messaging.c (13264B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * eCryptfs: Linux filesystem encryption layer 4 * 5 * Copyright (C) 2004-2008 International Business Machines Corp. 6 * Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com> 7 * Tyler Hicks <code@tyhicks.com> 8 */ 9#include <linux/sched.h> 10#include <linux/slab.h> 11#include <linux/user_namespace.h> 12#include <linux/nsproxy.h> 13#include "ecryptfs_kernel.h" 14 15static LIST_HEAD(ecryptfs_msg_ctx_free_list); 16static LIST_HEAD(ecryptfs_msg_ctx_alloc_list); 17static DEFINE_MUTEX(ecryptfs_msg_ctx_lists_mux); 18 19static struct hlist_head *ecryptfs_daemon_hash; 20DEFINE_MUTEX(ecryptfs_daemon_hash_mux); 21static int ecryptfs_hash_bits; 22#define ecryptfs_current_euid_hash(uid) \ 23 hash_long((unsigned long)from_kuid(&init_user_ns, current_euid()), ecryptfs_hash_bits) 24 25static u32 ecryptfs_msg_counter; 26static struct ecryptfs_msg_ctx *ecryptfs_msg_ctx_arr; 27 28/** 29 * ecryptfs_acquire_free_msg_ctx 30 * @msg_ctx: The context that was acquired from the free list 31 * 32 * Acquires a context element from the free list and locks the mutex 33 * on the context. Sets the msg_ctx task to current. Returns zero on 34 * success; non-zero on error or upon failure to acquire a free 35 * context element. Must be called with ecryptfs_msg_ctx_lists_mux 36 * held. 37 */ 38static int ecryptfs_acquire_free_msg_ctx(struct ecryptfs_msg_ctx **msg_ctx) 39{ 40 struct list_head *p; 41 int rc; 42 43 if (list_empty(&ecryptfs_msg_ctx_free_list)) { 44 printk(KERN_WARNING "%s: The eCryptfs free " 45 "context list is empty. It may be helpful to " 46 "specify the ecryptfs_message_buf_len " 47 "parameter to be greater than the current " 48 "value of [%d]\n", __func__, ecryptfs_message_buf_len); 49 rc = -ENOMEM; 50 goto out; 51 } 52 list_for_each(p, &ecryptfs_msg_ctx_free_list) { 53 *msg_ctx = list_entry(p, struct ecryptfs_msg_ctx, node); 54 if (mutex_trylock(&(*msg_ctx)->mux)) { 55 (*msg_ctx)->task = current; 56 rc = 0; 57 goto out; 58 } 59 } 60 rc = -ENOMEM; 61out: 62 return rc; 63} 64 65/** 66 * ecryptfs_msg_ctx_free_to_alloc 67 * @msg_ctx: The context to move from the free list to the alloc list 68 * 69 * Must be called with ecryptfs_msg_ctx_lists_mux held. 70 */ 71static void ecryptfs_msg_ctx_free_to_alloc(struct ecryptfs_msg_ctx *msg_ctx) 72{ 73 list_move(&msg_ctx->node, &ecryptfs_msg_ctx_alloc_list); 74 msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_PENDING; 75 msg_ctx->counter = ++ecryptfs_msg_counter; 76} 77 78/** 79 * ecryptfs_msg_ctx_alloc_to_free 80 * @msg_ctx: The context to move from the alloc list to the free list 81 * 82 * Must be called with ecryptfs_msg_ctx_lists_mux held. 83 */ 84void ecryptfs_msg_ctx_alloc_to_free(struct ecryptfs_msg_ctx *msg_ctx) 85{ 86 list_move(&(msg_ctx->node), &ecryptfs_msg_ctx_free_list); 87 kfree(msg_ctx->msg); 88 msg_ctx->msg = NULL; 89 msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_FREE; 90} 91 92/** 93 * ecryptfs_find_daemon_by_euid 94 * @daemon: If return value is zero, points to the desired daemon pointer 95 * 96 * Must be called with ecryptfs_daemon_hash_mux held. 97 * 98 * Search the hash list for the current effective user id. 99 * 100 * Returns zero if the user id exists in the list; non-zero otherwise. 101 */ 102int ecryptfs_find_daemon_by_euid(struct ecryptfs_daemon **daemon) 103{ 104 int rc; 105 106 hlist_for_each_entry(*daemon, 107 &ecryptfs_daemon_hash[ecryptfs_current_euid_hash()], 108 euid_chain) { 109 if (uid_eq((*daemon)->file->f_cred->euid, current_euid())) { 110 rc = 0; 111 goto out; 112 } 113 } 114 rc = -EINVAL; 115out: 116 return rc; 117} 118 119/** 120 * ecryptfs_spawn_daemon - Create and initialize a new daemon struct 121 * @daemon: Pointer to set to newly allocated daemon struct 122 * @file: File used when opening /dev/ecryptfs 123 * 124 * Must be called ceremoniously while in possession of 125 * ecryptfs_sacred_daemon_hash_mux 126 * 127 * Returns zero on success; non-zero otherwise 128 */ 129int 130ecryptfs_spawn_daemon(struct ecryptfs_daemon **daemon, struct file *file) 131{ 132 int rc = 0; 133 134 (*daemon) = kzalloc(sizeof(**daemon), GFP_KERNEL); 135 if (!(*daemon)) { 136 rc = -ENOMEM; 137 goto out; 138 } 139 (*daemon)->file = file; 140 mutex_init(&(*daemon)->mux); 141 INIT_LIST_HEAD(&(*daemon)->msg_ctx_out_queue); 142 init_waitqueue_head(&(*daemon)->wait); 143 (*daemon)->num_queued_msg_ctx = 0; 144 hlist_add_head(&(*daemon)->euid_chain, 145 &ecryptfs_daemon_hash[ecryptfs_current_euid_hash()]); 146out: 147 return rc; 148} 149 150/* 151 * ecryptfs_exorcise_daemon - Destroy the daemon struct 152 * 153 * Must be called ceremoniously while in possession of 154 * ecryptfs_daemon_hash_mux and the daemon's own mux. 155 */ 156int ecryptfs_exorcise_daemon(struct ecryptfs_daemon *daemon) 157{ 158 struct ecryptfs_msg_ctx *msg_ctx, *msg_ctx_tmp; 159 int rc = 0; 160 161 mutex_lock(&daemon->mux); 162 if ((daemon->flags & ECRYPTFS_DAEMON_IN_READ) 163 || (daemon->flags & ECRYPTFS_DAEMON_IN_POLL)) { 164 rc = -EBUSY; 165 mutex_unlock(&daemon->mux); 166 goto out; 167 } 168 list_for_each_entry_safe(msg_ctx, msg_ctx_tmp, 169 &daemon->msg_ctx_out_queue, daemon_out_list) { 170 list_del(&msg_ctx->daemon_out_list); 171 daemon->num_queued_msg_ctx--; 172 printk(KERN_WARNING "%s: Warning: dropping message that is in " 173 "the out queue of a dying daemon\n", __func__); 174 ecryptfs_msg_ctx_alloc_to_free(msg_ctx); 175 } 176 hlist_del(&daemon->euid_chain); 177 mutex_unlock(&daemon->mux); 178 kfree_sensitive(daemon); 179out: 180 return rc; 181} 182 183/** 184 * ecryptfs_process_response 185 * @daemon: eCryptfs daemon object 186 * @msg: The ecryptfs message received; the caller should sanity check 187 * msg->data_len and free the memory 188 * @seq: The sequence number of the message; must match the sequence 189 * number for the existing message context waiting for this 190 * response 191 * 192 * Processes a response message after sending an operation request to 193 * userspace. Some other process is awaiting this response. Before 194 * sending out its first communications, the other process allocated a 195 * msg_ctx from the ecryptfs_msg_ctx_arr at a particular index. The 196 * response message contains this index so that we can copy over the 197 * response message into the msg_ctx that the process holds a 198 * reference to. The other process is going to wake up, check to see 199 * that msg_ctx->state == ECRYPTFS_MSG_CTX_STATE_DONE, and then 200 * proceed to read off and process the response message. Returns zero 201 * upon delivery to desired context element; non-zero upon delivery 202 * failure or error. 203 * 204 * Returns zero on success; non-zero otherwise 205 */ 206int ecryptfs_process_response(struct ecryptfs_daemon *daemon, 207 struct ecryptfs_message *msg, u32 seq) 208{ 209 struct ecryptfs_msg_ctx *msg_ctx; 210 size_t msg_size; 211 int rc; 212 213 if (msg->index >= ecryptfs_message_buf_len) { 214 rc = -EINVAL; 215 printk(KERN_ERR "%s: Attempt to reference " 216 "context buffer at index [%d]; maximum " 217 "allowable is [%d]\n", __func__, msg->index, 218 (ecryptfs_message_buf_len - 1)); 219 goto out; 220 } 221 msg_ctx = &ecryptfs_msg_ctx_arr[msg->index]; 222 mutex_lock(&msg_ctx->mux); 223 if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_PENDING) { 224 rc = -EINVAL; 225 printk(KERN_WARNING "%s: Desired context element is not " 226 "pending a response\n", __func__); 227 goto unlock; 228 } else if (msg_ctx->counter != seq) { 229 rc = -EINVAL; 230 printk(KERN_WARNING "%s: Invalid message sequence; " 231 "expected [%d]; received [%d]\n", __func__, 232 msg_ctx->counter, seq); 233 goto unlock; 234 } 235 msg_size = (sizeof(*msg) + msg->data_len); 236 msg_ctx->msg = kmemdup(msg, msg_size, GFP_KERNEL); 237 if (!msg_ctx->msg) { 238 rc = -ENOMEM; 239 goto unlock; 240 } 241 msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_DONE; 242 wake_up_process(msg_ctx->task); 243 rc = 0; 244unlock: 245 mutex_unlock(&msg_ctx->mux); 246out: 247 return rc; 248} 249 250/** 251 * ecryptfs_send_message_locked 252 * @data: The data to send 253 * @data_len: The length of data 254 * @msg_type: Type of message 255 * @msg_ctx: The message context allocated for the send 256 * 257 * Must be called with ecryptfs_daemon_hash_mux held. 258 * 259 * Returns zero on success; non-zero otherwise 260 */ 261static int 262ecryptfs_send_message_locked(char *data, int data_len, u8 msg_type, 263 struct ecryptfs_msg_ctx **msg_ctx) 264{ 265 struct ecryptfs_daemon *daemon; 266 int rc; 267 268 rc = ecryptfs_find_daemon_by_euid(&daemon); 269 if (rc) { 270 rc = -ENOTCONN; 271 goto out; 272 } 273 mutex_lock(&ecryptfs_msg_ctx_lists_mux); 274 rc = ecryptfs_acquire_free_msg_ctx(msg_ctx); 275 if (rc) { 276 mutex_unlock(&ecryptfs_msg_ctx_lists_mux); 277 printk(KERN_WARNING "%s: Could not claim a free " 278 "context element\n", __func__); 279 goto out; 280 } 281 ecryptfs_msg_ctx_free_to_alloc(*msg_ctx); 282 mutex_unlock(&(*msg_ctx)->mux); 283 mutex_unlock(&ecryptfs_msg_ctx_lists_mux); 284 rc = ecryptfs_send_miscdev(data, data_len, *msg_ctx, msg_type, 0, 285 daemon); 286 if (rc) 287 printk(KERN_ERR "%s: Error attempting to send message to " 288 "userspace daemon; rc = [%d]\n", __func__, rc); 289out: 290 return rc; 291} 292 293/** 294 * ecryptfs_send_message 295 * @data: The data to send 296 * @data_len: The length of data 297 * @msg_ctx: The message context allocated for the send 298 * 299 * Grabs ecryptfs_daemon_hash_mux. 300 * 301 * Returns zero on success; non-zero otherwise 302 */ 303int ecryptfs_send_message(char *data, int data_len, 304 struct ecryptfs_msg_ctx **msg_ctx) 305{ 306 int rc; 307 308 mutex_lock(&ecryptfs_daemon_hash_mux); 309 rc = ecryptfs_send_message_locked(data, data_len, ECRYPTFS_MSG_REQUEST, 310 msg_ctx); 311 mutex_unlock(&ecryptfs_daemon_hash_mux); 312 return rc; 313} 314 315/** 316 * ecryptfs_wait_for_response 317 * @msg_ctx: The context that was assigned when sending a message 318 * @msg: The incoming message from userspace; not set if rc != 0 319 * 320 * Sleeps until awaken by ecryptfs_receive_message or until the amount 321 * of time exceeds ecryptfs_message_wait_timeout. If zero is 322 * returned, msg will point to a valid message from userspace; a 323 * non-zero value is returned upon failure to receive a message or an 324 * error occurs. Callee must free @msg on success. 325 */ 326int ecryptfs_wait_for_response(struct ecryptfs_msg_ctx *msg_ctx, 327 struct ecryptfs_message **msg) 328{ 329 signed long timeout = ecryptfs_message_wait_timeout * HZ; 330 int rc = 0; 331 332sleep: 333 timeout = schedule_timeout_interruptible(timeout); 334 mutex_lock(&ecryptfs_msg_ctx_lists_mux); 335 mutex_lock(&msg_ctx->mux); 336 if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_DONE) { 337 if (timeout) { 338 mutex_unlock(&msg_ctx->mux); 339 mutex_unlock(&ecryptfs_msg_ctx_lists_mux); 340 goto sleep; 341 } 342 rc = -ENOMSG; 343 } else { 344 *msg = msg_ctx->msg; 345 msg_ctx->msg = NULL; 346 } 347 ecryptfs_msg_ctx_alloc_to_free(msg_ctx); 348 mutex_unlock(&msg_ctx->mux); 349 mutex_unlock(&ecryptfs_msg_ctx_lists_mux); 350 return rc; 351} 352 353int __init ecryptfs_init_messaging(void) 354{ 355 int i; 356 int rc = 0; 357 358 if (ecryptfs_number_of_users > ECRYPTFS_MAX_NUM_USERS) { 359 ecryptfs_number_of_users = ECRYPTFS_MAX_NUM_USERS; 360 printk(KERN_WARNING "%s: Specified number of users is " 361 "too large, defaulting to [%d] users\n", __func__, 362 ecryptfs_number_of_users); 363 } 364 mutex_lock(&ecryptfs_daemon_hash_mux); 365 ecryptfs_hash_bits = 1; 366 while (ecryptfs_number_of_users >> ecryptfs_hash_bits) 367 ecryptfs_hash_bits++; 368 ecryptfs_daemon_hash = kmalloc((sizeof(struct hlist_head) 369 * (1 << ecryptfs_hash_bits)), 370 GFP_KERNEL); 371 if (!ecryptfs_daemon_hash) { 372 rc = -ENOMEM; 373 mutex_unlock(&ecryptfs_daemon_hash_mux); 374 goto out; 375 } 376 for (i = 0; i < (1 << ecryptfs_hash_bits); i++) 377 INIT_HLIST_HEAD(&ecryptfs_daemon_hash[i]); 378 mutex_unlock(&ecryptfs_daemon_hash_mux); 379 ecryptfs_msg_ctx_arr = kmalloc((sizeof(struct ecryptfs_msg_ctx) 380 * ecryptfs_message_buf_len), 381 GFP_KERNEL); 382 if (!ecryptfs_msg_ctx_arr) { 383 kfree(ecryptfs_daemon_hash); 384 rc = -ENOMEM; 385 goto out; 386 } 387 mutex_lock(&ecryptfs_msg_ctx_lists_mux); 388 ecryptfs_msg_counter = 0; 389 for (i = 0; i < ecryptfs_message_buf_len; i++) { 390 INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].node); 391 INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].daemon_out_list); 392 mutex_init(&ecryptfs_msg_ctx_arr[i].mux); 393 mutex_lock(&ecryptfs_msg_ctx_arr[i].mux); 394 ecryptfs_msg_ctx_arr[i].index = i; 395 ecryptfs_msg_ctx_arr[i].state = ECRYPTFS_MSG_CTX_STATE_FREE; 396 ecryptfs_msg_ctx_arr[i].counter = 0; 397 ecryptfs_msg_ctx_arr[i].task = NULL; 398 ecryptfs_msg_ctx_arr[i].msg = NULL; 399 list_add_tail(&ecryptfs_msg_ctx_arr[i].node, 400 &ecryptfs_msg_ctx_free_list); 401 mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux); 402 } 403 mutex_unlock(&ecryptfs_msg_ctx_lists_mux); 404 rc = ecryptfs_init_ecryptfs_miscdev(); 405 if (rc) 406 ecryptfs_release_messaging(); 407out: 408 return rc; 409} 410 411void ecryptfs_release_messaging(void) 412{ 413 if (ecryptfs_msg_ctx_arr) { 414 int i; 415 416 mutex_lock(&ecryptfs_msg_ctx_lists_mux); 417 for (i = 0; i < ecryptfs_message_buf_len; i++) { 418 mutex_lock(&ecryptfs_msg_ctx_arr[i].mux); 419 kfree(ecryptfs_msg_ctx_arr[i].msg); 420 mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux); 421 } 422 kfree(ecryptfs_msg_ctx_arr); 423 mutex_unlock(&ecryptfs_msg_ctx_lists_mux); 424 } 425 if (ecryptfs_daemon_hash) { 426 struct ecryptfs_daemon *daemon; 427 struct hlist_node *n; 428 int i; 429 430 mutex_lock(&ecryptfs_daemon_hash_mux); 431 for (i = 0; i < (1 << ecryptfs_hash_bits); i++) { 432 int rc; 433 434 hlist_for_each_entry_safe(daemon, n, 435 &ecryptfs_daemon_hash[i], 436 euid_chain) { 437 rc = ecryptfs_exorcise_daemon(daemon); 438 if (rc) 439 printk(KERN_ERR "%s: Error whilst " 440 "attempting to destroy daemon; " 441 "rc = [%d]. Dazed and confused, " 442 "but trying to continue.\n", 443 __func__, rc); 444 } 445 } 446 kfree(ecryptfs_daemon_hash); 447 mutex_unlock(&ecryptfs_daemon_hash_mux); 448 } 449 ecryptfs_destroy_ecryptfs_miscdev(); 450 return; 451}