cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

extents_status.c (61787B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 *  fs/ext4/extents_status.c
      4 *
      5 * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
      6 * Modified by
      7 *	Allison Henderson <achender@linux.vnet.ibm.com>
      8 *	Hugh Dickins <hughd@google.com>
      9 *	Zheng Liu <wenqing.lz@taobao.com>
     10 *
     11 * Ext4 extents status tree core functions.
     12 */
     13#include <linux/list_sort.h>
     14#include <linux/proc_fs.h>
     15#include <linux/seq_file.h>
     16#include "ext4.h"
     17
     18#include <trace/events/ext4.h>
     19
     20/*
     21 * According to previous discussion in Ext4 Developer Workshop, we
     22 * will introduce a new structure called io tree to track all extent
     23 * status in order to solve some problems that we have met
     24 * (e.g. Reservation space warning), and provide extent-level locking.
     25 * Delay extent tree is the first step to achieve this goal.  It is
     26 * original built by Yongqiang Yang.  At that time it is called delay
     27 * extent tree, whose goal is only track delayed extents in memory to
     28 * simplify the implementation of fiemap and bigalloc, and introduce
     29 * lseek SEEK_DATA/SEEK_HOLE support.  That is why it is still called
     30 * delay extent tree at the first commit.  But for better understand
     31 * what it does, it has been rename to extent status tree.
     32 *
     33 * Step1:
     34 * Currently the first step has been done.  All delayed extents are
     35 * tracked in the tree.  It maintains the delayed extent when a delayed
     36 * allocation is issued, and the delayed extent is written out or
     37 * invalidated.  Therefore the implementation of fiemap and bigalloc
     38 * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
     39 *
     40 * The following comment describes the implemenmtation of extent
     41 * status tree and future works.
     42 *
     43 * Step2:
     44 * In this step all extent status are tracked by extent status tree.
     45 * Thus, we can first try to lookup a block mapping in this tree before
     46 * finding it in extent tree.  Hence, single extent cache can be removed
     47 * because extent status tree can do a better job.  Extents in status
     48 * tree are loaded on-demand.  Therefore, the extent status tree may not
     49 * contain all of the extents in a file.  Meanwhile we define a shrinker
     50 * to reclaim memory from extent status tree because fragmented extent
     51 * tree will make status tree cost too much memory.  written/unwritten/-
     52 * hole extents in the tree will be reclaimed by this shrinker when we
     53 * are under high memory pressure.  Delayed extents will not be
     54 * reclimed because fiemap, bigalloc, and seek_data/hole need it.
     55 */
     56
     57/*
     58 * Extent status tree implementation for ext4.
     59 *
     60 *
     61 * ==========================================================================
     62 * Extent status tree tracks all extent status.
     63 *
     64 * 1. Why we need to implement extent status tree?
     65 *
     66 * Without extent status tree, ext4 identifies a delayed extent by looking
     67 * up page cache, this has several deficiencies - complicated, buggy,
     68 * and inefficient code.
     69 *
     70 * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
     71 * block or a range of blocks are belonged to a delayed extent.
     72 *
     73 * Let us have a look at how they do without extent status tree.
     74 *   --	FIEMAP
     75 *	FIEMAP looks up page cache to identify delayed allocations from holes.
     76 *
     77 *   --	SEEK_HOLE/DATA
     78 *	SEEK_HOLE/DATA has the same problem as FIEMAP.
     79 *
     80 *   --	bigalloc
     81 *	bigalloc looks up page cache to figure out if a block is
     82 *	already under delayed allocation or not to determine whether
     83 *	quota reserving is needed for the cluster.
     84 *
     85 *   --	writeout
     86 *	Writeout looks up whole page cache to see if a buffer is
     87 *	mapped, If there are not very many delayed buffers, then it is
     88 *	time consuming.
     89 *
     90 * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
     91 * bigalloc and writeout can figure out if a block or a range of
     92 * blocks is under delayed allocation(belonged to a delayed extent) or
     93 * not by searching the extent tree.
     94 *
     95 *
     96 * ==========================================================================
     97 * 2. Ext4 extent status tree impelmentation
     98 *
     99 *   --	extent
    100 *	A extent is a range of blocks which are contiguous logically and
    101 *	physically.  Unlike extent in extent tree, this extent in ext4 is
    102 *	a in-memory struct, there is no corresponding on-disk data.  There
    103 *	is no limit on length of extent, so an extent can contain as many
    104 *	blocks as they are contiguous logically and physically.
    105 *
    106 *   --	extent status tree
    107 *	Every inode has an extent status tree and all allocation blocks
    108 *	are added to the tree with different status.  The extent in the
    109 *	tree are ordered by logical block no.
    110 *
    111 *   --	operations on a extent status tree
    112 *	There are three important operations on a delayed extent tree: find
    113 *	next extent, adding a extent(a range of blocks) and removing a extent.
    114 *
    115 *   --	race on a extent status tree
    116 *	Extent status tree is protected by inode->i_es_lock.
    117 *
    118 *   --	memory consumption
    119 *      Fragmented extent tree will make extent status tree cost too much
    120 *      memory.  Hence, we will reclaim written/unwritten/hole extents from
    121 *      the tree under a heavy memory pressure.
    122 *
    123 *
    124 * ==========================================================================
    125 * 3. Performance analysis
    126 *
    127 *   --	overhead
    128 *	1. There is a cache extent for write access, so if writes are
    129 *	not very random, adding space operaions are in O(1) time.
    130 *
    131 *   --	gain
    132 *	2. Code is much simpler, more readable, more maintainable and
    133 *	more efficient.
    134 *
    135 *
    136 * ==========================================================================
    137 * 4. TODO list
    138 *
    139 *   -- Refactor delayed space reservation
    140 *
    141 *   -- Extent-level locking
    142 */
    143
    144static struct kmem_cache *ext4_es_cachep;
    145static struct kmem_cache *ext4_pending_cachep;
    146
    147static int __es_insert_extent(struct inode *inode, struct extent_status *newes);
    148static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
    149			      ext4_lblk_t end, int *reserved);
    150static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan);
    151static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
    152		       struct ext4_inode_info *locked_ei);
    153static void __revise_pending(struct inode *inode, ext4_lblk_t lblk,
    154			     ext4_lblk_t len);
    155
    156int __init ext4_init_es(void)
    157{
    158	ext4_es_cachep = kmem_cache_create("ext4_extent_status",
    159					   sizeof(struct extent_status),
    160					   0, (SLAB_RECLAIM_ACCOUNT), NULL);
    161	if (ext4_es_cachep == NULL)
    162		return -ENOMEM;
    163	return 0;
    164}
    165
    166void ext4_exit_es(void)
    167{
    168	kmem_cache_destroy(ext4_es_cachep);
    169}
    170
    171void ext4_es_init_tree(struct ext4_es_tree *tree)
    172{
    173	tree->root = RB_ROOT;
    174	tree->cache_es = NULL;
    175}
    176
    177#ifdef ES_DEBUG__
    178static void ext4_es_print_tree(struct inode *inode)
    179{
    180	struct ext4_es_tree *tree;
    181	struct rb_node *node;
    182
    183	printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
    184	tree = &EXT4_I(inode)->i_es_tree;
    185	node = rb_first(&tree->root);
    186	while (node) {
    187		struct extent_status *es;
    188		es = rb_entry(node, struct extent_status, rb_node);
    189		printk(KERN_DEBUG " [%u/%u) %llu %x",
    190		       es->es_lblk, es->es_len,
    191		       ext4_es_pblock(es), ext4_es_status(es));
    192		node = rb_next(node);
    193	}
    194	printk(KERN_DEBUG "\n");
    195}
    196#else
    197#define ext4_es_print_tree(inode)
    198#endif
    199
    200static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
    201{
    202	BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
    203	return es->es_lblk + es->es_len - 1;
    204}
    205
    206/*
    207 * search through the tree for an delayed extent with a given offset.  If
    208 * it can't be found, try to find next extent.
    209 */
    210static struct extent_status *__es_tree_search(struct rb_root *root,
    211					      ext4_lblk_t lblk)
    212{
    213	struct rb_node *node = root->rb_node;
    214	struct extent_status *es = NULL;
    215
    216	while (node) {
    217		es = rb_entry(node, struct extent_status, rb_node);
    218		if (lblk < es->es_lblk)
    219			node = node->rb_left;
    220		else if (lblk > ext4_es_end(es))
    221			node = node->rb_right;
    222		else
    223			return es;
    224	}
    225
    226	if (es && lblk < es->es_lblk)
    227		return es;
    228
    229	if (es && lblk > ext4_es_end(es)) {
    230		node = rb_next(&es->rb_node);
    231		return node ? rb_entry(node, struct extent_status, rb_node) :
    232			      NULL;
    233	}
    234
    235	return NULL;
    236}
    237
    238/*
    239 * ext4_es_find_extent_range - find extent with specified status within block
    240 *                             range or next extent following block range in
    241 *                             extents status tree
    242 *
    243 * @inode - file containing the range
    244 * @matching_fn - pointer to function that matches extents with desired status
    245 * @lblk - logical block defining start of range
    246 * @end - logical block defining end of range
    247 * @es - extent found, if any
    248 *
    249 * Find the first extent within the block range specified by @lblk and @end
    250 * in the extents status tree that satisfies @matching_fn.  If a match
    251 * is found, it's returned in @es.  If not, and a matching extent is found
    252 * beyond the block range, it's returned in @es.  If no match is found, an
    253 * extent is returned in @es whose es_lblk, es_len, and es_pblk components
    254 * are 0.
    255 */
    256static void __es_find_extent_range(struct inode *inode,
    257				   int (*matching_fn)(struct extent_status *es),
    258				   ext4_lblk_t lblk, ext4_lblk_t end,
    259				   struct extent_status *es)
    260{
    261	struct ext4_es_tree *tree = NULL;
    262	struct extent_status *es1 = NULL;
    263	struct rb_node *node;
    264
    265	WARN_ON(es == NULL);
    266	WARN_ON(end < lblk);
    267
    268	tree = &EXT4_I(inode)->i_es_tree;
    269
    270	/* see if the extent has been cached */
    271	es->es_lblk = es->es_len = es->es_pblk = 0;
    272	if (tree->cache_es) {
    273		es1 = tree->cache_es;
    274		if (in_range(lblk, es1->es_lblk, es1->es_len)) {
    275			es_debug("%u cached by [%u/%u) %llu %x\n",
    276				 lblk, es1->es_lblk, es1->es_len,
    277				 ext4_es_pblock(es1), ext4_es_status(es1));
    278			goto out;
    279		}
    280	}
    281
    282	es1 = __es_tree_search(&tree->root, lblk);
    283
    284out:
    285	if (es1 && !matching_fn(es1)) {
    286		while ((node = rb_next(&es1->rb_node)) != NULL) {
    287			es1 = rb_entry(node, struct extent_status, rb_node);
    288			if (es1->es_lblk > end) {
    289				es1 = NULL;
    290				break;
    291			}
    292			if (matching_fn(es1))
    293				break;
    294		}
    295	}
    296
    297	if (es1 && matching_fn(es1)) {
    298		tree->cache_es = es1;
    299		es->es_lblk = es1->es_lblk;
    300		es->es_len = es1->es_len;
    301		es->es_pblk = es1->es_pblk;
    302	}
    303
    304}
    305
    306/*
    307 * Locking for __es_find_extent_range() for external use
    308 */
    309void ext4_es_find_extent_range(struct inode *inode,
    310			       int (*matching_fn)(struct extent_status *es),
    311			       ext4_lblk_t lblk, ext4_lblk_t end,
    312			       struct extent_status *es)
    313{
    314	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
    315		return;
    316
    317	trace_ext4_es_find_extent_range_enter(inode, lblk);
    318
    319	read_lock(&EXT4_I(inode)->i_es_lock);
    320	__es_find_extent_range(inode, matching_fn, lblk, end, es);
    321	read_unlock(&EXT4_I(inode)->i_es_lock);
    322
    323	trace_ext4_es_find_extent_range_exit(inode, es);
    324}
    325
    326/*
    327 * __es_scan_range - search block range for block with specified status
    328 *                   in extents status tree
    329 *
    330 * @inode - file containing the range
    331 * @matching_fn - pointer to function that matches extents with desired status
    332 * @lblk - logical block defining start of range
    333 * @end - logical block defining end of range
    334 *
    335 * Returns true if at least one block in the specified block range satisfies
    336 * the criterion specified by @matching_fn, and false if not.  If at least
    337 * one extent has the specified status, then there is at least one block
    338 * in the cluster with that status.  Should only be called by code that has
    339 * taken i_es_lock.
    340 */
    341static bool __es_scan_range(struct inode *inode,
    342			    int (*matching_fn)(struct extent_status *es),
    343			    ext4_lblk_t start, ext4_lblk_t end)
    344{
    345	struct extent_status es;
    346
    347	__es_find_extent_range(inode, matching_fn, start, end, &es);
    348	if (es.es_len == 0)
    349		return false;   /* no matching extent in the tree */
    350	else if (es.es_lblk <= start &&
    351		 start < es.es_lblk + es.es_len)
    352		return true;
    353	else if (start <= es.es_lblk && es.es_lblk <= end)
    354		return true;
    355	else
    356		return false;
    357}
    358/*
    359 * Locking for __es_scan_range() for external use
    360 */
    361bool ext4_es_scan_range(struct inode *inode,
    362			int (*matching_fn)(struct extent_status *es),
    363			ext4_lblk_t lblk, ext4_lblk_t end)
    364{
    365	bool ret;
    366
    367	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
    368		return false;
    369
    370	read_lock(&EXT4_I(inode)->i_es_lock);
    371	ret = __es_scan_range(inode, matching_fn, lblk, end);
    372	read_unlock(&EXT4_I(inode)->i_es_lock);
    373
    374	return ret;
    375}
    376
    377/*
    378 * __es_scan_clu - search cluster for block with specified status in
    379 *                 extents status tree
    380 *
    381 * @inode - file containing the cluster
    382 * @matching_fn - pointer to function that matches extents with desired status
    383 * @lblk - logical block in cluster to be searched
    384 *
    385 * Returns true if at least one extent in the cluster containing @lblk
    386 * satisfies the criterion specified by @matching_fn, and false if not.  If at
    387 * least one extent has the specified status, then there is at least one block
    388 * in the cluster with that status.  Should only be called by code that has
    389 * taken i_es_lock.
    390 */
    391static bool __es_scan_clu(struct inode *inode,
    392			  int (*matching_fn)(struct extent_status *es),
    393			  ext4_lblk_t lblk)
    394{
    395	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
    396	ext4_lblk_t lblk_start, lblk_end;
    397
    398	lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
    399	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
    400
    401	return __es_scan_range(inode, matching_fn, lblk_start, lblk_end);
    402}
    403
    404/*
    405 * Locking for __es_scan_clu() for external use
    406 */
    407bool ext4_es_scan_clu(struct inode *inode,
    408		      int (*matching_fn)(struct extent_status *es),
    409		      ext4_lblk_t lblk)
    410{
    411	bool ret;
    412
    413	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
    414		return false;
    415
    416	read_lock(&EXT4_I(inode)->i_es_lock);
    417	ret = __es_scan_clu(inode, matching_fn, lblk);
    418	read_unlock(&EXT4_I(inode)->i_es_lock);
    419
    420	return ret;
    421}
    422
    423static void ext4_es_list_add(struct inode *inode)
    424{
    425	struct ext4_inode_info *ei = EXT4_I(inode);
    426	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
    427
    428	if (!list_empty(&ei->i_es_list))
    429		return;
    430
    431	spin_lock(&sbi->s_es_lock);
    432	if (list_empty(&ei->i_es_list)) {
    433		list_add_tail(&ei->i_es_list, &sbi->s_es_list);
    434		sbi->s_es_nr_inode++;
    435	}
    436	spin_unlock(&sbi->s_es_lock);
    437}
    438
    439static void ext4_es_list_del(struct inode *inode)
    440{
    441	struct ext4_inode_info *ei = EXT4_I(inode);
    442	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
    443
    444	spin_lock(&sbi->s_es_lock);
    445	if (!list_empty(&ei->i_es_list)) {
    446		list_del_init(&ei->i_es_list);
    447		sbi->s_es_nr_inode--;
    448		WARN_ON_ONCE(sbi->s_es_nr_inode < 0);
    449	}
    450	spin_unlock(&sbi->s_es_lock);
    451}
    452
    453static struct extent_status *
    454ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len,
    455		     ext4_fsblk_t pblk)
    456{
    457	struct extent_status *es;
    458	es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
    459	if (es == NULL)
    460		return NULL;
    461	es->es_lblk = lblk;
    462	es->es_len = len;
    463	es->es_pblk = pblk;
    464
    465	/*
    466	 * We don't count delayed extent because we never try to reclaim them
    467	 */
    468	if (!ext4_es_is_delayed(es)) {
    469		if (!EXT4_I(inode)->i_es_shk_nr++)
    470			ext4_es_list_add(inode);
    471		percpu_counter_inc(&EXT4_SB(inode->i_sb)->
    472					s_es_stats.es_stats_shk_cnt);
    473	}
    474
    475	EXT4_I(inode)->i_es_all_nr++;
    476	percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
    477
    478	return es;
    479}
    480
    481static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
    482{
    483	EXT4_I(inode)->i_es_all_nr--;
    484	percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
    485
    486	/* Decrease the shrink counter when this es is not delayed */
    487	if (!ext4_es_is_delayed(es)) {
    488		BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0);
    489		if (!--EXT4_I(inode)->i_es_shk_nr)
    490			ext4_es_list_del(inode);
    491		percpu_counter_dec(&EXT4_SB(inode->i_sb)->
    492					s_es_stats.es_stats_shk_cnt);
    493	}
    494
    495	kmem_cache_free(ext4_es_cachep, es);
    496}
    497
    498/*
    499 * Check whether or not two extents can be merged
    500 * Condition:
    501 *  - logical block number is contiguous
    502 *  - physical block number is contiguous
    503 *  - status is equal
    504 */
    505static int ext4_es_can_be_merged(struct extent_status *es1,
    506				 struct extent_status *es2)
    507{
    508	if (ext4_es_type(es1) != ext4_es_type(es2))
    509		return 0;
    510
    511	if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) {
    512		pr_warn("ES assertion failed when merging extents. "
    513			"The sum of lengths of es1 (%d) and es2 (%d) "
    514			"is bigger than allowed file size (%d)\n",
    515			es1->es_len, es2->es_len, EXT_MAX_BLOCKS);
    516		WARN_ON(1);
    517		return 0;
    518	}
    519
    520	if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
    521		return 0;
    522
    523	if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
    524	    (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
    525		return 1;
    526
    527	if (ext4_es_is_hole(es1))
    528		return 1;
    529
    530	/* we need to check delayed extent is without unwritten status */
    531	if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
    532		return 1;
    533
    534	return 0;
    535}
    536
    537static struct extent_status *
    538ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
    539{
    540	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
    541	struct extent_status *es1;
    542	struct rb_node *node;
    543
    544	node = rb_prev(&es->rb_node);
    545	if (!node)
    546		return es;
    547
    548	es1 = rb_entry(node, struct extent_status, rb_node);
    549	if (ext4_es_can_be_merged(es1, es)) {
    550		es1->es_len += es->es_len;
    551		if (ext4_es_is_referenced(es))
    552			ext4_es_set_referenced(es1);
    553		rb_erase(&es->rb_node, &tree->root);
    554		ext4_es_free_extent(inode, es);
    555		es = es1;
    556	}
    557
    558	return es;
    559}
    560
    561static struct extent_status *
    562ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
    563{
    564	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
    565	struct extent_status *es1;
    566	struct rb_node *node;
    567
    568	node = rb_next(&es->rb_node);
    569	if (!node)
    570		return es;
    571
    572	es1 = rb_entry(node, struct extent_status, rb_node);
    573	if (ext4_es_can_be_merged(es, es1)) {
    574		es->es_len += es1->es_len;
    575		if (ext4_es_is_referenced(es1))
    576			ext4_es_set_referenced(es);
    577		rb_erase(node, &tree->root);
    578		ext4_es_free_extent(inode, es1);
    579	}
    580
    581	return es;
    582}
    583
    584#ifdef ES_AGGRESSIVE_TEST
    585#include "ext4_extents.h"	/* Needed when ES_AGGRESSIVE_TEST is defined */
    586
    587static void ext4_es_insert_extent_ext_check(struct inode *inode,
    588					    struct extent_status *es)
    589{
    590	struct ext4_ext_path *path = NULL;
    591	struct ext4_extent *ex;
    592	ext4_lblk_t ee_block;
    593	ext4_fsblk_t ee_start;
    594	unsigned short ee_len;
    595	int depth, ee_status, es_status;
    596
    597	path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE);
    598	if (IS_ERR(path))
    599		return;
    600
    601	depth = ext_depth(inode);
    602	ex = path[depth].p_ext;
    603
    604	if (ex) {
    605
    606		ee_block = le32_to_cpu(ex->ee_block);
    607		ee_start = ext4_ext_pblock(ex);
    608		ee_len = ext4_ext_get_actual_len(ex);
    609
    610		ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0;
    611		es_status = ext4_es_is_unwritten(es) ? 1 : 0;
    612
    613		/*
    614		 * Make sure ex and es are not overlap when we try to insert
    615		 * a delayed/hole extent.
    616		 */
    617		if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
    618			if (in_range(es->es_lblk, ee_block, ee_len)) {
    619				pr_warn("ES insert assertion failed for "
    620					"inode: %lu we can find an extent "
    621					"at block [%d/%d/%llu/%c], but we "
    622					"want to add a delayed/hole extent "
    623					"[%d/%d/%llu/%x]\n",
    624					inode->i_ino, ee_block, ee_len,
    625					ee_start, ee_status ? 'u' : 'w',
    626					es->es_lblk, es->es_len,
    627					ext4_es_pblock(es), ext4_es_status(es));
    628			}
    629			goto out;
    630		}
    631
    632		/*
    633		 * We don't check ee_block == es->es_lblk, etc. because es
    634		 * might be a part of whole extent, vice versa.
    635		 */
    636		if (es->es_lblk < ee_block ||
    637		    ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
    638			pr_warn("ES insert assertion failed for inode: %lu "
    639				"ex_status [%d/%d/%llu/%c] != "
    640				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
    641				ee_block, ee_len, ee_start,
    642				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
    643				ext4_es_pblock(es), es_status ? 'u' : 'w');
    644			goto out;
    645		}
    646
    647		if (ee_status ^ es_status) {
    648			pr_warn("ES insert assertion failed for inode: %lu "
    649				"ex_status [%d/%d/%llu/%c] != "
    650				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
    651				ee_block, ee_len, ee_start,
    652				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
    653				ext4_es_pblock(es), es_status ? 'u' : 'w');
    654		}
    655	} else {
    656		/*
    657		 * We can't find an extent on disk.  So we need to make sure
    658		 * that we don't want to add an written/unwritten extent.
    659		 */
    660		if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
    661			pr_warn("ES insert assertion failed for inode: %lu "
    662				"can't find an extent at block %d but we want "
    663				"to add a written/unwritten extent "
    664				"[%d/%d/%llu/%x]\n", inode->i_ino,
    665				es->es_lblk, es->es_lblk, es->es_len,
    666				ext4_es_pblock(es), ext4_es_status(es));
    667		}
    668	}
    669out:
    670	ext4_ext_drop_refs(path);
    671	kfree(path);
    672}
    673
    674static void ext4_es_insert_extent_ind_check(struct inode *inode,
    675					    struct extent_status *es)
    676{
    677	struct ext4_map_blocks map;
    678	int retval;
    679
    680	/*
    681	 * Here we call ext4_ind_map_blocks to lookup a block mapping because
    682	 * 'Indirect' structure is defined in indirect.c.  So we couldn't
    683	 * access direct/indirect tree from outside.  It is too dirty to define
    684	 * this function in indirect.c file.
    685	 */
    686
    687	map.m_lblk = es->es_lblk;
    688	map.m_len = es->es_len;
    689
    690	retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
    691	if (retval > 0) {
    692		if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
    693			/*
    694			 * We want to add a delayed/hole extent but this
    695			 * block has been allocated.
    696			 */
    697			pr_warn("ES insert assertion failed for inode: %lu "
    698				"We can find blocks but we want to add a "
    699				"delayed/hole extent [%d/%d/%llu/%x]\n",
    700				inode->i_ino, es->es_lblk, es->es_len,
    701				ext4_es_pblock(es), ext4_es_status(es));
    702			return;
    703		} else if (ext4_es_is_written(es)) {
    704			if (retval != es->es_len) {
    705				pr_warn("ES insert assertion failed for "
    706					"inode: %lu retval %d != es_len %d\n",
    707					inode->i_ino, retval, es->es_len);
    708				return;
    709			}
    710			if (map.m_pblk != ext4_es_pblock(es)) {
    711				pr_warn("ES insert assertion failed for "
    712					"inode: %lu m_pblk %llu != "
    713					"es_pblk %llu\n",
    714					inode->i_ino, map.m_pblk,
    715					ext4_es_pblock(es));
    716				return;
    717			}
    718		} else {
    719			/*
    720			 * We don't need to check unwritten extent because
    721			 * indirect-based file doesn't have it.
    722			 */
    723			BUG();
    724		}
    725	} else if (retval == 0) {
    726		if (ext4_es_is_written(es)) {
    727			pr_warn("ES insert assertion failed for inode: %lu "
    728				"We can't find the block but we want to add "
    729				"a written extent [%d/%d/%llu/%x]\n",
    730				inode->i_ino, es->es_lblk, es->es_len,
    731				ext4_es_pblock(es), ext4_es_status(es));
    732			return;
    733		}
    734	}
    735}
    736
    737static inline void ext4_es_insert_extent_check(struct inode *inode,
    738					       struct extent_status *es)
    739{
    740	/*
    741	 * We don't need to worry about the race condition because
    742	 * caller takes i_data_sem locking.
    743	 */
    744	BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
    745	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
    746		ext4_es_insert_extent_ext_check(inode, es);
    747	else
    748		ext4_es_insert_extent_ind_check(inode, es);
    749}
    750#else
    751static inline void ext4_es_insert_extent_check(struct inode *inode,
    752					       struct extent_status *es)
    753{
    754}
    755#endif
    756
    757static int __es_insert_extent(struct inode *inode, struct extent_status *newes)
    758{
    759	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
    760	struct rb_node **p = &tree->root.rb_node;
    761	struct rb_node *parent = NULL;
    762	struct extent_status *es;
    763
    764	while (*p) {
    765		parent = *p;
    766		es = rb_entry(parent, struct extent_status, rb_node);
    767
    768		if (newes->es_lblk < es->es_lblk) {
    769			if (ext4_es_can_be_merged(newes, es)) {
    770				/*
    771				 * Here we can modify es_lblk directly
    772				 * because it isn't overlapped.
    773				 */
    774				es->es_lblk = newes->es_lblk;
    775				es->es_len += newes->es_len;
    776				if (ext4_es_is_written(es) ||
    777				    ext4_es_is_unwritten(es))
    778					ext4_es_store_pblock(es,
    779							     newes->es_pblk);
    780				es = ext4_es_try_to_merge_left(inode, es);
    781				goto out;
    782			}
    783			p = &(*p)->rb_left;
    784		} else if (newes->es_lblk > ext4_es_end(es)) {
    785			if (ext4_es_can_be_merged(es, newes)) {
    786				es->es_len += newes->es_len;
    787				es = ext4_es_try_to_merge_right(inode, es);
    788				goto out;
    789			}
    790			p = &(*p)->rb_right;
    791		} else {
    792			BUG();
    793			return -EINVAL;
    794		}
    795	}
    796
    797	es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len,
    798				  newes->es_pblk);
    799	if (!es)
    800		return -ENOMEM;
    801	rb_link_node(&es->rb_node, parent, p);
    802	rb_insert_color(&es->rb_node, &tree->root);
    803
    804out:
    805	tree->cache_es = es;
    806	return 0;
    807}
    808
    809/*
    810 * ext4_es_insert_extent() adds information to an inode's extent
    811 * status tree.
    812 *
    813 * Return 0 on success, error code on failure.
    814 */
    815int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
    816			  ext4_lblk_t len, ext4_fsblk_t pblk,
    817			  unsigned int status)
    818{
    819	struct extent_status newes;
    820	ext4_lblk_t end = lblk + len - 1;
    821	int err = 0;
    822	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
    823
    824	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
    825		return 0;
    826
    827	es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n",
    828		 lblk, len, pblk, status, inode->i_ino);
    829
    830	if (!len)
    831		return 0;
    832
    833	BUG_ON(end < lblk);
    834
    835	if ((status & EXTENT_STATUS_DELAYED) &&
    836	    (status & EXTENT_STATUS_WRITTEN)) {
    837		ext4_warning(inode->i_sb, "Inserting extent [%u/%u] as "
    838				" delayed and written which can potentially "
    839				" cause data loss.", lblk, len);
    840		WARN_ON(1);
    841	}
    842
    843	newes.es_lblk = lblk;
    844	newes.es_len = len;
    845	ext4_es_store_pblock_status(&newes, pblk, status);
    846	trace_ext4_es_insert_extent(inode, &newes);
    847
    848	ext4_es_insert_extent_check(inode, &newes);
    849
    850	write_lock(&EXT4_I(inode)->i_es_lock);
    851	err = __es_remove_extent(inode, lblk, end, NULL);
    852	if (err != 0)
    853		goto error;
    854retry:
    855	err = __es_insert_extent(inode, &newes);
    856	if (err == -ENOMEM && __es_shrink(EXT4_SB(inode->i_sb),
    857					  128, EXT4_I(inode)))
    858		goto retry;
    859	if (err == -ENOMEM && !ext4_es_is_delayed(&newes))
    860		err = 0;
    861
    862	if (sbi->s_cluster_ratio > 1 && test_opt(inode->i_sb, DELALLOC) &&
    863	    (status & EXTENT_STATUS_WRITTEN ||
    864	     status & EXTENT_STATUS_UNWRITTEN))
    865		__revise_pending(inode, lblk, len);
    866
    867error:
    868	write_unlock(&EXT4_I(inode)->i_es_lock);
    869
    870	ext4_es_print_tree(inode);
    871
    872	return err;
    873}
    874
    875/*
    876 * ext4_es_cache_extent() inserts information into the extent status
    877 * tree if and only if there isn't information about the range in
    878 * question already.
    879 */
    880void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk,
    881			  ext4_lblk_t len, ext4_fsblk_t pblk,
    882			  unsigned int status)
    883{
    884	struct extent_status *es;
    885	struct extent_status newes;
    886	ext4_lblk_t end = lblk + len - 1;
    887
    888	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
    889		return;
    890
    891	newes.es_lblk = lblk;
    892	newes.es_len = len;
    893	ext4_es_store_pblock_status(&newes, pblk, status);
    894	trace_ext4_es_cache_extent(inode, &newes);
    895
    896	if (!len)
    897		return;
    898
    899	BUG_ON(end < lblk);
    900
    901	write_lock(&EXT4_I(inode)->i_es_lock);
    902
    903	es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk);
    904	if (!es || es->es_lblk > end)
    905		__es_insert_extent(inode, &newes);
    906	write_unlock(&EXT4_I(inode)->i_es_lock);
    907}
    908
    909/*
    910 * ext4_es_lookup_extent() looks up an extent in extent status tree.
    911 *
    912 * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
    913 *
    914 * Return: 1 on found, 0 on not
    915 */
    916int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
    917			  ext4_lblk_t *next_lblk,
    918			  struct extent_status *es)
    919{
    920	struct ext4_es_tree *tree;
    921	struct ext4_es_stats *stats;
    922	struct extent_status *es1 = NULL;
    923	struct rb_node *node;
    924	int found = 0;
    925
    926	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
    927		return 0;
    928
    929	trace_ext4_es_lookup_extent_enter(inode, lblk);
    930	es_debug("lookup extent in block %u\n", lblk);
    931
    932	tree = &EXT4_I(inode)->i_es_tree;
    933	read_lock(&EXT4_I(inode)->i_es_lock);
    934
    935	/* find extent in cache firstly */
    936	es->es_lblk = es->es_len = es->es_pblk = 0;
    937	if (tree->cache_es) {
    938		es1 = tree->cache_es;
    939		if (in_range(lblk, es1->es_lblk, es1->es_len)) {
    940			es_debug("%u cached by [%u/%u)\n",
    941				 lblk, es1->es_lblk, es1->es_len);
    942			found = 1;
    943			goto out;
    944		}
    945	}
    946
    947	node = tree->root.rb_node;
    948	while (node) {
    949		es1 = rb_entry(node, struct extent_status, rb_node);
    950		if (lblk < es1->es_lblk)
    951			node = node->rb_left;
    952		else if (lblk > ext4_es_end(es1))
    953			node = node->rb_right;
    954		else {
    955			found = 1;
    956			break;
    957		}
    958	}
    959
    960out:
    961	stats = &EXT4_SB(inode->i_sb)->s_es_stats;
    962	if (found) {
    963		BUG_ON(!es1);
    964		es->es_lblk = es1->es_lblk;
    965		es->es_len = es1->es_len;
    966		es->es_pblk = es1->es_pblk;
    967		if (!ext4_es_is_referenced(es1))
    968			ext4_es_set_referenced(es1);
    969		percpu_counter_inc(&stats->es_stats_cache_hits);
    970		if (next_lblk) {
    971			node = rb_next(&es1->rb_node);
    972			if (node) {
    973				es1 = rb_entry(node, struct extent_status,
    974					       rb_node);
    975				*next_lblk = es1->es_lblk;
    976			} else
    977				*next_lblk = 0;
    978		}
    979	} else {
    980		percpu_counter_inc(&stats->es_stats_cache_misses);
    981	}
    982
    983	read_unlock(&EXT4_I(inode)->i_es_lock);
    984
    985	trace_ext4_es_lookup_extent_exit(inode, es, found);
    986	return found;
    987}
    988
    989struct rsvd_count {
    990	int ndelonly;
    991	bool first_do_lblk_found;
    992	ext4_lblk_t first_do_lblk;
    993	ext4_lblk_t last_do_lblk;
    994	struct extent_status *left_es;
    995	bool partial;
    996	ext4_lblk_t lclu;
    997};
    998
    999/*
   1000 * init_rsvd - initialize reserved count data before removing block range
   1001 *	       in file from extent status tree
   1002 *
   1003 * @inode - file containing range
   1004 * @lblk - first block in range
   1005 * @es - pointer to first extent in range
   1006 * @rc - pointer to reserved count data
   1007 *
   1008 * Assumes es is not NULL
   1009 */
   1010static void init_rsvd(struct inode *inode, ext4_lblk_t lblk,
   1011		      struct extent_status *es, struct rsvd_count *rc)
   1012{
   1013	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
   1014	struct rb_node *node;
   1015
   1016	rc->ndelonly = 0;
   1017
   1018	/*
   1019	 * for bigalloc, note the first delonly block in the range has not
   1020	 * been found, record the extent containing the block to the left of
   1021	 * the region to be removed, if any, and note that there's no partial
   1022	 * cluster to track
   1023	 */
   1024	if (sbi->s_cluster_ratio > 1) {
   1025		rc->first_do_lblk_found = false;
   1026		if (lblk > es->es_lblk) {
   1027			rc->left_es = es;
   1028		} else {
   1029			node = rb_prev(&es->rb_node);
   1030			rc->left_es = node ? rb_entry(node,
   1031						      struct extent_status,
   1032						      rb_node) : NULL;
   1033		}
   1034		rc->partial = false;
   1035	}
   1036}
   1037
   1038/*
   1039 * count_rsvd - count the clusters containing delayed and not unwritten
   1040 *		(delonly) blocks in a range within an extent and add to
   1041 *	        the running tally in rsvd_count
   1042 *
   1043 * @inode - file containing extent
   1044 * @lblk - first block in range
   1045 * @len - length of range in blocks
   1046 * @es - pointer to extent containing clusters to be counted
   1047 * @rc - pointer to reserved count data
   1048 *
   1049 * Tracks partial clusters found at the beginning and end of extents so
   1050 * they aren't overcounted when they span adjacent extents
   1051 */
   1052static void count_rsvd(struct inode *inode, ext4_lblk_t lblk, long len,
   1053		       struct extent_status *es, struct rsvd_count *rc)
   1054{
   1055	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
   1056	ext4_lblk_t i, end, nclu;
   1057
   1058	if (!ext4_es_is_delonly(es))
   1059		return;
   1060
   1061	WARN_ON(len <= 0);
   1062
   1063	if (sbi->s_cluster_ratio == 1) {
   1064		rc->ndelonly += (int) len;
   1065		return;
   1066	}
   1067
   1068	/* bigalloc */
   1069
   1070	i = (lblk < es->es_lblk) ? es->es_lblk : lblk;
   1071	end = lblk + (ext4_lblk_t) len - 1;
   1072	end = (end > ext4_es_end(es)) ? ext4_es_end(es) : end;
   1073
   1074	/* record the first block of the first delonly extent seen */
   1075	if (!rc->first_do_lblk_found) {
   1076		rc->first_do_lblk = i;
   1077		rc->first_do_lblk_found = true;
   1078	}
   1079
   1080	/* update the last lblk in the region seen so far */
   1081	rc->last_do_lblk = end;
   1082
   1083	/*
   1084	 * if we're tracking a partial cluster and the current extent
   1085	 * doesn't start with it, count it and stop tracking
   1086	 */
   1087	if (rc->partial && (rc->lclu != EXT4_B2C(sbi, i))) {
   1088		rc->ndelonly++;
   1089		rc->partial = false;
   1090	}
   1091
   1092	/*
   1093	 * if the first cluster doesn't start on a cluster boundary but
   1094	 * ends on one, count it
   1095	 */
   1096	if (EXT4_LBLK_COFF(sbi, i) != 0) {
   1097		if (end >= EXT4_LBLK_CFILL(sbi, i)) {
   1098			rc->ndelonly++;
   1099			rc->partial = false;
   1100			i = EXT4_LBLK_CFILL(sbi, i) + 1;
   1101		}
   1102	}
   1103
   1104	/*
   1105	 * if the current cluster starts on a cluster boundary, count the
   1106	 * number of whole delonly clusters in the extent
   1107	 */
   1108	if ((i + sbi->s_cluster_ratio - 1) <= end) {
   1109		nclu = (end - i + 1) >> sbi->s_cluster_bits;
   1110		rc->ndelonly += nclu;
   1111		i += nclu << sbi->s_cluster_bits;
   1112	}
   1113
   1114	/*
   1115	 * start tracking a partial cluster if there's a partial at the end
   1116	 * of the current extent and we're not already tracking one
   1117	 */
   1118	if (!rc->partial && i <= end) {
   1119		rc->partial = true;
   1120		rc->lclu = EXT4_B2C(sbi, i);
   1121	}
   1122}
   1123
   1124/*
   1125 * __pr_tree_search - search for a pending cluster reservation
   1126 *
   1127 * @root - root of pending reservation tree
   1128 * @lclu - logical cluster to search for
   1129 *
   1130 * Returns the pending reservation for the cluster identified by @lclu
   1131 * if found.  If not, returns a reservation for the next cluster if any,
   1132 * and if not, returns NULL.
   1133 */
   1134static struct pending_reservation *__pr_tree_search(struct rb_root *root,
   1135						    ext4_lblk_t lclu)
   1136{
   1137	struct rb_node *node = root->rb_node;
   1138	struct pending_reservation *pr = NULL;
   1139
   1140	while (node) {
   1141		pr = rb_entry(node, struct pending_reservation, rb_node);
   1142		if (lclu < pr->lclu)
   1143			node = node->rb_left;
   1144		else if (lclu > pr->lclu)
   1145			node = node->rb_right;
   1146		else
   1147			return pr;
   1148	}
   1149	if (pr && lclu < pr->lclu)
   1150		return pr;
   1151	if (pr && lclu > pr->lclu) {
   1152		node = rb_next(&pr->rb_node);
   1153		return node ? rb_entry(node, struct pending_reservation,
   1154				       rb_node) : NULL;
   1155	}
   1156	return NULL;
   1157}
   1158
   1159/*
   1160 * get_rsvd - calculates and returns the number of cluster reservations to be
   1161 *	      released when removing a block range from the extent status tree
   1162 *	      and releases any pending reservations within the range
   1163 *
   1164 * @inode - file containing block range
   1165 * @end - last block in range
   1166 * @right_es - pointer to extent containing next block beyond end or NULL
   1167 * @rc - pointer to reserved count data
   1168 *
   1169 * The number of reservations to be released is equal to the number of
   1170 * clusters containing delayed and not unwritten (delonly) blocks within
   1171 * the range, minus the number of clusters still containing delonly blocks
   1172 * at the ends of the range, and minus the number of pending reservations
   1173 * within the range.
   1174 */
   1175static unsigned int get_rsvd(struct inode *inode, ext4_lblk_t end,
   1176			     struct extent_status *right_es,
   1177			     struct rsvd_count *rc)
   1178{
   1179	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
   1180	struct pending_reservation *pr;
   1181	struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
   1182	struct rb_node *node;
   1183	ext4_lblk_t first_lclu, last_lclu;
   1184	bool left_delonly, right_delonly, count_pending;
   1185	struct extent_status *es;
   1186
   1187	if (sbi->s_cluster_ratio > 1) {
   1188		/* count any remaining partial cluster */
   1189		if (rc->partial)
   1190			rc->ndelonly++;
   1191
   1192		if (rc->ndelonly == 0)
   1193			return 0;
   1194
   1195		first_lclu = EXT4_B2C(sbi, rc->first_do_lblk);
   1196		last_lclu = EXT4_B2C(sbi, rc->last_do_lblk);
   1197
   1198		/*
   1199		 * decrease the delonly count by the number of clusters at the
   1200		 * ends of the range that still contain delonly blocks -
   1201		 * these clusters still need to be reserved
   1202		 */
   1203		left_delonly = right_delonly = false;
   1204
   1205		es = rc->left_es;
   1206		while (es && ext4_es_end(es) >=
   1207		       EXT4_LBLK_CMASK(sbi, rc->first_do_lblk)) {
   1208			if (ext4_es_is_delonly(es)) {
   1209				rc->ndelonly--;
   1210				left_delonly = true;
   1211				break;
   1212			}
   1213			node = rb_prev(&es->rb_node);
   1214			if (!node)
   1215				break;
   1216			es = rb_entry(node, struct extent_status, rb_node);
   1217		}
   1218		if (right_es && (!left_delonly || first_lclu != last_lclu)) {
   1219			if (end < ext4_es_end(right_es)) {
   1220				es = right_es;
   1221			} else {
   1222				node = rb_next(&right_es->rb_node);
   1223				es = node ? rb_entry(node, struct extent_status,
   1224						     rb_node) : NULL;
   1225			}
   1226			while (es && es->es_lblk <=
   1227			       EXT4_LBLK_CFILL(sbi, rc->last_do_lblk)) {
   1228				if (ext4_es_is_delonly(es)) {
   1229					rc->ndelonly--;
   1230					right_delonly = true;
   1231					break;
   1232				}
   1233				node = rb_next(&es->rb_node);
   1234				if (!node)
   1235					break;
   1236				es = rb_entry(node, struct extent_status,
   1237					      rb_node);
   1238			}
   1239		}
   1240
   1241		/*
   1242		 * Determine the block range that should be searched for
   1243		 * pending reservations, if any.  Clusters on the ends of the
   1244		 * original removed range containing delonly blocks are
   1245		 * excluded.  They've already been accounted for and it's not
   1246		 * possible to determine if an associated pending reservation
   1247		 * should be released with the information available in the
   1248		 * extents status tree.
   1249		 */
   1250		if (first_lclu == last_lclu) {
   1251			if (left_delonly | right_delonly)
   1252				count_pending = false;
   1253			else
   1254				count_pending = true;
   1255		} else {
   1256			if (left_delonly)
   1257				first_lclu++;
   1258			if (right_delonly)
   1259				last_lclu--;
   1260			if (first_lclu <= last_lclu)
   1261				count_pending = true;
   1262			else
   1263				count_pending = false;
   1264		}
   1265
   1266		/*
   1267		 * a pending reservation found between first_lclu and last_lclu
   1268		 * represents an allocated cluster that contained at least one
   1269		 * delonly block, so the delonly total must be reduced by one
   1270		 * for each pending reservation found and released
   1271		 */
   1272		if (count_pending) {
   1273			pr = __pr_tree_search(&tree->root, first_lclu);
   1274			while (pr && pr->lclu <= last_lclu) {
   1275				rc->ndelonly--;
   1276				node = rb_next(&pr->rb_node);
   1277				rb_erase(&pr->rb_node, &tree->root);
   1278				kmem_cache_free(ext4_pending_cachep, pr);
   1279				if (!node)
   1280					break;
   1281				pr = rb_entry(node, struct pending_reservation,
   1282					      rb_node);
   1283			}
   1284		}
   1285	}
   1286	return rc->ndelonly;
   1287}
   1288
   1289
   1290/*
   1291 * __es_remove_extent - removes block range from extent status tree
   1292 *
   1293 * @inode - file containing range
   1294 * @lblk - first block in range
   1295 * @end - last block in range
   1296 * @reserved - number of cluster reservations released
   1297 *
   1298 * If @reserved is not NULL and delayed allocation is enabled, counts
   1299 * block/cluster reservations freed by removing range and if bigalloc
   1300 * enabled cancels pending reservations as needed. Returns 0 on success,
   1301 * error code on failure.
   1302 */
   1303static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
   1304			      ext4_lblk_t end, int *reserved)
   1305{
   1306	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
   1307	struct rb_node *node;
   1308	struct extent_status *es;
   1309	struct extent_status orig_es;
   1310	ext4_lblk_t len1, len2;
   1311	ext4_fsblk_t block;
   1312	int err;
   1313	bool count_reserved = true;
   1314	struct rsvd_count rc;
   1315
   1316	if (reserved == NULL || !test_opt(inode->i_sb, DELALLOC))
   1317		count_reserved = false;
   1318retry:
   1319	err = 0;
   1320
   1321	es = __es_tree_search(&tree->root, lblk);
   1322	if (!es)
   1323		goto out;
   1324	if (es->es_lblk > end)
   1325		goto out;
   1326
   1327	/* Simply invalidate cache_es. */
   1328	tree->cache_es = NULL;
   1329	if (count_reserved)
   1330		init_rsvd(inode, lblk, es, &rc);
   1331
   1332	orig_es.es_lblk = es->es_lblk;
   1333	orig_es.es_len = es->es_len;
   1334	orig_es.es_pblk = es->es_pblk;
   1335
   1336	len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
   1337	len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
   1338	if (len1 > 0)
   1339		es->es_len = len1;
   1340	if (len2 > 0) {
   1341		if (len1 > 0) {
   1342			struct extent_status newes;
   1343
   1344			newes.es_lblk = end + 1;
   1345			newes.es_len = len2;
   1346			block = 0x7FDEADBEEFULL;
   1347			if (ext4_es_is_written(&orig_es) ||
   1348			    ext4_es_is_unwritten(&orig_es))
   1349				block = ext4_es_pblock(&orig_es) +
   1350					orig_es.es_len - len2;
   1351			ext4_es_store_pblock_status(&newes, block,
   1352						    ext4_es_status(&orig_es));
   1353			err = __es_insert_extent(inode, &newes);
   1354			if (err) {
   1355				es->es_lblk = orig_es.es_lblk;
   1356				es->es_len = orig_es.es_len;
   1357				if ((err == -ENOMEM) &&
   1358				    __es_shrink(EXT4_SB(inode->i_sb),
   1359							128, EXT4_I(inode)))
   1360					goto retry;
   1361				goto out;
   1362			}
   1363		} else {
   1364			es->es_lblk = end + 1;
   1365			es->es_len = len2;
   1366			if (ext4_es_is_written(es) ||
   1367			    ext4_es_is_unwritten(es)) {
   1368				block = orig_es.es_pblk + orig_es.es_len - len2;
   1369				ext4_es_store_pblock(es, block);
   1370			}
   1371		}
   1372		if (count_reserved)
   1373			count_rsvd(inode, lblk, orig_es.es_len - len1 - len2,
   1374				   &orig_es, &rc);
   1375		goto out;
   1376	}
   1377
   1378	if (len1 > 0) {
   1379		if (count_reserved)
   1380			count_rsvd(inode, lblk, orig_es.es_len - len1,
   1381				   &orig_es, &rc);
   1382		node = rb_next(&es->rb_node);
   1383		if (node)
   1384			es = rb_entry(node, struct extent_status, rb_node);
   1385		else
   1386			es = NULL;
   1387	}
   1388
   1389	while (es && ext4_es_end(es) <= end) {
   1390		if (count_reserved)
   1391			count_rsvd(inode, es->es_lblk, es->es_len, es, &rc);
   1392		node = rb_next(&es->rb_node);
   1393		rb_erase(&es->rb_node, &tree->root);
   1394		ext4_es_free_extent(inode, es);
   1395		if (!node) {
   1396			es = NULL;
   1397			break;
   1398		}
   1399		es = rb_entry(node, struct extent_status, rb_node);
   1400	}
   1401
   1402	if (es && es->es_lblk < end + 1) {
   1403		ext4_lblk_t orig_len = es->es_len;
   1404
   1405		len1 = ext4_es_end(es) - end;
   1406		if (count_reserved)
   1407			count_rsvd(inode, es->es_lblk, orig_len - len1,
   1408				   es, &rc);
   1409		es->es_lblk = end + 1;
   1410		es->es_len = len1;
   1411		if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
   1412			block = es->es_pblk + orig_len - len1;
   1413			ext4_es_store_pblock(es, block);
   1414		}
   1415	}
   1416
   1417	if (count_reserved)
   1418		*reserved = get_rsvd(inode, end, es, &rc);
   1419out:
   1420	return err;
   1421}
   1422
   1423/*
   1424 * ext4_es_remove_extent - removes block range from extent status tree
   1425 *
   1426 * @inode - file containing range
   1427 * @lblk - first block in range
   1428 * @len - number of blocks to remove
   1429 *
   1430 * Reduces block/cluster reservation count and for bigalloc cancels pending
   1431 * reservations as needed. Returns 0 on success, error code on failure.
   1432 */
   1433int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
   1434			  ext4_lblk_t len)
   1435{
   1436	ext4_lblk_t end;
   1437	int err = 0;
   1438	int reserved = 0;
   1439
   1440	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
   1441		return 0;
   1442
   1443	trace_ext4_es_remove_extent(inode, lblk, len);
   1444	es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
   1445		 lblk, len, inode->i_ino);
   1446
   1447	if (!len)
   1448		return err;
   1449
   1450	end = lblk + len - 1;
   1451	BUG_ON(end < lblk);
   1452
   1453	/*
   1454	 * ext4_clear_inode() depends on us taking i_es_lock unconditionally
   1455	 * so that we are sure __es_shrink() is done with the inode before it
   1456	 * is reclaimed.
   1457	 */
   1458	write_lock(&EXT4_I(inode)->i_es_lock);
   1459	err = __es_remove_extent(inode, lblk, end, &reserved);
   1460	write_unlock(&EXT4_I(inode)->i_es_lock);
   1461	ext4_es_print_tree(inode);
   1462	ext4_da_release_space(inode, reserved);
   1463	return err;
   1464}
   1465
   1466static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
   1467		       struct ext4_inode_info *locked_ei)
   1468{
   1469	struct ext4_inode_info *ei;
   1470	struct ext4_es_stats *es_stats;
   1471	ktime_t start_time;
   1472	u64 scan_time;
   1473	int nr_to_walk;
   1474	int nr_shrunk = 0;
   1475	int retried = 0, nr_skipped = 0;
   1476
   1477	es_stats = &sbi->s_es_stats;
   1478	start_time = ktime_get();
   1479
   1480retry:
   1481	spin_lock(&sbi->s_es_lock);
   1482	nr_to_walk = sbi->s_es_nr_inode;
   1483	while (nr_to_walk-- > 0) {
   1484		if (list_empty(&sbi->s_es_list)) {
   1485			spin_unlock(&sbi->s_es_lock);
   1486			goto out;
   1487		}
   1488		ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info,
   1489				      i_es_list);
   1490		/* Move the inode to the tail */
   1491		list_move_tail(&ei->i_es_list, &sbi->s_es_list);
   1492
   1493		/*
   1494		 * Normally we try hard to avoid shrinking precached inodes,
   1495		 * but we will as a last resort.
   1496		 */
   1497		if (!retried && ext4_test_inode_state(&ei->vfs_inode,
   1498						EXT4_STATE_EXT_PRECACHED)) {
   1499			nr_skipped++;
   1500			continue;
   1501		}
   1502
   1503		if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) {
   1504			nr_skipped++;
   1505			continue;
   1506		}
   1507		/*
   1508		 * Now we hold i_es_lock which protects us from inode reclaim
   1509		 * freeing inode under us
   1510		 */
   1511		spin_unlock(&sbi->s_es_lock);
   1512
   1513		nr_shrunk += es_reclaim_extents(ei, &nr_to_scan);
   1514		write_unlock(&ei->i_es_lock);
   1515
   1516		if (nr_to_scan <= 0)
   1517			goto out;
   1518		spin_lock(&sbi->s_es_lock);
   1519	}
   1520	spin_unlock(&sbi->s_es_lock);
   1521
   1522	/*
   1523	 * If we skipped any inodes, and we weren't able to make any
   1524	 * forward progress, try again to scan precached inodes.
   1525	 */
   1526	if ((nr_shrunk == 0) && nr_skipped && !retried) {
   1527		retried++;
   1528		goto retry;
   1529	}
   1530
   1531	if (locked_ei && nr_shrunk == 0)
   1532		nr_shrunk = es_reclaim_extents(locked_ei, &nr_to_scan);
   1533
   1534out:
   1535	scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
   1536	if (likely(es_stats->es_stats_scan_time))
   1537		es_stats->es_stats_scan_time = (scan_time +
   1538				es_stats->es_stats_scan_time*3) / 4;
   1539	else
   1540		es_stats->es_stats_scan_time = scan_time;
   1541	if (scan_time > es_stats->es_stats_max_scan_time)
   1542		es_stats->es_stats_max_scan_time = scan_time;
   1543	if (likely(es_stats->es_stats_shrunk))
   1544		es_stats->es_stats_shrunk = (nr_shrunk +
   1545				es_stats->es_stats_shrunk*3) / 4;
   1546	else
   1547		es_stats->es_stats_shrunk = nr_shrunk;
   1548
   1549	trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time,
   1550			     nr_skipped, retried);
   1551	return nr_shrunk;
   1552}
   1553
   1554static unsigned long ext4_es_count(struct shrinker *shrink,
   1555				   struct shrink_control *sc)
   1556{
   1557	unsigned long nr;
   1558	struct ext4_sb_info *sbi;
   1559
   1560	sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker);
   1561	nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
   1562	trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr);
   1563	return nr;
   1564}
   1565
   1566static unsigned long ext4_es_scan(struct shrinker *shrink,
   1567				  struct shrink_control *sc)
   1568{
   1569	struct ext4_sb_info *sbi = container_of(shrink,
   1570					struct ext4_sb_info, s_es_shrinker);
   1571	int nr_to_scan = sc->nr_to_scan;
   1572	int ret, nr_shrunk;
   1573
   1574	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
   1575	trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret);
   1576
   1577	nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL);
   1578
   1579	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
   1580	trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret);
   1581	return nr_shrunk;
   1582}
   1583
   1584int ext4_seq_es_shrinker_info_show(struct seq_file *seq, void *v)
   1585{
   1586	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *) seq->private);
   1587	struct ext4_es_stats *es_stats = &sbi->s_es_stats;
   1588	struct ext4_inode_info *ei, *max = NULL;
   1589	unsigned int inode_cnt = 0;
   1590
   1591	if (v != SEQ_START_TOKEN)
   1592		return 0;
   1593
   1594	/* here we just find an inode that has the max nr. of objects */
   1595	spin_lock(&sbi->s_es_lock);
   1596	list_for_each_entry(ei, &sbi->s_es_list, i_es_list) {
   1597		inode_cnt++;
   1598		if (max && max->i_es_all_nr < ei->i_es_all_nr)
   1599			max = ei;
   1600		else if (!max)
   1601			max = ei;
   1602	}
   1603	spin_unlock(&sbi->s_es_lock);
   1604
   1605	seq_printf(seq, "stats:\n  %lld objects\n  %lld reclaimable objects\n",
   1606		   percpu_counter_sum_positive(&es_stats->es_stats_all_cnt),
   1607		   percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt));
   1608	seq_printf(seq, "  %lld/%lld cache hits/misses\n",
   1609		   percpu_counter_sum_positive(&es_stats->es_stats_cache_hits),
   1610		   percpu_counter_sum_positive(&es_stats->es_stats_cache_misses));
   1611	if (inode_cnt)
   1612		seq_printf(seq, "  %d inodes on list\n", inode_cnt);
   1613
   1614	seq_printf(seq, "average:\n  %llu us scan time\n",
   1615	    div_u64(es_stats->es_stats_scan_time, 1000));
   1616	seq_printf(seq, "  %lu shrunk objects\n", es_stats->es_stats_shrunk);
   1617	if (inode_cnt)
   1618		seq_printf(seq,
   1619		    "maximum:\n  %lu inode (%u objects, %u reclaimable)\n"
   1620		    "  %llu us max scan time\n",
   1621		    max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr,
   1622		    div_u64(es_stats->es_stats_max_scan_time, 1000));
   1623
   1624	return 0;
   1625}
   1626
   1627int ext4_es_register_shrinker(struct ext4_sb_info *sbi)
   1628{
   1629	int err;
   1630
   1631	/* Make sure we have enough bits for physical block number */
   1632	BUILD_BUG_ON(ES_SHIFT < 48);
   1633	INIT_LIST_HEAD(&sbi->s_es_list);
   1634	sbi->s_es_nr_inode = 0;
   1635	spin_lock_init(&sbi->s_es_lock);
   1636	sbi->s_es_stats.es_stats_shrunk = 0;
   1637	err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_hits, 0,
   1638				  GFP_KERNEL);
   1639	if (err)
   1640		return err;
   1641	err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_misses, 0,
   1642				  GFP_KERNEL);
   1643	if (err)
   1644		goto err1;
   1645	sbi->s_es_stats.es_stats_scan_time = 0;
   1646	sbi->s_es_stats.es_stats_max_scan_time = 0;
   1647	err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL);
   1648	if (err)
   1649		goto err2;
   1650	err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL);
   1651	if (err)
   1652		goto err3;
   1653
   1654	sbi->s_es_shrinker.scan_objects = ext4_es_scan;
   1655	sbi->s_es_shrinker.count_objects = ext4_es_count;
   1656	sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
   1657	err = register_shrinker(&sbi->s_es_shrinker);
   1658	if (err)
   1659		goto err4;
   1660
   1661	return 0;
   1662err4:
   1663	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
   1664err3:
   1665	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
   1666err2:
   1667	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
   1668err1:
   1669	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
   1670	return err;
   1671}
   1672
   1673void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
   1674{
   1675	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
   1676	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
   1677	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
   1678	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
   1679	unregister_shrinker(&sbi->s_es_shrinker);
   1680}
   1681
   1682/*
   1683 * Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at
   1684 * most *nr_to_scan extents, update *nr_to_scan accordingly.
   1685 *
   1686 * Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan.
   1687 * Increment *nr_shrunk by the number of reclaimed extents. Also update
   1688 * ei->i_es_shrink_lblk to where we should continue scanning.
   1689 */
   1690static int es_do_reclaim_extents(struct ext4_inode_info *ei, ext4_lblk_t end,
   1691				 int *nr_to_scan, int *nr_shrunk)
   1692{
   1693	struct inode *inode = &ei->vfs_inode;
   1694	struct ext4_es_tree *tree = &ei->i_es_tree;
   1695	struct extent_status *es;
   1696	struct rb_node *node;
   1697
   1698	es = __es_tree_search(&tree->root, ei->i_es_shrink_lblk);
   1699	if (!es)
   1700		goto out_wrap;
   1701
   1702	while (*nr_to_scan > 0) {
   1703		if (es->es_lblk > end) {
   1704			ei->i_es_shrink_lblk = end + 1;
   1705			return 0;
   1706		}
   1707
   1708		(*nr_to_scan)--;
   1709		node = rb_next(&es->rb_node);
   1710		/*
   1711		 * We can't reclaim delayed extent from status tree because
   1712		 * fiemap, bigallic, and seek_data/hole need to use it.
   1713		 */
   1714		if (ext4_es_is_delayed(es))
   1715			goto next;
   1716		if (ext4_es_is_referenced(es)) {
   1717			ext4_es_clear_referenced(es);
   1718			goto next;
   1719		}
   1720
   1721		rb_erase(&es->rb_node, &tree->root);
   1722		ext4_es_free_extent(inode, es);
   1723		(*nr_shrunk)++;
   1724next:
   1725		if (!node)
   1726			goto out_wrap;
   1727		es = rb_entry(node, struct extent_status, rb_node);
   1728	}
   1729	ei->i_es_shrink_lblk = es->es_lblk;
   1730	return 1;
   1731out_wrap:
   1732	ei->i_es_shrink_lblk = 0;
   1733	return 0;
   1734}
   1735
   1736static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan)
   1737{
   1738	struct inode *inode = &ei->vfs_inode;
   1739	int nr_shrunk = 0;
   1740	ext4_lblk_t start = ei->i_es_shrink_lblk;
   1741	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
   1742				      DEFAULT_RATELIMIT_BURST);
   1743
   1744	if (ei->i_es_shk_nr == 0)
   1745		return 0;
   1746
   1747	if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) &&
   1748	    __ratelimit(&_rs))
   1749		ext4_warning(inode->i_sb, "forced shrink of precached extents");
   1750
   1751	if (!es_do_reclaim_extents(ei, EXT_MAX_BLOCKS, nr_to_scan, &nr_shrunk) &&
   1752	    start != 0)
   1753		es_do_reclaim_extents(ei, start - 1, nr_to_scan, &nr_shrunk);
   1754
   1755	ei->i_es_tree.cache_es = NULL;
   1756	return nr_shrunk;
   1757}
   1758
   1759/*
   1760 * Called to support EXT4_IOC_CLEAR_ES_CACHE.  We can only remove
   1761 * discretionary entries from the extent status cache.  (Some entries
   1762 * must be present for proper operations.)
   1763 */
   1764void ext4_clear_inode_es(struct inode *inode)
   1765{
   1766	struct ext4_inode_info *ei = EXT4_I(inode);
   1767	struct extent_status *es;
   1768	struct ext4_es_tree *tree;
   1769	struct rb_node *node;
   1770
   1771	write_lock(&ei->i_es_lock);
   1772	tree = &EXT4_I(inode)->i_es_tree;
   1773	tree->cache_es = NULL;
   1774	node = rb_first(&tree->root);
   1775	while (node) {
   1776		es = rb_entry(node, struct extent_status, rb_node);
   1777		node = rb_next(node);
   1778		if (!ext4_es_is_delayed(es)) {
   1779			rb_erase(&es->rb_node, &tree->root);
   1780			ext4_es_free_extent(inode, es);
   1781		}
   1782	}
   1783	ext4_clear_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
   1784	write_unlock(&ei->i_es_lock);
   1785}
   1786
   1787#ifdef ES_DEBUG__
   1788static void ext4_print_pending_tree(struct inode *inode)
   1789{
   1790	struct ext4_pending_tree *tree;
   1791	struct rb_node *node;
   1792	struct pending_reservation *pr;
   1793
   1794	printk(KERN_DEBUG "pending reservations for inode %lu:", inode->i_ino);
   1795	tree = &EXT4_I(inode)->i_pending_tree;
   1796	node = rb_first(&tree->root);
   1797	while (node) {
   1798		pr = rb_entry(node, struct pending_reservation, rb_node);
   1799		printk(KERN_DEBUG " %u", pr->lclu);
   1800		node = rb_next(node);
   1801	}
   1802	printk(KERN_DEBUG "\n");
   1803}
   1804#else
   1805#define ext4_print_pending_tree(inode)
   1806#endif
   1807
   1808int __init ext4_init_pending(void)
   1809{
   1810	ext4_pending_cachep = kmem_cache_create("ext4_pending_reservation",
   1811					   sizeof(struct pending_reservation),
   1812					   0, (SLAB_RECLAIM_ACCOUNT), NULL);
   1813	if (ext4_pending_cachep == NULL)
   1814		return -ENOMEM;
   1815	return 0;
   1816}
   1817
   1818void ext4_exit_pending(void)
   1819{
   1820	kmem_cache_destroy(ext4_pending_cachep);
   1821}
   1822
   1823void ext4_init_pending_tree(struct ext4_pending_tree *tree)
   1824{
   1825	tree->root = RB_ROOT;
   1826}
   1827
   1828/*
   1829 * __get_pending - retrieve a pointer to a pending reservation
   1830 *
   1831 * @inode - file containing the pending cluster reservation
   1832 * @lclu - logical cluster of interest
   1833 *
   1834 * Returns a pointer to a pending reservation if it's a member of
   1835 * the set, and NULL if not.  Must be called holding i_es_lock.
   1836 */
   1837static struct pending_reservation *__get_pending(struct inode *inode,
   1838						 ext4_lblk_t lclu)
   1839{
   1840	struct ext4_pending_tree *tree;
   1841	struct rb_node *node;
   1842	struct pending_reservation *pr = NULL;
   1843
   1844	tree = &EXT4_I(inode)->i_pending_tree;
   1845	node = (&tree->root)->rb_node;
   1846
   1847	while (node) {
   1848		pr = rb_entry(node, struct pending_reservation, rb_node);
   1849		if (lclu < pr->lclu)
   1850			node = node->rb_left;
   1851		else if (lclu > pr->lclu)
   1852			node = node->rb_right;
   1853		else if (lclu == pr->lclu)
   1854			return pr;
   1855	}
   1856	return NULL;
   1857}
   1858
   1859/*
   1860 * __insert_pending - adds a pending cluster reservation to the set of
   1861 *                    pending reservations
   1862 *
   1863 * @inode - file containing the cluster
   1864 * @lblk - logical block in the cluster to be added
   1865 *
   1866 * Returns 0 on successful insertion and -ENOMEM on failure.  If the
   1867 * pending reservation is already in the set, returns successfully.
   1868 */
   1869static int __insert_pending(struct inode *inode, ext4_lblk_t lblk)
   1870{
   1871	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
   1872	struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
   1873	struct rb_node **p = &tree->root.rb_node;
   1874	struct rb_node *parent = NULL;
   1875	struct pending_reservation *pr;
   1876	ext4_lblk_t lclu;
   1877	int ret = 0;
   1878
   1879	lclu = EXT4_B2C(sbi, lblk);
   1880	/* search to find parent for insertion */
   1881	while (*p) {
   1882		parent = *p;
   1883		pr = rb_entry(parent, struct pending_reservation, rb_node);
   1884
   1885		if (lclu < pr->lclu) {
   1886			p = &(*p)->rb_left;
   1887		} else if (lclu > pr->lclu) {
   1888			p = &(*p)->rb_right;
   1889		} else {
   1890			/* pending reservation already inserted */
   1891			goto out;
   1892		}
   1893	}
   1894
   1895	pr = kmem_cache_alloc(ext4_pending_cachep, GFP_ATOMIC);
   1896	if (pr == NULL) {
   1897		ret = -ENOMEM;
   1898		goto out;
   1899	}
   1900	pr->lclu = lclu;
   1901
   1902	rb_link_node(&pr->rb_node, parent, p);
   1903	rb_insert_color(&pr->rb_node, &tree->root);
   1904
   1905out:
   1906	return ret;
   1907}
   1908
   1909/*
   1910 * __remove_pending - removes a pending cluster reservation from the set
   1911 *                    of pending reservations
   1912 *
   1913 * @inode - file containing the cluster
   1914 * @lblk - logical block in the pending cluster reservation to be removed
   1915 *
   1916 * Returns successfully if pending reservation is not a member of the set.
   1917 */
   1918static void __remove_pending(struct inode *inode, ext4_lblk_t lblk)
   1919{
   1920	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
   1921	struct pending_reservation *pr;
   1922	struct ext4_pending_tree *tree;
   1923
   1924	pr = __get_pending(inode, EXT4_B2C(sbi, lblk));
   1925	if (pr != NULL) {
   1926		tree = &EXT4_I(inode)->i_pending_tree;
   1927		rb_erase(&pr->rb_node, &tree->root);
   1928		kmem_cache_free(ext4_pending_cachep, pr);
   1929	}
   1930}
   1931
   1932/*
   1933 * ext4_remove_pending - removes a pending cluster reservation from the set
   1934 *                       of pending reservations
   1935 *
   1936 * @inode - file containing the cluster
   1937 * @lblk - logical block in the pending cluster reservation to be removed
   1938 *
   1939 * Locking for external use of __remove_pending.
   1940 */
   1941void ext4_remove_pending(struct inode *inode, ext4_lblk_t lblk)
   1942{
   1943	struct ext4_inode_info *ei = EXT4_I(inode);
   1944
   1945	write_lock(&ei->i_es_lock);
   1946	__remove_pending(inode, lblk);
   1947	write_unlock(&ei->i_es_lock);
   1948}
   1949
   1950/*
   1951 * ext4_is_pending - determine whether a cluster has a pending reservation
   1952 *                   on it
   1953 *
   1954 * @inode - file containing the cluster
   1955 * @lblk - logical block in the cluster
   1956 *
   1957 * Returns true if there's a pending reservation for the cluster in the
   1958 * set of pending reservations, and false if not.
   1959 */
   1960bool ext4_is_pending(struct inode *inode, ext4_lblk_t lblk)
   1961{
   1962	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
   1963	struct ext4_inode_info *ei = EXT4_I(inode);
   1964	bool ret;
   1965
   1966	read_lock(&ei->i_es_lock);
   1967	ret = (bool)(__get_pending(inode, EXT4_B2C(sbi, lblk)) != NULL);
   1968	read_unlock(&ei->i_es_lock);
   1969
   1970	return ret;
   1971}
   1972
   1973/*
   1974 * ext4_es_insert_delayed_block - adds a delayed block to the extents status
   1975 *                                tree, adding a pending reservation where
   1976 *                                needed
   1977 *
   1978 * @inode - file containing the newly added block
   1979 * @lblk - logical block to be added
   1980 * @allocated - indicates whether a physical cluster has been allocated for
   1981 *              the logical cluster that contains the block
   1982 *
   1983 * Returns 0 on success, negative error code on failure.
   1984 */
   1985int ext4_es_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk,
   1986				 bool allocated)
   1987{
   1988	struct extent_status newes;
   1989	int err = 0;
   1990
   1991	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
   1992		return 0;
   1993
   1994	es_debug("add [%u/1) delayed to extent status tree of inode %lu\n",
   1995		 lblk, inode->i_ino);
   1996
   1997	newes.es_lblk = lblk;
   1998	newes.es_len = 1;
   1999	ext4_es_store_pblock_status(&newes, ~0, EXTENT_STATUS_DELAYED);
   2000	trace_ext4_es_insert_delayed_block(inode, &newes, allocated);
   2001
   2002	ext4_es_insert_extent_check(inode, &newes);
   2003
   2004	write_lock(&EXT4_I(inode)->i_es_lock);
   2005
   2006	err = __es_remove_extent(inode, lblk, lblk, NULL);
   2007	if (err != 0)
   2008		goto error;
   2009retry:
   2010	err = __es_insert_extent(inode, &newes);
   2011	if (err == -ENOMEM && __es_shrink(EXT4_SB(inode->i_sb),
   2012					  128, EXT4_I(inode)))
   2013		goto retry;
   2014	if (err != 0)
   2015		goto error;
   2016
   2017	if (allocated)
   2018		__insert_pending(inode, lblk);
   2019
   2020error:
   2021	write_unlock(&EXT4_I(inode)->i_es_lock);
   2022
   2023	ext4_es_print_tree(inode);
   2024	ext4_print_pending_tree(inode);
   2025
   2026	return err;
   2027}
   2028
   2029/*
   2030 * __es_delayed_clu - count number of clusters containing blocks that
   2031 *                    are delayed only
   2032 *
   2033 * @inode - file containing block range
   2034 * @start - logical block defining start of range
   2035 * @end - logical block defining end of range
   2036 *
   2037 * Returns the number of clusters containing only delayed (not delayed
   2038 * and unwritten) blocks in the range specified by @start and @end.  Any
   2039 * cluster or part of a cluster within the range and containing a delayed
   2040 * and not unwritten block within the range is counted as a whole cluster.
   2041 */
   2042static unsigned int __es_delayed_clu(struct inode *inode, ext4_lblk_t start,
   2043				     ext4_lblk_t end)
   2044{
   2045	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
   2046	struct extent_status *es;
   2047	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
   2048	struct rb_node *node;
   2049	ext4_lblk_t first_lclu, last_lclu;
   2050	unsigned long long last_counted_lclu;
   2051	unsigned int n = 0;
   2052
   2053	/* guaranteed to be unequal to any ext4_lblk_t value */
   2054	last_counted_lclu = ~0ULL;
   2055
   2056	es = __es_tree_search(&tree->root, start);
   2057
   2058	while (es && (es->es_lblk <= end)) {
   2059		if (ext4_es_is_delonly(es)) {
   2060			if (es->es_lblk <= start)
   2061				first_lclu = EXT4_B2C(sbi, start);
   2062			else
   2063				first_lclu = EXT4_B2C(sbi, es->es_lblk);
   2064
   2065			if (ext4_es_end(es) >= end)
   2066				last_lclu = EXT4_B2C(sbi, end);
   2067			else
   2068				last_lclu = EXT4_B2C(sbi, ext4_es_end(es));
   2069
   2070			if (first_lclu == last_counted_lclu)
   2071				n += last_lclu - first_lclu;
   2072			else
   2073				n += last_lclu - first_lclu + 1;
   2074			last_counted_lclu = last_lclu;
   2075		}
   2076		node = rb_next(&es->rb_node);
   2077		if (!node)
   2078			break;
   2079		es = rb_entry(node, struct extent_status, rb_node);
   2080	}
   2081
   2082	return n;
   2083}
   2084
   2085/*
   2086 * ext4_es_delayed_clu - count number of clusters containing blocks that
   2087 *                       are both delayed and unwritten
   2088 *
   2089 * @inode - file containing block range
   2090 * @lblk - logical block defining start of range
   2091 * @len - number of blocks in range
   2092 *
   2093 * Locking for external use of __es_delayed_clu().
   2094 */
   2095unsigned int ext4_es_delayed_clu(struct inode *inode, ext4_lblk_t lblk,
   2096				 ext4_lblk_t len)
   2097{
   2098	struct ext4_inode_info *ei = EXT4_I(inode);
   2099	ext4_lblk_t end;
   2100	unsigned int n;
   2101
   2102	if (len == 0)
   2103		return 0;
   2104
   2105	end = lblk + len - 1;
   2106	WARN_ON(end < lblk);
   2107
   2108	read_lock(&ei->i_es_lock);
   2109
   2110	n = __es_delayed_clu(inode, lblk, end);
   2111
   2112	read_unlock(&ei->i_es_lock);
   2113
   2114	return n;
   2115}
   2116
   2117/*
   2118 * __revise_pending - makes, cancels, or leaves unchanged pending cluster
   2119 *                    reservations for a specified block range depending
   2120 *                    upon the presence or absence of delayed blocks
   2121 *                    outside the range within clusters at the ends of the
   2122 *                    range
   2123 *
   2124 * @inode - file containing the range
   2125 * @lblk - logical block defining the start of range
   2126 * @len  - length of range in blocks
   2127 *
   2128 * Used after a newly allocated extent is added to the extents status tree.
   2129 * Requires that the extents in the range have either written or unwritten
   2130 * status.  Must be called while holding i_es_lock.
   2131 */
   2132static void __revise_pending(struct inode *inode, ext4_lblk_t lblk,
   2133			     ext4_lblk_t len)
   2134{
   2135	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
   2136	ext4_lblk_t end = lblk + len - 1;
   2137	ext4_lblk_t first, last;
   2138	bool f_del = false, l_del = false;
   2139
   2140	if (len == 0)
   2141		return;
   2142
   2143	/*
   2144	 * Two cases - block range within single cluster and block range
   2145	 * spanning two or more clusters.  Note that a cluster belonging
   2146	 * to a range starting and/or ending on a cluster boundary is treated
   2147	 * as if it does not contain a delayed extent.  The new range may
   2148	 * have allocated space for previously delayed blocks out to the
   2149	 * cluster boundary, requiring that any pre-existing pending
   2150	 * reservation be canceled.  Because this code only looks at blocks
   2151	 * outside the range, it should revise pending reservations
   2152	 * correctly even if the extent represented by the range can't be
   2153	 * inserted in the extents status tree due to ENOSPC.
   2154	 */
   2155
   2156	if (EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) {
   2157		first = EXT4_LBLK_CMASK(sbi, lblk);
   2158		if (first != lblk)
   2159			f_del = __es_scan_range(inode, &ext4_es_is_delonly,
   2160						first, lblk - 1);
   2161		if (f_del) {
   2162			__insert_pending(inode, first);
   2163		} else {
   2164			last = EXT4_LBLK_CMASK(sbi, end) +
   2165			       sbi->s_cluster_ratio - 1;
   2166			if (last != end)
   2167				l_del = __es_scan_range(inode,
   2168							&ext4_es_is_delonly,
   2169							end + 1, last);
   2170			if (l_del)
   2171				__insert_pending(inode, last);
   2172			else
   2173				__remove_pending(inode, last);
   2174		}
   2175	} else {
   2176		first = EXT4_LBLK_CMASK(sbi, lblk);
   2177		if (first != lblk)
   2178			f_del = __es_scan_range(inode, &ext4_es_is_delonly,
   2179						first, lblk - 1);
   2180		if (f_del)
   2181			__insert_pending(inode, first);
   2182		else
   2183			__remove_pending(inode, first);
   2184
   2185		last = EXT4_LBLK_CMASK(sbi, end) + sbi->s_cluster_ratio - 1;
   2186		if (last != end)
   2187			l_del = __es_scan_range(inode, &ext4_es_is_delonly,
   2188						end + 1, last);
   2189		if (l_del)
   2190			__insert_pending(inode, last);
   2191		else
   2192			__remove_pending(inode, last);
   2193	}
   2194}