cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

inode.c (49361B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 *  linux/fs/ext2/inode.c
      4 *
      5 * Copyright (C) 1992, 1993, 1994, 1995
      6 * Remy Card (card@masi.ibp.fr)
      7 * Laboratoire MASI - Institut Blaise Pascal
      8 * Universite Pierre et Marie Curie (Paris VI)
      9 *
     10 *  from
     11 *
     12 *  linux/fs/minix/inode.c
     13 *
     14 *  Copyright (C) 1991, 1992  Linus Torvalds
     15 *
     16 *  Goal-directed block allocation by Stephen Tweedie
     17 * 	(sct@dcs.ed.ac.uk), 1993, 1998
     18 *  Big-endian to little-endian byte-swapping/bitmaps by
     19 *        David S. Miller (davem@caip.rutgers.edu), 1995
     20 *  64-bit file support on 64-bit platforms by Jakub Jelinek
     21 * 	(jj@sunsite.ms.mff.cuni.cz)
     22 *
     23 *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
     24 */
     25
     26#include <linux/time.h>
     27#include <linux/highuid.h>
     28#include <linux/pagemap.h>
     29#include <linux/dax.h>
     30#include <linux/blkdev.h>
     31#include <linux/quotaops.h>
     32#include <linux/writeback.h>
     33#include <linux/buffer_head.h>
     34#include <linux/mpage.h>
     35#include <linux/fiemap.h>
     36#include <linux/iomap.h>
     37#include <linux/namei.h>
     38#include <linux/uio.h>
     39#include "ext2.h"
     40#include "acl.h"
     41#include "xattr.h"
     42
     43static int __ext2_write_inode(struct inode *inode, int do_sync);
     44
     45/*
     46 * Test whether an inode is a fast symlink.
     47 */
     48static inline int ext2_inode_is_fast_symlink(struct inode *inode)
     49{
     50	int ea_blocks = EXT2_I(inode)->i_file_acl ?
     51		(inode->i_sb->s_blocksize >> 9) : 0;
     52
     53	return (S_ISLNK(inode->i_mode) &&
     54		inode->i_blocks - ea_blocks == 0);
     55}
     56
     57static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
     58
     59static void ext2_write_failed(struct address_space *mapping, loff_t to)
     60{
     61	struct inode *inode = mapping->host;
     62
     63	if (to > inode->i_size) {
     64		truncate_pagecache(inode, inode->i_size);
     65		ext2_truncate_blocks(inode, inode->i_size);
     66	}
     67}
     68
     69/*
     70 * Called at the last iput() if i_nlink is zero.
     71 */
     72void ext2_evict_inode(struct inode * inode)
     73{
     74	struct ext2_block_alloc_info *rsv;
     75	int want_delete = 0;
     76
     77	if (!inode->i_nlink && !is_bad_inode(inode)) {
     78		want_delete = 1;
     79		dquot_initialize(inode);
     80	} else {
     81		dquot_drop(inode);
     82	}
     83
     84	truncate_inode_pages_final(&inode->i_data);
     85
     86	if (want_delete) {
     87		sb_start_intwrite(inode->i_sb);
     88		/* set dtime */
     89		EXT2_I(inode)->i_dtime	= ktime_get_real_seconds();
     90		mark_inode_dirty(inode);
     91		__ext2_write_inode(inode, inode_needs_sync(inode));
     92		/* truncate to 0 */
     93		inode->i_size = 0;
     94		if (inode->i_blocks)
     95			ext2_truncate_blocks(inode, 0);
     96		ext2_xattr_delete_inode(inode);
     97	}
     98
     99	invalidate_inode_buffers(inode);
    100	clear_inode(inode);
    101
    102	ext2_discard_reservation(inode);
    103	rsv = EXT2_I(inode)->i_block_alloc_info;
    104	EXT2_I(inode)->i_block_alloc_info = NULL;
    105	if (unlikely(rsv))
    106		kfree(rsv);
    107
    108	if (want_delete) {
    109		ext2_free_inode(inode);
    110		sb_end_intwrite(inode->i_sb);
    111	}
    112}
    113
    114typedef struct {
    115	__le32	*p;
    116	__le32	key;
    117	struct buffer_head *bh;
    118} Indirect;
    119
    120static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
    121{
    122	p->key = *(p->p = v);
    123	p->bh = bh;
    124}
    125
    126static inline int verify_chain(Indirect *from, Indirect *to)
    127{
    128	while (from <= to && from->key == *from->p)
    129		from++;
    130	return (from > to);
    131}
    132
    133/**
    134 *	ext2_block_to_path - parse the block number into array of offsets
    135 *	@inode: inode in question (we are only interested in its superblock)
    136 *	@i_block: block number to be parsed
    137 *	@offsets: array to store the offsets in
    138 *      @boundary: set this non-zero if the referred-to block is likely to be
    139 *             followed (on disk) by an indirect block.
    140 *	To store the locations of file's data ext2 uses a data structure common
    141 *	for UNIX filesystems - tree of pointers anchored in the inode, with
    142 *	data blocks at leaves and indirect blocks in intermediate nodes.
    143 *	This function translates the block number into path in that tree -
    144 *	return value is the path length and @offsets[n] is the offset of
    145 *	pointer to (n+1)th node in the nth one. If @block is out of range
    146 *	(negative or too large) warning is printed and zero returned.
    147 *
    148 *	Note: function doesn't find node addresses, so no IO is needed. All
    149 *	we need to know is the capacity of indirect blocks (taken from the
    150 *	inode->i_sb).
    151 */
    152
    153/*
    154 * Portability note: the last comparison (check that we fit into triple
    155 * indirect block) is spelled differently, because otherwise on an
    156 * architecture with 32-bit longs and 8Kb pages we might get into trouble
    157 * if our filesystem had 8Kb blocks. We might use long long, but that would
    158 * kill us on x86. Oh, well, at least the sign propagation does not matter -
    159 * i_block would have to be negative in the very beginning, so we would not
    160 * get there at all.
    161 */
    162
    163static int ext2_block_to_path(struct inode *inode,
    164			long i_block, int offsets[4], int *boundary)
    165{
    166	int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
    167	int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
    168	const long direct_blocks = EXT2_NDIR_BLOCKS,
    169		indirect_blocks = ptrs,
    170		double_blocks = (1 << (ptrs_bits * 2));
    171	int n = 0;
    172	int final = 0;
    173
    174	if (i_block < 0) {
    175		ext2_msg(inode->i_sb, KERN_WARNING,
    176			"warning: %s: block < 0", __func__);
    177	} else if (i_block < direct_blocks) {
    178		offsets[n++] = i_block;
    179		final = direct_blocks;
    180	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
    181		offsets[n++] = EXT2_IND_BLOCK;
    182		offsets[n++] = i_block;
    183		final = ptrs;
    184	} else if ((i_block -= indirect_blocks) < double_blocks) {
    185		offsets[n++] = EXT2_DIND_BLOCK;
    186		offsets[n++] = i_block >> ptrs_bits;
    187		offsets[n++] = i_block & (ptrs - 1);
    188		final = ptrs;
    189	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
    190		offsets[n++] = EXT2_TIND_BLOCK;
    191		offsets[n++] = i_block >> (ptrs_bits * 2);
    192		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
    193		offsets[n++] = i_block & (ptrs - 1);
    194		final = ptrs;
    195	} else {
    196		ext2_msg(inode->i_sb, KERN_WARNING,
    197			"warning: %s: block is too big", __func__);
    198	}
    199	if (boundary)
    200		*boundary = final - 1 - (i_block & (ptrs - 1));
    201
    202	return n;
    203}
    204
    205/**
    206 *	ext2_get_branch - read the chain of indirect blocks leading to data
    207 *	@inode: inode in question
    208 *	@depth: depth of the chain (1 - direct pointer, etc.)
    209 *	@offsets: offsets of pointers in inode/indirect blocks
    210 *	@chain: place to store the result
    211 *	@err: here we store the error value
    212 *
    213 *	Function fills the array of triples <key, p, bh> and returns %NULL
    214 *	if everything went OK or the pointer to the last filled triple
    215 *	(incomplete one) otherwise. Upon the return chain[i].key contains
    216 *	the number of (i+1)-th block in the chain (as it is stored in memory,
    217 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
    218 *	number (it points into struct inode for i==0 and into the bh->b_data
    219 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
    220 *	block for i>0 and NULL for i==0. In other words, it holds the block
    221 *	numbers of the chain, addresses they were taken from (and where we can
    222 *	verify that chain did not change) and buffer_heads hosting these
    223 *	numbers.
    224 *
    225 *	Function stops when it stumbles upon zero pointer (absent block)
    226 *		(pointer to last triple returned, *@err == 0)
    227 *	or when it gets an IO error reading an indirect block
    228 *		(ditto, *@err == -EIO)
    229 *	or when it notices that chain had been changed while it was reading
    230 *		(ditto, *@err == -EAGAIN)
    231 *	or when it reads all @depth-1 indirect blocks successfully and finds
    232 *	the whole chain, all way to the data (returns %NULL, *err == 0).
    233 */
    234static Indirect *ext2_get_branch(struct inode *inode,
    235				 int depth,
    236				 int *offsets,
    237				 Indirect chain[4],
    238				 int *err)
    239{
    240	struct super_block *sb = inode->i_sb;
    241	Indirect *p = chain;
    242	struct buffer_head *bh;
    243
    244	*err = 0;
    245	/* i_data is not going away, no lock needed */
    246	add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
    247	if (!p->key)
    248		goto no_block;
    249	while (--depth) {
    250		bh = sb_bread(sb, le32_to_cpu(p->key));
    251		if (!bh)
    252			goto failure;
    253		read_lock(&EXT2_I(inode)->i_meta_lock);
    254		if (!verify_chain(chain, p))
    255			goto changed;
    256		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
    257		read_unlock(&EXT2_I(inode)->i_meta_lock);
    258		if (!p->key)
    259			goto no_block;
    260	}
    261	return NULL;
    262
    263changed:
    264	read_unlock(&EXT2_I(inode)->i_meta_lock);
    265	brelse(bh);
    266	*err = -EAGAIN;
    267	goto no_block;
    268failure:
    269	*err = -EIO;
    270no_block:
    271	return p;
    272}
    273
    274/**
    275 *	ext2_find_near - find a place for allocation with sufficient locality
    276 *	@inode: owner
    277 *	@ind: descriptor of indirect block.
    278 *
    279 *	This function returns the preferred place for block allocation.
    280 *	It is used when heuristic for sequential allocation fails.
    281 *	Rules are:
    282 *	  + if there is a block to the left of our position - allocate near it.
    283 *	  + if pointer will live in indirect block - allocate near that block.
    284 *	  + if pointer will live in inode - allocate in the same cylinder group.
    285 *
    286 * In the latter case we colour the starting block by the callers PID to
    287 * prevent it from clashing with concurrent allocations for a different inode
    288 * in the same block group.   The PID is used here so that functionally related
    289 * files will be close-by on-disk.
    290 *
    291 *	Caller must make sure that @ind is valid and will stay that way.
    292 */
    293
    294static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
    295{
    296	struct ext2_inode_info *ei = EXT2_I(inode);
    297	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
    298	__le32 *p;
    299	ext2_fsblk_t bg_start;
    300	ext2_fsblk_t colour;
    301
    302	/* Try to find previous block */
    303	for (p = ind->p - 1; p >= start; p--)
    304		if (*p)
    305			return le32_to_cpu(*p);
    306
    307	/* No such thing, so let's try location of indirect block */
    308	if (ind->bh)
    309		return ind->bh->b_blocknr;
    310
    311	/*
    312	 * It is going to be referred from inode itself? OK, just put it into
    313	 * the same cylinder group then.
    314	 */
    315	bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
    316	colour = (current->pid % 16) *
    317			(EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
    318	return bg_start + colour;
    319}
    320
    321/**
    322 *	ext2_find_goal - find a preferred place for allocation.
    323 *	@inode: owner
    324 *	@block:  block we want
    325 *	@partial: pointer to the last triple within a chain
    326 *
    327 *	Returns preferred place for a block (the goal).
    328 */
    329
    330static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
    331					  Indirect *partial)
    332{
    333	struct ext2_block_alloc_info *block_i;
    334
    335	block_i = EXT2_I(inode)->i_block_alloc_info;
    336
    337	/*
    338	 * try the heuristic for sequential allocation,
    339	 * failing that at least try to get decent locality.
    340	 */
    341	if (block_i && (block == block_i->last_alloc_logical_block + 1)
    342		&& (block_i->last_alloc_physical_block != 0)) {
    343		return block_i->last_alloc_physical_block + 1;
    344	}
    345
    346	return ext2_find_near(inode, partial);
    347}
    348
    349/**
    350 *	ext2_blks_to_allocate: Look up the block map and count the number
    351 *	of direct blocks need to be allocated for the given branch.
    352 *
    353 * 	@branch: chain of indirect blocks
    354 *	@k: number of blocks need for indirect blocks
    355 *	@blks: number of data blocks to be mapped.
    356 *	@blocks_to_boundary:  the offset in the indirect block
    357 *
    358 *	return the number of direct blocks to allocate.
    359 */
    360static int
    361ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
    362		int blocks_to_boundary)
    363{
    364	unsigned long count = 0;
    365
    366	/*
    367	 * Simple case, [t,d]Indirect block(s) has not allocated yet
    368	 * then it's clear blocks on that path have not allocated
    369	 */
    370	if (k > 0) {
    371		/* right now don't hanel cross boundary allocation */
    372		if (blks < blocks_to_boundary + 1)
    373			count += blks;
    374		else
    375			count += blocks_to_boundary + 1;
    376		return count;
    377	}
    378
    379	count++;
    380	while (count < blks && count <= blocks_to_boundary
    381		&& le32_to_cpu(*(branch[0].p + count)) == 0) {
    382		count++;
    383	}
    384	return count;
    385}
    386
    387/**
    388 *	ext2_alloc_blocks: multiple allocate blocks needed for a branch
    389 *	@indirect_blks: the number of blocks need to allocate for indirect
    390 *			blocks
    391 *	@blks: the number of blocks need to allocate for direct blocks
    392 *	@new_blocks: on return it will store the new block numbers for
    393 *	the indirect blocks(if needed) and the first direct block,
    394 */
    395static int ext2_alloc_blocks(struct inode *inode,
    396			ext2_fsblk_t goal, int indirect_blks, int blks,
    397			ext2_fsblk_t new_blocks[4], int *err)
    398{
    399	int target, i;
    400	unsigned long count = 0;
    401	int index = 0;
    402	ext2_fsblk_t current_block = 0;
    403	int ret = 0;
    404
    405	/*
    406	 * Here we try to allocate the requested multiple blocks at once,
    407	 * on a best-effort basis.
    408	 * To build a branch, we should allocate blocks for
    409	 * the indirect blocks(if not allocated yet), and at least
    410	 * the first direct block of this branch.  That's the
    411	 * minimum number of blocks need to allocate(required)
    412	 */
    413	target = blks + indirect_blks;
    414
    415	while (1) {
    416		count = target;
    417		/* allocating blocks for indirect blocks and direct blocks */
    418		current_block = ext2_new_blocks(inode,goal,&count,err);
    419		if (*err)
    420			goto failed_out;
    421
    422		target -= count;
    423		/* allocate blocks for indirect blocks */
    424		while (index < indirect_blks && count) {
    425			new_blocks[index++] = current_block++;
    426			count--;
    427		}
    428
    429		if (count > 0)
    430			break;
    431	}
    432
    433	/* save the new block number for the first direct block */
    434	new_blocks[index] = current_block;
    435
    436	/* total number of blocks allocated for direct blocks */
    437	ret = count;
    438	*err = 0;
    439	return ret;
    440failed_out:
    441	for (i = 0; i <index; i++)
    442		ext2_free_blocks(inode, new_blocks[i], 1);
    443	if (index)
    444		mark_inode_dirty(inode);
    445	return ret;
    446}
    447
    448/**
    449 *	ext2_alloc_branch - allocate and set up a chain of blocks.
    450 *	@inode: owner
    451 *	@indirect_blks: depth of the chain (number of blocks to allocate)
    452 *	@blks: number of allocated direct blocks
    453 *	@goal: preferred place for allocation
    454 *	@offsets: offsets (in the blocks) to store the pointers to next.
    455 *	@branch: place to store the chain in.
    456 *
    457 *	This function allocates @num blocks, zeroes out all but the last one,
    458 *	links them into chain and (if we are synchronous) writes them to disk.
    459 *	In other words, it prepares a branch that can be spliced onto the
    460 *	inode. It stores the information about that chain in the branch[], in
    461 *	the same format as ext2_get_branch() would do. We are calling it after
    462 *	we had read the existing part of chain and partial points to the last
    463 *	triple of that (one with zero ->key). Upon the exit we have the same
    464 *	picture as after the successful ext2_get_block(), except that in one
    465 *	place chain is disconnected - *branch->p is still zero (we did not
    466 *	set the last link), but branch->key contains the number that should
    467 *	be placed into *branch->p to fill that gap.
    468 *
    469 *	If allocation fails we free all blocks we've allocated (and forget
    470 *	their buffer_heads) and return the error value the from failed
    471 *	ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
    472 *	as described above and return 0.
    473 */
    474
    475static int ext2_alloc_branch(struct inode *inode,
    476			int indirect_blks, int *blks, ext2_fsblk_t goal,
    477			int *offsets, Indirect *branch)
    478{
    479	int blocksize = inode->i_sb->s_blocksize;
    480	int i, n = 0;
    481	int err = 0;
    482	struct buffer_head *bh;
    483	int num;
    484	ext2_fsblk_t new_blocks[4];
    485	ext2_fsblk_t current_block;
    486
    487	num = ext2_alloc_blocks(inode, goal, indirect_blks,
    488				*blks, new_blocks, &err);
    489	if (err)
    490		return err;
    491
    492	branch[0].key = cpu_to_le32(new_blocks[0]);
    493	/*
    494	 * metadata blocks and data blocks are allocated.
    495	 */
    496	for (n = 1; n <= indirect_blks;  n++) {
    497		/*
    498		 * Get buffer_head for parent block, zero it out
    499		 * and set the pointer to new one, then send
    500		 * parent to disk.
    501		 */
    502		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
    503		if (unlikely(!bh)) {
    504			err = -ENOMEM;
    505			goto failed;
    506		}
    507		branch[n].bh = bh;
    508		lock_buffer(bh);
    509		memset(bh->b_data, 0, blocksize);
    510		branch[n].p = (__le32 *) bh->b_data + offsets[n];
    511		branch[n].key = cpu_to_le32(new_blocks[n]);
    512		*branch[n].p = branch[n].key;
    513		if ( n == indirect_blks) {
    514			current_block = new_blocks[n];
    515			/*
    516			 * End of chain, update the last new metablock of
    517			 * the chain to point to the new allocated
    518			 * data blocks numbers
    519			 */
    520			for (i=1; i < num; i++)
    521				*(branch[n].p + i) = cpu_to_le32(++current_block);
    522		}
    523		set_buffer_uptodate(bh);
    524		unlock_buffer(bh);
    525		mark_buffer_dirty_inode(bh, inode);
    526		/* We used to sync bh here if IS_SYNC(inode).
    527		 * But we now rely upon generic_write_sync()
    528		 * and b_inode_buffers.  But not for directories.
    529		 */
    530		if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
    531			sync_dirty_buffer(bh);
    532	}
    533	*blks = num;
    534	return err;
    535
    536failed:
    537	for (i = 1; i < n; i++)
    538		bforget(branch[i].bh);
    539	for (i = 0; i < indirect_blks; i++)
    540		ext2_free_blocks(inode, new_blocks[i], 1);
    541	ext2_free_blocks(inode, new_blocks[i], num);
    542	return err;
    543}
    544
    545/**
    546 * ext2_splice_branch - splice the allocated branch onto inode.
    547 * @inode: owner
    548 * @block: (logical) number of block we are adding
    549 * @where: location of missing link
    550 * @num:   number of indirect blocks we are adding
    551 * @blks:  number of direct blocks we are adding
    552 *
    553 * This function fills the missing link and does all housekeeping needed in
    554 * inode (->i_blocks, etc.). In case of success we end up with the full
    555 * chain to new block and return 0.
    556 */
    557static void ext2_splice_branch(struct inode *inode,
    558			long block, Indirect *where, int num, int blks)
    559{
    560	int i;
    561	struct ext2_block_alloc_info *block_i;
    562	ext2_fsblk_t current_block;
    563
    564	block_i = EXT2_I(inode)->i_block_alloc_info;
    565
    566	/* XXX LOCKING probably should have i_meta_lock ?*/
    567	/* That's it */
    568
    569	*where->p = where->key;
    570
    571	/*
    572	 * Update the host buffer_head or inode to point to more just allocated
    573	 * direct blocks blocks
    574	 */
    575	if (num == 0 && blks > 1) {
    576		current_block = le32_to_cpu(where->key) + 1;
    577		for (i = 1; i < blks; i++)
    578			*(where->p + i ) = cpu_to_le32(current_block++);
    579	}
    580
    581	/*
    582	 * update the most recently allocated logical & physical block
    583	 * in i_block_alloc_info, to assist find the proper goal block for next
    584	 * allocation
    585	 */
    586	if (block_i) {
    587		block_i->last_alloc_logical_block = block + blks - 1;
    588		block_i->last_alloc_physical_block =
    589				le32_to_cpu(where[num].key) + blks - 1;
    590	}
    591
    592	/* We are done with atomic stuff, now do the rest of housekeeping */
    593
    594	/* had we spliced it onto indirect block? */
    595	if (where->bh)
    596		mark_buffer_dirty_inode(where->bh, inode);
    597
    598	inode->i_ctime = current_time(inode);
    599	mark_inode_dirty(inode);
    600}
    601
    602/*
    603 * Allocation strategy is simple: if we have to allocate something, we will
    604 * have to go the whole way to leaf. So let's do it before attaching anything
    605 * to tree, set linkage between the newborn blocks, write them if sync is
    606 * required, recheck the path, free and repeat if check fails, otherwise
    607 * set the last missing link (that will protect us from any truncate-generated
    608 * removals - all blocks on the path are immune now) and possibly force the
    609 * write on the parent block.
    610 * That has a nice additional property: no special recovery from the failed
    611 * allocations is needed - we simply release blocks and do not touch anything
    612 * reachable from inode.
    613 *
    614 * `handle' can be NULL if create == 0.
    615 *
    616 * return > 0, # of blocks mapped or allocated.
    617 * return = 0, if plain lookup failed.
    618 * return < 0, error case.
    619 */
    620static int ext2_get_blocks(struct inode *inode,
    621			   sector_t iblock, unsigned long maxblocks,
    622			   u32 *bno, bool *new, bool *boundary,
    623			   int create)
    624{
    625	int err;
    626	int offsets[4];
    627	Indirect chain[4];
    628	Indirect *partial;
    629	ext2_fsblk_t goal;
    630	int indirect_blks;
    631	int blocks_to_boundary = 0;
    632	int depth;
    633	struct ext2_inode_info *ei = EXT2_I(inode);
    634	int count = 0;
    635	ext2_fsblk_t first_block = 0;
    636
    637	BUG_ON(maxblocks == 0);
    638
    639	depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
    640
    641	if (depth == 0)
    642		return -EIO;
    643
    644	partial = ext2_get_branch(inode, depth, offsets, chain, &err);
    645	/* Simplest case - block found, no allocation needed */
    646	if (!partial) {
    647		first_block = le32_to_cpu(chain[depth - 1].key);
    648		count++;
    649		/*map more blocks*/
    650		while (count < maxblocks && count <= blocks_to_boundary) {
    651			ext2_fsblk_t blk;
    652
    653			if (!verify_chain(chain, chain + depth - 1)) {
    654				/*
    655				 * Indirect block might be removed by
    656				 * truncate while we were reading it.
    657				 * Handling of that case: forget what we've
    658				 * got now, go to reread.
    659				 */
    660				err = -EAGAIN;
    661				count = 0;
    662				partial = chain + depth - 1;
    663				break;
    664			}
    665			blk = le32_to_cpu(*(chain[depth-1].p + count));
    666			if (blk == first_block + count)
    667				count++;
    668			else
    669				break;
    670		}
    671		if (err != -EAGAIN)
    672			goto got_it;
    673	}
    674
    675	/* Next simple case - plain lookup or failed read of indirect block */
    676	if (!create || err == -EIO)
    677		goto cleanup;
    678
    679	mutex_lock(&ei->truncate_mutex);
    680	/*
    681	 * If the indirect block is missing while we are reading
    682	 * the chain(ext2_get_branch() returns -EAGAIN err), or
    683	 * if the chain has been changed after we grab the semaphore,
    684	 * (either because another process truncated this branch, or
    685	 * another get_block allocated this branch) re-grab the chain to see if
    686	 * the request block has been allocated or not.
    687	 *
    688	 * Since we already block the truncate/other get_block
    689	 * at this point, we will have the current copy of the chain when we
    690	 * splice the branch into the tree.
    691	 */
    692	if (err == -EAGAIN || !verify_chain(chain, partial)) {
    693		while (partial > chain) {
    694			brelse(partial->bh);
    695			partial--;
    696		}
    697		partial = ext2_get_branch(inode, depth, offsets, chain, &err);
    698		if (!partial) {
    699			count++;
    700			mutex_unlock(&ei->truncate_mutex);
    701			goto got_it;
    702		}
    703
    704		if (err) {
    705			mutex_unlock(&ei->truncate_mutex);
    706			goto cleanup;
    707		}
    708	}
    709
    710	/*
    711	 * Okay, we need to do block allocation.  Lazily initialize the block
    712	 * allocation info here if necessary
    713	*/
    714	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
    715		ext2_init_block_alloc_info(inode);
    716
    717	goal = ext2_find_goal(inode, iblock, partial);
    718
    719	/* the number of blocks need to allocate for [d,t]indirect blocks */
    720	indirect_blks = (chain + depth) - partial - 1;
    721	/*
    722	 * Next look up the indirect map to count the total number of
    723	 * direct blocks to allocate for this branch.
    724	 */
    725	count = ext2_blks_to_allocate(partial, indirect_blks,
    726					maxblocks, blocks_to_boundary);
    727	/*
    728	 * XXX ???? Block out ext2_truncate while we alter the tree
    729	 */
    730	err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
    731				offsets + (partial - chain), partial);
    732
    733	if (err) {
    734		mutex_unlock(&ei->truncate_mutex);
    735		goto cleanup;
    736	}
    737
    738	if (IS_DAX(inode)) {
    739		/*
    740		 * We must unmap blocks before zeroing so that writeback cannot
    741		 * overwrite zeros with stale data from block device page cache.
    742		 */
    743		clean_bdev_aliases(inode->i_sb->s_bdev,
    744				   le32_to_cpu(chain[depth-1].key),
    745				   count);
    746		/*
    747		 * block must be initialised before we put it in the tree
    748		 * so that it's not found by another thread before it's
    749		 * initialised
    750		 */
    751		err = sb_issue_zeroout(inode->i_sb,
    752				le32_to_cpu(chain[depth-1].key), count,
    753				GFP_NOFS);
    754		if (err) {
    755			mutex_unlock(&ei->truncate_mutex);
    756			goto cleanup;
    757		}
    758	}
    759	*new = true;
    760
    761	ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
    762	mutex_unlock(&ei->truncate_mutex);
    763got_it:
    764	if (count > blocks_to_boundary)
    765		*boundary = true;
    766	err = count;
    767	/* Clean up and exit */
    768	partial = chain + depth - 1;	/* the whole chain */
    769cleanup:
    770	while (partial > chain) {
    771		brelse(partial->bh);
    772		partial--;
    773	}
    774	if (err > 0)
    775		*bno = le32_to_cpu(chain[depth-1].key);
    776	return err;
    777}
    778
    779int ext2_get_block(struct inode *inode, sector_t iblock,
    780		struct buffer_head *bh_result, int create)
    781{
    782	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
    783	bool new = false, boundary = false;
    784	u32 bno;
    785	int ret;
    786
    787	ret = ext2_get_blocks(inode, iblock, max_blocks, &bno, &new, &boundary,
    788			create);
    789	if (ret <= 0)
    790		return ret;
    791
    792	map_bh(bh_result, inode->i_sb, bno);
    793	bh_result->b_size = (ret << inode->i_blkbits);
    794	if (new)
    795		set_buffer_new(bh_result);
    796	if (boundary)
    797		set_buffer_boundary(bh_result);
    798	return 0;
    799
    800}
    801
    802static int ext2_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
    803		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
    804{
    805	unsigned int blkbits = inode->i_blkbits;
    806	unsigned long first_block = offset >> blkbits;
    807	unsigned long max_blocks = (length + (1 << blkbits) - 1) >> blkbits;
    808	struct ext2_sb_info *sbi = EXT2_SB(inode->i_sb);
    809	bool new = false, boundary = false;
    810	u32 bno;
    811	int ret;
    812
    813	ret = ext2_get_blocks(inode, first_block, max_blocks,
    814			&bno, &new, &boundary, flags & IOMAP_WRITE);
    815	if (ret < 0)
    816		return ret;
    817
    818	iomap->flags = 0;
    819	iomap->offset = (u64)first_block << blkbits;
    820	if (flags & IOMAP_DAX)
    821		iomap->dax_dev = sbi->s_daxdev;
    822	else
    823		iomap->bdev = inode->i_sb->s_bdev;
    824
    825	if (ret == 0) {
    826		iomap->type = IOMAP_HOLE;
    827		iomap->addr = IOMAP_NULL_ADDR;
    828		iomap->length = 1 << blkbits;
    829	} else {
    830		iomap->type = IOMAP_MAPPED;
    831		iomap->addr = (u64)bno << blkbits;
    832		if (flags & IOMAP_DAX)
    833			iomap->addr += sbi->s_dax_part_off;
    834		iomap->length = (u64)ret << blkbits;
    835		iomap->flags |= IOMAP_F_MERGED;
    836	}
    837
    838	if (new)
    839		iomap->flags |= IOMAP_F_NEW;
    840	return 0;
    841}
    842
    843static int
    844ext2_iomap_end(struct inode *inode, loff_t offset, loff_t length,
    845		ssize_t written, unsigned flags, struct iomap *iomap)
    846{
    847	if (iomap->type == IOMAP_MAPPED &&
    848	    written < length &&
    849	    (flags & IOMAP_WRITE))
    850		ext2_write_failed(inode->i_mapping, offset + length);
    851	return 0;
    852}
    853
    854const struct iomap_ops ext2_iomap_ops = {
    855	.iomap_begin		= ext2_iomap_begin,
    856	.iomap_end		= ext2_iomap_end,
    857};
    858
    859int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
    860		u64 start, u64 len)
    861{
    862	int ret;
    863
    864	inode_lock(inode);
    865	len = min_t(u64, len, i_size_read(inode));
    866	ret = iomap_fiemap(inode, fieinfo, start, len, &ext2_iomap_ops);
    867	inode_unlock(inode);
    868
    869	return ret;
    870}
    871
    872static int ext2_writepage(struct page *page, struct writeback_control *wbc)
    873{
    874	return block_write_full_page(page, ext2_get_block, wbc);
    875}
    876
    877static int ext2_read_folio(struct file *file, struct folio *folio)
    878{
    879	return mpage_read_folio(folio, ext2_get_block);
    880}
    881
    882static void ext2_readahead(struct readahead_control *rac)
    883{
    884	mpage_readahead(rac, ext2_get_block);
    885}
    886
    887static int
    888ext2_write_begin(struct file *file, struct address_space *mapping,
    889		loff_t pos, unsigned len, struct page **pagep, void **fsdata)
    890{
    891	int ret;
    892
    893	ret = block_write_begin(mapping, pos, len, pagep, ext2_get_block);
    894	if (ret < 0)
    895		ext2_write_failed(mapping, pos + len);
    896	return ret;
    897}
    898
    899static int ext2_write_end(struct file *file, struct address_space *mapping,
    900			loff_t pos, unsigned len, unsigned copied,
    901			struct page *page, void *fsdata)
    902{
    903	int ret;
    904
    905	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
    906	if (ret < len)
    907		ext2_write_failed(mapping, pos + len);
    908	return ret;
    909}
    910
    911static int
    912ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
    913		loff_t pos, unsigned len, struct page **pagep, void **fsdata)
    914{
    915	int ret;
    916
    917	ret = nobh_write_begin(mapping, pos, len, pagep, fsdata,
    918			       ext2_get_block);
    919	if (ret < 0)
    920		ext2_write_failed(mapping, pos + len);
    921	return ret;
    922}
    923
    924static int ext2_nobh_writepage(struct page *page,
    925			struct writeback_control *wbc)
    926{
    927	return nobh_writepage(page, ext2_get_block, wbc);
    928}
    929
    930static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
    931{
    932	return generic_block_bmap(mapping,block,ext2_get_block);
    933}
    934
    935static ssize_t
    936ext2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
    937{
    938	struct file *file = iocb->ki_filp;
    939	struct address_space *mapping = file->f_mapping;
    940	struct inode *inode = mapping->host;
    941	size_t count = iov_iter_count(iter);
    942	loff_t offset = iocb->ki_pos;
    943	ssize_t ret;
    944
    945	ret = blockdev_direct_IO(iocb, inode, iter, ext2_get_block);
    946	if (ret < 0 && iov_iter_rw(iter) == WRITE)
    947		ext2_write_failed(mapping, offset + count);
    948	return ret;
    949}
    950
    951static int
    952ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
    953{
    954	return mpage_writepages(mapping, wbc, ext2_get_block);
    955}
    956
    957static int
    958ext2_dax_writepages(struct address_space *mapping, struct writeback_control *wbc)
    959{
    960	struct ext2_sb_info *sbi = EXT2_SB(mapping->host->i_sb);
    961
    962	return dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
    963}
    964
    965const struct address_space_operations ext2_aops = {
    966	.dirty_folio		= block_dirty_folio,
    967	.invalidate_folio	= block_invalidate_folio,
    968	.read_folio		= ext2_read_folio,
    969	.readahead		= ext2_readahead,
    970	.writepage		= ext2_writepage,
    971	.write_begin		= ext2_write_begin,
    972	.write_end		= ext2_write_end,
    973	.bmap			= ext2_bmap,
    974	.direct_IO		= ext2_direct_IO,
    975	.writepages		= ext2_writepages,
    976	.migratepage		= buffer_migrate_page,
    977	.is_partially_uptodate	= block_is_partially_uptodate,
    978	.error_remove_page	= generic_error_remove_page,
    979};
    980
    981const struct address_space_operations ext2_nobh_aops = {
    982	.dirty_folio		= block_dirty_folio,
    983	.invalidate_folio	= block_invalidate_folio,
    984	.read_folio		= ext2_read_folio,
    985	.readahead		= ext2_readahead,
    986	.writepage		= ext2_nobh_writepage,
    987	.write_begin		= ext2_nobh_write_begin,
    988	.write_end		= nobh_write_end,
    989	.bmap			= ext2_bmap,
    990	.direct_IO		= ext2_direct_IO,
    991	.writepages		= ext2_writepages,
    992	.migratepage		= buffer_migrate_page,
    993	.error_remove_page	= generic_error_remove_page,
    994};
    995
    996static const struct address_space_operations ext2_dax_aops = {
    997	.writepages		= ext2_dax_writepages,
    998	.direct_IO		= noop_direct_IO,
    999	.dirty_folio		= noop_dirty_folio,
   1000};
   1001
   1002/*
   1003 * Probably it should be a library function... search for first non-zero word
   1004 * or memcmp with zero_page, whatever is better for particular architecture.
   1005 * Linus?
   1006 */
   1007static inline int all_zeroes(__le32 *p, __le32 *q)
   1008{
   1009	while (p < q)
   1010		if (*p++)
   1011			return 0;
   1012	return 1;
   1013}
   1014
   1015/**
   1016 *	ext2_find_shared - find the indirect blocks for partial truncation.
   1017 *	@inode:	  inode in question
   1018 *	@depth:	  depth of the affected branch
   1019 *	@offsets: offsets of pointers in that branch (see ext2_block_to_path)
   1020 *	@chain:	  place to store the pointers to partial indirect blocks
   1021 *	@top:	  place to the (detached) top of branch
   1022 *
   1023 *	This is a helper function used by ext2_truncate().
   1024 *
   1025 *	When we do truncate() we may have to clean the ends of several indirect
   1026 *	blocks but leave the blocks themselves alive. Block is partially
   1027 *	truncated if some data below the new i_size is referred from it (and
   1028 *	it is on the path to the first completely truncated data block, indeed).
   1029 *	We have to free the top of that path along with everything to the right
   1030 *	of the path. Since no allocation past the truncation point is possible
   1031 *	until ext2_truncate() finishes, we may safely do the latter, but top
   1032 *	of branch may require special attention - pageout below the truncation
   1033 *	point might try to populate it.
   1034 *
   1035 *	We atomically detach the top of branch from the tree, store the block
   1036 *	number of its root in *@top, pointers to buffer_heads of partially
   1037 *	truncated blocks - in @chain[].bh and pointers to their last elements
   1038 *	that should not be removed - in @chain[].p. Return value is the pointer
   1039 *	to last filled element of @chain.
   1040 *
   1041 *	The work left to caller to do the actual freeing of subtrees:
   1042 *		a) free the subtree starting from *@top
   1043 *		b) free the subtrees whose roots are stored in
   1044 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
   1045 *		c) free the subtrees growing from the inode past the @chain[0].p
   1046 *			(no partially truncated stuff there).
   1047 */
   1048
   1049static Indirect *ext2_find_shared(struct inode *inode,
   1050				int depth,
   1051				int offsets[4],
   1052				Indirect chain[4],
   1053				__le32 *top)
   1054{
   1055	Indirect *partial, *p;
   1056	int k, err;
   1057
   1058	*top = 0;
   1059	for (k = depth; k > 1 && !offsets[k-1]; k--)
   1060		;
   1061	partial = ext2_get_branch(inode, k, offsets, chain, &err);
   1062	if (!partial)
   1063		partial = chain + k-1;
   1064	/*
   1065	 * If the branch acquired continuation since we've looked at it -
   1066	 * fine, it should all survive and (new) top doesn't belong to us.
   1067	 */
   1068	write_lock(&EXT2_I(inode)->i_meta_lock);
   1069	if (!partial->key && *partial->p) {
   1070		write_unlock(&EXT2_I(inode)->i_meta_lock);
   1071		goto no_top;
   1072	}
   1073	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
   1074		;
   1075	/*
   1076	 * OK, we've found the last block that must survive. The rest of our
   1077	 * branch should be detached before unlocking. However, if that rest
   1078	 * of branch is all ours and does not grow immediately from the inode
   1079	 * it's easier to cheat and just decrement partial->p.
   1080	 */
   1081	if (p == chain + k - 1 && p > chain) {
   1082		p->p--;
   1083	} else {
   1084		*top = *p->p;
   1085		*p->p = 0;
   1086	}
   1087	write_unlock(&EXT2_I(inode)->i_meta_lock);
   1088
   1089	while(partial > p)
   1090	{
   1091		brelse(partial->bh);
   1092		partial--;
   1093	}
   1094no_top:
   1095	return partial;
   1096}
   1097
   1098/**
   1099 *	ext2_free_data - free a list of data blocks
   1100 *	@inode:	inode we are dealing with
   1101 *	@p:	array of block numbers
   1102 *	@q:	points immediately past the end of array
   1103 *
   1104 *	We are freeing all blocks referred from that array (numbers are
   1105 *	stored as little-endian 32-bit) and updating @inode->i_blocks
   1106 *	appropriately.
   1107 */
   1108static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
   1109{
   1110	unsigned long block_to_free = 0, count = 0;
   1111	unsigned long nr;
   1112
   1113	for ( ; p < q ; p++) {
   1114		nr = le32_to_cpu(*p);
   1115		if (nr) {
   1116			*p = 0;
   1117			/* accumulate blocks to free if they're contiguous */
   1118			if (count == 0)
   1119				goto free_this;
   1120			else if (block_to_free == nr - count)
   1121				count++;
   1122			else {
   1123				ext2_free_blocks (inode, block_to_free, count);
   1124				mark_inode_dirty(inode);
   1125			free_this:
   1126				block_to_free = nr;
   1127				count = 1;
   1128			}
   1129		}
   1130	}
   1131	if (count > 0) {
   1132		ext2_free_blocks (inode, block_to_free, count);
   1133		mark_inode_dirty(inode);
   1134	}
   1135}
   1136
   1137/**
   1138 *	ext2_free_branches - free an array of branches
   1139 *	@inode:	inode we are dealing with
   1140 *	@p:	array of block numbers
   1141 *	@q:	pointer immediately past the end of array
   1142 *	@depth:	depth of the branches to free
   1143 *
   1144 *	We are freeing all blocks referred from these branches (numbers are
   1145 *	stored as little-endian 32-bit) and updating @inode->i_blocks
   1146 *	appropriately.
   1147 */
   1148static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
   1149{
   1150	struct buffer_head * bh;
   1151	unsigned long nr;
   1152
   1153	if (depth--) {
   1154		int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
   1155		for ( ; p < q ; p++) {
   1156			nr = le32_to_cpu(*p);
   1157			if (!nr)
   1158				continue;
   1159			*p = 0;
   1160			bh = sb_bread(inode->i_sb, nr);
   1161			/*
   1162			 * A read failure? Report error and clear slot
   1163			 * (should be rare).
   1164			 */ 
   1165			if (!bh) {
   1166				ext2_error(inode->i_sb, "ext2_free_branches",
   1167					"Read failure, inode=%ld, block=%ld",
   1168					inode->i_ino, nr);
   1169				continue;
   1170			}
   1171			ext2_free_branches(inode,
   1172					   (__le32*)bh->b_data,
   1173					   (__le32*)bh->b_data + addr_per_block,
   1174					   depth);
   1175			bforget(bh);
   1176			ext2_free_blocks(inode, nr, 1);
   1177			mark_inode_dirty(inode);
   1178		}
   1179	} else
   1180		ext2_free_data(inode, p, q);
   1181}
   1182
   1183/* mapping->invalidate_lock must be held when calling this function */
   1184static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
   1185{
   1186	__le32 *i_data = EXT2_I(inode)->i_data;
   1187	struct ext2_inode_info *ei = EXT2_I(inode);
   1188	int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
   1189	int offsets[4];
   1190	Indirect chain[4];
   1191	Indirect *partial;
   1192	__le32 nr = 0;
   1193	int n;
   1194	long iblock;
   1195	unsigned blocksize;
   1196	blocksize = inode->i_sb->s_blocksize;
   1197	iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
   1198
   1199#ifdef CONFIG_FS_DAX
   1200	WARN_ON(!rwsem_is_locked(&inode->i_mapping->invalidate_lock));
   1201#endif
   1202
   1203	n = ext2_block_to_path(inode, iblock, offsets, NULL);
   1204	if (n == 0)
   1205		return;
   1206
   1207	/*
   1208	 * From here we block out all ext2_get_block() callers who want to
   1209	 * modify the block allocation tree.
   1210	 */
   1211	mutex_lock(&ei->truncate_mutex);
   1212
   1213	if (n == 1) {
   1214		ext2_free_data(inode, i_data+offsets[0],
   1215					i_data + EXT2_NDIR_BLOCKS);
   1216		goto do_indirects;
   1217	}
   1218
   1219	partial = ext2_find_shared(inode, n, offsets, chain, &nr);
   1220	/* Kill the top of shared branch (already detached) */
   1221	if (nr) {
   1222		if (partial == chain)
   1223			mark_inode_dirty(inode);
   1224		else
   1225			mark_buffer_dirty_inode(partial->bh, inode);
   1226		ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
   1227	}
   1228	/* Clear the ends of indirect blocks on the shared branch */
   1229	while (partial > chain) {
   1230		ext2_free_branches(inode,
   1231				   partial->p + 1,
   1232				   (__le32*)partial->bh->b_data+addr_per_block,
   1233				   (chain+n-1) - partial);
   1234		mark_buffer_dirty_inode(partial->bh, inode);
   1235		brelse (partial->bh);
   1236		partial--;
   1237	}
   1238do_indirects:
   1239	/* Kill the remaining (whole) subtrees */
   1240	switch (offsets[0]) {
   1241		default:
   1242			nr = i_data[EXT2_IND_BLOCK];
   1243			if (nr) {
   1244				i_data[EXT2_IND_BLOCK] = 0;
   1245				mark_inode_dirty(inode);
   1246				ext2_free_branches(inode, &nr, &nr+1, 1);
   1247			}
   1248			fallthrough;
   1249		case EXT2_IND_BLOCK:
   1250			nr = i_data[EXT2_DIND_BLOCK];
   1251			if (nr) {
   1252				i_data[EXT2_DIND_BLOCK] = 0;
   1253				mark_inode_dirty(inode);
   1254				ext2_free_branches(inode, &nr, &nr+1, 2);
   1255			}
   1256			fallthrough;
   1257		case EXT2_DIND_BLOCK:
   1258			nr = i_data[EXT2_TIND_BLOCK];
   1259			if (nr) {
   1260				i_data[EXT2_TIND_BLOCK] = 0;
   1261				mark_inode_dirty(inode);
   1262				ext2_free_branches(inode, &nr, &nr+1, 3);
   1263			}
   1264			break;
   1265		case EXT2_TIND_BLOCK:
   1266			;
   1267	}
   1268
   1269	ext2_discard_reservation(inode);
   1270
   1271	mutex_unlock(&ei->truncate_mutex);
   1272}
   1273
   1274static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
   1275{
   1276	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
   1277	    S_ISLNK(inode->i_mode)))
   1278		return;
   1279	if (ext2_inode_is_fast_symlink(inode))
   1280		return;
   1281
   1282	filemap_invalidate_lock(inode->i_mapping);
   1283	__ext2_truncate_blocks(inode, offset);
   1284	filemap_invalidate_unlock(inode->i_mapping);
   1285}
   1286
   1287static int ext2_setsize(struct inode *inode, loff_t newsize)
   1288{
   1289	int error;
   1290
   1291	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
   1292	    S_ISLNK(inode->i_mode)))
   1293		return -EINVAL;
   1294	if (ext2_inode_is_fast_symlink(inode))
   1295		return -EINVAL;
   1296	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
   1297		return -EPERM;
   1298
   1299	inode_dio_wait(inode);
   1300
   1301	if (IS_DAX(inode)) {
   1302		error = dax_zero_range(inode, newsize,
   1303				       PAGE_ALIGN(newsize) - newsize, NULL,
   1304				       &ext2_iomap_ops);
   1305	} else if (test_opt(inode->i_sb, NOBH))
   1306		error = nobh_truncate_page(inode->i_mapping,
   1307				newsize, ext2_get_block);
   1308	else
   1309		error = block_truncate_page(inode->i_mapping,
   1310				newsize, ext2_get_block);
   1311	if (error)
   1312		return error;
   1313
   1314	filemap_invalidate_lock(inode->i_mapping);
   1315	truncate_setsize(inode, newsize);
   1316	__ext2_truncate_blocks(inode, newsize);
   1317	filemap_invalidate_unlock(inode->i_mapping);
   1318
   1319	inode->i_mtime = inode->i_ctime = current_time(inode);
   1320	if (inode_needs_sync(inode)) {
   1321		sync_mapping_buffers(inode->i_mapping);
   1322		sync_inode_metadata(inode, 1);
   1323	} else {
   1324		mark_inode_dirty(inode);
   1325	}
   1326
   1327	return 0;
   1328}
   1329
   1330static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
   1331					struct buffer_head **p)
   1332{
   1333	struct buffer_head * bh;
   1334	unsigned long block_group;
   1335	unsigned long block;
   1336	unsigned long offset;
   1337	struct ext2_group_desc * gdp;
   1338
   1339	*p = NULL;
   1340	if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
   1341	    ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
   1342		goto Einval;
   1343
   1344	block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
   1345	gdp = ext2_get_group_desc(sb, block_group, NULL);
   1346	if (!gdp)
   1347		goto Egdp;
   1348	/*
   1349	 * Figure out the offset within the block group inode table
   1350	 */
   1351	offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
   1352	block = le32_to_cpu(gdp->bg_inode_table) +
   1353		(offset >> EXT2_BLOCK_SIZE_BITS(sb));
   1354	if (!(bh = sb_bread(sb, block)))
   1355		goto Eio;
   1356
   1357	*p = bh;
   1358	offset &= (EXT2_BLOCK_SIZE(sb) - 1);
   1359	return (struct ext2_inode *) (bh->b_data + offset);
   1360
   1361Einval:
   1362	ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
   1363		   (unsigned long) ino);
   1364	return ERR_PTR(-EINVAL);
   1365Eio:
   1366	ext2_error(sb, "ext2_get_inode",
   1367		   "unable to read inode block - inode=%lu, block=%lu",
   1368		   (unsigned long) ino, block);
   1369Egdp:
   1370	return ERR_PTR(-EIO);
   1371}
   1372
   1373void ext2_set_inode_flags(struct inode *inode)
   1374{
   1375	unsigned int flags = EXT2_I(inode)->i_flags;
   1376
   1377	inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME |
   1378				S_DIRSYNC | S_DAX);
   1379	if (flags & EXT2_SYNC_FL)
   1380		inode->i_flags |= S_SYNC;
   1381	if (flags & EXT2_APPEND_FL)
   1382		inode->i_flags |= S_APPEND;
   1383	if (flags & EXT2_IMMUTABLE_FL)
   1384		inode->i_flags |= S_IMMUTABLE;
   1385	if (flags & EXT2_NOATIME_FL)
   1386		inode->i_flags |= S_NOATIME;
   1387	if (flags & EXT2_DIRSYNC_FL)
   1388		inode->i_flags |= S_DIRSYNC;
   1389	if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
   1390		inode->i_flags |= S_DAX;
   1391}
   1392
   1393void ext2_set_file_ops(struct inode *inode)
   1394{
   1395	inode->i_op = &ext2_file_inode_operations;
   1396	inode->i_fop = &ext2_file_operations;
   1397	if (IS_DAX(inode))
   1398		inode->i_mapping->a_ops = &ext2_dax_aops;
   1399	else if (test_opt(inode->i_sb, NOBH))
   1400		inode->i_mapping->a_ops = &ext2_nobh_aops;
   1401	else
   1402		inode->i_mapping->a_ops = &ext2_aops;
   1403}
   1404
   1405struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
   1406{
   1407	struct ext2_inode_info *ei;
   1408	struct buffer_head * bh = NULL;
   1409	struct ext2_inode *raw_inode;
   1410	struct inode *inode;
   1411	long ret = -EIO;
   1412	int n;
   1413	uid_t i_uid;
   1414	gid_t i_gid;
   1415
   1416	inode = iget_locked(sb, ino);
   1417	if (!inode)
   1418		return ERR_PTR(-ENOMEM);
   1419	if (!(inode->i_state & I_NEW))
   1420		return inode;
   1421
   1422	ei = EXT2_I(inode);
   1423	ei->i_block_alloc_info = NULL;
   1424
   1425	raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
   1426	if (IS_ERR(raw_inode)) {
   1427		ret = PTR_ERR(raw_inode);
   1428 		goto bad_inode;
   1429	}
   1430
   1431	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
   1432	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
   1433	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
   1434	if (!(test_opt (inode->i_sb, NO_UID32))) {
   1435		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
   1436		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
   1437	}
   1438	i_uid_write(inode, i_uid);
   1439	i_gid_write(inode, i_gid);
   1440	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
   1441	inode->i_size = le32_to_cpu(raw_inode->i_size);
   1442	inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
   1443	inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
   1444	inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
   1445	inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
   1446	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
   1447	/* We now have enough fields to check if the inode was active or not.
   1448	 * This is needed because nfsd might try to access dead inodes
   1449	 * the test is that same one that e2fsck uses
   1450	 * NeilBrown 1999oct15
   1451	 */
   1452	if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
   1453		/* this inode is deleted */
   1454		ret = -ESTALE;
   1455		goto bad_inode;
   1456	}
   1457	inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
   1458	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
   1459	ext2_set_inode_flags(inode);
   1460	ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
   1461	ei->i_frag_no = raw_inode->i_frag;
   1462	ei->i_frag_size = raw_inode->i_fsize;
   1463	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
   1464	ei->i_dir_acl = 0;
   1465
   1466	if (ei->i_file_acl &&
   1467	    !ext2_data_block_valid(EXT2_SB(sb), ei->i_file_acl, 1)) {
   1468		ext2_error(sb, "ext2_iget", "bad extended attribute block %u",
   1469			   ei->i_file_acl);
   1470		ret = -EFSCORRUPTED;
   1471		goto bad_inode;
   1472	}
   1473
   1474	if (S_ISREG(inode->i_mode))
   1475		inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
   1476	else
   1477		ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
   1478	if (i_size_read(inode) < 0) {
   1479		ret = -EFSCORRUPTED;
   1480		goto bad_inode;
   1481	}
   1482	ei->i_dtime = 0;
   1483	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
   1484	ei->i_state = 0;
   1485	ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
   1486	ei->i_dir_start_lookup = 0;
   1487
   1488	/*
   1489	 * NOTE! The in-memory inode i_data array is in little-endian order
   1490	 * even on big-endian machines: we do NOT byteswap the block numbers!
   1491	 */
   1492	for (n = 0; n < EXT2_N_BLOCKS; n++)
   1493		ei->i_data[n] = raw_inode->i_block[n];
   1494
   1495	if (S_ISREG(inode->i_mode)) {
   1496		ext2_set_file_ops(inode);
   1497	} else if (S_ISDIR(inode->i_mode)) {
   1498		inode->i_op = &ext2_dir_inode_operations;
   1499		inode->i_fop = &ext2_dir_operations;
   1500		if (test_opt(inode->i_sb, NOBH))
   1501			inode->i_mapping->a_ops = &ext2_nobh_aops;
   1502		else
   1503			inode->i_mapping->a_ops = &ext2_aops;
   1504	} else if (S_ISLNK(inode->i_mode)) {
   1505		if (ext2_inode_is_fast_symlink(inode)) {
   1506			inode->i_link = (char *)ei->i_data;
   1507			inode->i_op = &ext2_fast_symlink_inode_operations;
   1508			nd_terminate_link(ei->i_data, inode->i_size,
   1509				sizeof(ei->i_data) - 1);
   1510		} else {
   1511			inode->i_op = &ext2_symlink_inode_operations;
   1512			inode_nohighmem(inode);
   1513			if (test_opt(inode->i_sb, NOBH))
   1514				inode->i_mapping->a_ops = &ext2_nobh_aops;
   1515			else
   1516				inode->i_mapping->a_ops = &ext2_aops;
   1517		}
   1518	} else {
   1519		inode->i_op = &ext2_special_inode_operations;
   1520		if (raw_inode->i_block[0])
   1521			init_special_inode(inode, inode->i_mode,
   1522			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
   1523		else 
   1524			init_special_inode(inode, inode->i_mode,
   1525			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
   1526	}
   1527	brelse (bh);
   1528	unlock_new_inode(inode);
   1529	return inode;
   1530	
   1531bad_inode:
   1532	brelse(bh);
   1533	iget_failed(inode);
   1534	return ERR_PTR(ret);
   1535}
   1536
   1537static int __ext2_write_inode(struct inode *inode, int do_sync)
   1538{
   1539	struct ext2_inode_info *ei = EXT2_I(inode);
   1540	struct super_block *sb = inode->i_sb;
   1541	ino_t ino = inode->i_ino;
   1542	uid_t uid = i_uid_read(inode);
   1543	gid_t gid = i_gid_read(inode);
   1544	struct buffer_head * bh;
   1545	struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
   1546	int n;
   1547	int err = 0;
   1548
   1549	if (IS_ERR(raw_inode))
   1550 		return -EIO;
   1551
   1552	/* For fields not tracking in the in-memory inode,
   1553	 * initialise them to zero for new inodes. */
   1554	if (ei->i_state & EXT2_STATE_NEW)
   1555		memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
   1556
   1557	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
   1558	if (!(test_opt(sb, NO_UID32))) {
   1559		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
   1560		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
   1561/*
   1562 * Fix up interoperability with old kernels. Otherwise, old inodes get
   1563 * re-used with the upper 16 bits of the uid/gid intact
   1564 */
   1565		if (!ei->i_dtime) {
   1566			raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
   1567			raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
   1568		} else {
   1569			raw_inode->i_uid_high = 0;
   1570			raw_inode->i_gid_high = 0;
   1571		}
   1572	} else {
   1573		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
   1574		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
   1575		raw_inode->i_uid_high = 0;
   1576		raw_inode->i_gid_high = 0;
   1577	}
   1578	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
   1579	raw_inode->i_size = cpu_to_le32(inode->i_size);
   1580	raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
   1581	raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
   1582	raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
   1583
   1584	raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
   1585	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
   1586	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
   1587	raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
   1588	raw_inode->i_frag = ei->i_frag_no;
   1589	raw_inode->i_fsize = ei->i_frag_size;
   1590	raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
   1591	if (!S_ISREG(inode->i_mode))
   1592		raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
   1593	else {
   1594		raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
   1595		if (inode->i_size > 0x7fffffffULL) {
   1596			if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
   1597					EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
   1598			    EXT2_SB(sb)->s_es->s_rev_level ==
   1599					cpu_to_le32(EXT2_GOOD_OLD_REV)) {
   1600			       /* If this is the first large file
   1601				* created, add a flag to the superblock.
   1602				*/
   1603				spin_lock(&EXT2_SB(sb)->s_lock);
   1604				ext2_update_dynamic_rev(sb);
   1605				EXT2_SET_RO_COMPAT_FEATURE(sb,
   1606					EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
   1607				spin_unlock(&EXT2_SB(sb)->s_lock);
   1608				ext2_sync_super(sb, EXT2_SB(sb)->s_es, 1);
   1609			}
   1610		}
   1611	}
   1612	
   1613	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
   1614	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
   1615		if (old_valid_dev(inode->i_rdev)) {
   1616			raw_inode->i_block[0] =
   1617				cpu_to_le32(old_encode_dev(inode->i_rdev));
   1618			raw_inode->i_block[1] = 0;
   1619		} else {
   1620			raw_inode->i_block[0] = 0;
   1621			raw_inode->i_block[1] =
   1622				cpu_to_le32(new_encode_dev(inode->i_rdev));
   1623			raw_inode->i_block[2] = 0;
   1624		}
   1625	} else for (n = 0; n < EXT2_N_BLOCKS; n++)
   1626		raw_inode->i_block[n] = ei->i_data[n];
   1627	mark_buffer_dirty(bh);
   1628	if (do_sync) {
   1629		sync_dirty_buffer(bh);
   1630		if (buffer_req(bh) && !buffer_uptodate(bh)) {
   1631			printk ("IO error syncing ext2 inode [%s:%08lx]\n",
   1632				sb->s_id, (unsigned long) ino);
   1633			err = -EIO;
   1634		}
   1635	}
   1636	ei->i_state &= ~EXT2_STATE_NEW;
   1637	brelse (bh);
   1638	return err;
   1639}
   1640
   1641int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
   1642{
   1643	return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
   1644}
   1645
   1646int ext2_getattr(struct user_namespace *mnt_userns, const struct path *path,
   1647		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
   1648{
   1649	struct inode *inode = d_inode(path->dentry);
   1650	struct ext2_inode_info *ei = EXT2_I(inode);
   1651	unsigned int flags;
   1652
   1653	flags = ei->i_flags & EXT2_FL_USER_VISIBLE;
   1654	if (flags & EXT2_APPEND_FL)
   1655		stat->attributes |= STATX_ATTR_APPEND;
   1656	if (flags & EXT2_COMPR_FL)
   1657		stat->attributes |= STATX_ATTR_COMPRESSED;
   1658	if (flags & EXT2_IMMUTABLE_FL)
   1659		stat->attributes |= STATX_ATTR_IMMUTABLE;
   1660	if (flags & EXT2_NODUMP_FL)
   1661		stat->attributes |= STATX_ATTR_NODUMP;
   1662	stat->attributes_mask |= (STATX_ATTR_APPEND |
   1663			STATX_ATTR_COMPRESSED |
   1664			STATX_ATTR_ENCRYPTED |
   1665			STATX_ATTR_IMMUTABLE |
   1666			STATX_ATTR_NODUMP);
   1667
   1668	generic_fillattr(&init_user_ns, inode, stat);
   1669	return 0;
   1670}
   1671
   1672int ext2_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
   1673		 struct iattr *iattr)
   1674{
   1675	struct inode *inode = d_inode(dentry);
   1676	int error;
   1677
   1678	error = setattr_prepare(&init_user_ns, dentry, iattr);
   1679	if (error)
   1680		return error;
   1681
   1682	if (is_quota_modification(inode, iattr)) {
   1683		error = dquot_initialize(inode);
   1684		if (error)
   1685			return error;
   1686	}
   1687	if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
   1688	    (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
   1689		error = dquot_transfer(inode, iattr);
   1690		if (error)
   1691			return error;
   1692	}
   1693	if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
   1694		error = ext2_setsize(inode, iattr->ia_size);
   1695		if (error)
   1696			return error;
   1697	}
   1698	setattr_copy(&init_user_ns, inode, iattr);
   1699	if (iattr->ia_valid & ATTR_MODE)
   1700		error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
   1701	mark_inode_dirty(inode);
   1702
   1703	return error;
   1704}