cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

read_write.c (8078B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * eCryptfs: Linux filesystem encryption layer
      4 *
      5 * Copyright (C) 2007 International Business Machines Corp.
      6 *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
      7 */
      8
      9#include <linux/fs.h>
     10#include <linux/pagemap.h>
     11#include <linux/sched/signal.h>
     12
     13#include "ecryptfs_kernel.h"
     14
     15/**
     16 * ecryptfs_write_lower
     17 * @ecryptfs_inode: The eCryptfs inode
     18 * @data: Data to write
     19 * @offset: Byte offset in the lower file to which to write the data
     20 * @size: Number of bytes from @data to write at @offset in the lower
     21 *        file
     22 *
     23 * Write data to the lower file.
     24 *
     25 * Returns bytes written on success; less than zero on error
     26 */
     27int ecryptfs_write_lower(struct inode *ecryptfs_inode, char *data,
     28			 loff_t offset, size_t size)
     29{
     30	struct file *lower_file;
     31	ssize_t rc;
     32
     33	lower_file = ecryptfs_inode_to_private(ecryptfs_inode)->lower_file;
     34	if (!lower_file)
     35		return -EIO;
     36	rc = kernel_write(lower_file, data, size, &offset);
     37	mark_inode_dirty_sync(ecryptfs_inode);
     38	return rc;
     39}
     40
     41/**
     42 * ecryptfs_write_lower_page_segment
     43 * @ecryptfs_inode: The eCryptfs inode
     44 * @page_for_lower: The page containing the data to be written to the
     45 *                  lower file
     46 * @offset_in_page: The offset in the @page_for_lower from which to
     47 *                  start writing the data
     48 * @size: The amount of data from @page_for_lower to write to the
     49 *        lower file
     50 *
     51 * Determines the byte offset in the file for the given page and
     52 * offset within the page, maps the page, and makes the call to write
     53 * the contents of @page_for_lower to the lower inode.
     54 *
     55 * Returns zero on success; non-zero otherwise
     56 */
     57int ecryptfs_write_lower_page_segment(struct inode *ecryptfs_inode,
     58				      struct page *page_for_lower,
     59				      size_t offset_in_page, size_t size)
     60{
     61	char *virt;
     62	loff_t offset;
     63	int rc;
     64
     65	offset = ((((loff_t)page_for_lower->index) << PAGE_SHIFT)
     66		  + offset_in_page);
     67	virt = kmap(page_for_lower);
     68	rc = ecryptfs_write_lower(ecryptfs_inode, virt, offset, size);
     69	if (rc > 0)
     70		rc = 0;
     71	kunmap(page_for_lower);
     72	return rc;
     73}
     74
     75/**
     76 * ecryptfs_write
     77 * @ecryptfs_inode: The eCryptfs file into which to write
     78 * @data: Virtual address where data to write is located
     79 * @offset: Offset in the eCryptfs file at which to begin writing the
     80 *          data from @data
     81 * @size: The number of bytes to write from @data
     82 *
     83 * Write an arbitrary amount of data to an arbitrary location in the
     84 * eCryptfs inode page cache. This is done on a page-by-page, and then
     85 * by an extent-by-extent, basis; individual extents are encrypted and
     86 * written to the lower page cache (via VFS writes). This function
     87 * takes care of all the address translation to locations in the lower
     88 * filesystem; it also handles truncate events, writing out zeros
     89 * where necessary.
     90 *
     91 * Returns zero on success; non-zero otherwise
     92 */
     93int ecryptfs_write(struct inode *ecryptfs_inode, char *data, loff_t offset,
     94		   size_t size)
     95{
     96	struct page *ecryptfs_page;
     97	struct ecryptfs_crypt_stat *crypt_stat;
     98	char *ecryptfs_page_virt;
     99	loff_t ecryptfs_file_size = i_size_read(ecryptfs_inode);
    100	loff_t data_offset = 0;
    101	loff_t pos;
    102	int rc = 0;
    103
    104	crypt_stat = &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
    105	/*
    106	 * if we are writing beyond current size, then start pos
    107	 * at the current size - we'll fill in zeros from there.
    108	 */
    109	if (offset > ecryptfs_file_size)
    110		pos = ecryptfs_file_size;
    111	else
    112		pos = offset;
    113	while (pos < (offset + size)) {
    114		pgoff_t ecryptfs_page_idx = (pos >> PAGE_SHIFT);
    115		size_t start_offset_in_page = (pos & ~PAGE_MASK);
    116		size_t num_bytes = (PAGE_SIZE - start_offset_in_page);
    117		loff_t total_remaining_bytes = ((offset + size) - pos);
    118
    119		if (fatal_signal_pending(current)) {
    120			rc = -EINTR;
    121			break;
    122		}
    123
    124		if (num_bytes > total_remaining_bytes)
    125			num_bytes = total_remaining_bytes;
    126		if (pos < offset) {
    127			/* remaining zeros to write, up to destination offset */
    128			loff_t total_remaining_zeros = (offset - pos);
    129
    130			if (num_bytes > total_remaining_zeros)
    131				num_bytes = total_remaining_zeros;
    132		}
    133		ecryptfs_page = ecryptfs_get_locked_page(ecryptfs_inode,
    134							 ecryptfs_page_idx);
    135		if (IS_ERR(ecryptfs_page)) {
    136			rc = PTR_ERR(ecryptfs_page);
    137			printk(KERN_ERR "%s: Error getting page at "
    138			       "index [%ld] from eCryptfs inode "
    139			       "mapping; rc = [%d]\n", __func__,
    140			       ecryptfs_page_idx, rc);
    141			goto out;
    142		}
    143		ecryptfs_page_virt = kmap_atomic(ecryptfs_page);
    144
    145		/*
    146		 * pos: where we're now writing, offset: where the request was
    147		 * If current pos is before request, we are filling zeros
    148		 * If we are at or beyond request, we are writing the *data*
    149		 * If we're in a fresh page beyond eof, zero it in either case
    150		 */
    151		if (pos < offset || !start_offset_in_page) {
    152			/* We are extending past the previous end of the file.
    153			 * Fill in zero values to the end of the page */
    154			memset(((char *)ecryptfs_page_virt
    155				+ start_offset_in_page), 0,
    156				PAGE_SIZE - start_offset_in_page);
    157		}
    158
    159		/* pos >= offset, we are now writing the data request */
    160		if (pos >= offset) {
    161			memcpy(((char *)ecryptfs_page_virt
    162				+ start_offset_in_page),
    163			       (data + data_offset), num_bytes);
    164			data_offset += num_bytes;
    165		}
    166		kunmap_atomic(ecryptfs_page_virt);
    167		flush_dcache_page(ecryptfs_page);
    168		SetPageUptodate(ecryptfs_page);
    169		unlock_page(ecryptfs_page);
    170		if (crypt_stat->flags & ECRYPTFS_ENCRYPTED)
    171			rc = ecryptfs_encrypt_page(ecryptfs_page);
    172		else
    173			rc = ecryptfs_write_lower_page_segment(ecryptfs_inode,
    174						ecryptfs_page,
    175						start_offset_in_page,
    176						data_offset);
    177		put_page(ecryptfs_page);
    178		if (rc) {
    179			printk(KERN_ERR "%s: Error encrypting "
    180			       "page; rc = [%d]\n", __func__, rc);
    181			goto out;
    182		}
    183		pos += num_bytes;
    184	}
    185	if (pos > ecryptfs_file_size) {
    186		i_size_write(ecryptfs_inode, pos);
    187		if (crypt_stat->flags & ECRYPTFS_ENCRYPTED) {
    188			int rc2;
    189
    190			rc2 = ecryptfs_write_inode_size_to_metadata(
    191								ecryptfs_inode);
    192			if (rc2) {
    193				printk(KERN_ERR	"Problem with "
    194				       "ecryptfs_write_inode_size_to_metadata; "
    195				       "rc = [%d]\n", rc2);
    196				if (!rc)
    197					rc = rc2;
    198				goto out;
    199			}
    200		}
    201	}
    202out:
    203	return rc;
    204}
    205
    206/**
    207 * ecryptfs_read_lower
    208 * @data: The read data is stored here by this function
    209 * @offset: Byte offset in the lower file from which to read the data
    210 * @size: Number of bytes to read from @offset of the lower file and
    211 *        store into @data
    212 * @ecryptfs_inode: The eCryptfs inode
    213 *
    214 * Read @size bytes of data at byte offset @offset from the lower
    215 * inode into memory location @data.
    216 *
    217 * Returns bytes read on success; 0 on EOF; less than zero on error
    218 */
    219int ecryptfs_read_lower(char *data, loff_t offset, size_t size,
    220			struct inode *ecryptfs_inode)
    221{
    222	struct file *lower_file;
    223	lower_file = ecryptfs_inode_to_private(ecryptfs_inode)->lower_file;
    224	if (!lower_file)
    225		return -EIO;
    226	return kernel_read(lower_file, data, size, &offset);
    227}
    228
    229/**
    230 * ecryptfs_read_lower_page_segment
    231 * @page_for_ecryptfs: The page into which data for eCryptfs will be
    232 *                     written
    233 * @page_index: Page index in @page_for_ecryptfs from which to start
    234 *		writing
    235 * @offset_in_page: Offset in @page_for_ecryptfs from which to start
    236 *                  writing
    237 * @size: The number of bytes to write into @page_for_ecryptfs
    238 * @ecryptfs_inode: The eCryptfs inode
    239 *
    240 * Determines the byte offset in the file for the given page and
    241 * offset within the page, maps the page, and makes the call to read
    242 * the contents of @page_for_ecryptfs from the lower inode.
    243 *
    244 * Returns zero on success; non-zero otherwise
    245 */
    246int ecryptfs_read_lower_page_segment(struct page *page_for_ecryptfs,
    247				     pgoff_t page_index,
    248				     size_t offset_in_page, size_t size,
    249				     struct inode *ecryptfs_inode)
    250{
    251	char *virt;
    252	loff_t offset;
    253	int rc;
    254
    255	offset = ((((loff_t)page_index) << PAGE_SHIFT) + offset_in_page);
    256	virt = kmap(page_for_ecryptfs);
    257	rc = ecryptfs_read_lower(virt, offset, size, ecryptfs_inode);
    258	if (rc > 0)
    259		rc = 0;
    260	kunmap(page_for_ecryptfs);
    261	flush_dcache_page(page_for_ecryptfs);
    262	return rc;
    263}