372 WARN_ON_ONCE(trunc && page_ref_count(page) > 1); 373 WARN_ON_ONCE(page->mapping && page->mapping != mapping); 374 page->mapping = NULL; 375 page->index = 0; 376 } 377} 378 379static struct page *dax_busy_page(void *entry) 380{ 381 unsigned long pfn; 382 383 for_each_mapped_pfn(entry, pfn) { 384 struct page *page = pfn_to_page(pfn); 385 386 if (page_ref_count(page) > 1) 387 return page; 388 } 389 return NULL; 390} 391 392/* 393 * dax_lock_page - Lock the DAX entry corresponding to a page 394 * @page: The page whose entry we want to lock 395 * 396 * Context: Process context. 397 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could 398 * not be locked. 399 */ 400dax_entry_t dax_lock_page(struct page *page) 401{ 402 XA_STATE(xas, NULL, 0); 403 void *entry; 404 405 /* Ensure page->mapping isn't freed while we look at it */ 406 rcu_read_lock(); 407 for (;;) { 408 struct address_space *mapping = READ_ONCE(page->mapping); 409 410 entry = NULL; 411 if (!mapping || !dax_mapping(mapping)) 412 break; 413 414 /* 415 * In the device-dax case there's no need to lock, a 416 * struct dev_pagemap pin is sufficient to keep the 417 * inode alive, and we assume we have dev_pagemap pin 418 * otherwise we would not have a valid pfn_to_page() 419 * translation. 420 */ 421 entry = (void *)~0UL; 422 if (S_ISCHR(mapping->host->i_mode)) 423 break; 424 425 xas.xa = &mapping->i_pages; 426 xas_lock_irq(&xas); 427 if (mapping != page->mapping) { 428 xas_unlock_irq(&xas); 429 continue; 430 } 431 xas_set(&xas, page->index); 432 entry = xas_load(&xas); 433 if (dax_is_locked(entry)) { 434 rcu_read_unlock(); 435 wait_entry_unlocked(&xas, entry); 436 rcu_read_lock(); 437 continue; 438 } 439 dax_lock_entry(&xas, entry); 440 xas_unlock_irq(&xas); 441 break; 442 } 443 rcu_read_unlock(); 444 return (dax_entry_t)entry; 445} 446 447void dax_unlock_page(struct page *page, dax_entry_t cookie) 448{ 449 struct address_space *mapping = page->mapping; 450 XA_STATE(xas, &mapping->i_pages, page->index); 451 452 if (S_ISCHR(mapping->host->i_mode)) 453 return; 454 455 dax_unlock_entry(&xas, (void *)cookie); 456} 457 458/* 459 * Find page cache entry at given index. If it is a DAX entry, return it 460 * with the entry locked. If the page cache doesn't contain an entry at 461 * that index, add a locked empty entry. 462 * 463 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will 464 * either return that locked entry or will return VM_FAULT_FALLBACK. 465 * This will happen if there are any PTE entries within the PMD range 466 * that we are requesting. 467 * 468 * We always favor PTE entries over PMD entries. There isn't a flow where we 469 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD 470 * insertion will fail if it finds any PTE entries already in the tree, and a 471 * PTE insertion will cause an existing PMD entry to be unmapped and 472 * downgraded to PTE entries. This happens for both PMD zero pages as 473 * well as PMD empty entries. 474 * 475 * The exception to this downgrade path is for PMD entries that have 476 * real storage backing them. We will leave these real PMD entries in 477 * the tree, and PTE writes will simply dirty the entire PMD entry. 478 * 479 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For 480 * persistent memory the benefit is doubtful. We can add that later if we can 481 * show it helps. 482 * 483 * On error, this function does not return an ERR_PTR. Instead it returns 484 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values 485 * overlap with xarray value entries. 486 */ 487static void *grab_mapping_entry(struct xa_state *xas, 488 struct address_space *mapping, unsigned int order) 489{ 490 unsigned long index = xas->xa_index; 491 bool pmd_downgrade; /* splitting PMD entry into PTE entries? */ 492 void *entry; 493 494retry: 495 pmd_downgrade = false; 496 xas_lock_irq(xas); 497 entry = get_unlocked_entry(xas, order); 498 499 if (entry) { 500 if (dax_is_conflict(entry)) 501 goto fallback; 502 if (!xa_is_value(entry)) { 503 xas_set_err(xas, -EIO); 504 goto out_unlock; 505 } 506 507 if (order == 0) { 508 if (dax_is_pmd_entry(entry) && 509 (dax_is_zero_entry(entry) || 510 dax_is_empty_entry(entry))) { 511 pmd_downgrade = true; 512 } 513 } 514 } 515 516 if (pmd_downgrade) { 517 /* 518 * Make sure 'entry' remains valid while we drop 519 * the i_pages lock. 520 */ 521 dax_lock_entry(xas, entry); 522 523 /* 524 * Besides huge zero pages the only other thing that gets 525 * downgraded are empty entries which don't need to be 526 * unmapped. 527 */ 528 if (dax_is_zero_entry(entry)) { 529 xas_unlock_irq(xas); 530 unmap_mapping_pages(mapping, 531 xas->xa_index & ~PG_PMD_COLOUR, 532 PG_PMD_NR, false); 533 xas_reset(xas); 534 xas_lock_irq(xas); 535 } 536 537 dax_disassociate_entry(entry, mapping, false); 538 xas_store(xas, NULL); /* undo the PMD join */ 539 dax_wake_entry(xas, entry, WAKE_ALL); 540 mapping->nrpages -= PG_PMD_NR; 541 entry = NULL; 542 xas_set(xas, index); 543 } 544 545 if (entry) { 546 dax_lock_entry(xas, entry); 547 } else { 548 unsigned long flags = DAX_EMPTY; 549 550 if (order > 0) 551 flags |= DAX_PMD; 552 entry = dax_make_entry(pfn_to_pfn_t(0), flags); 553 dax_lock_entry(xas, entry); 554 if (xas_error(xas)) 555 goto out_unlock; 556 mapping->nrpages += 1UL << order; 557 } 558 559out_unlock: 560 xas_unlock_irq(xas); 561 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM)) 562 goto retry; 563 if (xas->xa_node == XA_ERROR(-ENOMEM)) 564 return xa_mk_internal(VM_FAULT_OOM); 565 if (xas_error(xas)) 566 return xa_mk_internal(VM_FAULT_SIGBUS); 567 return entry; 568fallback: 569 xas_unlock_irq(xas); 570 return xa_mk_internal(VM_FAULT_FALLBACK); 571} 572 573/** 574 * dax_layout_busy_page_range - find first pinned page in @mapping 575 * @mapping: address space to scan for a page with ref count > 1 576 * @start: Starting offset. Page containing 'start' is included. 577 * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX, 578 * pages from 'start' till the end of file are included. 579 * 580 * DAX requires ZONE_DEVICE mapped pages. These pages are never 581 * 'onlined' to the page allocator so they are considered idle when 582 * page->count == 1. A filesystem uses this interface to determine if 583 * any page in the mapping is busy, i.e. for DMA, or other 584 * get_user_pages() usages. 585 * 586 * It is expected that the filesystem is holding locks to block the 587 * establishment of new mappings in this address_space. I.e. it expects 588 * to be able to run unmap_mapping_range() and subsequently not race 589 * mapping_mapped() becoming true. 590 */ 591struct page *dax_layout_busy_page_range(struct address_space *mapping, 592 loff_t start, loff_t end) 593{ 594 void *entry; 595 unsigned int scanned = 0; 596 struct page *page = NULL; 597 pgoff_t start_idx = start >> PAGE_SHIFT; 598 pgoff_t end_idx; 599 XA_STATE(xas, &mapping->i_pages, start_idx); 600 601 /* 602 * In the 'limited' case get_user_pages() for dax is disabled. 603 */ 604 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 605 return NULL; 606 607 if (!dax_mapping(mapping) || !mapping_mapped(mapping)) 608 return NULL; 609 610 /* If end == LLONG_MAX, all pages from start to till end of file */ 611 if (end == LLONG_MAX) 612 end_idx = ULONG_MAX; 613 else 614 end_idx = end >> PAGE_SHIFT; 615 /* 616 * If we race get_user_pages_fast() here either we'll see the 617 * elevated page count in the iteration and wait, or 618 * get_user_pages_fast() will see that the page it took a reference 619 * against is no longer mapped in the page tables and bail to the 620 * get_user_pages() slow path. The slow path is protected by 621 * pte_lock() and pmd_lock(). New references are not taken without 622 * holding those locks, and unmap_mapping_pages() will not zero the 623 * pte or pmd without holding the respective lock, so we are 624 * guaranteed to either see new references or prevent new 625 * references from being established. 626 */ 627 unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0); 628 629 xas_lock_irq(&xas); 630 xas_for_each(&xas, entry, end_idx) { 631 if (WARN_ON_ONCE(!xa_is_value(entry))) 632 continue; 633 if (unlikely(dax_is_locked(entry))) 634 entry = get_unlocked_entry(&xas, 0); 635 if (entry) 636 page = dax_busy_page(entry); 637 put_unlocked_entry(&xas, entry, WAKE_NEXT); 638 if (page) 639 break; 640 if (++scanned % XA_CHECK_SCHED) 641 continue; 642 643 xas_pause(&xas); 644 xas_unlock_irq(&xas); 645 cond_resched(); 646 xas_lock_irq(&xas); 647 } 648 xas_unlock_irq(&xas); 649 return page; 650} 651EXPORT_SYMBOL_GPL(dax_layout_busy_page_range); 652 653struct page *dax_layout_busy_page(struct address_space *mapping) 654{ 655 return dax_layout_busy_page_range(mapping, 0, LLONG_MAX); 656} 657EXPORT_SYMBOL_GPL(dax_layout_busy_page); 658 659static int __dax_invalidate_entry(struct address_space *mapping, 660 pgoff_t index, bool trunc) 661{ 662 XA_STATE(xas, &mapping->i_pages, index); 663 int ret = 0; 664 void *entry; 665 666 xas_lock_irq(&xas); 667 entry = get_unlocked_entry(&xas, 0); 668 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 669 goto out; 670 if (!trunc && 671 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) || 672 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE))) 673 goto out; 674 dax_disassociate_entry(entry, mapping, trunc); 675 xas_store(&xas, NULL); 676 mapping->nrpages -= 1UL << dax_entry_order(entry); 677 ret = 1; 678out: 679 put_unlocked_entry(&xas, entry, WAKE_ALL); 680 xas_unlock_irq(&xas); 681 return ret; 682} 683 684/* 685 * Delete DAX entry at @index from @mapping. Wait for it 686 * to be unlocked before deleting it. 687 */ 688int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index) 689{ 690 int ret = __dax_invalidate_entry(mapping, index, true); 691 692 /* 693 * This gets called from truncate / punch_hole path. As such, the caller 694 * must hold locks protecting against concurrent modifications of the 695 * page cache (usually fs-private i_mmap_sem for writing). Since the 696 * caller has seen a DAX entry for this index, we better find it 697 * at that index as well... 698 */ 699 WARN_ON_ONCE(!ret); 700 return ret; 701} 702 703/* 704 * Invalidate DAX entry if it is clean. 705 */ 706int dax_invalidate_mapping_entry_sync(struct address_space *mapping, 707 pgoff_t index) 708{ 709 return __dax_invalidate_entry(mapping, index, false); 710} 711 712static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos) 713{ 714 return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset); 715} 716 717static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter) 718{ 719 pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos); 720 void *vto, *kaddr; 721 long rc; 722 int id; 723 724 id = dax_read_lock(); 725 rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, DAX_ACCESS, 726 &kaddr, NULL); 727 if (rc < 0) { 728 dax_read_unlock(id); 729 return rc; 730 } 731 vto = kmap_atomic(vmf->cow_page); 732 copy_user_page(vto, kaddr, vmf->address, vmf->cow_page); 733 kunmap_atomic(vto); 734 dax_read_unlock(id); 735 return 0; 736} 737 738/* 739 * By this point grab_mapping_entry() has ensured that we have a locked entry 740 * of the appropriate size so we don't have to worry about downgrading PMDs to 741 * PTEs. If we happen to be trying to insert a PTE and there is a PMD 742 * already in the tree, we will skip the insertion and just dirty the PMD as 743 * appropriate. 744 */ 745static void *dax_insert_entry(struct xa_state *xas, 746 struct address_space *mapping, struct vm_fault *vmf, 747 void *entry, pfn_t pfn, unsigned long flags, bool dirty) 748{ 749 void *new_entry = dax_make_entry(pfn, flags); 750 751 if (dirty) 752 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 753 754 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) { 755 unsigned long index = xas->xa_index; 756 /* we are replacing a zero page with block mapping */ 757 if (dax_is_pmd_entry(entry)) 758 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR, 759 PG_PMD_NR, false); 760 else /* pte entry */ 761 unmap_mapping_pages(mapping, index, 1, false); 762 } 763 764 xas_reset(xas); 765 xas_lock_irq(xas); 766 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { 767 void *old; 768 769 dax_disassociate_entry(entry, mapping, false); 770 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address); 771 /* 772 * Only swap our new entry into the page cache if the current 773 * entry is a zero page or an empty entry. If a normal PTE or 774 * PMD entry is already in the cache, we leave it alone. This 775 * means that if we are trying to insert a PTE and the 776 * existing entry is a PMD, we will just leave the PMD in the 777 * tree and dirty it if necessary. 778 */ 779 old = dax_lock_entry(xas, new_entry); 780 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) | 781 DAX_LOCKED)); 782 entry = new_entry; 783 } else { 784 xas_load(xas); /* Walk the xa_state */ 785 } 786 787 if (dirty) 788 xas_set_mark(xas, PAGECACHE_TAG_DIRTY); 789 790 xas_unlock_irq(xas); 791 return entry; 792} 793 794static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev, 795 struct address_space *mapping, void *entry) 796{ 797 unsigned long pfn, index, count, end; 798 long ret = 0; 799 struct vm_area_struct *vma; 800 801 /* 802 * A page got tagged dirty in DAX mapping? Something is seriously 803 * wrong. 804 */ 805 if (WARN_ON(!xa_is_value(entry))) 806 return -EIO; 807 808 if (unlikely(dax_is_locked(entry))) { 809 void *old_entry = entry; 810 811 entry = get_unlocked_entry(xas, 0); 812 813 /* Entry got punched out / reallocated? */ 814 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 815 goto put_unlocked; 816 /* 817 * Entry got reallocated elsewhere? No need to writeback. 818 * We have to compare pfns as we must not bail out due to 819 * difference in lockbit or entry type. 820 */ 821 if (dax_to_pfn(old_entry) != dax_to_pfn(entry)) 822 goto put_unlocked; 823 if (WARN_ON_ONCE(dax_is_empty_entry(entry) || 824 dax_is_zero_entry(entry))) { 825 ret = -EIO; 826 goto put_unlocked; 827 } 828 829 /* Another fsync thread may have already done this entry */ 830 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE)) 831 goto put_unlocked; 832 } 833 834 /* Lock the entry to serialize with page faults */ 835 dax_lock_entry(xas, entry); 836 837 /* 838 * We can clear the tag now but we have to be careful so that concurrent 839 * dax_writeback_one() calls for the same index cannot finish before we 840 * actually flush the caches. This is achieved as the calls will look 841 * at the entry only under the i_pages lock and once they do that 842 * they will see the entry locked and wait for it to unlock. 843 */ 844 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE); 845 xas_unlock_irq(xas); 846 847 /* 848 * If dax_writeback_mapping_range() was given a wbc->range_start 849 * in the middle of a PMD, the 'index' we use needs to be 850 * aligned to the start of the PMD. 851 * This allows us to flush for PMD_SIZE and not have to worry about 852 * partial PMD writebacks. 853 */ 854 pfn = dax_to_pfn(entry); 855 count = 1UL << dax_entry_order(entry); 856 index = xas->xa_index & ~(count - 1); 857 end = index + count - 1; 858 859 /* Walk all mappings of a given index of a file and writeprotect them */ 860 i_mmap_lock_read(mapping); 861 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) { 862 pfn_mkclean_range(pfn, count, index, vma); 863 cond_resched(); 864 } 865 i_mmap_unlock_read(mapping); 866 867 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE); 868 /* 869 * After we have flushed the cache, we can clear the dirty tag. There 870 * cannot be new dirty data in the pfn after the flush has completed as 871 * the pfn mappings are writeprotected and fault waits for mapping 872 * entry lock. 873 */ 874 xas_reset(xas); 875 xas_lock_irq(xas); 876 xas_store(xas, entry); 877 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY); 878 dax_wake_entry(xas, entry, WAKE_NEXT); 879 880 trace_dax_writeback_one(mapping->host, index, count); 881 return ret; 882 883 put_unlocked: 884 put_unlocked_entry(xas, entry, WAKE_NEXT); 885 return ret; 886} 887 888/* 889 * Flush the mapping to the persistent domain within the byte range of [start, 890 * end]. This is required by data integrity operations to ensure file data is 891 * on persistent storage prior to completion of the operation. 892 */ 893int dax_writeback_mapping_range(struct address_space *mapping, 894 struct dax_device *dax_dev, struct writeback_control *wbc) 895{ 896 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT); 897 struct inode *inode = mapping->host; 898 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT; 899 void *entry; 900 int ret = 0; 901 unsigned int scanned = 0; 902 903 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) 904 return -EIO; 905 906 if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL) 907 return 0; 908 909 trace_dax_writeback_range(inode, xas.xa_index, end_index); 910 911 tag_pages_for_writeback(mapping, xas.xa_index, end_index); 912 913 xas_lock_irq(&xas); 914 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) { 915 ret = dax_writeback_one(&xas, dax_dev, mapping, entry); 916 if (ret < 0) { 917 mapping_set_error(mapping, ret); 918 break; 919 } 920 if (++scanned % XA_CHECK_SCHED) 921 continue; 922 923 xas_pause(&xas); 924 xas_unlock_irq(&xas); 925 cond_resched(); 926 xas_lock_irq(&xas); 927 } 928 xas_unlock_irq(&xas); 929 trace_dax_writeback_range_done(inode, xas.xa_index, end_index); 930 return ret; 931} 932EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); 933 934static int dax_iomap_pfn(const struct iomap *iomap, loff_t pos, size_t size, 935 pfn_t *pfnp) 936{ 937 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); 938 int id, rc; 939 long length; 940 941 id = dax_read_lock(); 942 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size), 943 DAX_ACCESS, NULL, pfnp); 944 if (length < 0) { 945 rc = length; 946 goto out; 947 } 948 rc = -EINVAL; 949 if (PFN_PHYS(length) < size) 950 goto out; 951 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1)) 952 goto out; 953 /* For larger pages we need devmap */ 954 if (length > 1 && !pfn_t_devmap(*pfnp)) 955 goto out; 956 rc = 0; 957out: 958 dax_read_unlock(id); 959 return rc; 960} 961 962/* 963 * The user has performed a load from a hole in the file. Allocating a new 964 * page in the file would cause excessive storage usage for workloads with 965 * sparse files. Instead we insert a read-only mapping of the 4k zero page. 966 * If this page is ever written to we will re-fault and change the mapping to 967 * point to real DAX storage instead. 968 */ 969static vm_fault_t dax_load_hole(struct xa_state *xas, 970 struct address_space *mapping, void **entry, 971 struct vm_fault *vmf) 972{ 973 struct inode *inode = mapping->host; 974 unsigned long vaddr = vmf->address; 975 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr)); 976 vm_fault_t ret; 977 978 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, 979 DAX_ZERO_PAGE, false); 980 981 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn); 982 trace_dax_load_hole(inode, vmf, ret); 983 return ret; 984} 985 986#ifdef CONFIG_FS_DAX_PMD 987static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf, 988 const struct iomap *iomap, void **entry) 989{ 990 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 991 unsigned long pmd_addr = vmf->address & PMD_MASK; 992 struct vm_area_struct *vma = vmf->vma; 993 struct inode *inode = mapping->host; 994 pgtable_t pgtable = NULL; 995 struct page *zero_page; 996 spinlock_t *ptl; 997 pmd_t pmd_entry; 998 pfn_t pfn; 999 1000 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm); 1001 1002 if (unlikely(!zero_page)) 1003 goto fallback; 1004 1005 pfn = page_to_pfn_t(zero_page); 1006 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, 1007 DAX_PMD | DAX_ZERO_PAGE, false); 1008 1009 if (arch_needs_pgtable_deposit()) { 1010 pgtable = pte_alloc_one(vma->vm_mm); 1011 if (!pgtable) 1012 return VM_FAULT_OOM; 1013 } 1014 1015 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1016 if (!pmd_none(*(vmf->pmd))) { 1017 spin_unlock(ptl); 1018 goto fallback; 1019 } 1020 1021 if (pgtable) { 1022 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 1023 mm_inc_nr_ptes(vma->vm_mm); 1024 } 1025 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot); 1026 pmd_entry = pmd_mkhuge(pmd_entry); 1027 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry); 1028 spin_unlock(ptl); 1029 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry); 1030 return VM_FAULT_NOPAGE; 1031 1032fallback: 1033 if (pgtable) 1034 pte_free(vma->vm_mm, pgtable); 1035 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry); 1036 return VM_FAULT_FALLBACK; 1037} 1038#else 1039static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf, 1040 const struct iomap *iomap, void **entry) 1041{ 1042 return VM_FAULT_FALLBACK; 1043} 1044#endif /* CONFIG_FS_DAX_PMD */ 1045 1046static int dax_memzero(struct dax_device *dax_dev, pgoff_t pgoff, 1047 unsigned int offset, size_t size) 1048{ 1049 void *kaddr; 1050 long ret; 1051 1052 ret = dax_direct_access(dax_dev, pgoff, 1, DAX_ACCESS, &kaddr, NULL); 1053 if (ret > 0) { 1054 memset(kaddr + offset, 0, size); 1055 dax_flush(dax_dev, kaddr + offset, size); 1056 } 1057 return ret; 1058} 1059 1060static s64 dax_zero_iter(struct iomap_iter *iter, bool *did_zero) 1061{ 1062 const struct iomap *iomap = &iter->iomap; 1063 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1064 loff_t pos = iter->pos; 1065 u64 length = iomap_length(iter); 1066 s64 written = 0; 1067 1068 /* already zeroed? we're done. */ 1069 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 1070 return length; 1071 1072 do { 1073 unsigned offset = offset_in_page(pos); 1074 unsigned size = min_t(u64, PAGE_SIZE - offset, length); 1075 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); 1076 long rc; 1077 int id; 1078 1079 id = dax_read_lock(); 1080 if (IS_ALIGNED(pos, PAGE_SIZE) && size == PAGE_SIZE) 1081 rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1); 1082 else 1083 rc = dax_memzero(iomap->dax_dev, pgoff, offset, size); 1084 dax_read_unlock(id); 1085 1086 if (rc < 0) 1087 return rc; 1088 pos += size; 1089 length -= size; 1090 written += size; 1091 if (did_zero) 1092 *did_zero = true; 1093 } while (length > 0); 1094 1095 return written; 1096} 1097 1098int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, 1099 const struct iomap_ops *ops) 1100{ 1101 struct iomap_iter iter = { 1102 .inode = inode, 1103 .pos = pos, 1104 .len = len, 1105 .flags = IOMAP_DAX | IOMAP_ZERO, 1106 }; 1107 int ret; 1108 1109 while ((ret = iomap_iter(&iter, ops)) > 0) 1110 iter.processed = dax_zero_iter(&iter, did_zero); 1111 return ret; 1112} 1113EXPORT_SYMBOL_GPL(dax_zero_range); 1114 1115int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, 1116 const struct iomap_ops *ops) 1117{ 1118 unsigned int blocksize = i_blocksize(inode); 1119 unsigned int off = pos & (blocksize - 1); 1120 1121 /* Block boundary? Nothing to do */ 1122 if (!off) 1123 return 0; 1124 return dax_zero_range(inode, pos, blocksize - off, did_zero, ops); 1125} 1126EXPORT_SYMBOL_GPL(dax_truncate_page); 1127 1128static loff_t dax_iomap_iter(const struct iomap_iter *iomi, 1129 struct iov_iter *iter) 1130{ 1131 const struct iomap *iomap = &iomi->iomap; 1132 loff_t length = iomap_length(iomi); 1133 loff_t pos = iomi->pos; 1134 struct dax_device *dax_dev = iomap->dax_dev; 1135 loff_t end = pos + length, done = 0; 1136 ssize_t ret = 0; 1137 size_t xfer; 1138 int id; 1139 1140 if (iov_iter_rw(iter) == READ) { 1141 end = min(end, i_size_read(iomi->inode)); 1142 if (pos >= end) 1143 return 0; 1144 1145 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) 1146 return iov_iter_zero(min(length, end - pos), iter); 1147 } 1148 1149 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED)) 1150 return -EIO; 1151 1152 /* 1153 * Write can allocate block for an area which has a hole page mapped 1154 * into page tables. We have to tear down these mappings so that data 1155 * written by write(2) is visible in mmap. 1156 */ 1157 if (iomap->flags & IOMAP_F_NEW) { 1158 invalidate_inode_pages2_range(iomi->inode->i_mapping, 1159 pos >> PAGE_SHIFT, 1160 (end - 1) >> PAGE_SHIFT); 1161 } 1162 1163 id = dax_read_lock(); 1164 while (pos < end) { 1165 unsigned offset = pos & (PAGE_SIZE - 1); 1166 const size_t size = ALIGN(length + offset, PAGE_SIZE); 1167 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); 1168 ssize_t map_len; 1169 bool recovery = false; 1170 void *kaddr; 1171 1172 if (fatal_signal_pending(current)) { 1173 ret = -EINTR; 1174 break; 1175 } 1176 1177 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), 1178 DAX_ACCESS, &kaddr, NULL); 1179 if (map_len == -EIO && iov_iter_rw(iter) == WRITE) { 1180 map_len = dax_direct_access(dax_dev, pgoff, 1181 PHYS_PFN(size), DAX_RECOVERY_WRITE, 1182 &kaddr, NULL); 1183 if (map_len > 0) 1184 recovery = true; 1185 } 1186 if (map_len < 0) { 1187 ret = map_len; 1188 break; 1189 } 1190 1191 map_len = PFN_PHYS(map_len); 1192 kaddr += offset; 1193 map_len -= offset; 1194 if (map_len > end - pos) 1195 map_len = end - pos; 1196 1197 if (recovery) 1198 xfer = dax_recovery_write(dax_dev, pgoff, kaddr, 1199 map_len, iter); 1200 else if (iov_iter_rw(iter) == WRITE) 1201 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr, 1202 map_len, iter); 1203 else 1204 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr, 1205 map_len, iter); 1206 1207 pos += xfer; 1208 length -= xfer; 1209 done += xfer; 1210 1211 if (xfer == 0) 1212 ret = -EFAULT; 1213 if (xfer < map_len) 1214 break; 1215 } 1216 dax_read_unlock(id); 1217 1218 return done ? done : ret; 1219} 1220 1221/** 1222 * dax_iomap_rw - Perform I/O to a DAX file 1223 * @iocb: The control block for this I/O 1224 * @iter: The addresses to do I/O from or to 1225 * @ops: iomap ops passed from the file system 1226 * 1227 * This function performs read and write operations to directly mapped 1228 * persistent memory. The callers needs to take care of read/write exclusion 1229 * and evicting any page cache pages in the region under I/O. 1230 */ 1231ssize_t 1232dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter, 1233 const struct iomap_ops *ops) 1234{ 1235 struct iomap_iter iomi = { 1236 .inode = iocb->ki_filp->f_mapping->host, 1237 .pos = iocb->ki_pos, 1238 .len = iov_iter_count(iter), 1239 .flags = IOMAP_DAX, 1240 }; 1241 loff_t done = 0; 1242 int ret; 1243 1244 if (iov_iter_rw(iter) == WRITE) { 1245 lockdep_assert_held_write(&iomi.inode->i_rwsem); 1246 iomi.flags |= IOMAP_WRITE; 1247 } else { 1248 lockdep_assert_held(&iomi.inode->i_rwsem); 1249 } 1250 1251 if (iocb->ki_flags & IOCB_NOWAIT) 1252 iomi.flags |= IOMAP_NOWAIT; 1253 1254 while ((ret = iomap_iter(&iomi, ops)) > 0) 1255 iomi.processed = dax_iomap_iter(&iomi, iter); 1256 1257 done = iomi.pos - iocb->ki_pos; 1258 iocb->ki_pos = iomi.pos; 1259 return done ? done : ret; 1260} 1261EXPORT_SYMBOL_GPL(dax_iomap_rw); 1262 1263static vm_fault_t dax_fault_return(int error) 1264{ 1265 if (error == 0) 1266 return VM_FAULT_NOPAGE; 1267 return vmf_error(error); 1268} 1269 1270/* 1271 * MAP_SYNC on a dax mapping guarantees dirty metadata is 1272 * flushed on write-faults (non-cow), but not read-faults. 1273 */ 1274static bool dax_fault_is_synchronous(unsigned long flags, 1275 struct vm_area_struct *vma, const struct iomap *iomap) 1276{ 1277 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) 1278 && (iomap->flags & IOMAP_F_DIRTY); 1279} 1280 1281/* 1282 * When handling a synchronous page fault and the inode need a fsync, we can 1283 * insert the PTE/PMD into page tables only after that fsync happened. Skip 1284 * insertion for now and return the pfn so that caller can insert it after the 1285 * fsync is done. 1286 */ 1287static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn) 1288{ 1289 if (WARN_ON_ONCE(!pfnp)) 1290 return VM_FAULT_SIGBUS; 1291 *pfnp = pfn; 1292 return VM_FAULT_NEEDDSYNC; 1293} 1294 1295static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf, 1296 const struct iomap_iter *iter) 1297{ 1298 vm_fault_t ret; 1299 int error = 0; 1300 1301 switch (iter->iomap.type) { 1302 case IOMAP_HOLE: 1303 case IOMAP_UNWRITTEN: 1304 clear_user_highpage(vmf->cow_page, vmf->address); 1305 break; 1306 case IOMAP_MAPPED: 1307 error = copy_cow_page_dax(vmf, iter); 1308 break; 1309 default: 1310 WARN_ON_ONCE(1); 1311 error = -EIO; 1312 break; 1313 } 1314 1315 if (error) 1316 return dax_fault_return(error); 1317 1318 __SetPageUptodate(vmf->cow_page); 1319 ret = finish_fault(vmf); 1320 if (!ret) 1321 return VM_FAULT_DONE_COW; 1322 return ret; 1323} 1324 1325/** 1326 * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault. 1327 * @vmf: vm fault instance 1328 * @iter: iomap iter 1329 * @pfnp: pfn to be returned 1330 * @xas: the dax mapping tree of a file 1331 * @entry: an unlocked dax entry to be inserted 1332 * @pmd: distinguish whether it is a pmd fault 1333 */ 1334static vm_fault_t dax_fault_iter(struct vm_fault *vmf, 1335 const struct iomap_iter *iter, pfn_t *pfnp, 1336 struct xa_state *xas, void **entry, bool pmd) 1337{ 1338 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1339 const struct iomap *iomap = &iter->iomap; 1340 size_t size = pmd ? PMD_SIZE : PAGE_SIZE; 1341 loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT; 1342 bool write = vmf->flags & FAULT_FLAG_WRITE; 1343 bool sync = dax_fault_is_synchronous(iter->flags, vmf->vma, iomap); 1344 unsigned long entry_flags = pmd ? DAX_PMD : 0; 1345 int err = 0; 1346 pfn_t pfn; 1347 1348 if (!pmd && vmf->cow_page) 1349 return dax_fault_cow_page(vmf, iter); 1350 1351 /* if we are reading UNWRITTEN and HOLE, return a hole. */ 1352 if (!write && 1353 (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) { 1354 if (!pmd) 1355 return dax_load_hole(xas, mapping, entry, vmf); 1356 return dax_pmd_load_hole(xas, vmf, iomap, entry); 1357 } 1358 1359 if (iomap->type != IOMAP_MAPPED) { 1360 WARN_ON_ONCE(1); 1361 return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS; 1362 } 1363 1364 err = dax_iomap_pfn(&iter->iomap, pos, size, &pfn); 1365 if (err) 1366 return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err); 1367 1368 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, entry_flags, 1369 write && !sync); 1370 1371 if (sync) 1372 return dax_fault_synchronous_pfnp(pfnp, pfn); 1373 1374 /* insert PMD pfn */ 1375 if (pmd) 1376 return vmf_insert_pfn_pmd(vmf, pfn, write); 1377 1378 /* insert PTE pfn */ 1379 if (write) 1380 return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn); 1381 return vmf_insert_mixed(vmf->vma, vmf->address, pfn); 1382} 1383 1384static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp, 1385 int *iomap_errp, const struct iomap_ops *ops) 1386{ 1387 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1388 XA_STATE(xas, &mapping->i_pages, vmf->pgoff); 1389 struct iomap_iter iter = { 1390 .inode = mapping->host, 1391 .pos = (loff_t)vmf->pgoff << PAGE_SHIFT, 1392 .len = PAGE_SIZE, 1393 .flags = IOMAP_DAX | IOMAP_FAULT, 1394 }; 1395 vm_fault_t ret = 0; 1396 void *entry; 1397 int error; 1398 1399 trace_dax_pte_fault(iter.inode, vmf, ret); 1400 /* 1401 * Check whether offset isn't beyond end of file now. Caller is supposed 1402 * to hold locks serializing us with truncate / punch hole so this is 1403 * a reliable test. 1404 */ 1405 if (iter.pos >= i_size_read(iter.inode)) { 1406 ret = VM_FAULT_SIGBUS; 1407 goto out; 1408 } 1409 1410 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page) 1411 iter.flags |= IOMAP_WRITE; 1412 1413 entry = grab_mapping_entry(&xas, mapping, 0); 1414 if (xa_is_internal(entry)) { 1415 ret = xa_to_internal(entry); 1416 goto out; 1417 } 1418 1419 /* 1420 * It is possible, particularly with mixed reads & writes to private 1421 * mappings, that we have raced with a PMD fault that overlaps with 1422 * the PTE we need to set up. If so just return and the fault will be 1423 * retried. 1424 */ 1425 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) { 1426 ret = VM_FAULT_NOPAGE; 1427 goto unlock_entry; 1428 } 1429 1430 while ((error = iomap_iter(&iter, ops)) > 0) { 1431 if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) { 1432 iter.processed = -EIO; /* fs corruption? */ 1433 continue; 1434 } 1435 1436 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false); 1437 if (ret != VM_FAULT_SIGBUS && 1438 (iter.iomap.flags & IOMAP_F_NEW)) { 1439 count_vm_event(PGMAJFAULT); 1440 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 1441 ret |= VM_FAULT_MAJOR; 1442 } 1443 1444 if (!(ret & VM_FAULT_ERROR)) 1445 iter.processed = PAGE_SIZE; 1446 } 1447 1448 if (iomap_errp) 1449 *iomap_errp = error; 1450 if (!ret && error) 1451 ret = dax_fault_return(error); 1452 1453unlock_entry: 1454 dax_unlock_entry(&xas, entry); 1455out: 1456 trace_dax_pte_fault_done(iter.inode, vmf, ret); 1457 return ret; 1458} 1459 1460#ifdef CONFIG_FS_DAX_PMD 1461static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas, 1462 pgoff_t max_pgoff) 1463{ 1464 unsigned long pmd_addr = vmf->address & PMD_MASK; 1465 bool write = vmf->flags & FAULT_FLAG_WRITE; 1466 1467 /* 1468 * Make sure that the faulting address's PMD offset (color) matches 1469 * the PMD offset from the start of the file. This is necessary so 1470 * that a PMD range in the page table overlaps exactly with a PMD 1471 * range in the page cache. 1472 */ 1473 if ((vmf->pgoff & PG_PMD_COLOUR) != 1474 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR)) 1475 return true; 1476 1477 /* Fall back to PTEs if we're going to COW */ 1478 if (write && !(vmf->vma->vm_flags & VM_SHARED)) 1479 return true; 1480 1481 /* If the PMD would extend outside the VMA */ 1482 if (pmd_addr < vmf->vma->vm_start) 1483 return true; 1484 if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end) 1485 return true; 1486 1487 /* If the PMD would extend beyond the file size */ 1488 if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff) 1489 return true; 1490 1491 return false; 1492} 1493 1494static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, 1495 const struct iomap_ops *ops) 1496{ 1497 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1498 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER); 1499 struct iomap_iter iter = { 1500 .inode = mapping->host, 1501 .len = PMD_SIZE, 1502 .flags = IOMAP_DAX | IOMAP_FAULT, 1503 }; 1504 vm_fault_t ret = VM_FAULT_FALLBACK; 1505 pgoff_t max_pgoff; 1506 void *entry; 1507 int error; 1508 1509 if (vmf->flags & FAULT_FLAG_WRITE) 1510 iter.flags |= IOMAP_WRITE; 1511 1512 /* 1513 * Check whether offset isn't beyond end of file now. Caller is 1514 * supposed to hold locks serializing us with truncate / punch hole so 1515 * this is a reliable test. 1516 */ 1517 max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE); 1518 1519 trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0); 1520 1521 if (xas.xa_index >= max_pgoff) { 1522 ret = VM_FAULT_SIGBUS; 1523 goto out; 1524 } 1525 1526 if (dax_fault_check_fallback(vmf, &xas, max_pgoff)) 1527 goto fallback; 1528 1529 /* 1530 * grab_mapping_entry() will make sure we get an empty PMD entry, 1531 * a zero PMD entry or a DAX PMD. If it can't (because a PTE 1532 * entry is already in the array, for instance), it will return 1533 * VM_FAULT_FALLBACK. 1534 */ 1535 entry = grab_mapping_entry(&xas, mapping, PMD_ORDER); 1536 if (xa_is_internal(entry)) { 1537 ret = xa_to_internal(entry); 1538 goto fallback; 1539 } 1540 1541 /* 1542 * It is possible, particularly with mixed reads & writes to private 1543 * mappings, that we have raced with a PTE fault that overlaps with 1544 * the PMD we need to set up. If so just return and the fault will be 1545 * retried. 1546 */ 1547 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) && 1548 !pmd_devmap(*vmf->pmd)) { 1549 ret = 0; 1550 goto unlock_entry; 1551 } 1552 1553 iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT; 1554 while ((error = iomap_iter(&iter, ops)) > 0) { 1555 if (iomap_length(&iter) < PMD_SIZE) 1556 continue; /* actually breaks out of the loop */ 1557 1558 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true); 1559 if (ret != VM_FAULT_FALLBACK) 1560 iter.processed = PMD_SIZE; 1561 } 1562 1563unlock_entry: 1564 dax_unlock_entry(&xas, entry); 1565fallback: 1566 if (ret == VM_FAULT_FALLBACK) { 1567 split_huge_pmd(vmf->vma, vmf->pmd, vmf->address); 1568 count_vm_event(THP_FAULT_FALLBACK); 1569 } 1570out: 1571 trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret); 1572 return ret; 1573} 1574#else 1575static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, 1576 const struct iomap_ops *ops) 1577{ 1578 return VM_FAULT_FALLBACK; 1579} 1580#endif /* CONFIG_FS_DAX_PMD */ 1581 1582/** 1583 * dax_iomap_fault - handle a page fault on a DAX file 1584 * @vmf: The description of the fault 1585 * @pe_size: Size of the page to fault in 1586 * @pfnp: PFN to insert for synchronous faults if fsync is required 1587 * @iomap_errp: Storage for detailed error code in case of error 1588 * @ops: Iomap ops passed from the file system 1589 * 1590 * When a page fault occurs, filesystems may call this helper in 1591 * their fault handler for DAX files. dax_iomap_fault() assumes the caller 1592 * has done all the necessary locking for page fault to proceed 1593 * successfully. 1594 */ 1595vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size, 1596 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops) 1597{ 1598 switch (pe_size) { 1599 case PE_SIZE_PTE: 1600 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops); 1601 case PE_SIZE_PMD: 1602 return dax_iomap_pmd_fault(vmf, pfnp, ops); 1603 default: 1604 return VM_FAULT_FALLBACK; 1605 } 1606} 1607EXPORT_SYMBOL_GPL(dax_iomap_fault); 1608 1609/* 1610 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables 1611 * @vmf: The description of the fault 1612 * @pfn: PFN to insert 1613 * @order: Order of entry to insert. 1614 * 1615 * This function inserts a writeable PTE or PMD entry into the page tables 1616 * for an mmaped DAX file. It also marks the page cache entry as dirty. 1617 */ 1618static vm_fault_t 1619dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order) 1620{ 1621 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1622 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order); 1623 void *entry; 1624 vm_fault_t ret; 1625 1626 xas_lock_irq(&xas); 1627 entry = get_unlocked_entry(&xas, order); 1628 /* Did we race with someone splitting entry or so? */ 1629 if (!entry || dax_is_conflict(entry) || 1630 (order == 0 && !dax_is_pte_entry(entry))) { 1631 put_unlocked_entry(&xas, entry, WAKE_NEXT); 1632 xas_unlock_irq(&xas); 1633 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf, 1634 VM_FAULT_NOPAGE); 1635 return VM_FAULT_NOPAGE; 1636 } 1637 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY); 1638 dax_lock_entry(&xas, entry); 1639 xas_unlock_irq(&xas); 1640 if (order == 0) 1641 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn); 1642#ifdef CONFIG_FS_DAX_PMD 1643 else if (order == PMD_ORDER) 1644 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE); 1645#endif 1646 else 1647 ret = VM_FAULT_FALLBACK; 1648 dax_unlock_entry(&xas, entry); 1649 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret); 1650 return ret; 1651} 1652 1653/** 1654 * dax_finish_sync_fault - finish synchronous page fault 1655 * @vmf: The description of the fault 1656 * @pe_size: Size of entry to be inserted 1657 * @pfn: PFN to insert 1658 * 1659 * This function ensures that the file range touched by the page fault is 1660 * stored persistently on the media and handles inserting of appropriate page 1661 * table entry. 1662 */ 1663vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf, 1664 enum page_entry_size pe_size, pfn_t pfn) 1665{ 1666 int err; 1667 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT; 1668 unsigned int order = pe_order(pe_size); 1669 size_t len = PAGE_SIZE << order; 1670 1671 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1); 1672 if (err) 1673 return VM_FAULT_SIGBUS; 1674 return dax_insert_pfn_mkwrite(vmf, pfn, order); 1675} 1676EXPORT_SYMBOL_GPL(dax_finish_sync_fault);