cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

dcache.c (88110B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * fs/dcache.c
      4 *
      5 * Complete reimplementation
      6 * (C) 1997 Thomas Schoebel-Theuer,
      7 * with heavy changes by Linus Torvalds
      8 */
      9
     10/*
     11 * Notes on the allocation strategy:
     12 *
     13 * The dcache is a master of the icache - whenever a dcache entry
     14 * exists, the inode will always exist. "iput()" is done either when
     15 * the dcache entry is deleted or garbage collected.
     16 */
     17
     18#include <linux/ratelimit.h>
     19#include <linux/string.h>
     20#include <linux/mm.h>
     21#include <linux/fs.h>
     22#include <linux/fscrypt.h>
     23#include <linux/fsnotify.h>
     24#include <linux/slab.h>
     25#include <linux/init.h>
     26#include <linux/hash.h>
     27#include <linux/cache.h>
     28#include <linux/export.h>
     29#include <linux/security.h>
     30#include <linux/seqlock.h>
     31#include <linux/memblock.h>
     32#include <linux/bit_spinlock.h>
     33#include <linux/rculist_bl.h>
     34#include <linux/list_lru.h>
     35#include "internal.h"
     36#include "mount.h"
     37
     38/*
     39 * Usage:
     40 * dcache->d_inode->i_lock protects:
     41 *   - i_dentry, d_u.d_alias, d_inode of aliases
     42 * dcache_hash_bucket lock protects:
     43 *   - the dcache hash table
     44 * s_roots bl list spinlock protects:
     45 *   - the s_roots list (see __d_drop)
     46 * dentry->d_sb->s_dentry_lru_lock protects:
     47 *   - the dcache lru lists and counters
     48 * d_lock protects:
     49 *   - d_flags
     50 *   - d_name
     51 *   - d_lru
     52 *   - d_count
     53 *   - d_unhashed()
     54 *   - d_parent and d_subdirs
     55 *   - childrens' d_child and d_parent
     56 *   - d_u.d_alias, d_inode
     57 *
     58 * Ordering:
     59 * dentry->d_inode->i_lock
     60 *   dentry->d_lock
     61 *     dentry->d_sb->s_dentry_lru_lock
     62 *     dcache_hash_bucket lock
     63 *     s_roots lock
     64 *
     65 * If there is an ancestor relationship:
     66 * dentry->d_parent->...->d_parent->d_lock
     67 *   ...
     68 *     dentry->d_parent->d_lock
     69 *       dentry->d_lock
     70 *
     71 * If no ancestor relationship:
     72 * arbitrary, since it's serialized on rename_lock
     73 */
     74int sysctl_vfs_cache_pressure __read_mostly = 100;
     75EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
     76
     77__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
     78
     79EXPORT_SYMBOL(rename_lock);
     80
     81static struct kmem_cache *dentry_cache __read_mostly;
     82
     83const struct qstr empty_name = QSTR_INIT("", 0);
     84EXPORT_SYMBOL(empty_name);
     85const struct qstr slash_name = QSTR_INIT("/", 1);
     86EXPORT_SYMBOL(slash_name);
     87const struct qstr dotdot_name = QSTR_INIT("..", 2);
     88EXPORT_SYMBOL(dotdot_name);
     89
     90/*
     91 * This is the single most critical data structure when it comes
     92 * to the dcache: the hashtable for lookups. Somebody should try
     93 * to make this good - I've just made it work.
     94 *
     95 * This hash-function tries to avoid losing too many bits of hash
     96 * information, yet avoid using a prime hash-size or similar.
     97 */
     98
     99static unsigned int d_hash_shift __read_mostly;
    100
    101static struct hlist_bl_head *dentry_hashtable __read_mostly;
    102
    103static inline struct hlist_bl_head *d_hash(unsigned int hash)
    104{
    105	return dentry_hashtable + (hash >> d_hash_shift);
    106}
    107
    108#define IN_LOOKUP_SHIFT 10
    109static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
    110
    111static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
    112					unsigned int hash)
    113{
    114	hash += (unsigned long) parent / L1_CACHE_BYTES;
    115	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
    116}
    117
    118struct dentry_stat_t {
    119	long nr_dentry;
    120	long nr_unused;
    121	long age_limit;		/* age in seconds */
    122	long want_pages;	/* pages requested by system */
    123	long nr_negative;	/* # of unused negative dentries */
    124	long dummy;		/* Reserved for future use */
    125};
    126
    127static DEFINE_PER_CPU(long, nr_dentry);
    128static DEFINE_PER_CPU(long, nr_dentry_unused);
    129static DEFINE_PER_CPU(long, nr_dentry_negative);
    130
    131#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
    132/* Statistics gathering. */
    133static struct dentry_stat_t dentry_stat = {
    134	.age_limit = 45,
    135};
    136
    137/*
    138 * Here we resort to our own counters instead of using generic per-cpu counters
    139 * for consistency with what the vfs inode code does. We are expected to harvest
    140 * better code and performance by having our own specialized counters.
    141 *
    142 * Please note that the loop is done over all possible CPUs, not over all online
    143 * CPUs. The reason for this is that we don't want to play games with CPUs going
    144 * on and off. If one of them goes off, we will just keep their counters.
    145 *
    146 * glommer: See cffbc8a for details, and if you ever intend to change this,
    147 * please update all vfs counters to match.
    148 */
    149static long get_nr_dentry(void)
    150{
    151	int i;
    152	long sum = 0;
    153	for_each_possible_cpu(i)
    154		sum += per_cpu(nr_dentry, i);
    155	return sum < 0 ? 0 : sum;
    156}
    157
    158static long get_nr_dentry_unused(void)
    159{
    160	int i;
    161	long sum = 0;
    162	for_each_possible_cpu(i)
    163		sum += per_cpu(nr_dentry_unused, i);
    164	return sum < 0 ? 0 : sum;
    165}
    166
    167static long get_nr_dentry_negative(void)
    168{
    169	int i;
    170	long sum = 0;
    171
    172	for_each_possible_cpu(i)
    173		sum += per_cpu(nr_dentry_negative, i);
    174	return sum < 0 ? 0 : sum;
    175}
    176
    177static int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
    178			  size_t *lenp, loff_t *ppos)
    179{
    180	dentry_stat.nr_dentry = get_nr_dentry();
    181	dentry_stat.nr_unused = get_nr_dentry_unused();
    182	dentry_stat.nr_negative = get_nr_dentry_negative();
    183	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
    184}
    185
    186static struct ctl_table fs_dcache_sysctls[] = {
    187	{
    188		.procname	= "dentry-state",
    189		.data		= &dentry_stat,
    190		.maxlen		= 6*sizeof(long),
    191		.mode		= 0444,
    192		.proc_handler	= proc_nr_dentry,
    193	},
    194	{ }
    195};
    196
    197static int __init init_fs_dcache_sysctls(void)
    198{
    199	register_sysctl_init("fs", fs_dcache_sysctls);
    200	return 0;
    201}
    202fs_initcall(init_fs_dcache_sysctls);
    203#endif
    204
    205/*
    206 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
    207 * The strings are both count bytes long, and count is non-zero.
    208 */
    209#ifdef CONFIG_DCACHE_WORD_ACCESS
    210
    211#include <asm/word-at-a-time.h>
    212/*
    213 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
    214 * aligned allocation for this particular component. We don't
    215 * strictly need the load_unaligned_zeropad() safety, but it
    216 * doesn't hurt either.
    217 *
    218 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
    219 * need the careful unaligned handling.
    220 */
    221static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
    222{
    223	unsigned long a,b,mask;
    224
    225	for (;;) {
    226		a = read_word_at_a_time(cs);
    227		b = load_unaligned_zeropad(ct);
    228		if (tcount < sizeof(unsigned long))
    229			break;
    230		if (unlikely(a != b))
    231			return 1;
    232		cs += sizeof(unsigned long);
    233		ct += sizeof(unsigned long);
    234		tcount -= sizeof(unsigned long);
    235		if (!tcount)
    236			return 0;
    237	}
    238	mask = bytemask_from_count(tcount);
    239	return unlikely(!!((a ^ b) & mask));
    240}
    241
    242#else
    243
    244static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
    245{
    246	do {
    247		if (*cs != *ct)
    248			return 1;
    249		cs++;
    250		ct++;
    251		tcount--;
    252	} while (tcount);
    253	return 0;
    254}
    255
    256#endif
    257
    258static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
    259{
    260	/*
    261	 * Be careful about RCU walk racing with rename:
    262	 * use 'READ_ONCE' to fetch the name pointer.
    263	 *
    264	 * NOTE! Even if a rename will mean that the length
    265	 * was not loaded atomically, we don't care. The
    266	 * RCU walk will check the sequence count eventually,
    267	 * and catch it. And we won't overrun the buffer,
    268	 * because we're reading the name pointer atomically,
    269	 * and a dentry name is guaranteed to be properly
    270	 * terminated with a NUL byte.
    271	 *
    272	 * End result: even if 'len' is wrong, we'll exit
    273	 * early because the data cannot match (there can
    274	 * be no NUL in the ct/tcount data)
    275	 */
    276	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
    277
    278	return dentry_string_cmp(cs, ct, tcount);
    279}
    280
    281struct external_name {
    282	union {
    283		atomic_t count;
    284		struct rcu_head head;
    285	} u;
    286	unsigned char name[];
    287};
    288
    289static inline struct external_name *external_name(struct dentry *dentry)
    290{
    291	return container_of(dentry->d_name.name, struct external_name, name[0]);
    292}
    293
    294static void __d_free(struct rcu_head *head)
    295{
    296	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
    297
    298	kmem_cache_free(dentry_cache, dentry); 
    299}
    300
    301static void __d_free_external(struct rcu_head *head)
    302{
    303	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
    304	kfree(external_name(dentry));
    305	kmem_cache_free(dentry_cache, dentry);
    306}
    307
    308static inline int dname_external(const struct dentry *dentry)
    309{
    310	return dentry->d_name.name != dentry->d_iname;
    311}
    312
    313void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
    314{
    315	spin_lock(&dentry->d_lock);
    316	name->name = dentry->d_name;
    317	if (unlikely(dname_external(dentry))) {
    318		atomic_inc(&external_name(dentry)->u.count);
    319	} else {
    320		memcpy(name->inline_name, dentry->d_iname,
    321		       dentry->d_name.len + 1);
    322		name->name.name = name->inline_name;
    323	}
    324	spin_unlock(&dentry->d_lock);
    325}
    326EXPORT_SYMBOL(take_dentry_name_snapshot);
    327
    328void release_dentry_name_snapshot(struct name_snapshot *name)
    329{
    330	if (unlikely(name->name.name != name->inline_name)) {
    331		struct external_name *p;
    332		p = container_of(name->name.name, struct external_name, name[0]);
    333		if (unlikely(atomic_dec_and_test(&p->u.count)))
    334			kfree_rcu(p, u.head);
    335	}
    336}
    337EXPORT_SYMBOL(release_dentry_name_snapshot);
    338
    339static inline void __d_set_inode_and_type(struct dentry *dentry,
    340					  struct inode *inode,
    341					  unsigned type_flags)
    342{
    343	unsigned flags;
    344
    345	dentry->d_inode = inode;
    346	flags = READ_ONCE(dentry->d_flags);
    347	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
    348	flags |= type_flags;
    349	smp_store_release(&dentry->d_flags, flags);
    350}
    351
    352static inline void __d_clear_type_and_inode(struct dentry *dentry)
    353{
    354	unsigned flags = READ_ONCE(dentry->d_flags);
    355
    356	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
    357	WRITE_ONCE(dentry->d_flags, flags);
    358	dentry->d_inode = NULL;
    359	if (dentry->d_flags & DCACHE_LRU_LIST)
    360		this_cpu_inc(nr_dentry_negative);
    361}
    362
    363static void dentry_free(struct dentry *dentry)
    364{
    365	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
    366	if (unlikely(dname_external(dentry))) {
    367		struct external_name *p = external_name(dentry);
    368		if (likely(atomic_dec_and_test(&p->u.count))) {
    369			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
    370			return;
    371		}
    372	}
    373	/* if dentry was never visible to RCU, immediate free is OK */
    374	if (dentry->d_flags & DCACHE_NORCU)
    375		__d_free(&dentry->d_u.d_rcu);
    376	else
    377		call_rcu(&dentry->d_u.d_rcu, __d_free);
    378}
    379
    380/*
    381 * Release the dentry's inode, using the filesystem
    382 * d_iput() operation if defined.
    383 */
    384static void dentry_unlink_inode(struct dentry * dentry)
    385	__releases(dentry->d_lock)
    386	__releases(dentry->d_inode->i_lock)
    387{
    388	struct inode *inode = dentry->d_inode;
    389
    390	raw_write_seqcount_begin(&dentry->d_seq);
    391	__d_clear_type_and_inode(dentry);
    392	hlist_del_init(&dentry->d_u.d_alias);
    393	raw_write_seqcount_end(&dentry->d_seq);
    394	spin_unlock(&dentry->d_lock);
    395	spin_unlock(&inode->i_lock);
    396	if (!inode->i_nlink)
    397		fsnotify_inoderemove(inode);
    398	if (dentry->d_op && dentry->d_op->d_iput)
    399		dentry->d_op->d_iput(dentry, inode);
    400	else
    401		iput(inode);
    402}
    403
    404/*
    405 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
    406 * is in use - which includes both the "real" per-superblock
    407 * LRU list _and_ the DCACHE_SHRINK_LIST use.
    408 *
    409 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
    410 * on the shrink list (ie not on the superblock LRU list).
    411 *
    412 * The per-cpu "nr_dentry_unused" counters are updated with
    413 * the DCACHE_LRU_LIST bit.
    414 *
    415 * The per-cpu "nr_dentry_negative" counters are only updated
    416 * when deleted from or added to the per-superblock LRU list, not
    417 * from/to the shrink list. That is to avoid an unneeded dec/inc
    418 * pair when moving from LRU to shrink list in select_collect().
    419 *
    420 * These helper functions make sure we always follow the
    421 * rules. d_lock must be held by the caller.
    422 */
    423#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
    424static void d_lru_add(struct dentry *dentry)
    425{
    426	D_FLAG_VERIFY(dentry, 0);
    427	dentry->d_flags |= DCACHE_LRU_LIST;
    428	this_cpu_inc(nr_dentry_unused);
    429	if (d_is_negative(dentry))
    430		this_cpu_inc(nr_dentry_negative);
    431	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
    432}
    433
    434static void d_lru_del(struct dentry *dentry)
    435{
    436	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
    437	dentry->d_flags &= ~DCACHE_LRU_LIST;
    438	this_cpu_dec(nr_dentry_unused);
    439	if (d_is_negative(dentry))
    440		this_cpu_dec(nr_dentry_negative);
    441	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
    442}
    443
    444static void d_shrink_del(struct dentry *dentry)
    445{
    446	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
    447	list_del_init(&dentry->d_lru);
    448	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
    449	this_cpu_dec(nr_dentry_unused);
    450}
    451
    452static void d_shrink_add(struct dentry *dentry, struct list_head *list)
    453{
    454	D_FLAG_VERIFY(dentry, 0);
    455	list_add(&dentry->d_lru, list);
    456	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
    457	this_cpu_inc(nr_dentry_unused);
    458}
    459
    460/*
    461 * These can only be called under the global LRU lock, ie during the
    462 * callback for freeing the LRU list. "isolate" removes it from the
    463 * LRU lists entirely, while shrink_move moves it to the indicated
    464 * private list.
    465 */
    466static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
    467{
    468	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
    469	dentry->d_flags &= ~DCACHE_LRU_LIST;
    470	this_cpu_dec(nr_dentry_unused);
    471	if (d_is_negative(dentry))
    472		this_cpu_dec(nr_dentry_negative);
    473	list_lru_isolate(lru, &dentry->d_lru);
    474}
    475
    476static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
    477			      struct list_head *list)
    478{
    479	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
    480	dentry->d_flags |= DCACHE_SHRINK_LIST;
    481	if (d_is_negative(dentry))
    482		this_cpu_dec(nr_dentry_negative);
    483	list_lru_isolate_move(lru, &dentry->d_lru, list);
    484}
    485
    486static void ___d_drop(struct dentry *dentry)
    487{
    488	struct hlist_bl_head *b;
    489	/*
    490	 * Hashed dentries are normally on the dentry hashtable,
    491	 * with the exception of those newly allocated by
    492	 * d_obtain_root, which are always IS_ROOT:
    493	 */
    494	if (unlikely(IS_ROOT(dentry)))
    495		b = &dentry->d_sb->s_roots;
    496	else
    497		b = d_hash(dentry->d_name.hash);
    498
    499	hlist_bl_lock(b);
    500	__hlist_bl_del(&dentry->d_hash);
    501	hlist_bl_unlock(b);
    502}
    503
    504void __d_drop(struct dentry *dentry)
    505{
    506	if (!d_unhashed(dentry)) {
    507		___d_drop(dentry);
    508		dentry->d_hash.pprev = NULL;
    509		write_seqcount_invalidate(&dentry->d_seq);
    510	}
    511}
    512EXPORT_SYMBOL(__d_drop);
    513
    514/**
    515 * d_drop - drop a dentry
    516 * @dentry: dentry to drop
    517 *
    518 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
    519 * be found through a VFS lookup any more. Note that this is different from
    520 * deleting the dentry - d_delete will try to mark the dentry negative if
    521 * possible, giving a successful _negative_ lookup, while d_drop will
    522 * just make the cache lookup fail.
    523 *
    524 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
    525 * reason (NFS timeouts or autofs deletes).
    526 *
    527 * __d_drop requires dentry->d_lock
    528 *
    529 * ___d_drop doesn't mark dentry as "unhashed"
    530 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
    531 */
    532void d_drop(struct dentry *dentry)
    533{
    534	spin_lock(&dentry->d_lock);
    535	__d_drop(dentry);
    536	spin_unlock(&dentry->d_lock);
    537}
    538EXPORT_SYMBOL(d_drop);
    539
    540static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
    541{
    542	struct dentry *next;
    543	/*
    544	 * Inform d_walk() and shrink_dentry_list() that we are no longer
    545	 * attached to the dentry tree
    546	 */
    547	dentry->d_flags |= DCACHE_DENTRY_KILLED;
    548	if (unlikely(list_empty(&dentry->d_child)))
    549		return;
    550	__list_del_entry(&dentry->d_child);
    551	/*
    552	 * Cursors can move around the list of children.  While we'd been
    553	 * a normal list member, it didn't matter - ->d_child.next would've
    554	 * been updated.  However, from now on it won't be and for the
    555	 * things like d_walk() it might end up with a nasty surprise.
    556	 * Normally d_walk() doesn't care about cursors moving around -
    557	 * ->d_lock on parent prevents that and since a cursor has no children
    558	 * of its own, we get through it without ever unlocking the parent.
    559	 * There is one exception, though - if we ascend from a child that
    560	 * gets killed as soon as we unlock it, the next sibling is found
    561	 * using the value left in its ->d_child.next.  And if _that_
    562	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
    563	 * before d_walk() regains parent->d_lock, we'll end up skipping
    564	 * everything the cursor had been moved past.
    565	 *
    566	 * Solution: make sure that the pointer left behind in ->d_child.next
    567	 * points to something that won't be moving around.  I.e. skip the
    568	 * cursors.
    569	 */
    570	while (dentry->d_child.next != &parent->d_subdirs) {
    571		next = list_entry(dentry->d_child.next, struct dentry, d_child);
    572		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
    573			break;
    574		dentry->d_child.next = next->d_child.next;
    575	}
    576}
    577
    578static void __dentry_kill(struct dentry *dentry)
    579{
    580	struct dentry *parent = NULL;
    581	bool can_free = true;
    582	if (!IS_ROOT(dentry))
    583		parent = dentry->d_parent;
    584
    585	/*
    586	 * The dentry is now unrecoverably dead to the world.
    587	 */
    588	lockref_mark_dead(&dentry->d_lockref);
    589
    590	/*
    591	 * inform the fs via d_prune that this dentry is about to be
    592	 * unhashed and destroyed.
    593	 */
    594	if (dentry->d_flags & DCACHE_OP_PRUNE)
    595		dentry->d_op->d_prune(dentry);
    596
    597	if (dentry->d_flags & DCACHE_LRU_LIST) {
    598		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
    599			d_lru_del(dentry);
    600	}
    601	/* if it was on the hash then remove it */
    602	__d_drop(dentry);
    603	dentry_unlist(dentry, parent);
    604	if (parent)
    605		spin_unlock(&parent->d_lock);
    606	if (dentry->d_inode)
    607		dentry_unlink_inode(dentry);
    608	else
    609		spin_unlock(&dentry->d_lock);
    610	this_cpu_dec(nr_dentry);
    611	if (dentry->d_op && dentry->d_op->d_release)
    612		dentry->d_op->d_release(dentry);
    613
    614	spin_lock(&dentry->d_lock);
    615	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
    616		dentry->d_flags |= DCACHE_MAY_FREE;
    617		can_free = false;
    618	}
    619	spin_unlock(&dentry->d_lock);
    620	if (likely(can_free))
    621		dentry_free(dentry);
    622	cond_resched();
    623}
    624
    625static struct dentry *__lock_parent(struct dentry *dentry)
    626{
    627	struct dentry *parent;
    628	rcu_read_lock();
    629	spin_unlock(&dentry->d_lock);
    630again:
    631	parent = READ_ONCE(dentry->d_parent);
    632	spin_lock(&parent->d_lock);
    633	/*
    634	 * We can't blindly lock dentry until we are sure
    635	 * that we won't violate the locking order.
    636	 * Any changes of dentry->d_parent must have
    637	 * been done with parent->d_lock held, so
    638	 * spin_lock() above is enough of a barrier
    639	 * for checking if it's still our child.
    640	 */
    641	if (unlikely(parent != dentry->d_parent)) {
    642		spin_unlock(&parent->d_lock);
    643		goto again;
    644	}
    645	rcu_read_unlock();
    646	if (parent != dentry)
    647		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
    648	else
    649		parent = NULL;
    650	return parent;
    651}
    652
    653static inline struct dentry *lock_parent(struct dentry *dentry)
    654{
    655	struct dentry *parent = dentry->d_parent;
    656	if (IS_ROOT(dentry))
    657		return NULL;
    658	if (likely(spin_trylock(&parent->d_lock)))
    659		return parent;
    660	return __lock_parent(dentry);
    661}
    662
    663static inline bool retain_dentry(struct dentry *dentry)
    664{
    665	WARN_ON(d_in_lookup(dentry));
    666
    667	/* Unreachable? Get rid of it */
    668	if (unlikely(d_unhashed(dentry)))
    669		return false;
    670
    671	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
    672		return false;
    673
    674	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
    675		if (dentry->d_op->d_delete(dentry))
    676			return false;
    677	}
    678
    679	if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
    680		return false;
    681
    682	/* retain; LRU fodder */
    683	dentry->d_lockref.count--;
    684	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
    685		d_lru_add(dentry);
    686	else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
    687		dentry->d_flags |= DCACHE_REFERENCED;
    688	return true;
    689}
    690
    691void d_mark_dontcache(struct inode *inode)
    692{
    693	struct dentry *de;
    694
    695	spin_lock(&inode->i_lock);
    696	hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
    697		spin_lock(&de->d_lock);
    698		de->d_flags |= DCACHE_DONTCACHE;
    699		spin_unlock(&de->d_lock);
    700	}
    701	inode->i_state |= I_DONTCACHE;
    702	spin_unlock(&inode->i_lock);
    703}
    704EXPORT_SYMBOL(d_mark_dontcache);
    705
    706/*
    707 * Finish off a dentry we've decided to kill.
    708 * dentry->d_lock must be held, returns with it unlocked.
    709 * Returns dentry requiring refcount drop, or NULL if we're done.
    710 */
    711static struct dentry *dentry_kill(struct dentry *dentry)
    712	__releases(dentry->d_lock)
    713{
    714	struct inode *inode = dentry->d_inode;
    715	struct dentry *parent = NULL;
    716
    717	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
    718		goto slow_positive;
    719
    720	if (!IS_ROOT(dentry)) {
    721		parent = dentry->d_parent;
    722		if (unlikely(!spin_trylock(&parent->d_lock))) {
    723			parent = __lock_parent(dentry);
    724			if (likely(inode || !dentry->d_inode))
    725				goto got_locks;
    726			/* negative that became positive */
    727			if (parent)
    728				spin_unlock(&parent->d_lock);
    729			inode = dentry->d_inode;
    730			goto slow_positive;
    731		}
    732	}
    733	__dentry_kill(dentry);
    734	return parent;
    735
    736slow_positive:
    737	spin_unlock(&dentry->d_lock);
    738	spin_lock(&inode->i_lock);
    739	spin_lock(&dentry->d_lock);
    740	parent = lock_parent(dentry);
    741got_locks:
    742	if (unlikely(dentry->d_lockref.count != 1)) {
    743		dentry->d_lockref.count--;
    744	} else if (likely(!retain_dentry(dentry))) {
    745		__dentry_kill(dentry);
    746		return parent;
    747	}
    748	/* we are keeping it, after all */
    749	if (inode)
    750		spin_unlock(&inode->i_lock);
    751	if (parent)
    752		spin_unlock(&parent->d_lock);
    753	spin_unlock(&dentry->d_lock);
    754	return NULL;
    755}
    756
    757/*
    758 * Try to do a lockless dput(), and return whether that was successful.
    759 *
    760 * If unsuccessful, we return false, having already taken the dentry lock.
    761 *
    762 * The caller needs to hold the RCU read lock, so that the dentry is
    763 * guaranteed to stay around even if the refcount goes down to zero!
    764 */
    765static inline bool fast_dput(struct dentry *dentry)
    766{
    767	int ret;
    768	unsigned int d_flags;
    769
    770	/*
    771	 * If we have a d_op->d_delete() operation, we sould not
    772	 * let the dentry count go to zero, so use "put_or_lock".
    773	 */
    774	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
    775		return lockref_put_or_lock(&dentry->d_lockref);
    776
    777	/*
    778	 * .. otherwise, we can try to just decrement the
    779	 * lockref optimistically.
    780	 */
    781	ret = lockref_put_return(&dentry->d_lockref);
    782
    783	/*
    784	 * If the lockref_put_return() failed due to the lock being held
    785	 * by somebody else, the fast path has failed. We will need to
    786	 * get the lock, and then check the count again.
    787	 */
    788	if (unlikely(ret < 0)) {
    789		spin_lock(&dentry->d_lock);
    790		if (dentry->d_lockref.count > 1) {
    791			dentry->d_lockref.count--;
    792			spin_unlock(&dentry->d_lock);
    793			return true;
    794		}
    795		return false;
    796	}
    797
    798	/*
    799	 * If we weren't the last ref, we're done.
    800	 */
    801	if (ret)
    802		return true;
    803
    804	/*
    805	 * Careful, careful. The reference count went down
    806	 * to zero, but we don't hold the dentry lock, so
    807	 * somebody else could get it again, and do another
    808	 * dput(), and we need to not race with that.
    809	 *
    810	 * However, there is a very special and common case
    811	 * where we don't care, because there is nothing to
    812	 * do: the dentry is still hashed, it does not have
    813	 * a 'delete' op, and it's referenced and already on
    814	 * the LRU list.
    815	 *
    816	 * NOTE! Since we aren't locked, these values are
    817	 * not "stable". However, it is sufficient that at
    818	 * some point after we dropped the reference the
    819	 * dentry was hashed and the flags had the proper
    820	 * value. Other dentry users may have re-gotten
    821	 * a reference to the dentry and change that, but
    822	 * our work is done - we can leave the dentry
    823	 * around with a zero refcount.
    824	 *
    825	 * Nevertheless, there are two cases that we should kill
    826	 * the dentry anyway.
    827	 * 1. free disconnected dentries as soon as their refcount
    828	 *    reached zero.
    829	 * 2. free dentries if they should not be cached.
    830	 */
    831	smp_rmb();
    832	d_flags = READ_ONCE(dentry->d_flags);
    833	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST |
    834			DCACHE_DISCONNECTED | DCACHE_DONTCACHE;
    835
    836	/* Nothing to do? Dropping the reference was all we needed? */
    837	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
    838		return true;
    839
    840	/*
    841	 * Not the fast normal case? Get the lock. We've already decremented
    842	 * the refcount, but we'll need to re-check the situation after
    843	 * getting the lock.
    844	 */
    845	spin_lock(&dentry->d_lock);
    846
    847	/*
    848	 * Did somebody else grab a reference to it in the meantime, and
    849	 * we're no longer the last user after all? Alternatively, somebody
    850	 * else could have killed it and marked it dead. Either way, we
    851	 * don't need to do anything else.
    852	 */
    853	if (dentry->d_lockref.count) {
    854		spin_unlock(&dentry->d_lock);
    855		return true;
    856	}
    857
    858	/*
    859	 * Re-get the reference we optimistically dropped. We hold the
    860	 * lock, and we just tested that it was zero, so we can just
    861	 * set it to 1.
    862	 */
    863	dentry->d_lockref.count = 1;
    864	return false;
    865}
    866
    867
    868/* 
    869 * This is dput
    870 *
    871 * This is complicated by the fact that we do not want to put
    872 * dentries that are no longer on any hash chain on the unused
    873 * list: we'd much rather just get rid of them immediately.
    874 *
    875 * However, that implies that we have to traverse the dentry
    876 * tree upwards to the parents which might _also_ now be
    877 * scheduled for deletion (it may have been only waiting for
    878 * its last child to go away).
    879 *
    880 * This tail recursion is done by hand as we don't want to depend
    881 * on the compiler to always get this right (gcc generally doesn't).
    882 * Real recursion would eat up our stack space.
    883 */
    884
    885/*
    886 * dput - release a dentry
    887 * @dentry: dentry to release 
    888 *
    889 * Release a dentry. This will drop the usage count and if appropriate
    890 * call the dentry unlink method as well as removing it from the queues and
    891 * releasing its resources. If the parent dentries were scheduled for release
    892 * they too may now get deleted.
    893 */
    894void dput(struct dentry *dentry)
    895{
    896	while (dentry) {
    897		might_sleep();
    898
    899		rcu_read_lock();
    900		if (likely(fast_dput(dentry))) {
    901			rcu_read_unlock();
    902			return;
    903		}
    904
    905		/* Slow case: now with the dentry lock held */
    906		rcu_read_unlock();
    907
    908		if (likely(retain_dentry(dentry))) {
    909			spin_unlock(&dentry->d_lock);
    910			return;
    911		}
    912
    913		dentry = dentry_kill(dentry);
    914	}
    915}
    916EXPORT_SYMBOL(dput);
    917
    918static void __dput_to_list(struct dentry *dentry, struct list_head *list)
    919__must_hold(&dentry->d_lock)
    920{
    921	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
    922		/* let the owner of the list it's on deal with it */
    923		--dentry->d_lockref.count;
    924	} else {
    925		if (dentry->d_flags & DCACHE_LRU_LIST)
    926			d_lru_del(dentry);
    927		if (!--dentry->d_lockref.count)
    928			d_shrink_add(dentry, list);
    929	}
    930}
    931
    932void dput_to_list(struct dentry *dentry, struct list_head *list)
    933{
    934	rcu_read_lock();
    935	if (likely(fast_dput(dentry))) {
    936		rcu_read_unlock();
    937		return;
    938	}
    939	rcu_read_unlock();
    940	if (!retain_dentry(dentry))
    941		__dput_to_list(dentry, list);
    942	spin_unlock(&dentry->d_lock);
    943}
    944
    945/* This must be called with d_lock held */
    946static inline void __dget_dlock(struct dentry *dentry)
    947{
    948	dentry->d_lockref.count++;
    949}
    950
    951static inline void __dget(struct dentry *dentry)
    952{
    953	lockref_get(&dentry->d_lockref);
    954}
    955
    956struct dentry *dget_parent(struct dentry *dentry)
    957{
    958	int gotref;
    959	struct dentry *ret;
    960	unsigned seq;
    961
    962	/*
    963	 * Do optimistic parent lookup without any
    964	 * locking.
    965	 */
    966	rcu_read_lock();
    967	seq = raw_seqcount_begin(&dentry->d_seq);
    968	ret = READ_ONCE(dentry->d_parent);
    969	gotref = lockref_get_not_zero(&ret->d_lockref);
    970	rcu_read_unlock();
    971	if (likely(gotref)) {
    972		if (!read_seqcount_retry(&dentry->d_seq, seq))
    973			return ret;
    974		dput(ret);
    975	}
    976
    977repeat:
    978	/*
    979	 * Don't need rcu_dereference because we re-check it was correct under
    980	 * the lock.
    981	 */
    982	rcu_read_lock();
    983	ret = dentry->d_parent;
    984	spin_lock(&ret->d_lock);
    985	if (unlikely(ret != dentry->d_parent)) {
    986		spin_unlock(&ret->d_lock);
    987		rcu_read_unlock();
    988		goto repeat;
    989	}
    990	rcu_read_unlock();
    991	BUG_ON(!ret->d_lockref.count);
    992	ret->d_lockref.count++;
    993	spin_unlock(&ret->d_lock);
    994	return ret;
    995}
    996EXPORT_SYMBOL(dget_parent);
    997
    998static struct dentry * __d_find_any_alias(struct inode *inode)
    999{
   1000	struct dentry *alias;
   1001
   1002	if (hlist_empty(&inode->i_dentry))
   1003		return NULL;
   1004	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
   1005	__dget(alias);
   1006	return alias;
   1007}
   1008
   1009/**
   1010 * d_find_any_alias - find any alias for a given inode
   1011 * @inode: inode to find an alias for
   1012 *
   1013 * If any aliases exist for the given inode, take and return a
   1014 * reference for one of them.  If no aliases exist, return %NULL.
   1015 */
   1016struct dentry *d_find_any_alias(struct inode *inode)
   1017{
   1018	struct dentry *de;
   1019
   1020	spin_lock(&inode->i_lock);
   1021	de = __d_find_any_alias(inode);
   1022	spin_unlock(&inode->i_lock);
   1023	return de;
   1024}
   1025EXPORT_SYMBOL(d_find_any_alias);
   1026
   1027static struct dentry *__d_find_alias(struct inode *inode)
   1028{
   1029	struct dentry *alias;
   1030
   1031	if (S_ISDIR(inode->i_mode))
   1032		return __d_find_any_alias(inode);
   1033
   1034	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
   1035		spin_lock(&alias->d_lock);
   1036 		if (!d_unhashed(alias)) {
   1037			__dget_dlock(alias);
   1038			spin_unlock(&alias->d_lock);
   1039			return alias;
   1040		}
   1041		spin_unlock(&alias->d_lock);
   1042	}
   1043	return NULL;
   1044}
   1045
   1046/**
   1047 * d_find_alias - grab a hashed alias of inode
   1048 * @inode: inode in question
   1049 *
   1050 * If inode has a hashed alias, or is a directory and has any alias,
   1051 * acquire the reference to alias and return it. Otherwise return NULL.
   1052 * Notice that if inode is a directory there can be only one alias and
   1053 * it can be unhashed only if it has no children, or if it is the root
   1054 * of a filesystem, or if the directory was renamed and d_revalidate
   1055 * was the first vfs operation to notice.
   1056 *
   1057 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
   1058 * any other hashed alias over that one.
   1059 */
   1060struct dentry *d_find_alias(struct inode *inode)
   1061{
   1062	struct dentry *de = NULL;
   1063
   1064	if (!hlist_empty(&inode->i_dentry)) {
   1065		spin_lock(&inode->i_lock);
   1066		de = __d_find_alias(inode);
   1067		spin_unlock(&inode->i_lock);
   1068	}
   1069	return de;
   1070}
   1071EXPORT_SYMBOL(d_find_alias);
   1072
   1073/*
   1074 *  Caller MUST be holding rcu_read_lock() and be guaranteed
   1075 *  that inode won't get freed until rcu_read_unlock().
   1076 */
   1077struct dentry *d_find_alias_rcu(struct inode *inode)
   1078{
   1079	struct hlist_head *l = &inode->i_dentry;
   1080	struct dentry *de = NULL;
   1081
   1082	spin_lock(&inode->i_lock);
   1083	// ->i_dentry and ->i_rcu are colocated, but the latter won't be
   1084	// used without having I_FREEING set, which means no aliases left
   1085	if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
   1086		if (S_ISDIR(inode->i_mode)) {
   1087			de = hlist_entry(l->first, struct dentry, d_u.d_alias);
   1088		} else {
   1089			hlist_for_each_entry(de, l, d_u.d_alias)
   1090				if (!d_unhashed(de))
   1091					break;
   1092		}
   1093	}
   1094	spin_unlock(&inode->i_lock);
   1095	return de;
   1096}
   1097
   1098/*
   1099 *	Try to kill dentries associated with this inode.
   1100 * WARNING: you must own a reference to inode.
   1101 */
   1102void d_prune_aliases(struct inode *inode)
   1103{
   1104	struct dentry *dentry;
   1105restart:
   1106	spin_lock(&inode->i_lock);
   1107	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
   1108		spin_lock(&dentry->d_lock);
   1109		if (!dentry->d_lockref.count) {
   1110			struct dentry *parent = lock_parent(dentry);
   1111			if (likely(!dentry->d_lockref.count)) {
   1112				__dentry_kill(dentry);
   1113				dput(parent);
   1114				goto restart;
   1115			}
   1116			if (parent)
   1117				spin_unlock(&parent->d_lock);
   1118		}
   1119		spin_unlock(&dentry->d_lock);
   1120	}
   1121	spin_unlock(&inode->i_lock);
   1122}
   1123EXPORT_SYMBOL(d_prune_aliases);
   1124
   1125/*
   1126 * Lock a dentry from shrink list.
   1127 * Called under rcu_read_lock() and dentry->d_lock; the former
   1128 * guarantees that nothing we access will be freed under us.
   1129 * Note that dentry is *not* protected from concurrent dentry_kill(),
   1130 * d_delete(), etc.
   1131 *
   1132 * Return false if dentry has been disrupted or grabbed, leaving
   1133 * the caller to kick it off-list.  Otherwise, return true and have
   1134 * that dentry's inode and parent both locked.
   1135 */
   1136static bool shrink_lock_dentry(struct dentry *dentry)
   1137{
   1138	struct inode *inode;
   1139	struct dentry *parent;
   1140
   1141	if (dentry->d_lockref.count)
   1142		return false;
   1143
   1144	inode = dentry->d_inode;
   1145	if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
   1146		spin_unlock(&dentry->d_lock);
   1147		spin_lock(&inode->i_lock);
   1148		spin_lock(&dentry->d_lock);
   1149		if (unlikely(dentry->d_lockref.count))
   1150			goto out;
   1151		/* changed inode means that somebody had grabbed it */
   1152		if (unlikely(inode != dentry->d_inode))
   1153			goto out;
   1154	}
   1155
   1156	parent = dentry->d_parent;
   1157	if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
   1158		return true;
   1159
   1160	spin_unlock(&dentry->d_lock);
   1161	spin_lock(&parent->d_lock);
   1162	if (unlikely(parent != dentry->d_parent)) {
   1163		spin_unlock(&parent->d_lock);
   1164		spin_lock(&dentry->d_lock);
   1165		goto out;
   1166	}
   1167	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
   1168	if (likely(!dentry->d_lockref.count))
   1169		return true;
   1170	spin_unlock(&parent->d_lock);
   1171out:
   1172	if (inode)
   1173		spin_unlock(&inode->i_lock);
   1174	return false;
   1175}
   1176
   1177void shrink_dentry_list(struct list_head *list)
   1178{
   1179	while (!list_empty(list)) {
   1180		struct dentry *dentry, *parent;
   1181
   1182		dentry = list_entry(list->prev, struct dentry, d_lru);
   1183		spin_lock(&dentry->d_lock);
   1184		rcu_read_lock();
   1185		if (!shrink_lock_dentry(dentry)) {
   1186			bool can_free = false;
   1187			rcu_read_unlock();
   1188			d_shrink_del(dentry);
   1189			if (dentry->d_lockref.count < 0)
   1190				can_free = dentry->d_flags & DCACHE_MAY_FREE;
   1191			spin_unlock(&dentry->d_lock);
   1192			if (can_free)
   1193				dentry_free(dentry);
   1194			continue;
   1195		}
   1196		rcu_read_unlock();
   1197		d_shrink_del(dentry);
   1198		parent = dentry->d_parent;
   1199		if (parent != dentry)
   1200			__dput_to_list(parent, list);
   1201		__dentry_kill(dentry);
   1202	}
   1203}
   1204
   1205static enum lru_status dentry_lru_isolate(struct list_head *item,
   1206		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
   1207{
   1208	struct list_head *freeable = arg;
   1209	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
   1210
   1211
   1212	/*
   1213	 * we are inverting the lru lock/dentry->d_lock here,
   1214	 * so use a trylock. If we fail to get the lock, just skip
   1215	 * it
   1216	 */
   1217	if (!spin_trylock(&dentry->d_lock))
   1218		return LRU_SKIP;
   1219
   1220	/*
   1221	 * Referenced dentries are still in use. If they have active
   1222	 * counts, just remove them from the LRU. Otherwise give them
   1223	 * another pass through the LRU.
   1224	 */
   1225	if (dentry->d_lockref.count) {
   1226		d_lru_isolate(lru, dentry);
   1227		spin_unlock(&dentry->d_lock);
   1228		return LRU_REMOVED;
   1229	}
   1230
   1231	if (dentry->d_flags & DCACHE_REFERENCED) {
   1232		dentry->d_flags &= ~DCACHE_REFERENCED;
   1233		spin_unlock(&dentry->d_lock);
   1234
   1235		/*
   1236		 * The list move itself will be made by the common LRU code. At
   1237		 * this point, we've dropped the dentry->d_lock but keep the
   1238		 * lru lock. This is safe to do, since every list movement is
   1239		 * protected by the lru lock even if both locks are held.
   1240		 *
   1241		 * This is guaranteed by the fact that all LRU management
   1242		 * functions are intermediated by the LRU API calls like
   1243		 * list_lru_add and list_lru_del. List movement in this file
   1244		 * only ever occur through this functions or through callbacks
   1245		 * like this one, that are called from the LRU API.
   1246		 *
   1247		 * The only exceptions to this are functions like
   1248		 * shrink_dentry_list, and code that first checks for the
   1249		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
   1250		 * operating only with stack provided lists after they are
   1251		 * properly isolated from the main list.  It is thus, always a
   1252		 * local access.
   1253		 */
   1254		return LRU_ROTATE;
   1255	}
   1256
   1257	d_lru_shrink_move(lru, dentry, freeable);
   1258	spin_unlock(&dentry->d_lock);
   1259
   1260	return LRU_REMOVED;
   1261}
   1262
   1263/**
   1264 * prune_dcache_sb - shrink the dcache
   1265 * @sb: superblock
   1266 * @sc: shrink control, passed to list_lru_shrink_walk()
   1267 *
   1268 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
   1269 * is done when we need more memory and called from the superblock shrinker
   1270 * function.
   1271 *
   1272 * This function may fail to free any resources if all the dentries are in
   1273 * use.
   1274 */
   1275long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
   1276{
   1277	LIST_HEAD(dispose);
   1278	long freed;
   1279
   1280	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
   1281				     dentry_lru_isolate, &dispose);
   1282	shrink_dentry_list(&dispose);
   1283	return freed;
   1284}
   1285
   1286static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
   1287		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
   1288{
   1289	struct list_head *freeable = arg;
   1290	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
   1291
   1292	/*
   1293	 * we are inverting the lru lock/dentry->d_lock here,
   1294	 * so use a trylock. If we fail to get the lock, just skip
   1295	 * it
   1296	 */
   1297	if (!spin_trylock(&dentry->d_lock))
   1298		return LRU_SKIP;
   1299
   1300	d_lru_shrink_move(lru, dentry, freeable);
   1301	spin_unlock(&dentry->d_lock);
   1302
   1303	return LRU_REMOVED;
   1304}
   1305
   1306
   1307/**
   1308 * shrink_dcache_sb - shrink dcache for a superblock
   1309 * @sb: superblock
   1310 *
   1311 * Shrink the dcache for the specified super block. This is used to free
   1312 * the dcache before unmounting a file system.
   1313 */
   1314void shrink_dcache_sb(struct super_block *sb)
   1315{
   1316	do {
   1317		LIST_HEAD(dispose);
   1318
   1319		list_lru_walk(&sb->s_dentry_lru,
   1320			dentry_lru_isolate_shrink, &dispose, 1024);
   1321		shrink_dentry_list(&dispose);
   1322	} while (list_lru_count(&sb->s_dentry_lru) > 0);
   1323}
   1324EXPORT_SYMBOL(shrink_dcache_sb);
   1325
   1326/**
   1327 * enum d_walk_ret - action to talke during tree walk
   1328 * @D_WALK_CONTINUE:	contrinue walk
   1329 * @D_WALK_QUIT:	quit walk
   1330 * @D_WALK_NORETRY:	quit when retry is needed
   1331 * @D_WALK_SKIP:	skip this dentry and its children
   1332 */
   1333enum d_walk_ret {
   1334	D_WALK_CONTINUE,
   1335	D_WALK_QUIT,
   1336	D_WALK_NORETRY,
   1337	D_WALK_SKIP,
   1338};
   1339
   1340/**
   1341 * d_walk - walk the dentry tree
   1342 * @parent:	start of walk
   1343 * @data:	data passed to @enter() and @finish()
   1344 * @enter:	callback when first entering the dentry
   1345 *
   1346 * The @enter() callbacks are called with d_lock held.
   1347 */
   1348static void d_walk(struct dentry *parent, void *data,
   1349		   enum d_walk_ret (*enter)(void *, struct dentry *))
   1350{
   1351	struct dentry *this_parent;
   1352	struct list_head *next;
   1353	unsigned seq = 0;
   1354	enum d_walk_ret ret;
   1355	bool retry = true;
   1356
   1357again:
   1358	read_seqbegin_or_lock(&rename_lock, &seq);
   1359	this_parent = parent;
   1360	spin_lock(&this_parent->d_lock);
   1361
   1362	ret = enter(data, this_parent);
   1363	switch (ret) {
   1364	case D_WALK_CONTINUE:
   1365		break;
   1366	case D_WALK_QUIT:
   1367	case D_WALK_SKIP:
   1368		goto out_unlock;
   1369	case D_WALK_NORETRY:
   1370		retry = false;
   1371		break;
   1372	}
   1373repeat:
   1374	next = this_parent->d_subdirs.next;
   1375resume:
   1376	while (next != &this_parent->d_subdirs) {
   1377		struct list_head *tmp = next;
   1378		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
   1379		next = tmp->next;
   1380
   1381		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
   1382			continue;
   1383
   1384		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
   1385
   1386		ret = enter(data, dentry);
   1387		switch (ret) {
   1388		case D_WALK_CONTINUE:
   1389			break;
   1390		case D_WALK_QUIT:
   1391			spin_unlock(&dentry->d_lock);
   1392			goto out_unlock;
   1393		case D_WALK_NORETRY:
   1394			retry = false;
   1395			break;
   1396		case D_WALK_SKIP:
   1397			spin_unlock(&dentry->d_lock);
   1398			continue;
   1399		}
   1400
   1401		if (!list_empty(&dentry->d_subdirs)) {
   1402			spin_unlock(&this_parent->d_lock);
   1403			spin_release(&dentry->d_lock.dep_map, _RET_IP_);
   1404			this_parent = dentry;
   1405			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
   1406			goto repeat;
   1407		}
   1408		spin_unlock(&dentry->d_lock);
   1409	}
   1410	/*
   1411	 * All done at this level ... ascend and resume the search.
   1412	 */
   1413	rcu_read_lock();
   1414ascend:
   1415	if (this_parent != parent) {
   1416		struct dentry *child = this_parent;
   1417		this_parent = child->d_parent;
   1418
   1419		spin_unlock(&child->d_lock);
   1420		spin_lock(&this_parent->d_lock);
   1421
   1422		/* might go back up the wrong parent if we have had a rename. */
   1423		if (need_seqretry(&rename_lock, seq))
   1424			goto rename_retry;
   1425		/* go into the first sibling still alive */
   1426		do {
   1427			next = child->d_child.next;
   1428			if (next == &this_parent->d_subdirs)
   1429				goto ascend;
   1430			child = list_entry(next, struct dentry, d_child);
   1431		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
   1432		rcu_read_unlock();
   1433		goto resume;
   1434	}
   1435	if (need_seqretry(&rename_lock, seq))
   1436		goto rename_retry;
   1437	rcu_read_unlock();
   1438
   1439out_unlock:
   1440	spin_unlock(&this_parent->d_lock);
   1441	done_seqretry(&rename_lock, seq);
   1442	return;
   1443
   1444rename_retry:
   1445	spin_unlock(&this_parent->d_lock);
   1446	rcu_read_unlock();
   1447	BUG_ON(seq & 1);
   1448	if (!retry)
   1449		return;
   1450	seq = 1;
   1451	goto again;
   1452}
   1453
   1454struct check_mount {
   1455	struct vfsmount *mnt;
   1456	unsigned int mounted;
   1457};
   1458
   1459static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
   1460{
   1461	struct check_mount *info = data;
   1462	struct path path = { .mnt = info->mnt, .dentry = dentry };
   1463
   1464	if (likely(!d_mountpoint(dentry)))
   1465		return D_WALK_CONTINUE;
   1466	if (__path_is_mountpoint(&path)) {
   1467		info->mounted = 1;
   1468		return D_WALK_QUIT;
   1469	}
   1470	return D_WALK_CONTINUE;
   1471}
   1472
   1473/**
   1474 * path_has_submounts - check for mounts over a dentry in the
   1475 *                      current namespace.
   1476 * @parent: path to check.
   1477 *
   1478 * Return true if the parent or its subdirectories contain
   1479 * a mount point in the current namespace.
   1480 */
   1481int path_has_submounts(const struct path *parent)
   1482{
   1483	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
   1484
   1485	read_seqlock_excl(&mount_lock);
   1486	d_walk(parent->dentry, &data, path_check_mount);
   1487	read_sequnlock_excl(&mount_lock);
   1488
   1489	return data.mounted;
   1490}
   1491EXPORT_SYMBOL(path_has_submounts);
   1492
   1493/*
   1494 * Called by mount code to set a mountpoint and check if the mountpoint is
   1495 * reachable (e.g. NFS can unhash a directory dentry and then the complete
   1496 * subtree can become unreachable).
   1497 *
   1498 * Only one of d_invalidate() and d_set_mounted() must succeed.  For
   1499 * this reason take rename_lock and d_lock on dentry and ancestors.
   1500 */
   1501int d_set_mounted(struct dentry *dentry)
   1502{
   1503	struct dentry *p;
   1504	int ret = -ENOENT;
   1505	write_seqlock(&rename_lock);
   1506	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
   1507		/* Need exclusion wrt. d_invalidate() */
   1508		spin_lock(&p->d_lock);
   1509		if (unlikely(d_unhashed(p))) {
   1510			spin_unlock(&p->d_lock);
   1511			goto out;
   1512		}
   1513		spin_unlock(&p->d_lock);
   1514	}
   1515	spin_lock(&dentry->d_lock);
   1516	if (!d_unlinked(dentry)) {
   1517		ret = -EBUSY;
   1518		if (!d_mountpoint(dentry)) {
   1519			dentry->d_flags |= DCACHE_MOUNTED;
   1520			ret = 0;
   1521		}
   1522	}
   1523 	spin_unlock(&dentry->d_lock);
   1524out:
   1525	write_sequnlock(&rename_lock);
   1526	return ret;
   1527}
   1528
   1529/*
   1530 * Search the dentry child list of the specified parent,
   1531 * and move any unused dentries to the end of the unused
   1532 * list for prune_dcache(). We descend to the next level
   1533 * whenever the d_subdirs list is non-empty and continue
   1534 * searching.
   1535 *
   1536 * It returns zero iff there are no unused children,
   1537 * otherwise  it returns the number of children moved to
   1538 * the end of the unused list. This may not be the total
   1539 * number of unused children, because select_parent can
   1540 * drop the lock and return early due to latency
   1541 * constraints.
   1542 */
   1543
   1544struct select_data {
   1545	struct dentry *start;
   1546	union {
   1547		long found;
   1548		struct dentry *victim;
   1549	};
   1550	struct list_head dispose;
   1551};
   1552
   1553static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
   1554{
   1555	struct select_data *data = _data;
   1556	enum d_walk_ret ret = D_WALK_CONTINUE;
   1557
   1558	if (data->start == dentry)
   1559		goto out;
   1560
   1561	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
   1562		data->found++;
   1563	} else {
   1564		if (dentry->d_flags & DCACHE_LRU_LIST)
   1565			d_lru_del(dentry);
   1566		if (!dentry->d_lockref.count) {
   1567			d_shrink_add(dentry, &data->dispose);
   1568			data->found++;
   1569		}
   1570	}
   1571	/*
   1572	 * We can return to the caller if we have found some (this
   1573	 * ensures forward progress). We'll be coming back to find
   1574	 * the rest.
   1575	 */
   1576	if (!list_empty(&data->dispose))
   1577		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
   1578out:
   1579	return ret;
   1580}
   1581
   1582static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
   1583{
   1584	struct select_data *data = _data;
   1585	enum d_walk_ret ret = D_WALK_CONTINUE;
   1586
   1587	if (data->start == dentry)
   1588		goto out;
   1589
   1590	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
   1591		if (!dentry->d_lockref.count) {
   1592			rcu_read_lock();
   1593			data->victim = dentry;
   1594			return D_WALK_QUIT;
   1595		}
   1596	} else {
   1597		if (dentry->d_flags & DCACHE_LRU_LIST)
   1598			d_lru_del(dentry);
   1599		if (!dentry->d_lockref.count)
   1600			d_shrink_add(dentry, &data->dispose);
   1601	}
   1602	/*
   1603	 * We can return to the caller if we have found some (this
   1604	 * ensures forward progress). We'll be coming back to find
   1605	 * the rest.
   1606	 */
   1607	if (!list_empty(&data->dispose))
   1608		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
   1609out:
   1610	return ret;
   1611}
   1612
   1613/**
   1614 * shrink_dcache_parent - prune dcache
   1615 * @parent: parent of entries to prune
   1616 *
   1617 * Prune the dcache to remove unused children of the parent dentry.
   1618 */
   1619void shrink_dcache_parent(struct dentry *parent)
   1620{
   1621	for (;;) {
   1622		struct select_data data = {.start = parent};
   1623
   1624		INIT_LIST_HEAD(&data.dispose);
   1625		d_walk(parent, &data, select_collect);
   1626
   1627		if (!list_empty(&data.dispose)) {
   1628			shrink_dentry_list(&data.dispose);
   1629			continue;
   1630		}
   1631
   1632		cond_resched();
   1633		if (!data.found)
   1634			break;
   1635		data.victim = NULL;
   1636		d_walk(parent, &data, select_collect2);
   1637		if (data.victim) {
   1638			struct dentry *parent;
   1639			spin_lock(&data.victim->d_lock);
   1640			if (!shrink_lock_dentry(data.victim)) {
   1641				spin_unlock(&data.victim->d_lock);
   1642				rcu_read_unlock();
   1643			} else {
   1644				rcu_read_unlock();
   1645				parent = data.victim->d_parent;
   1646				if (parent != data.victim)
   1647					__dput_to_list(parent, &data.dispose);
   1648				__dentry_kill(data.victim);
   1649			}
   1650		}
   1651		if (!list_empty(&data.dispose))
   1652			shrink_dentry_list(&data.dispose);
   1653	}
   1654}
   1655EXPORT_SYMBOL(shrink_dcache_parent);
   1656
   1657static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
   1658{
   1659	/* it has busy descendents; complain about those instead */
   1660	if (!list_empty(&dentry->d_subdirs))
   1661		return D_WALK_CONTINUE;
   1662
   1663	/* root with refcount 1 is fine */
   1664	if (dentry == _data && dentry->d_lockref.count == 1)
   1665		return D_WALK_CONTINUE;
   1666
   1667	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
   1668			" still in use (%d) [unmount of %s %s]\n",
   1669		       dentry,
   1670		       dentry->d_inode ?
   1671		       dentry->d_inode->i_ino : 0UL,
   1672		       dentry,
   1673		       dentry->d_lockref.count,
   1674		       dentry->d_sb->s_type->name,
   1675		       dentry->d_sb->s_id);
   1676	WARN_ON(1);
   1677	return D_WALK_CONTINUE;
   1678}
   1679
   1680static void do_one_tree(struct dentry *dentry)
   1681{
   1682	shrink_dcache_parent(dentry);
   1683	d_walk(dentry, dentry, umount_check);
   1684	d_drop(dentry);
   1685	dput(dentry);
   1686}
   1687
   1688/*
   1689 * destroy the dentries attached to a superblock on unmounting
   1690 */
   1691void shrink_dcache_for_umount(struct super_block *sb)
   1692{
   1693	struct dentry *dentry;
   1694
   1695	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
   1696
   1697	dentry = sb->s_root;
   1698	sb->s_root = NULL;
   1699	do_one_tree(dentry);
   1700
   1701	while (!hlist_bl_empty(&sb->s_roots)) {
   1702		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
   1703		do_one_tree(dentry);
   1704	}
   1705}
   1706
   1707static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
   1708{
   1709	struct dentry **victim = _data;
   1710	if (d_mountpoint(dentry)) {
   1711		__dget_dlock(dentry);
   1712		*victim = dentry;
   1713		return D_WALK_QUIT;
   1714	}
   1715	return D_WALK_CONTINUE;
   1716}
   1717
   1718/**
   1719 * d_invalidate - detach submounts, prune dcache, and drop
   1720 * @dentry: dentry to invalidate (aka detach, prune and drop)
   1721 */
   1722void d_invalidate(struct dentry *dentry)
   1723{
   1724	bool had_submounts = false;
   1725	spin_lock(&dentry->d_lock);
   1726	if (d_unhashed(dentry)) {
   1727		spin_unlock(&dentry->d_lock);
   1728		return;
   1729	}
   1730	__d_drop(dentry);
   1731	spin_unlock(&dentry->d_lock);
   1732
   1733	/* Negative dentries can be dropped without further checks */
   1734	if (!dentry->d_inode)
   1735		return;
   1736
   1737	shrink_dcache_parent(dentry);
   1738	for (;;) {
   1739		struct dentry *victim = NULL;
   1740		d_walk(dentry, &victim, find_submount);
   1741		if (!victim) {
   1742			if (had_submounts)
   1743				shrink_dcache_parent(dentry);
   1744			return;
   1745		}
   1746		had_submounts = true;
   1747		detach_mounts(victim);
   1748		dput(victim);
   1749	}
   1750}
   1751EXPORT_SYMBOL(d_invalidate);
   1752
   1753/**
   1754 * __d_alloc	-	allocate a dcache entry
   1755 * @sb: filesystem it will belong to
   1756 * @name: qstr of the name
   1757 *
   1758 * Allocates a dentry. It returns %NULL if there is insufficient memory
   1759 * available. On a success the dentry is returned. The name passed in is
   1760 * copied and the copy passed in may be reused after this call.
   1761 */
   1762 
   1763static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
   1764{
   1765	struct dentry *dentry;
   1766	char *dname;
   1767	int err;
   1768
   1769	dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
   1770				      GFP_KERNEL);
   1771	if (!dentry)
   1772		return NULL;
   1773
   1774	/*
   1775	 * We guarantee that the inline name is always NUL-terminated.
   1776	 * This way the memcpy() done by the name switching in rename
   1777	 * will still always have a NUL at the end, even if we might
   1778	 * be overwriting an internal NUL character
   1779	 */
   1780	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
   1781	if (unlikely(!name)) {
   1782		name = &slash_name;
   1783		dname = dentry->d_iname;
   1784	} else if (name->len > DNAME_INLINE_LEN-1) {
   1785		size_t size = offsetof(struct external_name, name[1]);
   1786		struct external_name *p = kmalloc(size + name->len,
   1787						  GFP_KERNEL_ACCOUNT |
   1788						  __GFP_RECLAIMABLE);
   1789		if (!p) {
   1790			kmem_cache_free(dentry_cache, dentry); 
   1791			return NULL;
   1792		}
   1793		atomic_set(&p->u.count, 1);
   1794		dname = p->name;
   1795	} else  {
   1796		dname = dentry->d_iname;
   1797	}	
   1798
   1799	dentry->d_name.len = name->len;
   1800	dentry->d_name.hash = name->hash;
   1801	memcpy(dname, name->name, name->len);
   1802	dname[name->len] = 0;
   1803
   1804	/* Make sure we always see the terminating NUL character */
   1805	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
   1806
   1807	dentry->d_lockref.count = 1;
   1808	dentry->d_flags = 0;
   1809	spin_lock_init(&dentry->d_lock);
   1810	seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
   1811	dentry->d_inode = NULL;
   1812	dentry->d_parent = dentry;
   1813	dentry->d_sb = sb;
   1814	dentry->d_op = NULL;
   1815	dentry->d_fsdata = NULL;
   1816	INIT_HLIST_BL_NODE(&dentry->d_hash);
   1817	INIT_LIST_HEAD(&dentry->d_lru);
   1818	INIT_LIST_HEAD(&dentry->d_subdirs);
   1819	INIT_HLIST_NODE(&dentry->d_u.d_alias);
   1820	INIT_LIST_HEAD(&dentry->d_child);
   1821	d_set_d_op(dentry, dentry->d_sb->s_d_op);
   1822
   1823	if (dentry->d_op && dentry->d_op->d_init) {
   1824		err = dentry->d_op->d_init(dentry);
   1825		if (err) {
   1826			if (dname_external(dentry))
   1827				kfree(external_name(dentry));
   1828			kmem_cache_free(dentry_cache, dentry);
   1829			return NULL;
   1830		}
   1831	}
   1832
   1833	this_cpu_inc(nr_dentry);
   1834
   1835	return dentry;
   1836}
   1837
   1838/**
   1839 * d_alloc	-	allocate a dcache entry
   1840 * @parent: parent of entry to allocate
   1841 * @name: qstr of the name
   1842 *
   1843 * Allocates a dentry. It returns %NULL if there is insufficient memory
   1844 * available. On a success the dentry is returned. The name passed in is
   1845 * copied and the copy passed in may be reused after this call.
   1846 */
   1847struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
   1848{
   1849	struct dentry *dentry = __d_alloc(parent->d_sb, name);
   1850	if (!dentry)
   1851		return NULL;
   1852	spin_lock(&parent->d_lock);
   1853	/*
   1854	 * don't need child lock because it is not subject
   1855	 * to concurrency here
   1856	 */
   1857	__dget_dlock(parent);
   1858	dentry->d_parent = parent;
   1859	list_add(&dentry->d_child, &parent->d_subdirs);
   1860	spin_unlock(&parent->d_lock);
   1861
   1862	return dentry;
   1863}
   1864EXPORT_SYMBOL(d_alloc);
   1865
   1866struct dentry *d_alloc_anon(struct super_block *sb)
   1867{
   1868	return __d_alloc(sb, NULL);
   1869}
   1870EXPORT_SYMBOL(d_alloc_anon);
   1871
   1872struct dentry *d_alloc_cursor(struct dentry * parent)
   1873{
   1874	struct dentry *dentry = d_alloc_anon(parent->d_sb);
   1875	if (dentry) {
   1876		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
   1877		dentry->d_parent = dget(parent);
   1878	}
   1879	return dentry;
   1880}
   1881
   1882/**
   1883 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
   1884 * @sb: the superblock
   1885 * @name: qstr of the name
   1886 *
   1887 * For a filesystem that just pins its dentries in memory and never
   1888 * performs lookups at all, return an unhashed IS_ROOT dentry.
   1889 * This is used for pipes, sockets et.al. - the stuff that should
   1890 * never be anyone's children or parents.  Unlike all other
   1891 * dentries, these will not have RCU delay between dropping the
   1892 * last reference and freeing them.
   1893 *
   1894 * The only user is alloc_file_pseudo() and that's what should
   1895 * be considered a public interface.  Don't use directly.
   1896 */
   1897struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
   1898{
   1899	struct dentry *dentry = __d_alloc(sb, name);
   1900	if (likely(dentry))
   1901		dentry->d_flags |= DCACHE_NORCU;
   1902	return dentry;
   1903}
   1904
   1905struct dentry *d_alloc_name(struct dentry *parent, const char *name)
   1906{
   1907	struct qstr q;
   1908
   1909	q.name = name;
   1910	q.hash_len = hashlen_string(parent, name);
   1911	return d_alloc(parent, &q);
   1912}
   1913EXPORT_SYMBOL(d_alloc_name);
   1914
   1915void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
   1916{
   1917	WARN_ON_ONCE(dentry->d_op);
   1918	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
   1919				DCACHE_OP_COMPARE	|
   1920				DCACHE_OP_REVALIDATE	|
   1921				DCACHE_OP_WEAK_REVALIDATE	|
   1922				DCACHE_OP_DELETE	|
   1923				DCACHE_OP_REAL));
   1924	dentry->d_op = op;
   1925	if (!op)
   1926		return;
   1927	if (op->d_hash)
   1928		dentry->d_flags |= DCACHE_OP_HASH;
   1929	if (op->d_compare)
   1930		dentry->d_flags |= DCACHE_OP_COMPARE;
   1931	if (op->d_revalidate)
   1932		dentry->d_flags |= DCACHE_OP_REVALIDATE;
   1933	if (op->d_weak_revalidate)
   1934		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
   1935	if (op->d_delete)
   1936		dentry->d_flags |= DCACHE_OP_DELETE;
   1937	if (op->d_prune)
   1938		dentry->d_flags |= DCACHE_OP_PRUNE;
   1939	if (op->d_real)
   1940		dentry->d_flags |= DCACHE_OP_REAL;
   1941
   1942}
   1943EXPORT_SYMBOL(d_set_d_op);
   1944
   1945
   1946/*
   1947 * d_set_fallthru - Mark a dentry as falling through to a lower layer
   1948 * @dentry - The dentry to mark
   1949 *
   1950 * Mark a dentry as falling through to the lower layer (as set with
   1951 * d_pin_lower()).  This flag may be recorded on the medium.
   1952 */
   1953void d_set_fallthru(struct dentry *dentry)
   1954{
   1955	spin_lock(&dentry->d_lock);
   1956	dentry->d_flags |= DCACHE_FALLTHRU;
   1957	spin_unlock(&dentry->d_lock);
   1958}
   1959EXPORT_SYMBOL(d_set_fallthru);
   1960
   1961static unsigned d_flags_for_inode(struct inode *inode)
   1962{
   1963	unsigned add_flags = DCACHE_REGULAR_TYPE;
   1964
   1965	if (!inode)
   1966		return DCACHE_MISS_TYPE;
   1967
   1968	if (S_ISDIR(inode->i_mode)) {
   1969		add_flags = DCACHE_DIRECTORY_TYPE;
   1970		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
   1971			if (unlikely(!inode->i_op->lookup))
   1972				add_flags = DCACHE_AUTODIR_TYPE;
   1973			else
   1974				inode->i_opflags |= IOP_LOOKUP;
   1975		}
   1976		goto type_determined;
   1977	}
   1978
   1979	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
   1980		if (unlikely(inode->i_op->get_link)) {
   1981			add_flags = DCACHE_SYMLINK_TYPE;
   1982			goto type_determined;
   1983		}
   1984		inode->i_opflags |= IOP_NOFOLLOW;
   1985	}
   1986
   1987	if (unlikely(!S_ISREG(inode->i_mode)))
   1988		add_flags = DCACHE_SPECIAL_TYPE;
   1989
   1990type_determined:
   1991	if (unlikely(IS_AUTOMOUNT(inode)))
   1992		add_flags |= DCACHE_NEED_AUTOMOUNT;
   1993	return add_flags;
   1994}
   1995
   1996static void __d_instantiate(struct dentry *dentry, struct inode *inode)
   1997{
   1998	unsigned add_flags = d_flags_for_inode(inode);
   1999	WARN_ON(d_in_lookup(dentry));
   2000
   2001	spin_lock(&dentry->d_lock);
   2002	/*
   2003	 * Decrement negative dentry count if it was in the LRU list.
   2004	 */
   2005	if (dentry->d_flags & DCACHE_LRU_LIST)
   2006		this_cpu_dec(nr_dentry_negative);
   2007	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
   2008	raw_write_seqcount_begin(&dentry->d_seq);
   2009	__d_set_inode_and_type(dentry, inode, add_flags);
   2010	raw_write_seqcount_end(&dentry->d_seq);
   2011	fsnotify_update_flags(dentry);
   2012	spin_unlock(&dentry->d_lock);
   2013}
   2014
   2015/**
   2016 * d_instantiate - fill in inode information for a dentry
   2017 * @entry: dentry to complete
   2018 * @inode: inode to attach to this dentry
   2019 *
   2020 * Fill in inode information in the entry.
   2021 *
   2022 * This turns negative dentries into productive full members
   2023 * of society.
   2024 *
   2025 * NOTE! This assumes that the inode count has been incremented
   2026 * (or otherwise set) by the caller to indicate that it is now
   2027 * in use by the dcache.
   2028 */
   2029 
   2030void d_instantiate(struct dentry *entry, struct inode * inode)
   2031{
   2032	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
   2033	if (inode) {
   2034		security_d_instantiate(entry, inode);
   2035		spin_lock(&inode->i_lock);
   2036		__d_instantiate(entry, inode);
   2037		spin_unlock(&inode->i_lock);
   2038	}
   2039}
   2040EXPORT_SYMBOL(d_instantiate);
   2041
   2042/*
   2043 * This should be equivalent to d_instantiate() + unlock_new_inode(),
   2044 * with lockdep-related part of unlock_new_inode() done before
   2045 * anything else.  Use that instead of open-coding d_instantiate()/
   2046 * unlock_new_inode() combinations.
   2047 */
   2048void d_instantiate_new(struct dentry *entry, struct inode *inode)
   2049{
   2050	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
   2051	BUG_ON(!inode);
   2052	lockdep_annotate_inode_mutex_key(inode);
   2053	security_d_instantiate(entry, inode);
   2054	spin_lock(&inode->i_lock);
   2055	__d_instantiate(entry, inode);
   2056	WARN_ON(!(inode->i_state & I_NEW));
   2057	inode->i_state &= ~I_NEW & ~I_CREATING;
   2058	smp_mb();
   2059	wake_up_bit(&inode->i_state, __I_NEW);
   2060	spin_unlock(&inode->i_lock);
   2061}
   2062EXPORT_SYMBOL(d_instantiate_new);
   2063
   2064struct dentry *d_make_root(struct inode *root_inode)
   2065{
   2066	struct dentry *res = NULL;
   2067
   2068	if (root_inode) {
   2069		res = d_alloc_anon(root_inode->i_sb);
   2070		if (res)
   2071			d_instantiate(res, root_inode);
   2072		else
   2073			iput(root_inode);
   2074	}
   2075	return res;
   2076}
   2077EXPORT_SYMBOL(d_make_root);
   2078
   2079static struct dentry *__d_instantiate_anon(struct dentry *dentry,
   2080					   struct inode *inode,
   2081					   bool disconnected)
   2082{
   2083	struct dentry *res;
   2084	unsigned add_flags;
   2085
   2086	security_d_instantiate(dentry, inode);
   2087	spin_lock(&inode->i_lock);
   2088	res = __d_find_any_alias(inode);
   2089	if (res) {
   2090		spin_unlock(&inode->i_lock);
   2091		dput(dentry);
   2092		goto out_iput;
   2093	}
   2094
   2095	/* attach a disconnected dentry */
   2096	add_flags = d_flags_for_inode(inode);
   2097
   2098	if (disconnected)
   2099		add_flags |= DCACHE_DISCONNECTED;
   2100
   2101	spin_lock(&dentry->d_lock);
   2102	__d_set_inode_and_type(dentry, inode, add_flags);
   2103	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
   2104	if (!disconnected) {
   2105		hlist_bl_lock(&dentry->d_sb->s_roots);
   2106		hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
   2107		hlist_bl_unlock(&dentry->d_sb->s_roots);
   2108	}
   2109	spin_unlock(&dentry->d_lock);
   2110	spin_unlock(&inode->i_lock);
   2111
   2112	return dentry;
   2113
   2114 out_iput:
   2115	iput(inode);
   2116	return res;
   2117}
   2118
   2119struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
   2120{
   2121	return __d_instantiate_anon(dentry, inode, true);
   2122}
   2123EXPORT_SYMBOL(d_instantiate_anon);
   2124
   2125static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
   2126{
   2127	struct dentry *tmp;
   2128	struct dentry *res;
   2129
   2130	if (!inode)
   2131		return ERR_PTR(-ESTALE);
   2132	if (IS_ERR(inode))
   2133		return ERR_CAST(inode);
   2134
   2135	res = d_find_any_alias(inode);
   2136	if (res)
   2137		goto out_iput;
   2138
   2139	tmp = d_alloc_anon(inode->i_sb);
   2140	if (!tmp) {
   2141		res = ERR_PTR(-ENOMEM);
   2142		goto out_iput;
   2143	}
   2144
   2145	return __d_instantiate_anon(tmp, inode, disconnected);
   2146
   2147out_iput:
   2148	iput(inode);
   2149	return res;
   2150}
   2151
   2152/**
   2153 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
   2154 * @inode: inode to allocate the dentry for
   2155 *
   2156 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
   2157 * similar open by handle operations.  The returned dentry may be anonymous,
   2158 * or may have a full name (if the inode was already in the cache).
   2159 *
   2160 * When called on a directory inode, we must ensure that the inode only ever
   2161 * has one dentry.  If a dentry is found, that is returned instead of
   2162 * allocating a new one.
   2163 *
   2164 * On successful return, the reference to the inode has been transferred
   2165 * to the dentry.  In case of an error the reference on the inode is released.
   2166 * To make it easier to use in export operations a %NULL or IS_ERR inode may
   2167 * be passed in and the error will be propagated to the return value,
   2168 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
   2169 */
   2170struct dentry *d_obtain_alias(struct inode *inode)
   2171{
   2172	return __d_obtain_alias(inode, true);
   2173}
   2174EXPORT_SYMBOL(d_obtain_alias);
   2175
   2176/**
   2177 * d_obtain_root - find or allocate a dentry for a given inode
   2178 * @inode: inode to allocate the dentry for
   2179 *
   2180 * Obtain an IS_ROOT dentry for the root of a filesystem.
   2181 *
   2182 * We must ensure that directory inodes only ever have one dentry.  If a
   2183 * dentry is found, that is returned instead of allocating a new one.
   2184 *
   2185 * On successful return, the reference to the inode has been transferred
   2186 * to the dentry.  In case of an error the reference on the inode is
   2187 * released.  A %NULL or IS_ERR inode may be passed in and will be the
   2188 * error will be propagate to the return value, with a %NULL @inode
   2189 * replaced by ERR_PTR(-ESTALE).
   2190 */
   2191struct dentry *d_obtain_root(struct inode *inode)
   2192{
   2193	return __d_obtain_alias(inode, false);
   2194}
   2195EXPORT_SYMBOL(d_obtain_root);
   2196
   2197/**
   2198 * d_add_ci - lookup or allocate new dentry with case-exact name
   2199 * @inode:  the inode case-insensitive lookup has found
   2200 * @dentry: the negative dentry that was passed to the parent's lookup func
   2201 * @name:   the case-exact name to be associated with the returned dentry
   2202 *
   2203 * This is to avoid filling the dcache with case-insensitive names to the
   2204 * same inode, only the actual correct case is stored in the dcache for
   2205 * case-insensitive filesystems.
   2206 *
   2207 * For a case-insensitive lookup match and if the case-exact dentry
   2208 * already exists in the dcache, use it and return it.
   2209 *
   2210 * If no entry exists with the exact case name, allocate new dentry with
   2211 * the exact case, and return the spliced entry.
   2212 */
   2213struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
   2214			struct qstr *name)
   2215{
   2216	struct dentry *found, *res;
   2217
   2218	/*
   2219	 * First check if a dentry matching the name already exists,
   2220	 * if not go ahead and create it now.
   2221	 */
   2222	found = d_hash_and_lookup(dentry->d_parent, name);
   2223	if (found) {
   2224		iput(inode);
   2225		return found;
   2226	}
   2227	if (d_in_lookup(dentry)) {
   2228		found = d_alloc_parallel(dentry->d_parent, name,
   2229					dentry->d_wait);
   2230		if (IS_ERR(found) || !d_in_lookup(found)) {
   2231			iput(inode);
   2232			return found;
   2233		}
   2234	} else {
   2235		found = d_alloc(dentry->d_parent, name);
   2236		if (!found) {
   2237			iput(inode);
   2238			return ERR_PTR(-ENOMEM);
   2239		} 
   2240	}
   2241	res = d_splice_alias(inode, found);
   2242	if (res) {
   2243		dput(found);
   2244		return res;
   2245	}
   2246	return found;
   2247}
   2248EXPORT_SYMBOL(d_add_ci);
   2249
   2250
   2251static inline bool d_same_name(const struct dentry *dentry,
   2252				const struct dentry *parent,
   2253				const struct qstr *name)
   2254{
   2255	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
   2256		if (dentry->d_name.len != name->len)
   2257			return false;
   2258		return dentry_cmp(dentry, name->name, name->len) == 0;
   2259	}
   2260	return parent->d_op->d_compare(dentry,
   2261				       dentry->d_name.len, dentry->d_name.name,
   2262				       name) == 0;
   2263}
   2264
   2265/**
   2266 * __d_lookup_rcu - search for a dentry (racy, store-free)
   2267 * @parent: parent dentry
   2268 * @name: qstr of name we wish to find
   2269 * @seqp: returns d_seq value at the point where the dentry was found
   2270 * Returns: dentry, or NULL
   2271 *
   2272 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
   2273 * resolution (store-free path walking) design described in
   2274 * Documentation/filesystems/path-lookup.txt.
   2275 *
   2276 * This is not to be used outside core vfs.
   2277 *
   2278 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
   2279 * held, and rcu_read_lock held. The returned dentry must not be stored into
   2280 * without taking d_lock and checking d_seq sequence count against @seq
   2281 * returned here.
   2282 *
   2283 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
   2284 * function.
   2285 *
   2286 * Alternatively, __d_lookup_rcu may be called again to look up the child of
   2287 * the returned dentry, so long as its parent's seqlock is checked after the
   2288 * child is looked up. Thus, an interlocking stepping of sequence lock checks
   2289 * is formed, giving integrity down the path walk.
   2290 *
   2291 * NOTE! The caller *has* to check the resulting dentry against the sequence
   2292 * number we've returned before using any of the resulting dentry state!
   2293 */
   2294struct dentry *__d_lookup_rcu(const struct dentry *parent,
   2295				const struct qstr *name,
   2296				unsigned *seqp)
   2297{
   2298	u64 hashlen = name->hash_len;
   2299	const unsigned char *str = name->name;
   2300	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
   2301	struct hlist_bl_node *node;
   2302	struct dentry *dentry;
   2303
   2304	/*
   2305	 * Note: There is significant duplication with __d_lookup_rcu which is
   2306	 * required to prevent single threaded performance regressions
   2307	 * especially on architectures where smp_rmb (in seqcounts) are costly.
   2308	 * Keep the two functions in sync.
   2309	 */
   2310
   2311	/*
   2312	 * The hash list is protected using RCU.
   2313	 *
   2314	 * Carefully use d_seq when comparing a candidate dentry, to avoid
   2315	 * races with d_move().
   2316	 *
   2317	 * It is possible that concurrent renames can mess up our list
   2318	 * walk here and result in missing our dentry, resulting in the
   2319	 * false-negative result. d_lookup() protects against concurrent
   2320	 * renames using rename_lock seqlock.
   2321	 *
   2322	 * See Documentation/filesystems/path-lookup.txt for more details.
   2323	 */
   2324	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
   2325		unsigned seq;
   2326
   2327seqretry:
   2328		/*
   2329		 * The dentry sequence count protects us from concurrent
   2330		 * renames, and thus protects parent and name fields.
   2331		 *
   2332		 * The caller must perform a seqcount check in order
   2333		 * to do anything useful with the returned dentry.
   2334		 *
   2335		 * NOTE! We do a "raw" seqcount_begin here. That means that
   2336		 * we don't wait for the sequence count to stabilize if it
   2337		 * is in the middle of a sequence change. If we do the slow
   2338		 * dentry compare, we will do seqretries until it is stable,
   2339		 * and if we end up with a successful lookup, we actually
   2340		 * want to exit RCU lookup anyway.
   2341		 *
   2342		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
   2343		 * we are still guaranteed NUL-termination of ->d_name.name.
   2344		 */
   2345		seq = raw_seqcount_begin(&dentry->d_seq);
   2346		if (dentry->d_parent != parent)
   2347			continue;
   2348		if (d_unhashed(dentry))
   2349			continue;
   2350
   2351		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
   2352			int tlen;
   2353			const char *tname;
   2354			if (dentry->d_name.hash != hashlen_hash(hashlen))
   2355				continue;
   2356			tlen = dentry->d_name.len;
   2357			tname = dentry->d_name.name;
   2358			/* we want a consistent (name,len) pair */
   2359			if (read_seqcount_retry(&dentry->d_seq, seq)) {
   2360				cpu_relax();
   2361				goto seqretry;
   2362			}
   2363			if (parent->d_op->d_compare(dentry,
   2364						    tlen, tname, name) != 0)
   2365				continue;
   2366		} else {
   2367			if (dentry->d_name.hash_len != hashlen)
   2368				continue;
   2369			if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
   2370				continue;
   2371		}
   2372		*seqp = seq;
   2373		return dentry;
   2374	}
   2375	return NULL;
   2376}
   2377
   2378/**
   2379 * d_lookup - search for a dentry
   2380 * @parent: parent dentry
   2381 * @name: qstr of name we wish to find
   2382 * Returns: dentry, or NULL
   2383 *
   2384 * d_lookup searches the children of the parent dentry for the name in
   2385 * question. If the dentry is found its reference count is incremented and the
   2386 * dentry is returned. The caller must use dput to free the entry when it has
   2387 * finished using it. %NULL is returned if the dentry does not exist.
   2388 */
   2389struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
   2390{
   2391	struct dentry *dentry;
   2392	unsigned seq;
   2393
   2394	do {
   2395		seq = read_seqbegin(&rename_lock);
   2396		dentry = __d_lookup(parent, name);
   2397		if (dentry)
   2398			break;
   2399	} while (read_seqretry(&rename_lock, seq));
   2400	return dentry;
   2401}
   2402EXPORT_SYMBOL(d_lookup);
   2403
   2404/**
   2405 * __d_lookup - search for a dentry (racy)
   2406 * @parent: parent dentry
   2407 * @name: qstr of name we wish to find
   2408 * Returns: dentry, or NULL
   2409 *
   2410 * __d_lookup is like d_lookup, however it may (rarely) return a
   2411 * false-negative result due to unrelated rename activity.
   2412 *
   2413 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
   2414 * however it must be used carefully, eg. with a following d_lookup in
   2415 * the case of failure.
   2416 *
   2417 * __d_lookup callers must be commented.
   2418 */
   2419struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
   2420{
   2421	unsigned int hash = name->hash;
   2422	struct hlist_bl_head *b = d_hash(hash);
   2423	struct hlist_bl_node *node;
   2424	struct dentry *found = NULL;
   2425	struct dentry *dentry;
   2426
   2427	/*
   2428	 * Note: There is significant duplication with __d_lookup_rcu which is
   2429	 * required to prevent single threaded performance regressions
   2430	 * especially on architectures where smp_rmb (in seqcounts) are costly.
   2431	 * Keep the two functions in sync.
   2432	 */
   2433
   2434	/*
   2435	 * The hash list is protected using RCU.
   2436	 *
   2437	 * Take d_lock when comparing a candidate dentry, to avoid races
   2438	 * with d_move().
   2439	 *
   2440	 * It is possible that concurrent renames can mess up our list
   2441	 * walk here and result in missing our dentry, resulting in the
   2442	 * false-negative result. d_lookup() protects against concurrent
   2443	 * renames using rename_lock seqlock.
   2444	 *
   2445	 * See Documentation/filesystems/path-lookup.txt for more details.
   2446	 */
   2447	rcu_read_lock();
   2448	
   2449	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
   2450
   2451		if (dentry->d_name.hash != hash)
   2452			continue;
   2453
   2454		spin_lock(&dentry->d_lock);
   2455		if (dentry->d_parent != parent)
   2456			goto next;
   2457		if (d_unhashed(dentry))
   2458			goto next;
   2459
   2460		if (!d_same_name(dentry, parent, name))
   2461			goto next;
   2462
   2463		dentry->d_lockref.count++;
   2464		found = dentry;
   2465		spin_unlock(&dentry->d_lock);
   2466		break;
   2467next:
   2468		spin_unlock(&dentry->d_lock);
   2469 	}
   2470 	rcu_read_unlock();
   2471
   2472 	return found;
   2473}
   2474
   2475/**
   2476 * d_hash_and_lookup - hash the qstr then search for a dentry
   2477 * @dir: Directory to search in
   2478 * @name: qstr of name we wish to find
   2479 *
   2480 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
   2481 */
   2482struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
   2483{
   2484	/*
   2485	 * Check for a fs-specific hash function. Note that we must
   2486	 * calculate the standard hash first, as the d_op->d_hash()
   2487	 * routine may choose to leave the hash value unchanged.
   2488	 */
   2489	name->hash = full_name_hash(dir, name->name, name->len);
   2490	if (dir->d_flags & DCACHE_OP_HASH) {
   2491		int err = dir->d_op->d_hash(dir, name);
   2492		if (unlikely(err < 0))
   2493			return ERR_PTR(err);
   2494	}
   2495	return d_lookup(dir, name);
   2496}
   2497EXPORT_SYMBOL(d_hash_and_lookup);
   2498
   2499/*
   2500 * When a file is deleted, we have two options:
   2501 * - turn this dentry into a negative dentry
   2502 * - unhash this dentry and free it.
   2503 *
   2504 * Usually, we want to just turn this into
   2505 * a negative dentry, but if anybody else is
   2506 * currently using the dentry or the inode
   2507 * we can't do that and we fall back on removing
   2508 * it from the hash queues and waiting for
   2509 * it to be deleted later when it has no users
   2510 */
   2511 
   2512/**
   2513 * d_delete - delete a dentry
   2514 * @dentry: The dentry to delete
   2515 *
   2516 * Turn the dentry into a negative dentry if possible, otherwise
   2517 * remove it from the hash queues so it can be deleted later
   2518 */
   2519 
   2520void d_delete(struct dentry * dentry)
   2521{
   2522	struct inode *inode = dentry->d_inode;
   2523
   2524	spin_lock(&inode->i_lock);
   2525	spin_lock(&dentry->d_lock);
   2526	/*
   2527	 * Are we the only user?
   2528	 */
   2529	if (dentry->d_lockref.count == 1) {
   2530		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
   2531		dentry_unlink_inode(dentry);
   2532	} else {
   2533		__d_drop(dentry);
   2534		spin_unlock(&dentry->d_lock);
   2535		spin_unlock(&inode->i_lock);
   2536	}
   2537}
   2538EXPORT_SYMBOL(d_delete);
   2539
   2540static void __d_rehash(struct dentry *entry)
   2541{
   2542	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
   2543
   2544	hlist_bl_lock(b);
   2545	hlist_bl_add_head_rcu(&entry->d_hash, b);
   2546	hlist_bl_unlock(b);
   2547}
   2548
   2549/**
   2550 * d_rehash	- add an entry back to the hash
   2551 * @entry: dentry to add to the hash
   2552 *
   2553 * Adds a dentry to the hash according to its name.
   2554 */
   2555 
   2556void d_rehash(struct dentry * entry)
   2557{
   2558	spin_lock(&entry->d_lock);
   2559	__d_rehash(entry);
   2560	spin_unlock(&entry->d_lock);
   2561}
   2562EXPORT_SYMBOL(d_rehash);
   2563
   2564static inline unsigned start_dir_add(struct inode *dir)
   2565{
   2566
   2567	for (;;) {
   2568		unsigned n = dir->i_dir_seq;
   2569		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
   2570			return n;
   2571		cpu_relax();
   2572	}
   2573}
   2574
   2575static inline void end_dir_add(struct inode *dir, unsigned n)
   2576{
   2577	smp_store_release(&dir->i_dir_seq, n + 2);
   2578}
   2579
   2580static void d_wait_lookup(struct dentry *dentry)
   2581{
   2582	if (d_in_lookup(dentry)) {
   2583		DECLARE_WAITQUEUE(wait, current);
   2584		add_wait_queue(dentry->d_wait, &wait);
   2585		do {
   2586			set_current_state(TASK_UNINTERRUPTIBLE);
   2587			spin_unlock(&dentry->d_lock);
   2588			schedule();
   2589			spin_lock(&dentry->d_lock);
   2590		} while (d_in_lookup(dentry));
   2591	}
   2592}
   2593
   2594struct dentry *d_alloc_parallel(struct dentry *parent,
   2595				const struct qstr *name,
   2596				wait_queue_head_t *wq)
   2597{
   2598	unsigned int hash = name->hash;
   2599	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
   2600	struct hlist_bl_node *node;
   2601	struct dentry *new = d_alloc(parent, name);
   2602	struct dentry *dentry;
   2603	unsigned seq, r_seq, d_seq;
   2604
   2605	if (unlikely(!new))
   2606		return ERR_PTR(-ENOMEM);
   2607
   2608retry:
   2609	rcu_read_lock();
   2610	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
   2611	r_seq = read_seqbegin(&rename_lock);
   2612	dentry = __d_lookup_rcu(parent, name, &d_seq);
   2613	if (unlikely(dentry)) {
   2614		if (!lockref_get_not_dead(&dentry->d_lockref)) {
   2615			rcu_read_unlock();
   2616			goto retry;
   2617		}
   2618		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
   2619			rcu_read_unlock();
   2620			dput(dentry);
   2621			goto retry;
   2622		}
   2623		rcu_read_unlock();
   2624		dput(new);
   2625		return dentry;
   2626	}
   2627	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
   2628		rcu_read_unlock();
   2629		goto retry;
   2630	}
   2631
   2632	if (unlikely(seq & 1)) {
   2633		rcu_read_unlock();
   2634		goto retry;
   2635	}
   2636
   2637	hlist_bl_lock(b);
   2638	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
   2639		hlist_bl_unlock(b);
   2640		rcu_read_unlock();
   2641		goto retry;
   2642	}
   2643	/*
   2644	 * No changes for the parent since the beginning of d_lookup().
   2645	 * Since all removals from the chain happen with hlist_bl_lock(),
   2646	 * any potential in-lookup matches are going to stay here until
   2647	 * we unlock the chain.  All fields are stable in everything
   2648	 * we encounter.
   2649	 */
   2650	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
   2651		if (dentry->d_name.hash != hash)
   2652			continue;
   2653		if (dentry->d_parent != parent)
   2654			continue;
   2655		if (!d_same_name(dentry, parent, name))
   2656			continue;
   2657		hlist_bl_unlock(b);
   2658		/* now we can try to grab a reference */
   2659		if (!lockref_get_not_dead(&dentry->d_lockref)) {
   2660			rcu_read_unlock();
   2661			goto retry;
   2662		}
   2663
   2664		rcu_read_unlock();
   2665		/*
   2666		 * somebody is likely to be still doing lookup for it;
   2667		 * wait for them to finish
   2668		 */
   2669		spin_lock(&dentry->d_lock);
   2670		d_wait_lookup(dentry);
   2671		/*
   2672		 * it's not in-lookup anymore; in principle we should repeat
   2673		 * everything from dcache lookup, but it's likely to be what
   2674		 * d_lookup() would've found anyway.  If it is, just return it;
   2675		 * otherwise we really have to repeat the whole thing.
   2676		 */
   2677		if (unlikely(dentry->d_name.hash != hash))
   2678			goto mismatch;
   2679		if (unlikely(dentry->d_parent != parent))
   2680			goto mismatch;
   2681		if (unlikely(d_unhashed(dentry)))
   2682			goto mismatch;
   2683		if (unlikely(!d_same_name(dentry, parent, name)))
   2684			goto mismatch;
   2685		/* OK, it *is* a hashed match; return it */
   2686		spin_unlock(&dentry->d_lock);
   2687		dput(new);
   2688		return dentry;
   2689	}
   2690	rcu_read_unlock();
   2691	/* we can't take ->d_lock here; it's OK, though. */
   2692	new->d_flags |= DCACHE_PAR_LOOKUP;
   2693	new->d_wait = wq;
   2694	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
   2695	hlist_bl_unlock(b);
   2696	return new;
   2697mismatch:
   2698	spin_unlock(&dentry->d_lock);
   2699	dput(dentry);
   2700	goto retry;
   2701}
   2702EXPORT_SYMBOL(d_alloc_parallel);
   2703
   2704void __d_lookup_done(struct dentry *dentry)
   2705{
   2706	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
   2707						 dentry->d_name.hash);
   2708	hlist_bl_lock(b);
   2709	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
   2710	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
   2711	wake_up_all(dentry->d_wait);
   2712	dentry->d_wait = NULL;
   2713	hlist_bl_unlock(b);
   2714	INIT_HLIST_NODE(&dentry->d_u.d_alias);
   2715	INIT_LIST_HEAD(&dentry->d_lru);
   2716}
   2717EXPORT_SYMBOL(__d_lookup_done);
   2718
   2719/* inode->i_lock held if inode is non-NULL */
   2720
   2721static inline void __d_add(struct dentry *dentry, struct inode *inode)
   2722{
   2723	struct inode *dir = NULL;
   2724	unsigned n;
   2725	spin_lock(&dentry->d_lock);
   2726	if (unlikely(d_in_lookup(dentry))) {
   2727		dir = dentry->d_parent->d_inode;
   2728		n = start_dir_add(dir);
   2729		__d_lookup_done(dentry);
   2730	}
   2731	if (inode) {
   2732		unsigned add_flags = d_flags_for_inode(inode);
   2733		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
   2734		raw_write_seqcount_begin(&dentry->d_seq);
   2735		__d_set_inode_and_type(dentry, inode, add_flags);
   2736		raw_write_seqcount_end(&dentry->d_seq);
   2737		fsnotify_update_flags(dentry);
   2738	}
   2739	__d_rehash(dentry);
   2740	if (dir)
   2741		end_dir_add(dir, n);
   2742	spin_unlock(&dentry->d_lock);
   2743	if (inode)
   2744		spin_unlock(&inode->i_lock);
   2745}
   2746
   2747/**
   2748 * d_add - add dentry to hash queues
   2749 * @entry: dentry to add
   2750 * @inode: The inode to attach to this dentry
   2751 *
   2752 * This adds the entry to the hash queues and initializes @inode.
   2753 * The entry was actually filled in earlier during d_alloc().
   2754 */
   2755
   2756void d_add(struct dentry *entry, struct inode *inode)
   2757{
   2758	if (inode) {
   2759		security_d_instantiate(entry, inode);
   2760		spin_lock(&inode->i_lock);
   2761	}
   2762	__d_add(entry, inode);
   2763}
   2764EXPORT_SYMBOL(d_add);
   2765
   2766/**
   2767 * d_exact_alias - find and hash an exact unhashed alias
   2768 * @entry: dentry to add
   2769 * @inode: The inode to go with this dentry
   2770 *
   2771 * If an unhashed dentry with the same name/parent and desired
   2772 * inode already exists, hash and return it.  Otherwise, return
   2773 * NULL.
   2774 *
   2775 * Parent directory should be locked.
   2776 */
   2777struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
   2778{
   2779	struct dentry *alias;
   2780	unsigned int hash = entry->d_name.hash;
   2781
   2782	spin_lock(&inode->i_lock);
   2783	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
   2784		/*
   2785		 * Don't need alias->d_lock here, because aliases with
   2786		 * d_parent == entry->d_parent are not subject to name or
   2787		 * parent changes, because the parent inode i_mutex is held.
   2788		 */
   2789		if (alias->d_name.hash != hash)
   2790			continue;
   2791		if (alias->d_parent != entry->d_parent)
   2792			continue;
   2793		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
   2794			continue;
   2795		spin_lock(&alias->d_lock);
   2796		if (!d_unhashed(alias)) {
   2797			spin_unlock(&alias->d_lock);
   2798			alias = NULL;
   2799		} else {
   2800			__dget_dlock(alias);
   2801			__d_rehash(alias);
   2802			spin_unlock(&alias->d_lock);
   2803		}
   2804		spin_unlock(&inode->i_lock);
   2805		return alias;
   2806	}
   2807	spin_unlock(&inode->i_lock);
   2808	return NULL;
   2809}
   2810EXPORT_SYMBOL(d_exact_alias);
   2811
   2812static void swap_names(struct dentry *dentry, struct dentry *target)
   2813{
   2814	if (unlikely(dname_external(target))) {
   2815		if (unlikely(dname_external(dentry))) {
   2816			/*
   2817			 * Both external: swap the pointers
   2818			 */
   2819			swap(target->d_name.name, dentry->d_name.name);
   2820		} else {
   2821			/*
   2822			 * dentry:internal, target:external.  Steal target's
   2823			 * storage and make target internal.
   2824			 */
   2825			memcpy(target->d_iname, dentry->d_name.name,
   2826					dentry->d_name.len + 1);
   2827			dentry->d_name.name = target->d_name.name;
   2828			target->d_name.name = target->d_iname;
   2829		}
   2830	} else {
   2831		if (unlikely(dname_external(dentry))) {
   2832			/*
   2833			 * dentry:external, target:internal.  Give dentry's
   2834			 * storage to target and make dentry internal
   2835			 */
   2836			memcpy(dentry->d_iname, target->d_name.name,
   2837					target->d_name.len + 1);
   2838			target->d_name.name = dentry->d_name.name;
   2839			dentry->d_name.name = dentry->d_iname;
   2840		} else {
   2841			/*
   2842			 * Both are internal.
   2843			 */
   2844			unsigned int i;
   2845			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
   2846			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
   2847				swap(((long *) &dentry->d_iname)[i],
   2848				     ((long *) &target->d_iname)[i]);
   2849			}
   2850		}
   2851	}
   2852	swap(dentry->d_name.hash_len, target->d_name.hash_len);
   2853}
   2854
   2855static void copy_name(struct dentry *dentry, struct dentry *target)
   2856{
   2857	struct external_name *old_name = NULL;
   2858	if (unlikely(dname_external(dentry)))
   2859		old_name = external_name(dentry);
   2860	if (unlikely(dname_external(target))) {
   2861		atomic_inc(&external_name(target)->u.count);
   2862		dentry->d_name = target->d_name;
   2863	} else {
   2864		memcpy(dentry->d_iname, target->d_name.name,
   2865				target->d_name.len + 1);
   2866		dentry->d_name.name = dentry->d_iname;
   2867		dentry->d_name.hash_len = target->d_name.hash_len;
   2868	}
   2869	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
   2870		kfree_rcu(old_name, u.head);
   2871}
   2872
   2873/*
   2874 * __d_move - move a dentry
   2875 * @dentry: entry to move
   2876 * @target: new dentry
   2877 * @exchange: exchange the two dentries
   2878 *
   2879 * Update the dcache to reflect the move of a file name. Negative
   2880 * dcache entries should not be moved in this way. Caller must hold
   2881 * rename_lock, the i_mutex of the source and target directories,
   2882 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
   2883 */
   2884static void __d_move(struct dentry *dentry, struct dentry *target,
   2885		     bool exchange)
   2886{
   2887	struct dentry *old_parent, *p;
   2888	struct inode *dir = NULL;
   2889	unsigned n;
   2890
   2891	WARN_ON(!dentry->d_inode);
   2892	if (WARN_ON(dentry == target))
   2893		return;
   2894
   2895	BUG_ON(d_ancestor(target, dentry));
   2896	old_parent = dentry->d_parent;
   2897	p = d_ancestor(old_parent, target);
   2898	if (IS_ROOT(dentry)) {
   2899		BUG_ON(p);
   2900		spin_lock(&target->d_parent->d_lock);
   2901	} else if (!p) {
   2902		/* target is not a descendent of dentry->d_parent */
   2903		spin_lock(&target->d_parent->d_lock);
   2904		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
   2905	} else {
   2906		BUG_ON(p == dentry);
   2907		spin_lock(&old_parent->d_lock);
   2908		if (p != target)
   2909			spin_lock_nested(&target->d_parent->d_lock,
   2910					DENTRY_D_LOCK_NESTED);
   2911	}
   2912	spin_lock_nested(&dentry->d_lock, 2);
   2913	spin_lock_nested(&target->d_lock, 3);
   2914
   2915	if (unlikely(d_in_lookup(target))) {
   2916		dir = target->d_parent->d_inode;
   2917		n = start_dir_add(dir);
   2918		__d_lookup_done(target);
   2919	}
   2920
   2921	write_seqcount_begin(&dentry->d_seq);
   2922	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
   2923
   2924	/* unhash both */
   2925	if (!d_unhashed(dentry))
   2926		___d_drop(dentry);
   2927	if (!d_unhashed(target))
   2928		___d_drop(target);
   2929
   2930	/* ... and switch them in the tree */
   2931	dentry->d_parent = target->d_parent;
   2932	if (!exchange) {
   2933		copy_name(dentry, target);
   2934		target->d_hash.pprev = NULL;
   2935		dentry->d_parent->d_lockref.count++;
   2936		if (dentry != old_parent) /* wasn't IS_ROOT */
   2937			WARN_ON(!--old_parent->d_lockref.count);
   2938	} else {
   2939		target->d_parent = old_parent;
   2940		swap_names(dentry, target);
   2941		list_move(&target->d_child, &target->d_parent->d_subdirs);
   2942		__d_rehash(target);
   2943		fsnotify_update_flags(target);
   2944	}
   2945	list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
   2946	__d_rehash(dentry);
   2947	fsnotify_update_flags(dentry);
   2948	fscrypt_handle_d_move(dentry);
   2949
   2950	write_seqcount_end(&target->d_seq);
   2951	write_seqcount_end(&dentry->d_seq);
   2952
   2953	if (dir)
   2954		end_dir_add(dir, n);
   2955
   2956	if (dentry->d_parent != old_parent)
   2957		spin_unlock(&dentry->d_parent->d_lock);
   2958	if (dentry != old_parent)
   2959		spin_unlock(&old_parent->d_lock);
   2960	spin_unlock(&target->d_lock);
   2961	spin_unlock(&dentry->d_lock);
   2962}
   2963
   2964/*
   2965 * d_move - move a dentry
   2966 * @dentry: entry to move
   2967 * @target: new dentry
   2968 *
   2969 * Update the dcache to reflect the move of a file name. Negative
   2970 * dcache entries should not be moved in this way. See the locking
   2971 * requirements for __d_move.
   2972 */
   2973void d_move(struct dentry *dentry, struct dentry *target)
   2974{
   2975	write_seqlock(&rename_lock);
   2976	__d_move(dentry, target, false);
   2977	write_sequnlock(&rename_lock);
   2978}
   2979EXPORT_SYMBOL(d_move);
   2980
   2981/*
   2982 * d_exchange - exchange two dentries
   2983 * @dentry1: first dentry
   2984 * @dentry2: second dentry
   2985 */
   2986void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
   2987{
   2988	write_seqlock(&rename_lock);
   2989
   2990	WARN_ON(!dentry1->d_inode);
   2991	WARN_ON(!dentry2->d_inode);
   2992	WARN_ON(IS_ROOT(dentry1));
   2993	WARN_ON(IS_ROOT(dentry2));
   2994
   2995	__d_move(dentry1, dentry2, true);
   2996
   2997	write_sequnlock(&rename_lock);
   2998}
   2999
   3000/**
   3001 * d_ancestor - search for an ancestor
   3002 * @p1: ancestor dentry
   3003 * @p2: child dentry
   3004 *
   3005 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
   3006 * an ancestor of p2, else NULL.
   3007 */
   3008struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
   3009{
   3010	struct dentry *p;
   3011
   3012	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
   3013		if (p->d_parent == p1)
   3014			return p;
   3015	}
   3016	return NULL;
   3017}
   3018
   3019/*
   3020 * This helper attempts to cope with remotely renamed directories
   3021 *
   3022 * It assumes that the caller is already holding
   3023 * dentry->d_parent->d_inode->i_mutex, and rename_lock
   3024 *
   3025 * Note: If ever the locking in lock_rename() changes, then please
   3026 * remember to update this too...
   3027 */
   3028static int __d_unalias(struct inode *inode,
   3029		struct dentry *dentry, struct dentry *alias)
   3030{
   3031	struct mutex *m1 = NULL;
   3032	struct rw_semaphore *m2 = NULL;
   3033	int ret = -ESTALE;
   3034
   3035	/* If alias and dentry share a parent, then no extra locks required */
   3036	if (alias->d_parent == dentry->d_parent)
   3037		goto out_unalias;
   3038
   3039	/* See lock_rename() */
   3040	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
   3041		goto out_err;
   3042	m1 = &dentry->d_sb->s_vfs_rename_mutex;
   3043	if (!inode_trylock_shared(alias->d_parent->d_inode))
   3044		goto out_err;
   3045	m2 = &alias->d_parent->d_inode->i_rwsem;
   3046out_unalias:
   3047	__d_move(alias, dentry, false);
   3048	ret = 0;
   3049out_err:
   3050	if (m2)
   3051		up_read(m2);
   3052	if (m1)
   3053		mutex_unlock(m1);
   3054	return ret;
   3055}
   3056
   3057/**
   3058 * d_splice_alias - splice a disconnected dentry into the tree if one exists
   3059 * @inode:  the inode which may have a disconnected dentry
   3060 * @dentry: a negative dentry which we want to point to the inode.
   3061 *
   3062 * If inode is a directory and has an IS_ROOT alias, then d_move that in
   3063 * place of the given dentry and return it, else simply d_add the inode
   3064 * to the dentry and return NULL.
   3065 *
   3066 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
   3067 * we should error out: directories can't have multiple aliases.
   3068 *
   3069 * This is needed in the lookup routine of any filesystem that is exportable
   3070 * (via knfsd) so that we can build dcache paths to directories effectively.
   3071 *
   3072 * If a dentry was found and moved, then it is returned.  Otherwise NULL
   3073 * is returned.  This matches the expected return value of ->lookup.
   3074 *
   3075 * Cluster filesystems may call this function with a negative, hashed dentry.
   3076 * In that case, we know that the inode will be a regular file, and also this
   3077 * will only occur during atomic_open. So we need to check for the dentry
   3078 * being already hashed only in the final case.
   3079 */
   3080struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
   3081{
   3082	if (IS_ERR(inode))
   3083		return ERR_CAST(inode);
   3084
   3085	BUG_ON(!d_unhashed(dentry));
   3086
   3087	if (!inode)
   3088		goto out;
   3089
   3090	security_d_instantiate(dentry, inode);
   3091	spin_lock(&inode->i_lock);
   3092	if (S_ISDIR(inode->i_mode)) {
   3093		struct dentry *new = __d_find_any_alias(inode);
   3094		if (unlikely(new)) {
   3095			/* The reference to new ensures it remains an alias */
   3096			spin_unlock(&inode->i_lock);
   3097			write_seqlock(&rename_lock);
   3098			if (unlikely(d_ancestor(new, dentry))) {
   3099				write_sequnlock(&rename_lock);
   3100				dput(new);
   3101				new = ERR_PTR(-ELOOP);
   3102				pr_warn_ratelimited(
   3103					"VFS: Lookup of '%s' in %s %s"
   3104					" would have caused loop\n",
   3105					dentry->d_name.name,
   3106					inode->i_sb->s_type->name,
   3107					inode->i_sb->s_id);
   3108			} else if (!IS_ROOT(new)) {
   3109				struct dentry *old_parent = dget(new->d_parent);
   3110				int err = __d_unalias(inode, dentry, new);
   3111				write_sequnlock(&rename_lock);
   3112				if (err) {
   3113					dput(new);
   3114					new = ERR_PTR(err);
   3115				}
   3116				dput(old_parent);
   3117			} else {
   3118				__d_move(new, dentry, false);
   3119				write_sequnlock(&rename_lock);
   3120			}
   3121			iput(inode);
   3122			return new;
   3123		}
   3124	}
   3125out:
   3126	__d_add(dentry, inode);
   3127	return NULL;
   3128}
   3129EXPORT_SYMBOL(d_splice_alias);
   3130
   3131/*
   3132 * Test whether new_dentry is a subdirectory of old_dentry.
   3133 *
   3134 * Trivially implemented using the dcache structure
   3135 */
   3136
   3137/**
   3138 * is_subdir - is new dentry a subdirectory of old_dentry
   3139 * @new_dentry: new dentry
   3140 * @old_dentry: old dentry
   3141 *
   3142 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
   3143 * Returns false otherwise.
   3144 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
   3145 */
   3146  
   3147bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
   3148{
   3149	bool result;
   3150	unsigned seq;
   3151
   3152	if (new_dentry == old_dentry)
   3153		return true;
   3154
   3155	do {
   3156		/* for restarting inner loop in case of seq retry */
   3157		seq = read_seqbegin(&rename_lock);
   3158		/*
   3159		 * Need rcu_readlock to protect against the d_parent trashing
   3160		 * due to d_move
   3161		 */
   3162		rcu_read_lock();
   3163		if (d_ancestor(old_dentry, new_dentry))
   3164			result = true;
   3165		else
   3166			result = false;
   3167		rcu_read_unlock();
   3168	} while (read_seqretry(&rename_lock, seq));
   3169
   3170	return result;
   3171}
   3172EXPORT_SYMBOL(is_subdir);
   3173
   3174static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
   3175{
   3176	struct dentry *root = data;
   3177	if (dentry != root) {
   3178		if (d_unhashed(dentry) || !dentry->d_inode)
   3179			return D_WALK_SKIP;
   3180
   3181		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
   3182			dentry->d_flags |= DCACHE_GENOCIDE;
   3183			dentry->d_lockref.count--;
   3184		}
   3185	}
   3186	return D_WALK_CONTINUE;
   3187}
   3188
   3189void d_genocide(struct dentry *parent)
   3190{
   3191	d_walk(parent, parent, d_genocide_kill);
   3192}
   3193
   3194EXPORT_SYMBOL(d_genocide);
   3195
   3196void d_tmpfile(struct dentry *dentry, struct inode *inode)
   3197{
   3198	inode_dec_link_count(inode);
   3199	BUG_ON(dentry->d_name.name != dentry->d_iname ||
   3200		!hlist_unhashed(&dentry->d_u.d_alias) ||
   3201		!d_unlinked(dentry));
   3202	spin_lock(&dentry->d_parent->d_lock);
   3203	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
   3204	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
   3205				(unsigned long long)inode->i_ino);
   3206	spin_unlock(&dentry->d_lock);
   3207	spin_unlock(&dentry->d_parent->d_lock);
   3208	d_instantiate(dentry, inode);
   3209}
   3210EXPORT_SYMBOL(d_tmpfile);
   3211
   3212static __initdata unsigned long dhash_entries;
   3213static int __init set_dhash_entries(char *str)
   3214{
   3215	if (!str)
   3216		return 0;
   3217	dhash_entries = simple_strtoul(str, &str, 0);
   3218	return 1;
   3219}
   3220__setup("dhash_entries=", set_dhash_entries);
   3221
   3222static void __init dcache_init_early(void)
   3223{
   3224	/* If hashes are distributed across NUMA nodes, defer
   3225	 * hash allocation until vmalloc space is available.
   3226	 */
   3227	if (hashdist)
   3228		return;
   3229
   3230	dentry_hashtable =
   3231		alloc_large_system_hash("Dentry cache",
   3232					sizeof(struct hlist_bl_head),
   3233					dhash_entries,
   3234					13,
   3235					HASH_EARLY | HASH_ZERO,
   3236					&d_hash_shift,
   3237					NULL,
   3238					0,
   3239					0);
   3240	d_hash_shift = 32 - d_hash_shift;
   3241}
   3242
   3243static void __init dcache_init(void)
   3244{
   3245	/*
   3246	 * A constructor could be added for stable state like the lists,
   3247	 * but it is probably not worth it because of the cache nature
   3248	 * of the dcache.
   3249	 */
   3250	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
   3251		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
   3252		d_iname);
   3253
   3254	/* Hash may have been set up in dcache_init_early */
   3255	if (!hashdist)
   3256		return;
   3257
   3258	dentry_hashtable =
   3259		alloc_large_system_hash("Dentry cache",
   3260					sizeof(struct hlist_bl_head),
   3261					dhash_entries,
   3262					13,
   3263					HASH_ZERO,
   3264					&d_hash_shift,
   3265					NULL,
   3266					0,
   3267					0);
   3268	d_hash_shift = 32 - d_hash_shift;
   3269}
   3270
   3271/* SLAB cache for __getname() consumers */
   3272struct kmem_cache *names_cachep __read_mostly;
   3273EXPORT_SYMBOL(names_cachep);
   3274
   3275void __init vfs_caches_init_early(void)
   3276{
   3277	int i;
   3278
   3279	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
   3280		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
   3281
   3282	dcache_init_early();
   3283	inode_init_early();
   3284}
   3285
   3286void __init vfs_caches_init(void)
   3287{
   3288	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
   3289			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
   3290
   3291	dcache_init();
   3292	inode_init();
   3293	files_init();
   3294	files_maxfiles_init();
   3295	mnt_init();
   3296	bdev_cache_init();
   3297	chrdev_init();
   3298}