cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

direct-io.c (39536B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * fs/direct-io.c
      4 *
      5 * Copyright (C) 2002, Linus Torvalds.
      6 *
      7 * O_DIRECT
      8 *
      9 * 04Jul2002	Andrew Morton
     10 *		Initial version
     11 * 11Sep2002	janetinc@us.ibm.com
     12 * 		added readv/writev support.
     13 * 29Oct2002	Andrew Morton
     14 *		rewrote bio_add_page() support.
     15 * 30Oct2002	pbadari@us.ibm.com
     16 *		added support for non-aligned IO.
     17 * 06Nov2002	pbadari@us.ibm.com
     18 *		added asynchronous IO support.
     19 * 21Jul2003	nathans@sgi.com
     20 *		added IO completion notifier.
     21 */
     22
     23#include <linux/kernel.h>
     24#include <linux/module.h>
     25#include <linux/types.h>
     26#include <linux/fs.h>
     27#include <linux/mm.h>
     28#include <linux/slab.h>
     29#include <linux/highmem.h>
     30#include <linux/pagemap.h>
     31#include <linux/task_io_accounting_ops.h>
     32#include <linux/bio.h>
     33#include <linux/wait.h>
     34#include <linux/err.h>
     35#include <linux/blkdev.h>
     36#include <linux/buffer_head.h>
     37#include <linux/rwsem.h>
     38#include <linux/uio.h>
     39#include <linux/atomic.h>
     40#include <linux/prefetch.h>
     41
     42#include "internal.h"
     43
     44/*
     45 * How many user pages to map in one call to get_user_pages().  This determines
     46 * the size of a structure in the slab cache
     47 */
     48#define DIO_PAGES	64
     49
     50/*
     51 * Flags for dio_complete()
     52 */
     53#define DIO_COMPLETE_ASYNC		0x01	/* This is async IO */
     54#define DIO_COMPLETE_INVALIDATE		0x02	/* Can invalidate pages */
     55
     56/*
     57 * This code generally works in units of "dio_blocks".  A dio_block is
     58 * somewhere between the hard sector size and the filesystem block size.  it
     59 * is determined on a per-invocation basis.   When talking to the filesystem
     60 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
     61 * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
     62 * to bio_block quantities by shifting left by blkfactor.
     63 *
     64 * If blkfactor is zero then the user's request was aligned to the filesystem's
     65 * blocksize.
     66 */
     67
     68/* dio_state only used in the submission path */
     69
     70struct dio_submit {
     71	struct bio *bio;		/* bio under assembly */
     72	unsigned blkbits;		/* doesn't change */
     73	unsigned blkfactor;		/* When we're using an alignment which
     74					   is finer than the filesystem's soft
     75					   blocksize, this specifies how much
     76					   finer.  blkfactor=2 means 1/4-block
     77					   alignment.  Does not change */
     78	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
     79					   been performed at the start of a
     80					   write */
     81	int pages_in_io;		/* approximate total IO pages */
     82	sector_t block_in_file;		/* Current offset into the underlying
     83					   file in dio_block units. */
     84	unsigned blocks_available;	/* At block_in_file.  changes */
     85	int reap_counter;		/* rate limit reaping */
     86	sector_t final_block_in_request;/* doesn't change */
     87	int boundary;			/* prev block is at a boundary */
     88	get_block_t *get_block;		/* block mapping function */
     89	dio_submit_t *submit_io;	/* IO submition function */
     90
     91	loff_t logical_offset_in_bio;	/* current first logical block in bio */
     92	sector_t final_block_in_bio;	/* current final block in bio + 1 */
     93	sector_t next_block_for_io;	/* next block to be put under IO,
     94					   in dio_blocks units */
     95
     96	/*
     97	 * Deferred addition of a page to the dio.  These variables are
     98	 * private to dio_send_cur_page(), submit_page_section() and
     99	 * dio_bio_add_page().
    100	 */
    101	struct page *cur_page;		/* The page */
    102	unsigned cur_page_offset;	/* Offset into it, in bytes */
    103	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
    104	sector_t cur_page_block;	/* Where it starts */
    105	loff_t cur_page_fs_offset;	/* Offset in file */
    106
    107	struct iov_iter *iter;
    108	/*
    109	 * Page queue.  These variables belong to dio_refill_pages() and
    110	 * dio_get_page().
    111	 */
    112	unsigned head;			/* next page to process */
    113	unsigned tail;			/* last valid page + 1 */
    114	size_t from, to;
    115};
    116
    117/* dio_state communicated between submission path and end_io */
    118struct dio {
    119	int flags;			/* doesn't change */
    120	int op;
    121	int op_flags;
    122	struct gendisk *bio_disk;
    123	struct inode *inode;
    124	loff_t i_size;			/* i_size when submitted */
    125	dio_iodone_t *end_io;		/* IO completion function */
    126
    127	void *private;			/* copy from map_bh.b_private */
    128
    129	/* BIO completion state */
    130	spinlock_t bio_lock;		/* protects BIO fields below */
    131	int page_errors;		/* errno from get_user_pages() */
    132	int is_async;			/* is IO async ? */
    133	bool defer_completion;		/* defer AIO completion to workqueue? */
    134	bool should_dirty;		/* if pages should be dirtied */
    135	int io_error;			/* IO error in completion path */
    136	unsigned long refcount;		/* direct_io_worker() and bios */
    137	struct bio *bio_list;		/* singly linked via bi_private */
    138	struct task_struct *waiter;	/* waiting task (NULL if none) */
    139
    140	/* AIO related stuff */
    141	struct kiocb *iocb;		/* kiocb */
    142	ssize_t result;                 /* IO result */
    143
    144	/*
    145	 * pages[] (and any fields placed after it) are not zeroed out at
    146	 * allocation time.  Don't add new fields after pages[] unless you
    147	 * wish that they not be zeroed.
    148	 */
    149	union {
    150		struct page *pages[DIO_PAGES];	/* page buffer */
    151		struct work_struct complete_work;/* deferred AIO completion */
    152	};
    153} ____cacheline_aligned_in_smp;
    154
    155static struct kmem_cache *dio_cache __read_mostly;
    156
    157/*
    158 * How many pages are in the queue?
    159 */
    160static inline unsigned dio_pages_present(struct dio_submit *sdio)
    161{
    162	return sdio->tail - sdio->head;
    163}
    164
    165/*
    166 * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
    167 */
    168static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
    169{
    170	ssize_t ret;
    171
    172	ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
    173				&sdio->from);
    174
    175	if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
    176		struct page *page = ZERO_PAGE(0);
    177		/*
    178		 * A memory fault, but the filesystem has some outstanding
    179		 * mapped blocks.  We need to use those blocks up to avoid
    180		 * leaking stale data in the file.
    181		 */
    182		if (dio->page_errors == 0)
    183			dio->page_errors = ret;
    184		get_page(page);
    185		dio->pages[0] = page;
    186		sdio->head = 0;
    187		sdio->tail = 1;
    188		sdio->from = 0;
    189		sdio->to = PAGE_SIZE;
    190		return 0;
    191	}
    192
    193	if (ret >= 0) {
    194		iov_iter_advance(sdio->iter, ret);
    195		ret += sdio->from;
    196		sdio->head = 0;
    197		sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
    198		sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
    199		return 0;
    200	}
    201	return ret;	
    202}
    203
    204/*
    205 * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
    206 * buffered inside the dio so that we can call get_user_pages() against a
    207 * decent number of pages, less frequently.  To provide nicer use of the
    208 * L1 cache.
    209 */
    210static inline struct page *dio_get_page(struct dio *dio,
    211					struct dio_submit *sdio)
    212{
    213	if (dio_pages_present(sdio) == 0) {
    214		int ret;
    215
    216		ret = dio_refill_pages(dio, sdio);
    217		if (ret)
    218			return ERR_PTR(ret);
    219		BUG_ON(dio_pages_present(sdio) == 0);
    220	}
    221	return dio->pages[sdio->head];
    222}
    223
    224/*
    225 * dio_complete() - called when all DIO BIO I/O has been completed
    226 *
    227 * This drops i_dio_count, lets interested parties know that a DIO operation
    228 * has completed, and calculates the resulting return code for the operation.
    229 *
    230 * It lets the filesystem know if it registered an interest earlier via
    231 * get_block.  Pass the private field of the map buffer_head so that
    232 * filesystems can use it to hold additional state between get_block calls and
    233 * dio_complete.
    234 */
    235static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
    236{
    237	loff_t offset = dio->iocb->ki_pos;
    238	ssize_t transferred = 0;
    239	int err;
    240
    241	/*
    242	 * AIO submission can race with bio completion to get here while
    243	 * expecting to have the last io completed by bio completion.
    244	 * In that case -EIOCBQUEUED is in fact not an error we want
    245	 * to preserve through this call.
    246	 */
    247	if (ret == -EIOCBQUEUED)
    248		ret = 0;
    249
    250	if (dio->result) {
    251		transferred = dio->result;
    252
    253		/* Check for short read case */
    254		if ((dio->op == REQ_OP_READ) &&
    255		    ((offset + transferred) > dio->i_size))
    256			transferred = dio->i_size - offset;
    257		/* ignore EFAULT if some IO has been done */
    258		if (unlikely(ret == -EFAULT) && transferred)
    259			ret = 0;
    260	}
    261
    262	if (ret == 0)
    263		ret = dio->page_errors;
    264	if (ret == 0)
    265		ret = dio->io_error;
    266	if (ret == 0)
    267		ret = transferred;
    268
    269	if (dio->end_io) {
    270		// XXX: ki_pos??
    271		err = dio->end_io(dio->iocb, offset, ret, dio->private);
    272		if (err)
    273			ret = err;
    274	}
    275
    276	/*
    277	 * Try again to invalidate clean pages which might have been cached by
    278	 * non-direct readahead, or faulted in by get_user_pages() if the source
    279	 * of the write was an mmap'ed region of the file we're writing.  Either
    280	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
    281	 * this invalidation fails, tough, the write still worked...
    282	 *
    283	 * And this page cache invalidation has to be after dio->end_io(), as
    284	 * some filesystems convert unwritten extents to real allocations in
    285	 * end_io() when necessary, otherwise a racing buffer read would cache
    286	 * zeros from unwritten extents.
    287	 */
    288	if (flags & DIO_COMPLETE_INVALIDATE &&
    289	    ret > 0 && dio->op == REQ_OP_WRITE &&
    290	    dio->inode->i_mapping->nrpages) {
    291		err = invalidate_inode_pages2_range(dio->inode->i_mapping,
    292					offset >> PAGE_SHIFT,
    293					(offset + ret - 1) >> PAGE_SHIFT);
    294		if (err)
    295			dio_warn_stale_pagecache(dio->iocb->ki_filp);
    296	}
    297
    298	inode_dio_end(dio->inode);
    299
    300	if (flags & DIO_COMPLETE_ASYNC) {
    301		/*
    302		 * generic_write_sync expects ki_pos to have been updated
    303		 * already, but the submission path only does this for
    304		 * synchronous I/O.
    305		 */
    306		dio->iocb->ki_pos += transferred;
    307
    308		if (ret > 0 && dio->op == REQ_OP_WRITE)
    309			ret = generic_write_sync(dio->iocb, ret);
    310		dio->iocb->ki_complete(dio->iocb, ret);
    311	}
    312
    313	kmem_cache_free(dio_cache, dio);
    314	return ret;
    315}
    316
    317static void dio_aio_complete_work(struct work_struct *work)
    318{
    319	struct dio *dio = container_of(work, struct dio, complete_work);
    320
    321	dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
    322}
    323
    324static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
    325
    326/*
    327 * Asynchronous IO callback. 
    328 */
    329static void dio_bio_end_aio(struct bio *bio)
    330{
    331	struct dio *dio = bio->bi_private;
    332	unsigned long remaining;
    333	unsigned long flags;
    334	bool defer_completion = false;
    335
    336	/* cleanup the bio */
    337	dio_bio_complete(dio, bio);
    338
    339	spin_lock_irqsave(&dio->bio_lock, flags);
    340	remaining = --dio->refcount;
    341	if (remaining == 1 && dio->waiter)
    342		wake_up_process(dio->waiter);
    343	spin_unlock_irqrestore(&dio->bio_lock, flags);
    344
    345	if (remaining == 0) {
    346		/*
    347		 * Defer completion when defer_completion is set or
    348		 * when the inode has pages mapped and this is AIO write.
    349		 * We need to invalidate those pages because there is a
    350		 * chance they contain stale data in the case buffered IO
    351		 * went in between AIO submission and completion into the
    352		 * same region.
    353		 */
    354		if (dio->result)
    355			defer_completion = dio->defer_completion ||
    356					   (dio->op == REQ_OP_WRITE &&
    357					    dio->inode->i_mapping->nrpages);
    358		if (defer_completion) {
    359			INIT_WORK(&dio->complete_work, dio_aio_complete_work);
    360			queue_work(dio->inode->i_sb->s_dio_done_wq,
    361				   &dio->complete_work);
    362		} else {
    363			dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
    364		}
    365	}
    366}
    367
    368/*
    369 * The BIO completion handler simply queues the BIO up for the process-context
    370 * handler.
    371 *
    372 * During I/O bi_private points at the dio.  After I/O, bi_private is used to
    373 * implement a singly-linked list of completed BIOs, at dio->bio_list.
    374 */
    375static void dio_bio_end_io(struct bio *bio)
    376{
    377	struct dio *dio = bio->bi_private;
    378	unsigned long flags;
    379
    380	spin_lock_irqsave(&dio->bio_lock, flags);
    381	bio->bi_private = dio->bio_list;
    382	dio->bio_list = bio;
    383	if (--dio->refcount == 1 && dio->waiter)
    384		wake_up_process(dio->waiter);
    385	spin_unlock_irqrestore(&dio->bio_lock, flags);
    386}
    387
    388static inline void
    389dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
    390	      struct block_device *bdev,
    391	      sector_t first_sector, int nr_vecs)
    392{
    393	struct bio *bio;
    394
    395	/*
    396	 * bio_alloc() is guaranteed to return a bio when allowed to sleep and
    397	 * we request a valid number of vectors.
    398	 */
    399	bio = bio_alloc(bdev, nr_vecs, dio->op | dio->op_flags, GFP_KERNEL);
    400	bio->bi_iter.bi_sector = first_sector;
    401	if (dio->is_async)
    402		bio->bi_end_io = dio_bio_end_aio;
    403	else
    404		bio->bi_end_io = dio_bio_end_io;
    405	sdio->bio = bio;
    406	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
    407}
    408
    409/*
    410 * In the AIO read case we speculatively dirty the pages before starting IO.
    411 * During IO completion, any of these pages which happen to have been written
    412 * back will be redirtied by bio_check_pages_dirty().
    413 *
    414 * bios hold a dio reference between submit_bio and ->end_io.
    415 */
    416static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
    417{
    418	struct bio *bio = sdio->bio;
    419	unsigned long flags;
    420
    421	bio->bi_private = dio;
    422	/* don't account direct I/O as memory stall */
    423	bio_clear_flag(bio, BIO_WORKINGSET);
    424
    425	spin_lock_irqsave(&dio->bio_lock, flags);
    426	dio->refcount++;
    427	spin_unlock_irqrestore(&dio->bio_lock, flags);
    428
    429	if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
    430		bio_set_pages_dirty(bio);
    431
    432	dio->bio_disk = bio->bi_bdev->bd_disk;
    433
    434	if (sdio->submit_io)
    435		sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
    436	else
    437		submit_bio(bio);
    438
    439	sdio->bio = NULL;
    440	sdio->boundary = 0;
    441	sdio->logical_offset_in_bio = 0;
    442}
    443
    444/*
    445 * Release any resources in case of a failure
    446 */
    447static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
    448{
    449	while (sdio->head < sdio->tail)
    450		put_page(dio->pages[sdio->head++]);
    451}
    452
    453/*
    454 * Wait for the next BIO to complete.  Remove it and return it.  NULL is
    455 * returned once all BIOs have been completed.  This must only be called once
    456 * all bios have been issued so that dio->refcount can only decrease.  This
    457 * requires that the caller hold a reference on the dio.
    458 */
    459static struct bio *dio_await_one(struct dio *dio)
    460{
    461	unsigned long flags;
    462	struct bio *bio = NULL;
    463
    464	spin_lock_irqsave(&dio->bio_lock, flags);
    465
    466	/*
    467	 * Wait as long as the list is empty and there are bios in flight.  bio
    468	 * completion drops the count, maybe adds to the list, and wakes while
    469	 * holding the bio_lock so we don't need set_current_state()'s barrier
    470	 * and can call it after testing our condition.
    471	 */
    472	while (dio->refcount > 1 && dio->bio_list == NULL) {
    473		__set_current_state(TASK_UNINTERRUPTIBLE);
    474		dio->waiter = current;
    475		spin_unlock_irqrestore(&dio->bio_lock, flags);
    476		blk_io_schedule();
    477		/* wake up sets us TASK_RUNNING */
    478		spin_lock_irqsave(&dio->bio_lock, flags);
    479		dio->waiter = NULL;
    480	}
    481	if (dio->bio_list) {
    482		bio = dio->bio_list;
    483		dio->bio_list = bio->bi_private;
    484	}
    485	spin_unlock_irqrestore(&dio->bio_lock, flags);
    486	return bio;
    487}
    488
    489/*
    490 * Process one completed BIO.  No locks are held.
    491 */
    492static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
    493{
    494	blk_status_t err = bio->bi_status;
    495	bool should_dirty = dio->op == REQ_OP_READ && dio->should_dirty;
    496
    497	if (err) {
    498		if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
    499			dio->io_error = -EAGAIN;
    500		else
    501			dio->io_error = -EIO;
    502	}
    503
    504	if (dio->is_async && should_dirty) {
    505		bio_check_pages_dirty(bio);	/* transfers ownership */
    506	} else {
    507		bio_release_pages(bio, should_dirty);
    508		bio_put(bio);
    509	}
    510	return err;
    511}
    512
    513/*
    514 * Wait on and process all in-flight BIOs.  This must only be called once
    515 * all bios have been issued so that the refcount can only decrease.
    516 * This just waits for all bios to make it through dio_bio_complete.  IO
    517 * errors are propagated through dio->io_error and should be propagated via
    518 * dio_complete().
    519 */
    520static void dio_await_completion(struct dio *dio)
    521{
    522	struct bio *bio;
    523	do {
    524		bio = dio_await_one(dio);
    525		if (bio)
    526			dio_bio_complete(dio, bio);
    527	} while (bio);
    528}
    529
    530/*
    531 * A really large O_DIRECT read or write can generate a lot of BIOs.  So
    532 * to keep the memory consumption sane we periodically reap any completed BIOs
    533 * during the BIO generation phase.
    534 *
    535 * This also helps to limit the peak amount of pinned userspace memory.
    536 */
    537static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
    538{
    539	int ret = 0;
    540
    541	if (sdio->reap_counter++ >= 64) {
    542		while (dio->bio_list) {
    543			unsigned long flags;
    544			struct bio *bio;
    545			int ret2;
    546
    547			spin_lock_irqsave(&dio->bio_lock, flags);
    548			bio = dio->bio_list;
    549			dio->bio_list = bio->bi_private;
    550			spin_unlock_irqrestore(&dio->bio_lock, flags);
    551			ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
    552			if (ret == 0)
    553				ret = ret2;
    554		}
    555		sdio->reap_counter = 0;
    556	}
    557	return ret;
    558}
    559
    560/*
    561 * Create workqueue for deferred direct IO completions. We allocate the
    562 * workqueue when it's first needed. This avoids creating workqueue for
    563 * filesystems that don't need it and also allows us to create the workqueue
    564 * late enough so the we can include s_id in the name of the workqueue.
    565 */
    566int sb_init_dio_done_wq(struct super_block *sb)
    567{
    568	struct workqueue_struct *old;
    569	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
    570						      WQ_MEM_RECLAIM, 0,
    571						      sb->s_id);
    572	if (!wq)
    573		return -ENOMEM;
    574	/*
    575	 * This has to be atomic as more DIOs can race to create the workqueue
    576	 */
    577	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
    578	/* Someone created workqueue before us? Free ours... */
    579	if (old)
    580		destroy_workqueue(wq);
    581	return 0;
    582}
    583
    584static int dio_set_defer_completion(struct dio *dio)
    585{
    586	struct super_block *sb = dio->inode->i_sb;
    587
    588	if (dio->defer_completion)
    589		return 0;
    590	dio->defer_completion = true;
    591	if (!sb->s_dio_done_wq)
    592		return sb_init_dio_done_wq(sb);
    593	return 0;
    594}
    595
    596/*
    597 * Call into the fs to map some more disk blocks.  We record the current number
    598 * of available blocks at sdio->blocks_available.  These are in units of the
    599 * fs blocksize, i_blocksize(inode).
    600 *
    601 * The fs is allowed to map lots of blocks at once.  If it wants to do that,
    602 * it uses the passed inode-relative block number as the file offset, as usual.
    603 *
    604 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
    605 * has remaining to do.  The fs should not map more than this number of blocks.
    606 *
    607 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
    608 * indicate how much contiguous disk space has been made available at
    609 * bh->b_blocknr.
    610 *
    611 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
    612 * This isn't very efficient...
    613 *
    614 * In the case of filesystem holes: the fs may return an arbitrarily-large
    615 * hole by returning an appropriate value in b_size and by clearing
    616 * buffer_mapped().  However the direct-io code will only process holes one
    617 * block at a time - it will repeatedly call get_block() as it walks the hole.
    618 */
    619static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
    620			   struct buffer_head *map_bh)
    621{
    622	int ret;
    623	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
    624	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
    625	unsigned long fs_count;	/* Number of filesystem-sized blocks */
    626	int create;
    627	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
    628	loff_t i_size;
    629
    630	/*
    631	 * If there was a memory error and we've overwritten all the
    632	 * mapped blocks then we can now return that memory error
    633	 */
    634	ret = dio->page_errors;
    635	if (ret == 0) {
    636		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
    637		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
    638		fs_endblk = (sdio->final_block_in_request - 1) >>
    639					sdio->blkfactor;
    640		fs_count = fs_endblk - fs_startblk + 1;
    641
    642		map_bh->b_state = 0;
    643		map_bh->b_size = fs_count << i_blkbits;
    644
    645		/*
    646		 * For writes that could fill holes inside i_size on a
    647		 * DIO_SKIP_HOLES filesystem we forbid block creations: only
    648		 * overwrites are permitted. We will return early to the caller
    649		 * once we see an unmapped buffer head returned, and the caller
    650		 * will fall back to buffered I/O.
    651		 *
    652		 * Otherwise the decision is left to the get_blocks method,
    653		 * which may decide to handle it or also return an unmapped
    654		 * buffer head.
    655		 */
    656		create = dio->op == REQ_OP_WRITE;
    657		if (dio->flags & DIO_SKIP_HOLES) {
    658			i_size = i_size_read(dio->inode);
    659			if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
    660				create = 0;
    661		}
    662
    663		ret = (*sdio->get_block)(dio->inode, fs_startblk,
    664						map_bh, create);
    665
    666		/* Store for completion */
    667		dio->private = map_bh->b_private;
    668
    669		if (ret == 0 && buffer_defer_completion(map_bh))
    670			ret = dio_set_defer_completion(dio);
    671	}
    672	return ret;
    673}
    674
    675/*
    676 * There is no bio.  Make one now.
    677 */
    678static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
    679		sector_t start_sector, struct buffer_head *map_bh)
    680{
    681	sector_t sector;
    682	int ret, nr_pages;
    683
    684	ret = dio_bio_reap(dio, sdio);
    685	if (ret)
    686		goto out;
    687	sector = start_sector << (sdio->blkbits - 9);
    688	nr_pages = bio_max_segs(sdio->pages_in_io);
    689	BUG_ON(nr_pages <= 0);
    690	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
    691	sdio->boundary = 0;
    692out:
    693	return ret;
    694}
    695
    696/*
    697 * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
    698 * that was successful then update final_block_in_bio and take a ref against
    699 * the just-added page.
    700 *
    701 * Return zero on success.  Non-zero means the caller needs to start a new BIO.
    702 */
    703static inline int dio_bio_add_page(struct dio_submit *sdio)
    704{
    705	int ret;
    706
    707	ret = bio_add_page(sdio->bio, sdio->cur_page,
    708			sdio->cur_page_len, sdio->cur_page_offset);
    709	if (ret == sdio->cur_page_len) {
    710		/*
    711		 * Decrement count only, if we are done with this page
    712		 */
    713		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
    714			sdio->pages_in_io--;
    715		get_page(sdio->cur_page);
    716		sdio->final_block_in_bio = sdio->cur_page_block +
    717			(sdio->cur_page_len >> sdio->blkbits);
    718		ret = 0;
    719	} else {
    720		ret = 1;
    721	}
    722	return ret;
    723}
    724		
    725/*
    726 * Put cur_page under IO.  The section of cur_page which is described by
    727 * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
    728 * starts on-disk at cur_page_block.
    729 *
    730 * We take a ref against the page here (on behalf of its presence in the bio).
    731 *
    732 * The caller of this function is responsible for removing cur_page from the
    733 * dio, and for dropping the refcount which came from that presence.
    734 */
    735static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
    736		struct buffer_head *map_bh)
    737{
    738	int ret = 0;
    739
    740	if (sdio->bio) {
    741		loff_t cur_offset = sdio->cur_page_fs_offset;
    742		loff_t bio_next_offset = sdio->logical_offset_in_bio +
    743			sdio->bio->bi_iter.bi_size;
    744
    745		/*
    746		 * See whether this new request is contiguous with the old.
    747		 *
    748		 * Btrfs cannot handle having logically non-contiguous requests
    749		 * submitted.  For example if you have
    750		 *
    751		 * Logical:  [0-4095][HOLE][8192-12287]
    752		 * Physical: [0-4095]      [4096-8191]
    753		 *
    754		 * We cannot submit those pages together as one BIO.  So if our
    755		 * current logical offset in the file does not equal what would
    756		 * be the next logical offset in the bio, submit the bio we
    757		 * have.
    758		 */
    759		if (sdio->final_block_in_bio != sdio->cur_page_block ||
    760		    cur_offset != bio_next_offset)
    761			dio_bio_submit(dio, sdio);
    762	}
    763
    764	if (sdio->bio == NULL) {
    765		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
    766		if (ret)
    767			goto out;
    768	}
    769
    770	if (dio_bio_add_page(sdio) != 0) {
    771		dio_bio_submit(dio, sdio);
    772		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
    773		if (ret == 0) {
    774			ret = dio_bio_add_page(sdio);
    775			BUG_ON(ret != 0);
    776		}
    777	}
    778out:
    779	return ret;
    780}
    781
    782/*
    783 * An autonomous function to put a chunk of a page under deferred IO.
    784 *
    785 * The caller doesn't actually know (or care) whether this piece of page is in
    786 * a BIO, or is under IO or whatever.  We just take care of all possible 
    787 * situations here.  The separation between the logic of do_direct_IO() and
    788 * that of submit_page_section() is important for clarity.  Please don't break.
    789 *
    790 * The chunk of page starts on-disk at blocknr.
    791 *
    792 * We perform deferred IO, by recording the last-submitted page inside our
    793 * private part of the dio structure.  If possible, we just expand the IO
    794 * across that page here.
    795 *
    796 * If that doesn't work out then we put the old page into the bio and add this
    797 * page to the dio instead.
    798 */
    799static inline int
    800submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
    801		    unsigned offset, unsigned len, sector_t blocknr,
    802		    struct buffer_head *map_bh)
    803{
    804	int ret = 0;
    805	int boundary = sdio->boundary;	/* dio_send_cur_page may clear it */
    806
    807	if (dio->op == REQ_OP_WRITE) {
    808		/*
    809		 * Read accounting is performed in submit_bio()
    810		 */
    811		task_io_account_write(len);
    812	}
    813
    814	/*
    815	 * Can we just grow the current page's presence in the dio?
    816	 */
    817	if (sdio->cur_page == page &&
    818	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
    819	    sdio->cur_page_block +
    820	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
    821		sdio->cur_page_len += len;
    822		goto out;
    823	}
    824
    825	/*
    826	 * If there's a deferred page already there then send it.
    827	 */
    828	if (sdio->cur_page) {
    829		ret = dio_send_cur_page(dio, sdio, map_bh);
    830		put_page(sdio->cur_page);
    831		sdio->cur_page = NULL;
    832		if (ret)
    833			return ret;
    834	}
    835
    836	get_page(page);		/* It is in dio */
    837	sdio->cur_page = page;
    838	sdio->cur_page_offset = offset;
    839	sdio->cur_page_len = len;
    840	sdio->cur_page_block = blocknr;
    841	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
    842out:
    843	/*
    844	 * If boundary then we want to schedule the IO now to
    845	 * avoid metadata seeks.
    846	 */
    847	if (boundary) {
    848		ret = dio_send_cur_page(dio, sdio, map_bh);
    849		if (sdio->bio)
    850			dio_bio_submit(dio, sdio);
    851		put_page(sdio->cur_page);
    852		sdio->cur_page = NULL;
    853	}
    854	return ret;
    855}
    856
    857/*
    858 * If we are not writing the entire block and get_block() allocated
    859 * the block for us, we need to fill-in the unused portion of the
    860 * block with zeros. This happens only if user-buffer, fileoffset or
    861 * io length is not filesystem block-size multiple.
    862 *
    863 * `end' is zero if we're doing the start of the IO, 1 at the end of the
    864 * IO.
    865 */
    866static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
    867		int end, struct buffer_head *map_bh)
    868{
    869	unsigned dio_blocks_per_fs_block;
    870	unsigned this_chunk_blocks;	/* In dio_blocks */
    871	unsigned this_chunk_bytes;
    872	struct page *page;
    873
    874	sdio->start_zero_done = 1;
    875	if (!sdio->blkfactor || !buffer_new(map_bh))
    876		return;
    877
    878	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
    879	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
    880
    881	if (!this_chunk_blocks)
    882		return;
    883
    884	/*
    885	 * We need to zero out part of an fs block.  It is either at the
    886	 * beginning or the end of the fs block.
    887	 */
    888	if (end) 
    889		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
    890
    891	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
    892
    893	page = ZERO_PAGE(0);
    894	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
    895				sdio->next_block_for_io, map_bh))
    896		return;
    897
    898	sdio->next_block_for_io += this_chunk_blocks;
    899}
    900
    901/*
    902 * Walk the user pages, and the file, mapping blocks to disk and generating
    903 * a sequence of (page,offset,len,block) mappings.  These mappings are injected
    904 * into submit_page_section(), which takes care of the next stage of submission
    905 *
    906 * Direct IO against a blockdev is different from a file.  Because we can
    907 * happily perform page-sized but 512-byte aligned IOs.  It is important that
    908 * blockdev IO be able to have fine alignment and large sizes.
    909 *
    910 * So what we do is to permit the ->get_block function to populate bh.b_size
    911 * with the size of IO which is permitted at this offset and this i_blkbits.
    912 *
    913 * For best results, the blockdev should be set up with 512-byte i_blkbits and
    914 * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
    915 * fine alignment but still allows this function to work in PAGE_SIZE units.
    916 */
    917static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
    918			struct buffer_head *map_bh)
    919{
    920	const unsigned blkbits = sdio->blkbits;
    921	const unsigned i_blkbits = blkbits + sdio->blkfactor;
    922	int ret = 0;
    923
    924	while (sdio->block_in_file < sdio->final_block_in_request) {
    925		struct page *page;
    926		size_t from, to;
    927
    928		page = dio_get_page(dio, sdio);
    929		if (IS_ERR(page)) {
    930			ret = PTR_ERR(page);
    931			goto out;
    932		}
    933		from = sdio->head ? 0 : sdio->from;
    934		to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
    935		sdio->head++;
    936
    937		while (from < to) {
    938			unsigned this_chunk_bytes;	/* # of bytes mapped */
    939			unsigned this_chunk_blocks;	/* # of blocks */
    940			unsigned u;
    941
    942			if (sdio->blocks_available == 0) {
    943				/*
    944				 * Need to go and map some more disk
    945				 */
    946				unsigned long blkmask;
    947				unsigned long dio_remainder;
    948
    949				ret = get_more_blocks(dio, sdio, map_bh);
    950				if (ret) {
    951					put_page(page);
    952					goto out;
    953				}
    954				if (!buffer_mapped(map_bh))
    955					goto do_holes;
    956
    957				sdio->blocks_available =
    958						map_bh->b_size >> blkbits;
    959				sdio->next_block_for_io =
    960					map_bh->b_blocknr << sdio->blkfactor;
    961				if (buffer_new(map_bh)) {
    962					clean_bdev_aliases(
    963						map_bh->b_bdev,
    964						map_bh->b_blocknr,
    965						map_bh->b_size >> i_blkbits);
    966				}
    967
    968				if (!sdio->blkfactor)
    969					goto do_holes;
    970
    971				blkmask = (1 << sdio->blkfactor) - 1;
    972				dio_remainder = (sdio->block_in_file & blkmask);
    973
    974				/*
    975				 * If we are at the start of IO and that IO
    976				 * starts partway into a fs-block,
    977				 * dio_remainder will be non-zero.  If the IO
    978				 * is a read then we can simply advance the IO
    979				 * cursor to the first block which is to be
    980				 * read.  But if the IO is a write and the
    981				 * block was newly allocated we cannot do that;
    982				 * the start of the fs block must be zeroed out
    983				 * on-disk
    984				 */
    985				if (!buffer_new(map_bh))
    986					sdio->next_block_for_io += dio_remainder;
    987				sdio->blocks_available -= dio_remainder;
    988			}
    989do_holes:
    990			/* Handle holes */
    991			if (!buffer_mapped(map_bh)) {
    992				loff_t i_size_aligned;
    993
    994				/* AKPM: eargh, -ENOTBLK is a hack */
    995				if (dio->op == REQ_OP_WRITE) {
    996					put_page(page);
    997					return -ENOTBLK;
    998				}
    999
   1000				/*
   1001				 * Be sure to account for a partial block as the
   1002				 * last block in the file
   1003				 */
   1004				i_size_aligned = ALIGN(i_size_read(dio->inode),
   1005							1 << blkbits);
   1006				if (sdio->block_in_file >=
   1007						i_size_aligned >> blkbits) {
   1008					/* We hit eof */
   1009					put_page(page);
   1010					goto out;
   1011				}
   1012				zero_user(page, from, 1 << blkbits);
   1013				sdio->block_in_file++;
   1014				from += 1 << blkbits;
   1015				dio->result += 1 << blkbits;
   1016				goto next_block;
   1017			}
   1018
   1019			/*
   1020			 * If we're performing IO which has an alignment which
   1021			 * is finer than the underlying fs, go check to see if
   1022			 * we must zero out the start of this block.
   1023			 */
   1024			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
   1025				dio_zero_block(dio, sdio, 0, map_bh);
   1026
   1027			/*
   1028			 * Work out, in this_chunk_blocks, how much disk we
   1029			 * can add to this page
   1030			 */
   1031			this_chunk_blocks = sdio->blocks_available;
   1032			u = (to - from) >> blkbits;
   1033			if (this_chunk_blocks > u)
   1034				this_chunk_blocks = u;
   1035			u = sdio->final_block_in_request - sdio->block_in_file;
   1036			if (this_chunk_blocks > u)
   1037				this_chunk_blocks = u;
   1038			this_chunk_bytes = this_chunk_blocks << blkbits;
   1039			BUG_ON(this_chunk_bytes == 0);
   1040
   1041			if (this_chunk_blocks == sdio->blocks_available)
   1042				sdio->boundary = buffer_boundary(map_bh);
   1043			ret = submit_page_section(dio, sdio, page,
   1044						  from,
   1045						  this_chunk_bytes,
   1046						  sdio->next_block_for_io,
   1047						  map_bh);
   1048			if (ret) {
   1049				put_page(page);
   1050				goto out;
   1051			}
   1052			sdio->next_block_for_io += this_chunk_blocks;
   1053
   1054			sdio->block_in_file += this_chunk_blocks;
   1055			from += this_chunk_bytes;
   1056			dio->result += this_chunk_bytes;
   1057			sdio->blocks_available -= this_chunk_blocks;
   1058next_block:
   1059			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
   1060			if (sdio->block_in_file == sdio->final_block_in_request)
   1061				break;
   1062		}
   1063
   1064		/* Drop the ref which was taken in get_user_pages() */
   1065		put_page(page);
   1066	}
   1067out:
   1068	return ret;
   1069}
   1070
   1071static inline int drop_refcount(struct dio *dio)
   1072{
   1073	int ret2;
   1074	unsigned long flags;
   1075
   1076	/*
   1077	 * Sync will always be dropping the final ref and completing the
   1078	 * operation.  AIO can if it was a broken operation described above or
   1079	 * in fact if all the bios race to complete before we get here.  In
   1080	 * that case dio_complete() translates the EIOCBQUEUED into the proper
   1081	 * return code that the caller will hand to ->complete().
   1082	 *
   1083	 * This is managed by the bio_lock instead of being an atomic_t so that
   1084	 * completion paths can drop their ref and use the remaining count to
   1085	 * decide to wake the submission path atomically.
   1086	 */
   1087	spin_lock_irqsave(&dio->bio_lock, flags);
   1088	ret2 = --dio->refcount;
   1089	spin_unlock_irqrestore(&dio->bio_lock, flags);
   1090	return ret2;
   1091}
   1092
   1093/*
   1094 * This is a library function for use by filesystem drivers.
   1095 *
   1096 * The locking rules are governed by the flags parameter:
   1097 *  - if the flags value contains DIO_LOCKING we use a fancy locking
   1098 *    scheme for dumb filesystems.
   1099 *    For writes this function is called under i_mutex and returns with
   1100 *    i_mutex held, for reads, i_mutex is not held on entry, but it is
   1101 *    taken and dropped again before returning.
   1102 *  - if the flags value does NOT contain DIO_LOCKING we don't use any
   1103 *    internal locking but rather rely on the filesystem to synchronize
   1104 *    direct I/O reads/writes versus each other and truncate.
   1105 *
   1106 * To help with locking against truncate we incremented the i_dio_count
   1107 * counter before starting direct I/O, and decrement it once we are done.
   1108 * Truncate can wait for it to reach zero to provide exclusion.  It is
   1109 * expected that filesystem provide exclusion between new direct I/O
   1110 * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
   1111 * but other filesystems need to take care of this on their own.
   1112 *
   1113 * NOTE: if you pass "sdio" to anything by pointer make sure that function
   1114 * is always inlined. Otherwise gcc is unable to split the structure into
   1115 * individual fields and will generate much worse code. This is important
   1116 * for the whole file.
   1117 */
   1118ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
   1119		struct block_device *bdev, struct iov_iter *iter,
   1120		get_block_t get_block, dio_iodone_t end_io,
   1121		dio_submit_t submit_io, int flags)
   1122{
   1123	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
   1124	unsigned blkbits = i_blkbits;
   1125	unsigned blocksize_mask = (1 << blkbits) - 1;
   1126	ssize_t retval = -EINVAL;
   1127	const size_t count = iov_iter_count(iter);
   1128	loff_t offset = iocb->ki_pos;
   1129	const loff_t end = offset + count;
   1130	struct dio *dio;
   1131	struct dio_submit sdio = { 0, };
   1132	struct buffer_head map_bh = { 0, };
   1133	struct blk_plug plug;
   1134	unsigned long align = offset | iov_iter_alignment(iter);
   1135
   1136	/*
   1137	 * Avoid references to bdev if not absolutely needed to give
   1138	 * the early prefetch in the caller enough time.
   1139	 */
   1140
   1141	/* watch out for a 0 len io from a tricksy fs */
   1142	if (iov_iter_rw(iter) == READ && !count)
   1143		return 0;
   1144
   1145	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
   1146	if (!dio)
   1147		return -ENOMEM;
   1148	/*
   1149	 * Believe it or not, zeroing out the page array caused a .5%
   1150	 * performance regression in a database benchmark.  So, we take
   1151	 * care to only zero out what's needed.
   1152	 */
   1153	memset(dio, 0, offsetof(struct dio, pages));
   1154
   1155	dio->flags = flags;
   1156	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
   1157		/* will be released by direct_io_worker */
   1158		inode_lock(inode);
   1159	}
   1160
   1161	/* Once we sampled i_size check for reads beyond EOF */
   1162	dio->i_size = i_size_read(inode);
   1163	if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
   1164		retval = 0;
   1165		goto fail_dio;
   1166	}
   1167
   1168	if (align & blocksize_mask) {
   1169		if (bdev)
   1170			blkbits = blksize_bits(bdev_logical_block_size(bdev));
   1171		blocksize_mask = (1 << blkbits) - 1;
   1172		if (align & blocksize_mask)
   1173			goto fail_dio;
   1174	}
   1175
   1176	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
   1177		struct address_space *mapping = iocb->ki_filp->f_mapping;
   1178
   1179		retval = filemap_write_and_wait_range(mapping, offset, end - 1);
   1180		if (retval)
   1181			goto fail_dio;
   1182	}
   1183
   1184	/*
   1185	 * For file extending writes updating i_size before data writeouts
   1186	 * complete can expose uninitialized blocks in dumb filesystems.
   1187	 * In that case we need to wait for I/O completion even if asked
   1188	 * for an asynchronous write.
   1189	 */
   1190	if (is_sync_kiocb(iocb))
   1191		dio->is_async = false;
   1192	else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
   1193		dio->is_async = false;
   1194	else
   1195		dio->is_async = true;
   1196
   1197	dio->inode = inode;
   1198	if (iov_iter_rw(iter) == WRITE) {
   1199		dio->op = REQ_OP_WRITE;
   1200		dio->op_flags = REQ_SYNC | REQ_IDLE;
   1201		if (iocb->ki_flags & IOCB_NOWAIT)
   1202			dio->op_flags |= REQ_NOWAIT;
   1203	} else {
   1204		dio->op = REQ_OP_READ;
   1205	}
   1206
   1207	/*
   1208	 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
   1209	 * so that we can call ->fsync.
   1210	 */
   1211	if (dio->is_async && iov_iter_rw(iter) == WRITE) {
   1212		retval = 0;
   1213		if (iocb->ki_flags & IOCB_DSYNC)
   1214			retval = dio_set_defer_completion(dio);
   1215		else if (!dio->inode->i_sb->s_dio_done_wq) {
   1216			/*
   1217			 * In case of AIO write racing with buffered read we
   1218			 * need to defer completion. We can't decide this now,
   1219			 * however the workqueue needs to be initialized here.
   1220			 */
   1221			retval = sb_init_dio_done_wq(dio->inode->i_sb);
   1222		}
   1223		if (retval)
   1224			goto fail_dio;
   1225	}
   1226
   1227	/*
   1228	 * Will be decremented at I/O completion time.
   1229	 */
   1230	inode_dio_begin(inode);
   1231
   1232	retval = 0;
   1233	sdio.blkbits = blkbits;
   1234	sdio.blkfactor = i_blkbits - blkbits;
   1235	sdio.block_in_file = offset >> blkbits;
   1236
   1237	sdio.get_block = get_block;
   1238	dio->end_io = end_io;
   1239	sdio.submit_io = submit_io;
   1240	sdio.final_block_in_bio = -1;
   1241	sdio.next_block_for_io = -1;
   1242
   1243	dio->iocb = iocb;
   1244
   1245	spin_lock_init(&dio->bio_lock);
   1246	dio->refcount = 1;
   1247
   1248	dio->should_dirty = iter_is_iovec(iter) && iov_iter_rw(iter) == READ;
   1249	sdio.iter = iter;
   1250	sdio.final_block_in_request = end >> blkbits;
   1251
   1252	/*
   1253	 * In case of non-aligned buffers, we may need 2 more
   1254	 * pages since we need to zero out first and last block.
   1255	 */
   1256	if (unlikely(sdio.blkfactor))
   1257		sdio.pages_in_io = 2;
   1258
   1259	sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
   1260
   1261	blk_start_plug(&plug);
   1262
   1263	retval = do_direct_IO(dio, &sdio, &map_bh);
   1264	if (retval)
   1265		dio_cleanup(dio, &sdio);
   1266
   1267	if (retval == -ENOTBLK) {
   1268		/*
   1269		 * The remaining part of the request will be
   1270		 * handled by buffered I/O when we return
   1271		 */
   1272		retval = 0;
   1273	}
   1274	/*
   1275	 * There may be some unwritten disk at the end of a part-written
   1276	 * fs-block-sized block.  Go zero that now.
   1277	 */
   1278	dio_zero_block(dio, &sdio, 1, &map_bh);
   1279
   1280	if (sdio.cur_page) {
   1281		ssize_t ret2;
   1282
   1283		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
   1284		if (retval == 0)
   1285			retval = ret2;
   1286		put_page(sdio.cur_page);
   1287		sdio.cur_page = NULL;
   1288	}
   1289	if (sdio.bio)
   1290		dio_bio_submit(dio, &sdio);
   1291
   1292	blk_finish_plug(&plug);
   1293
   1294	/*
   1295	 * It is possible that, we return short IO due to end of file.
   1296	 * In that case, we need to release all the pages we got hold on.
   1297	 */
   1298	dio_cleanup(dio, &sdio);
   1299
   1300	/*
   1301	 * All block lookups have been performed. For READ requests
   1302	 * we can let i_mutex go now that its achieved its purpose
   1303	 * of protecting us from looking up uninitialized blocks.
   1304	 */
   1305	if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
   1306		inode_unlock(dio->inode);
   1307
   1308	/*
   1309	 * The only time we want to leave bios in flight is when a successful
   1310	 * partial aio read or full aio write have been setup.  In that case
   1311	 * bio completion will call aio_complete.  The only time it's safe to
   1312	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
   1313	 * This had *better* be the only place that raises -EIOCBQUEUED.
   1314	 */
   1315	BUG_ON(retval == -EIOCBQUEUED);
   1316	if (dio->is_async && retval == 0 && dio->result &&
   1317	    (iov_iter_rw(iter) == READ || dio->result == count))
   1318		retval = -EIOCBQUEUED;
   1319	else
   1320		dio_await_completion(dio);
   1321
   1322	if (drop_refcount(dio) == 0) {
   1323		retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
   1324	} else
   1325		BUG_ON(retval != -EIOCBQUEUED);
   1326
   1327	return retval;
   1328
   1329fail_dio:
   1330	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ)
   1331		inode_unlock(inode);
   1332
   1333	kmem_cache_free(dio_cache, dio);
   1334	return retval;
   1335}
   1336EXPORT_SYMBOL(__blockdev_direct_IO);
   1337
   1338static __init int dio_init(void)
   1339{
   1340	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
   1341	return 0;
   1342}
   1343module_init(dio_init)