cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

indirect.c (43852B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 *  linux/fs/ext4/indirect.c
      4 *
      5 *  from
      6 *
      7 *  linux/fs/ext4/inode.c
      8 *
      9 * Copyright (C) 1992, 1993, 1994, 1995
     10 * Remy Card (card@masi.ibp.fr)
     11 * Laboratoire MASI - Institut Blaise Pascal
     12 * Universite Pierre et Marie Curie (Paris VI)
     13 *
     14 *  from
     15 *
     16 *  linux/fs/minix/inode.c
     17 *
     18 *  Copyright (C) 1991, 1992  Linus Torvalds
     19 *
     20 *  Goal-directed block allocation by Stephen Tweedie
     21 *	(sct@redhat.com), 1993, 1998
     22 */
     23
     24#include "ext4_jbd2.h"
     25#include "truncate.h"
     26#include <linux/dax.h>
     27#include <linux/uio.h>
     28
     29#include <trace/events/ext4.h>
     30
     31typedef struct {
     32	__le32	*p;
     33	__le32	key;
     34	struct buffer_head *bh;
     35} Indirect;
     36
     37static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
     38{
     39	p->key = *(p->p = v);
     40	p->bh = bh;
     41}
     42
     43/**
     44 *	ext4_block_to_path - parse the block number into array of offsets
     45 *	@inode: inode in question (we are only interested in its superblock)
     46 *	@i_block: block number to be parsed
     47 *	@offsets: array to store the offsets in
     48 *	@boundary: set this non-zero if the referred-to block is likely to be
     49 *	       followed (on disk) by an indirect block.
     50 *
     51 *	To store the locations of file's data ext4 uses a data structure common
     52 *	for UNIX filesystems - tree of pointers anchored in the inode, with
     53 *	data blocks at leaves and indirect blocks in intermediate nodes.
     54 *	This function translates the block number into path in that tree -
     55 *	return value is the path length and @offsets[n] is the offset of
     56 *	pointer to (n+1)th node in the nth one. If @block is out of range
     57 *	(negative or too large) warning is printed and zero returned.
     58 *
     59 *	Note: function doesn't find node addresses, so no IO is needed. All
     60 *	we need to know is the capacity of indirect blocks (taken from the
     61 *	inode->i_sb).
     62 */
     63
     64/*
     65 * Portability note: the last comparison (check that we fit into triple
     66 * indirect block) is spelled differently, because otherwise on an
     67 * architecture with 32-bit longs and 8Kb pages we might get into trouble
     68 * if our filesystem had 8Kb blocks. We might use long long, but that would
     69 * kill us on x86. Oh, well, at least the sign propagation does not matter -
     70 * i_block would have to be negative in the very beginning, so we would not
     71 * get there at all.
     72 */
     73
     74static int ext4_block_to_path(struct inode *inode,
     75			      ext4_lblk_t i_block,
     76			      ext4_lblk_t offsets[4], int *boundary)
     77{
     78	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
     79	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
     80	const long direct_blocks = EXT4_NDIR_BLOCKS,
     81		indirect_blocks = ptrs,
     82		double_blocks = (1 << (ptrs_bits * 2));
     83	int n = 0;
     84	int final = 0;
     85
     86	if (i_block < direct_blocks) {
     87		offsets[n++] = i_block;
     88		final = direct_blocks;
     89	} else if ((i_block -= direct_blocks) < indirect_blocks) {
     90		offsets[n++] = EXT4_IND_BLOCK;
     91		offsets[n++] = i_block;
     92		final = ptrs;
     93	} else if ((i_block -= indirect_blocks) < double_blocks) {
     94		offsets[n++] = EXT4_DIND_BLOCK;
     95		offsets[n++] = i_block >> ptrs_bits;
     96		offsets[n++] = i_block & (ptrs - 1);
     97		final = ptrs;
     98	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
     99		offsets[n++] = EXT4_TIND_BLOCK;
    100		offsets[n++] = i_block >> (ptrs_bits * 2);
    101		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
    102		offsets[n++] = i_block & (ptrs - 1);
    103		final = ptrs;
    104	} else {
    105		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
    106			     i_block + direct_blocks +
    107			     indirect_blocks + double_blocks, inode->i_ino);
    108	}
    109	if (boundary)
    110		*boundary = final - 1 - (i_block & (ptrs - 1));
    111	return n;
    112}
    113
    114/**
    115 *	ext4_get_branch - read the chain of indirect blocks leading to data
    116 *	@inode: inode in question
    117 *	@depth: depth of the chain (1 - direct pointer, etc.)
    118 *	@offsets: offsets of pointers in inode/indirect blocks
    119 *	@chain: place to store the result
    120 *	@err: here we store the error value
    121 *
    122 *	Function fills the array of triples <key, p, bh> and returns %NULL
    123 *	if everything went OK or the pointer to the last filled triple
    124 *	(incomplete one) otherwise. Upon the return chain[i].key contains
    125 *	the number of (i+1)-th block in the chain (as it is stored in memory,
    126 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
    127 *	number (it points into struct inode for i==0 and into the bh->b_data
    128 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
    129 *	block for i>0 and NULL for i==0. In other words, it holds the block
    130 *	numbers of the chain, addresses they were taken from (and where we can
    131 *	verify that chain did not change) and buffer_heads hosting these
    132 *	numbers.
    133 *
    134 *	Function stops when it stumbles upon zero pointer (absent block)
    135 *		(pointer to last triple returned, *@err == 0)
    136 *	or when it gets an IO error reading an indirect block
    137 *		(ditto, *@err == -EIO)
    138 *	or when it reads all @depth-1 indirect blocks successfully and finds
    139 *	the whole chain, all way to the data (returns %NULL, *err == 0).
    140 *
    141 *      Need to be called with
    142 *      down_read(&EXT4_I(inode)->i_data_sem)
    143 */
    144static Indirect *ext4_get_branch(struct inode *inode, int depth,
    145				 ext4_lblk_t  *offsets,
    146				 Indirect chain[4], int *err)
    147{
    148	struct super_block *sb = inode->i_sb;
    149	Indirect *p = chain;
    150	struct buffer_head *bh;
    151	int ret = -EIO;
    152
    153	*err = 0;
    154	/* i_data is not going away, no lock needed */
    155	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
    156	if (!p->key)
    157		goto no_block;
    158	while (--depth) {
    159		bh = sb_getblk(sb, le32_to_cpu(p->key));
    160		if (unlikely(!bh)) {
    161			ret = -ENOMEM;
    162			goto failure;
    163		}
    164
    165		if (!bh_uptodate_or_lock(bh)) {
    166			if (ext4_read_bh(bh, 0, NULL) < 0) {
    167				put_bh(bh);
    168				goto failure;
    169			}
    170			/* validate block references */
    171			if (ext4_check_indirect_blockref(inode, bh)) {
    172				put_bh(bh);
    173				goto failure;
    174			}
    175		}
    176
    177		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
    178		/* Reader: end */
    179		if (!p->key)
    180			goto no_block;
    181	}
    182	return NULL;
    183
    184failure:
    185	*err = ret;
    186no_block:
    187	return p;
    188}
    189
    190/**
    191 *	ext4_find_near - find a place for allocation with sufficient locality
    192 *	@inode: owner
    193 *	@ind: descriptor of indirect block.
    194 *
    195 *	This function returns the preferred place for block allocation.
    196 *	It is used when heuristic for sequential allocation fails.
    197 *	Rules are:
    198 *	  + if there is a block to the left of our position - allocate near it.
    199 *	  + if pointer will live in indirect block - allocate near that block.
    200 *	  + if pointer will live in inode - allocate in the same
    201 *	    cylinder group.
    202 *
    203 * In the latter case we colour the starting block by the callers PID to
    204 * prevent it from clashing with concurrent allocations for a different inode
    205 * in the same block group.   The PID is used here so that functionally related
    206 * files will be close-by on-disk.
    207 *
    208 *	Caller must make sure that @ind is valid and will stay that way.
    209 */
    210static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
    211{
    212	struct ext4_inode_info *ei = EXT4_I(inode);
    213	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
    214	__le32 *p;
    215
    216	/* Try to find previous block */
    217	for (p = ind->p - 1; p >= start; p--) {
    218		if (*p)
    219			return le32_to_cpu(*p);
    220	}
    221
    222	/* No such thing, so let's try location of indirect block */
    223	if (ind->bh)
    224		return ind->bh->b_blocknr;
    225
    226	/*
    227	 * It is going to be referred to from the inode itself? OK, just put it
    228	 * into the same cylinder group then.
    229	 */
    230	return ext4_inode_to_goal_block(inode);
    231}
    232
    233/**
    234 *	ext4_find_goal - find a preferred place for allocation.
    235 *	@inode: owner
    236 *	@block:  block we want
    237 *	@partial: pointer to the last triple within a chain
    238 *
    239 *	Normally this function find the preferred place for block allocation,
    240 *	returns it.
    241 *	Because this is only used for non-extent files, we limit the block nr
    242 *	to 32 bits.
    243 */
    244static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
    245				   Indirect *partial)
    246{
    247	ext4_fsblk_t goal;
    248
    249	/*
    250	 * XXX need to get goal block from mballoc's data structures
    251	 */
    252
    253	goal = ext4_find_near(inode, partial);
    254	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
    255	return goal;
    256}
    257
    258/**
    259 *	ext4_blks_to_allocate - Look up the block map and count the number
    260 *	of direct blocks need to be allocated for the given branch.
    261 *
    262 *	@branch: chain of indirect blocks
    263 *	@k: number of blocks need for indirect blocks
    264 *	@blks: number of data blocks to be mapped.
    265 *	@blocks_to_boundary:  the offset in the indirect block
    266 *
    267 *	return the total number of blocks to be allocate, including the
    268 *	direct and indirect blocks.
    269 */
    270static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
    271				 int blocks_to_boundary)
    272{
    273	unsigned int count = 0;
    274
    275	/*
    276	 * Simple case, [t,d]Indirect block(s) has not allocated yet
    277	 * then it's clear blocks on that path have not allocated
    278	 */
    279	if (k > 0) {
    280		/* right now we don't handle cross boundary allocation */
    281		if (blks < blocks_to_boundary + 1)
    282			count += blks;
    283		else
    284			count += blocks_to_boundary + 1;
    285		return count;
    286	}
    287
    288	count++;
    289	while (count < blks && count <= blocks_to_boundary &&
    290		le32_to_cpu(*(branch[0].p + count)) == 0) {
    291		count++;
    292	}
    293	return count;
    294}
    295
    296/**
    297 * ext4_alloc_branch() - allocate and set up a chain of blocks
    298 * @handle: handle for this transaction
    299 * @ar: structure describing the allocation request
    300 * @indirect_blks: number of allocated indirect blocks
    301 * @offsets: offsets (in the blocks) to store the pointers to next.
    302 * @branch: place to store the chain in.
    303 *
    304 *	This function allocates blocks, zeroes out all but the last one,
    305 *	links them into chain and (if we are synchronous) writes them to disk.
    306 *	In other words, it prepares a branch that can be spliced onto the
    307 *	inode. It stores the information about that chain in the branch[], in
    308 *	the same format as ext4_get_branch() would do. We are calling it after
    309 *	we had read the existing part of chain and partial points to the last
    310 *	triple of that (one with zero ->key). Upon the exit we have the same
    311 *	picture as after the successful ext4_get_block(), except that in one
    312 *	place chain is disconnected - *branch->p is still zero (we did not
    313 *	set the last link), but branch->key contains the number that should
    314 *	be placed into *branch->p to fill that gap.
    315 *
    316 *	If allocation fails we free all blocks we've allocated (and forget
    317 *	their buffer_heads) and return the error value the from failed
    318 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
    319 *	as described above and return 0.
    320 */
    321static int ext4_alloc_branch(handle_t *handle,
    322			     struct ext4_allocation_request *ar,
    323			     int indirect_blks, ext4_lblk_t *offsets,
    324			     Indirect *branch)
    325{
    326	struct buffer_head *		bh;
    327	ext4_fsblk_t			b, new_blocks[4];
    328	__le32				*p;
    329	int				i, j, err, len = 1;
    330
    331	for (i = 0; i <= indirect_blks; i++) {
    332		if (i == indirect_blks) {
    333			new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err);
    334		} else {
    335			ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle,
    336					ar->inode, ar->goal,
    337					ar->flags & EXT4_MB_DELALLOC_RESERVED,
    338					NULL, &err);
    339			/* Simplify error cleanup... */
    340			branch[i+1].bh = NULL;
    341		}
    342		if (err) {
    343			i--;
    344			goto failed;
    345		}
    346		branch[i].key = cpu_to_le32(new_blocks[i]);
    347		if (i == 0)
    348			continue;
    349
    350		bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]);
    351		if (unlikely(!bh)) {
    352			err = -ENOMEM;
    353			goto failed;
    354		}
    355		lock_buffer(bh);
    356		BUFFER_TRACE(bh, "call get_create_access");
    357		err = ext4_journal_get_create_access(handle, ar->inode->i_sb,
    358						     bh, EXT4_JTR_NONE);
    359		if (err) {
    360			unlock_buffer(bh);
    361			goto failed;
    362		}
    363
    364		memset(bh->b_data, 0, bh->b_size);
    365		p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
    366		b = new_blocks[i];
    367
    368		if (i == indirect_blks)
    369			len = ar->len;
    370		for (j = 0; j < len; j++)
    371			*p++ = cpu_to_le32(b++);
    372
    373		BUFFER_TRACE(bh, "marking uptodate");
    374		set_buffer_uptodate(bh);
    375		unlock_buffer(bh);
    376
    377		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
    378		err = ext4_handle_dirty_metadata(handle, ar->inode, bh);
    379		if (err)
    380			goto failed;
    381	}
    382	return 0;
    383failed:
    384	if (i == indirect_blks) {
    385		/* Free data blocks */
    386		ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i],
    387				 ar->len, 0);
    388		i--;
    389	}
    390	for (; i >= 0; i--) {
    391		/*
    392		 * We want to ext4_forget() only freshly allocated indirect
    393		 * blocks. Buffer for new_blocks[i] is at branch[i+1].bh
    394		 * (buffer at branch[0].bh is indirect block / inode already
    395		 * existing before ext4_alloc_branch() was called). Also
    396		 * because blocks are freshly allocated, we don't need to
    397		 * revoke them which is why we don't set
    398		 * EXT4_FREE_BLOCKS_METADATA.
    399		 */
    400		ext4_free_blocks(handle, ar->inode, branch[i+1].bh,
    401				 new_blocks[i], 1,
    402				 branch[i+1].bh ? EXT4_FREE_BLOCKS_FORGET : 0);
    403	}
    404	return err;
    405}
    406
    407/**
    408 * ext4_splice_branch() - splice the allocated branch onto inode.
    409 * @handle: handle for this transaction
    410 * @ar: structure describing the allocation request
    411 * @where: location of missing link
    412 * @num:   number of indirect blocks we are adding
    413 *
    414 * This function fills the missing link and does all housekeeping needed in
    415 * inode (->i_blocks, etc.). In case of success we end up with the full
    416 * chain to new block and return 0.
    417 */
    418static int ext4_splice_branch(handle_t *handle,
    419			      struct ext4_allocation_request *ar,
    420			      Indirect *where, int num)
    421{
    422	int i;
    423	int err = 0;
    424	ext4_fsblk_t current_block;
    425
    426	/*
    427	 * If we're splicing into a [td]indirect block (as opposed to the
    428	 * inode) then we need to get write access to the [td]indirect block
    429	 * before the splice.
    430	 */
    431	if (where->bh) {
    432		BUFFER_TRACE(where->bh, "get_write_access");
    433		err = ext4_journal_get_write_access(handle, ar->inode->i_sb,
    434						    where->bh, EXT4_JTR_NONE);
    435		if (err)
    436			goto err_out;
    437	}
    438	/* That's it */
    439
    440	*where->p = where->key;
    441
    442	/*
    443	 * Update the host buffer_head or inode to point to more just allocated
    444	 * direct blocks blocks
    445	 */
    446	if (num == 0 && ar->len > 1) {
    447		current_block = le32_to_cpu(where->key) + 1;
    448		for (i = 1; i < ar->len; i++)
    449			*(where->p + i) = cpu_to_le32(current_block++);
    450	}
    451
    452	/* We are done with atomic stuff, now do the rest of housekeeping */
    453	/* had we spliced it onto indirect block? */
    454	if (where->bh) {
    455		/*
    456		 * If we spliced it onto an indirect block, we haven't
    457		 * altered the inode.  Note however that if it is being spliced
    458		 * onto an indirect block at the very end of the file (the
    459		 * file is growing) then we *will* alter the inode to reflect
    460		 * the new i_size.  But that is not done here - it is done in
    461		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
    462		 */
    463		jbd_debug(5, "splicing indirect only\n");
    464		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
    465		err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh);
    466		if (err)
    467			goto err_out;
    468	} else {
    469		/*
    470		 * OK, we spliced it into the inode itself on a direct block.
    471		 */
    472		err = ext4_mark_inode_dirty(handle, ar->inode);
    473		if (unlikely(err))
    474			goto err_out;
    475		jbd_debug(5, "splicing direct\n");
    476	}
    477	return err;
    478
    479err_out:
    480	for (i = 1; i <= num; i++) {
    481		/*
    482		 * branch[i].bh is newly allocated, so there is no
    483		 * need to revoke the block, which is why we don't
    484		 * need to set EXT4_FREE_BLOCKS_METADATA.
    485		 */
    486		ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1,
    487				 EXT4_FREE_BLOCKS_FORGET);
    488	}
    489	ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key),
    490			 ar->len, 0);
    491
    492	return err;
    493}
    494
    495/*
    496 * The ext4_ind_map_blocks() function handles non-extents inodes
    497 * (i.e., using the traditional indirect/double-indirect i_blocks
    498 * scheme) for ext4_map_blocks().
    499 *
    500 * Allocation strategy is simple: if we have to allocate something, we will
    501 * have to go the whole way to leaf. So let's do it before attaching anything
    502 * to tree, set linkage between the newborn blocks, write them if sync is
    503 * required, recheck the path, free and repeat if check fails, otherwise
    504 * set the last missing link (that will protect us from any truncate-generated
    505 * removals - all blocks on the path are immune now) and possibly force the
    506 * write on the parent block.
    507 * That has a nice additional property: no special recovery from the failed
    508 * allocations is needed - we simply release blocks and do not touch anything
    509 * reachable from inode.
    510 *
    511 * `handle' can be NULL if create == 0.
    512 *
    513 * return > 0, # of blocks mapped or allocated.
    514 * return = 0, if plain lookup failed.
    515 * return < 0, error case.
    516 *
    517 * The ext4_ind_get_blocks() function should be called with
    518 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
    519 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
    520 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
    521 * blocks.
    522 */
    523int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
    524			struct ext4_map_blocks *map,
    525			int flags)
    526{
    527	struct ext4_allocation_request ar;
    528	int err = -EIO;
    529	ext4_lblk_t offsets[4];
    530	Indirect chain[4];
    531	Indirect *partial;
    532	int indirect_blks;
    533	int blocks_to_boundary = 0;
    534	int depth;
    535	int count = 0;
    536	ext4_fsblk_t first_block = 0;
    537
    538	trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
    539	ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
    540	ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
    541	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
    542				   &blocks_to_boundary);
    543
    544	if (depth == 0)
    545		goto out;
    546
    547	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
    548
    549	/* Simplest case - block found, no allocation needed */
    550	if (!partial) {
    551		first_block = le32_to_cpu(chain[depth - 1].key);
    552		count++;
    553		/*map more blocks*/
    554		while (count < map->m_len && count <= blocks_to_boundary) {
    555			ext4_fsblk_t blk;
    556
    557			blk = le32_to_cpu(*(chain[depth-1].p + count));
    558
    559			if (blk == first_block + count)
    560				count++;
    561			else
    562				break;
    563		}
    564		goto got_it;
    565	}
    566
    567	/* Next simple case - plain lookup failed */
    568	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
    569		unsigned epb = inode->i_sb->s_blocksize / sizeof(u32);
    570		int i;
    571
    572		/*
    573		 * Count number blocks in a subtree under 'partial'. At each
    574		 * level we count number of complete empty subtrees beyond
    575		 * current offset and then descend into the subtree only
    576		 * partially beyond current offset.
    577		 */
    578		count = 0;
    579		for (i = partial - chain + 1; i < depth; i++)
    580			count = count * epb + (epb - offsets[i] - 1);
    581		count++;
    582		/* Fill in size of a hole we found */
    583		map->m_pblk = 0;
    584		map->m_len = min_t(unsigned int, map->m_len, count);
    585		goto cleanup;
    586	}
    587
    588	/* Failed read of indirect block */
    589	if (err == -EIO)
    590		goto cleanup;
    591
    592	/*
    593	 * Okay, we need to do block allocation.
    594	*/
    595	if (ext4_has_feature_bigalloc(inode->i_sb)) {
    596		EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
    597				 "non-extent mapped inodes with bigalloc");
    598		err = -EFSCORRUPTED;
    599		goto out;
    600	}
    601
    602	/* Set up for the direct block allocation */
    603	memset(&ar, 0, sizeof(ar));
    604	ar.inode = inode;
    605	ar.logical = map->m_lblk;
    606	if (S_ISREG(inode->i_mode))
    607		ar.flags = EXT4_MB_HINT_DATA;
    608	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
    609		ar.flags |= EXT4_MB_DELALLOC_RESERVED;
    610	if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
    611		ar.flags |= EXT4_MB_USE_RESERVED;
    612
    613	ar.goal = ext4_find_goal(inode, map->m_lblk, partial);
    614
    615	/* the number of blocks need to allocate for [d,t]indirect blocks */
    616	indirect_blks = (chain + depth) - partial - 1;
    617
    618	/*
    619	 * Next look up the indirect map to count the totoal number of
    620	 * direct blocks to allocate for this branch.
    621	 */
    622	ar.len = ext4_blks_to_allocate(partial, indirect_blks,
    623				       map->m_len, blocks_to_boundary);
    624
    625	/*
    626	 * Block out ext4_truncate while we alter the tree
    627	 */
    628	err = ext4_alloc_branch(handle, &ar, indirect_blks,
    629				offsets + (partial - chain), partial);
    630
    631	/*
    632	 * The ext4_splice_branch call will free and forget any buffers
    633	 * on the new chain if there is a failure, but that risks using
    634	 * up transaction credits, especially for bitmaps where the
    635	 * credits cannot be returned.  Can we handle this somehow?  We
    636	 * may need to return -EAGAIN upwards in the worst case.  --sct
    637	 */
    638	if (!err)
    639		err = ext4_splice_branch(handle, &ar, partial, indirect_blks);
    640	if (err)
    641		goto cleanup;
    642
    643	map->m_flags |= EXT4_MAP_NEW;
    644
    645	ext4_update_inode_fsync_trans(handle, inode, 1);
    646	count = ar.len;
    647got_it:
    648	map->m_flags |= EXT4_MAP_MAPPED;
    649	map->m_pblk = le32_to_cpu(chain[depth-1].key);
    650	map->m_len = count;
    651	if (count > blocks_to_boundary)
    652		map->m_flags |= EXT4_MAP_BOUNDARY;
    653	err = count;
    654	/* Clean up and exit */
    655	partial = chain + depth - 1;	/* the whole chain */
    656cleanup:
    657	while (partial > chain) {
    658		BUFFER_TRACE(partial->bh, "call brelse");
    659		brelse(partial->bh);
    660		partial--;
    661	}
    662out:
    663	trace_ext4_ind_map_blocks_exit(inode, flags, map, err);
    664	return err;
    665}
    666
    667/*
    668 * Calculate number of indirect blocks touched by mapping @nrblocks logically
    669 * contiguous blocks
    670 */
    671int ext4_ind_trans_blocks(struct inode *inode, int nrblocks)
    672{
    673	/*
    674	 * With N contiguous data blocks, we need at most
    675	 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
    676	 * 2 dindirect blocks, and 1 tindirect block
    677	 */
    678	return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
    679}
    680
    681static int ext4_ind_trunc_restart_fn(handle_t *handle, struct inode *inode,
    682				     struct buffer_head *bh, int *dropped)
    683{
    684	int err;
    685
    686	if (bh) {
    687		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
    688		err = ext4_handle_dirty_metadata(handle, inode, bh);
    689		if (unlikely(err))
    690			return err;
    691	}
    692	err = ext4_mark_inode_dirty(handle, inode);
    693	if (unlikely(err))
    694		return err;
    695	/*
    696	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
    697	 * moment, get_block can be called only for blocks inside i_size since
    698	 * page cache has been already dropped and writes are blocked by
    699	 * i_rwsem. So we can safely drop the i_data_sem here.
    700	 */
    701	BUG_ON(EXT4_JOURNAL(inode) == NULL);
    702	ext4_discard_preallocations(inode, 0);
    703	up_write(&EXT4_I(inode)->i_data_sem);
    704	*dropped = 1;
    705	return 0;
    706}
    707
    708/*
    709 * Truncate transactions can be complex and absolutely huge.  So we need to
    710 * be able to restart the transaction at a convenient checkpoint to make
    711 * sure we don't overflow the journal.
    712 *
    713 * Try to extend this transaction for the purposes of truncation.  If
    714 * extend fails, we restart transaction.
    715 */
    716static int ext4_ind_truncate_ensure_credits(handle_t *handle,
    717					    struct inode *inode,
    718					    struct buffer_head *bh,
    719					    int revoke_creds)
    720{
    721	int ret;
    722	int dropped = 0;
    723
    724	ret = ext4_journal_ensure_credits_fn(handle, EXT4_RESERVE_TRANS_BLOCKS,
    725			ext4_blocks_for_truncate(inode), revoke_creds,
    726			ext4_ind_trunc_restart_fn(handle, inode, bh, &dropped));
    727	if (dropped)
    728		down_write(&EXT4_I(inode)->i_data_sem);
    729	if (ret <= 0)
    730		return ret;
    731	if (bh) {
    732		BUFFER_TRACE(bh, "retaking write access");
    733		ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
    734						    EXT4_JTR_NONE);
    735		if (unlikely(ret))
    736			return ret;
    737	}
    738	return 0;
    739}
    740
    741/*
    742 * Probably it should be a library function... search for first non-zero word
    743 * or memcmp with zero_page, whatever is better for particular architecture.
    744 * Linus?
    745 */
    746static inline int all_zeroes(__le32 *p, __le32 *q)
    747{
    748	while (p < q)
    749		if (*p++)
    750			return 0;
    751	return 1;
    752}
    753
    754/**
    755 *	ext4_find_shared - find the indirect blocks for partial truncation.
    756 *	@inode:	  inode in question
    757 *	@depth:	  depth of the affected branch
    758 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
    759 *	@chain:	  place to store the pointers to partial indirect blocks
    760 *	@top:	  place to the (detached) top of branch
    761 *
    762 *	This is a helper function used by ext4_truncate().
    763 *
    764 *	When we do truncate() we may have to clean the ends of several
    765 *	indirect blocks but leave the blocks themselves alive. Block is
    766 *	partially truncated if some data below the new i_size is referred
    767 *	from it (and it is on the path to the first completely truncated
    768 *	data block, indeed).  We have to free the top of that path along
    769 *	with everything to the right of the path. Since no allocation
    770 *	past the truncation point is possible until ext4_truncate()
    771 *	finishes, we may safely do the latter, but top of branch may
    772 *	require special attention - pageout below the truncation point
    773 *	might try to populate it.
    774 *
    775 *	We atomically detach the top of branch from the tree, store the
    776 *	block number of its root in *@top, pointers to buffer_heads of
    777 *	partially truncated blocks - in @chain[].bh and pointers to
    778 *	their last elements that should not be removed - in
    779 *	@chain[].p. Return value is the pointer to last filled element
    780 *	of @chain.
    781 *
    782 *	The work left to caller to do the actual freeing of subtrees:
    783 *		a) free the subtree starting from *@top
    784 *		b) free the subtrees whose roots are stored in
    785 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
    786 *		c) free the subtrees growing from the inode past the @chain[0].
    787 *			(no partially truncated stuff there).  */
    788
    789static Indirect *ext4_find_shared(struct inode *inode, int depth,
    790				  ext4_lblk_t offsets[4], Indirect chain[4],
    791				  __le32 *top)
    792{
    793	Indirect *partial, *p;
    794	int k, err;
    795
    796	*top = 0;
    797	/* Make k index the deepest non-null offset + 1 */
    798	for (k = depth; k > 1 && !offsets[k-1]; k--)
    799		;
    800	partial = ext4_get_branch(inode, k, offsets, chain, &err);
    801	/* Writer: pointers */
    802	if (!partial)
    803		partial = chain + k-1;
    804	/*
    805	 * If the branch acquired continuation since we've looked at it -
    806	 * fine, it should all survive and (new) top doesn't belong to us.
    807	 */
    808	if (!partial->key && *partial->p)
    809		/* Writer: end */
    810		goto no_top;
    811	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
    812		;
    813	/*
    814	 * OK, we've found the last block that must survive. The rest of our
    815	 * branch should be detached before unlocking. However, if that rest
    816	 * of branch is all ours and does not grow immediately from the inode
    817	 * it's easier to cheat and just decrement partial->p.
    818	 */
    819	if (p == chain + k - 1 && p > chain) {
    820		p->p--;
    821	} else {
    822		*top = *p->p;
    823		/* Nope, don't do this in ext4.  Must leave the tree intact */
    824#if 0
    825		*p->p = 0;
    826#endif
    827	}
    828	/* Writer: end */
    829
    830	while (partial > p) {
    831		brelse(partial->bh);
    832		partial--;
    833	}
    834no_top:
    835	return partial;
    836}
    837
    838/*
    839 * Zero a number of block pointers in either an inode or an indirect block.
    840 * If we restart the transaction we must again get write access to the
    841 * indirect block for further modification.
    842 *
    843 * We release `count' blocks on disk, but (last - first) may be greater
    844 * than `count' because there can be holes in there.
    845 *
    846 * Return 0 on success, 1 on invalid block range
    847 * and < 0 on fatal error.
    848 */
    849static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
    850			     struct buffer_head *bh,
    851			     ext4_fsblk_t block_to_free,
    852			     unsigned long count, __le32 *first,
    853			     __le32 *last)
    854{
    855	__le32 *p;
    856	int	flags = EXT4_FREE_BLOCKS_VALIDATED;
    857	int	err;
    858
    859	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) ||
    860	    ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE))
    861		flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA;
    862	else if (ext4_should_journal_data(inode))
    863		flags |= EXT4_FREE_BLOCKS_FORGET;
    864
    865	if (!ext4_inode_block_valid(inode, block_to_free, count)) {
    866		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
    867				 "blocks %llu len %lu",
    868				 (unsigned long long) block_to_free, count);
    869		return 1;
    870	}
    871
    872	err = ext4_ind_truncate_ensure_credits(handle, inode, bh,
    873				ext4_free_data_revoke_credits(inode, count));
    874	if (err < 0)
    875		goto out_err;
    876
    877	for (p = first; p < last; p++)
    878		*p = 0;
    879
    880	ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
    881	return 0;
    882out_err:
    883	ext4_std_error(inode->i_sb, err);
    884	return err;
    885}
    886
    887/**
    888 * ext4_free_data - free a list of data blocks
    889 * @handle:	handle for this transaction
    890 * @inode:	inode we are dealing with
    891 * @this_bh:	indirect buffer_head which contains *@first and *@last
    892 * @first:	array of block numbers
    893 * @last:	points immediately past the end of array
    894 *
    895 * We are freeing all blocks referred from that array (numbers are stored as
    896 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
    897 *
    898 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
    899 * blocks are contiguous then releasing them at one time will only affect one
    900 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
    901 * actually use a lot of journal space.
    902 *
    903 * @this_bh will be %NULL if @first and @last point into the inode's direct
    904 * block pointers.
    905 */
    906static void ext4_free_data(handle_t *handle, struct inode *inode,
    907			   struct buffer_head *this_bh,
    908			   __le32 *first, __le32 *last)
    909{
    910	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
    911	unsigned long count = 0;	    /* Number of blocks in the run */
    912	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
    913					       corresponding to
    914					       block_to_free */
    915	ext4_fsblk_t nr;		    /* Current block # */
    916	__le32 *p;			    /* Pointer into inode/ind
    917					       for current block */
    918	int err = 0;
    919
    920	if (this_bh) {				/* For indirect block */
    921		BUFFER_TRACE(this_bh, "get_write_access");
    922		err = ext4_journal_get_write_access(handle, inode->i_sb,
    923						    this_bh, EXT4_JTR_NONE);
    924		/* Important: if we can't update the indirect pointers
    925		 * to the blocks, we can't free them. */
    926		if (err)
    927			return;
    928	}
    929
    930	for (p = first; p < last; p++) {
    931		nr = le32_to_cpu(*p);
    932		if (nr) {
    933			/* accumulate blocks to free if they're contiguous */
    934			if (count == 0) {
    935				block_to_free = nr;
    936				block_to_free_p = p;
    937				count = 1;
    938			} else if (nr == block_to_free + count) {
    939				count++;
    940			} else {
    941				err = ext4_clear_blocks(handle, inode, this_bh,
    942						        block_to_free, count,
    943						        block_to_free_p, p);
    944				if (err)
    945					break;
    946				block_to_free = nr;
    947				block_to_free_p = p;
    948				count = 1;
    949			}
    950		}
    951	}
    952
    953	if (!err && count > 0)
    954		err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
    955					count, block_to_free_p, p);
    956	if (err < 0)
    957		/* fatal error */
    958		return;
    959
    960	if (this_bh) {
    961		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
    962
    963		/*
    964		 * The buffer head should have an attached journal head at this
    965		 * point. However, if the data is corrupted and an indirect
    966		 * block pointed to itself, it would have been detached when
    967		 * the block was cleared. Check for this instead of OOPSing.
    968		 */
    969		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
    970			ext4_handle_dirty_metadata(handle, inode, this_bh);
    971		else
    972			EXT4_ERROR_INODE(inode,
    973					 "circular indirect block detected at "
    974					 "block %llu",
    975				(unsigned long long) this_bh->b_blocknr);
    976	}
    977}
    978
    979/**
    980 *	ext4_free_branches - free an array of branches
    981 *	@handle: JBD handle for this transaction
    982 *	@inode:	inode we are dealing with
    983 *	@parent_bh: the buffer_head which contains *@first and *@last
    984 *	@first:	array of block numbers
    985 *	@last:	pointer immediately past the end of array
    986 *	@depth:	depth of the branches to free
    987 *
    988 *	We are freeing all blocks referred from these branches (numbers are
    989 *	stored as little-endian 32-bit) and updating @inode->i_blocks
    990 *	appropriately.
    991 */
    992static void ext4_free_branches(handle_t *handle, struct inode *inode,
    993			       struct buffer_head *parent_bh,
    994			       __le32 *first, __le32 *last, int depth)
    995{
    996	ext4_fsblk_t nr;
    997	__le32 *p;
    998
    999	if (ext4_handle_is_aborted(handle))
   1000		return;
   1001
   1002	if (depth--) {
   1003		struct buffer_head *bh;
   1004		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
   1005		p = last;
   1006		while (--p >= first) {
   1007			nr = le32_to_cpu(*p);
   1008			if (!nr)
   1009				continue;		/* A hole */
   1010
   1011			if (!ext4_inode_block_valid(inode, nr, 1)) {
   1012				EXT4_ERROR_INODE(inode,
   1013						 "invalid indirect mapped "
   1014						 "block %lu (level %d)",
   1015						 (unsigned long) nr, depth);
   1016				break;
   1017			}
   1018
   1019			/* Go read the buffer for the next level down */
   1020			bh = ext4_sb_bread(inode->i_sb, nr, 0);
   1021
   1022			/*
   1023			 * A read failure? Report error and clear slot
   1024			 * (should be rare).
   1025			 */
   1026			if (IS_ERR(bh)) {
   1027				ext4_error_inode_block(inode, nr, -PTR_ERR(bh),
   1028						       "Read failure");
   1029				continue;
   1030			}
   1031
   1032			/* This zaps the entire block.  Bottom up. */
   1033			BUFFER_TRACE(bh, "free child branches");
   1034			ext4_free_branches(handle, inode, bh,
   1035					(__le32 *) bh->b_data,
   1036					(__le32 *) bh->b_data + addr_per_block,
   1037					depth);
   1038			brelse(bh);
   1039
   1040			/*
   1041			 * Everything below this pointer has been
   1042			 * released.  Now let this top-of-subtree go.
   1043			 *
   1044			 * We want the freeing of this indirect block to be
   1045			 * atomic in the journal with the updating of the
   1046			 * bitmap block which owns it.  So make some room in
   1047			 * the journal.
   1048			 *
   1049			 * We zero the parent pointer *after* freeing its
   1050			 * pointee in the bitmaps, so if extend_transaction()
   1051			 * for some reason fails to put the bitmap changes and
   1052			 * the release into the same transaction, recovery
   1053			 * will merely complain about releasing a free block,
   1054			 * rather than leaking blocks.
   1055			 */
   1056			if (ext4_handle_is_aborted(handle))
   1057				return;
   1058			if (ext4_ind_truncate_ensure_credits(handle, inode,
   1059					NULL,
   1060					ext4_free_metadata_revoke_credits(
   1061							inode->i_sb, 1)) < 0)
   1062				return;
   1063
   1064			/*
   1065			 * The forget flag here is critical because if
   1066			 * we are journaling (and not doing data
   1067			 * journaling), we have to make sure a revoke
   1068			 * record is written to prevent the journal
   1069			 * replay from overwriting the (former)
   1070			 * indirect block if it gets reallocated as a
   1071			 * data block.  This must happen in the same
   1072			 * transaction where the data blocks are
   1073			 * actually freed.
   1074			 */
   1075			ext4_free_blocks(handle, inode, NULL, nr, 1,
   1076					 EXT4_FREE_BLOCKS_METADATA|
   1077					 EXT4_FREE_BLOCKS_FORGET);
   1078
   1079			if (parent_bh) {
   1080				/*
   1081				 * The block which we have just freed is
   1082				 * pointed to by an indirect block: journal it
   1083				 */
   1084				BUFFER_TRACE(parent_bh, "get_write_access");
   1085				if (!ext4_journal_get_write_access(handle,
   1086						inode->i_sb, parent_bh,
   1087						EXT4_JTR_NONE)) {
   1088					*p = 0;
   1089					BUFFER_TRACE(parent_bh,
   1090					"call ext4_handle_dirty_metadata");
   1091					ext4_handle_dirty_metadata(handle,
   1092								   inode,
   1093								   parent_bh);
   1094				}
   1095			}
   1096		}
   1097	} else {
   1098		/* We have reached the bottom of the tree. */
   1099		BUFFER_TRACE(parent_bh, "free data blocks");
   1100		ext4_free_data(handle, inode, parent_bh, first, last);
   1101	}
   1102}
   1103
   1104void ext4_ind_truncate(handle_t *handle, struct inode *inode)
   1105{
   1106	struct ext4_inode_info *ei = EXT4_I(inode);
   1107	__le32 *i_data = ei->i_data;
   1108	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
   1109	ext4_lblk_t offsets[4];
   1110	Indirect chain[4];
   1111	Indirect *partial;
   1112	__le32 nr = 0;
   1113	int n = 0;
   1114	ext4_lblk_t last_block, max_block;
   1115	unsigned blocksize = inode->i_sb->s_blocksize;
   1116
   1117	last_block = (inode->i_size + blocksize-1)
   1118					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
   1119	max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
   1120					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
   1121
   1122	if (last_block != max_block) {
   1123		n = ext4_block_to_path(inode, last_block, offsets, NULL);
   1124		if (n == 0)
   1125			return;
   1126	}
   1127
   1128	ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
   1129
   1130	/*
   1131	 * The orphan list entry will now protect us from any crash which
   1132	 * occurs before the truncate completes, so it is now safe to propagate
   1133	 * the new, shorter inode size (held for now in i_size) into the
   1134	 * on-disk inode. We do this via i_disksize, which is the value which
   1135	 * ext4 *really* writes onto the disk inode.
   1136	 */
   1137	ei->i_disksize = inode->i_size;
   1138
   1139	if (last_block == max_block) {
   1140		/*
   1141		 * It is unnecessary to free any data blocks if last_block is
   1142		 * equal to the indirect block limit.
   1143		 */
   1144		return;
   1145	} else if (n == 1) {		/* direct blocks */
   1146		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
   1147			       i_data + EXT4_NDIR_BLOCKS);
   1148		goto do_indirects;
   1149	}
   1150
   1151	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
   1152	/* Kill the top of shared branch (not detached) */
   1153	if (nr) {
   1154		if (partial == chain) {
   1155			/* Shared branch grows from the inode */
   1156			ext4_free_branches(handle, inode, NULL,
   1157					   &nr, &nr+1, (chain+n-1) - partial);
   1158			*partial->p = 0;
   1159			/*
   1160			 * We mark the inode dirty prior to restart,
   1161			 * and prior to stop.  No need for it here.
   1162			 */
   1163		} else {
   1164			/* Shared branch grows from an indirect block */
   1165			BUFFER_TRACE(partial->bh, "get_write_access");
   1166			ext4_free_branches(handle, inode, partial->bh,
   1167					partial->p,
   1168					partial->p+1, (chain+n-1) - partial);
   1169		}
   1170	}
   1171	/* Clear the ends of indirect blocks on the shared branch */
   1172	while (partial > chain) {
   1173		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
   1174				   (__le32*)partial->bh->b_data+addr_per_block,
   1175				   (chain+n-1) - partial);
   1176		BUFFER_TRACE(partial->bh, "call brelse");
   1177		brelse(partial->bh);
   1178		partial--;
   1179	}
   1180do_indirects:
   1181	/* Kill the remaining (whole) subtrees */
   1182	switch (offsets[0]) {
   1183	default:
   1184		nr = i_data[EXT4_IND_BLOCK];
   1185		if (nr) {
   1186			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
   1187			i_data[EXT4_IND_BLOCK] = 0;
   1188		}
   1189		fallthrough;
   1190	case EXT4_IND_BLOCK:
   1191		nr = i_data[EXT4_DIND_BLOCK];
   1192		if (nr) {
   1193			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
   1194			i_data[EXT4_DIND_BLOCK] = 0;
   1195		}
   1196		fallthrough;
   1197	case EXT4_DIND_BLOCK:
   1198		nr = i_data[EXT4_TIND_BLOCK];
   1199		if (nr) {
   1200			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
   1201			i_data[EXT4_TIND_BLOCK] = 0;
   1202		}
   1203		fallthrough;
   1204	case EXT4_TIND_BLOCK:
   1205		;
   1206	}
   1207}
   1208
   1209/**
   1210 *	ext4_ind_remove_space - remove space from the range
   1211 *	@handle: JBD handle for this transaction
   1212 *	@inode:	inode we are dealing with
   1213 *	@start:	First block to remove
   1214 *	@end:	One block after the last block to remove (exclusive)
   1215 *
   1216 *	Free the blocks in the defined range (end is exclusive endpoint of
   1217 *	range). This is used by ext4_punch_hole().
   1218 */
   1219int ext4_ind_remove_space(handle_t *handle, struct inode *inode,
   1220			  ext4_lblk_t start, ext4_lblk_t end)
   1221{
   1222	struct ext4_inode_info *ei = EXT4_I(inode);
   1223	__le32 *i_data = ei->i_data;
   1224	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
   1225	ext4_lblk_t offsets[4], offsets2[4];
   1226	Indirect chain[4], chain2[4];
   1227	Indirect *partial, *partial2;
   1228	Indirect *p = NULL, *p2 = NULL;
   1229	ext4_lblk_t max_block;
   1230	__le32 nr = 0, nr2 = 0;
   1231	int n = 0, n2 = 0;
   1232	unsigned blocksize = inode->i_sb->s_blocksize;
   1233
   1234	max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
   1235					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
   1236	if (end >= max_block)
   1237		end = max_block;
   1238	if ((start >= end) || (start > max_block))
   1239		return 0;
   1240
   1241	n = ext4_block_to_path(inode, start, offsets, NULL);
   1242	n2 = ext4_block_to_path(inode, end, offsets2, NULL);
   1243
   1244	BUG_ON(n > n2);
   1245
   1246	if ((n == 1) && (n == n2)) {
   1247		/* We're punching only within direct block range */
   1248		ext4_free_data(handle, inode, NULL, i_data + offsets[0],
   1249			       i_data + offsets2[0]);
   1250		return 0;
   1251	} else if (n2 > n) {
   1252		/*
   1253		 * Start and end are on a different levels so we're going to
   1254		 * free partial block at start, and partial block at end of
   1255		 * the range. If there are some levels in between then
   1256		 * do_indirects label will take care of that.
   1257		 */
   1258
   1259		if (n == 1) {
   1260			/*
   1261			 * Start is at the direct block level, free
   1262			 * everything to the end of the level.
   1263			 */
   1264			ext4_free_data(handle, inode, NULL, i_data + offsets[0],
   1265				       i_data + EXT4_NDIR_BLOCKS);
   1266			goto end_range;
   1267		}
   1268
   1269
   1270		partial = p = ext4_find_shared(inode, n, offsets, chain, &nr);
   1271		if (nr) {
   1272			if (partial == chain) {
   1273				/* Shared branch grows from the inode */
   1274				ext4_free_branches(handle, inode, NULL,
   1275					   &nr, &nr+1, (chain+n-1) - partial);
   1276				*partial->p = 0;
   1277			} else {
   1278				/* Shared branch grows from an indirect block */
   1279				BUFFER_TRACE(partial->bh, "get_write_access");
   1280				ext4_free_branches(handle, inode, partial->bh,
   1281					partial->p,
   1282					partial->p+1, (chain+n-1) - partial);
   1283			}
   1284		}
   1285
   1286		/*
   1287		 * Clear the ends of indirect blocks on the shared branch
   1288		 * at the start of the range
   1289		 */
   1290		while (partial > chain) {
   1291			ext4_free_branches(handle, inode, partial->bh,
   1292				partial->p + 1,
   1293				(__le32 *)partial->bh->b_data+addr_per_block,
   1294				(chain+n-1) - partial);
   1295			partial--;
   1296		}
   1297
   1298end_range:
   1299		partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
   1300		if (nr2) {
   1301			if (partial2 == chain2) {
   1302				/*
   1303				 * Remember, end is exclusive so here we're at
   1304				 * the start of the next level we're not going
   1305				 * to free. Everything was covered by the start
   1306				 * of the range.
   1307				 */
   1308				goto do_indirects;
   1309			}
   1310		} else {
   1311			/*
   1312			 * ext4_find_shared returns Indirect structure which
   1313			 * points to the last element which should not be
   1314			 * removed by truncate. But this is end of the range
   1315			 * in punch_hole so we need to point to the next element
   1316			 */
   1317			partial2->p++;
   1318		}
   1319
   1320		/*
   1321		 * Clear the ends of indirect blocks on the shared branch
   1322		 * at the end of the range
   1323		 */
   1324		while (partial2 > chain2) {
   1325			ext4_free_branches(handle, inode, partial2->bh,
   1326					   (__le32 *)partial2->bh->b_data,
   1327					   partial2->p,
   1328					   (chain2+n2-1) - partial2);
   1329			partial2--;
   1330		}
   1331		goto do_indirects;
   1332	}
   1333
   1334	/* Punch happened within the same level (n == n2) */
   1335	partial = p = ext4_find_shared(inode, n, offsets, chain, &nr);
   1336	partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
   1337
   1338	/* Free top, but only if partial2 isn't its subtree. */
   1339	if (nr) {
   1340		int level = min(partial - chain, partial2 - chain2);
   1341		int i;
   1342		int subtree = 1;
   1343
   1344		for (i = 0; i <= level; i++) {
   1345			if (offsets[i] != offsets2[i]) {
   1346				subtree = 0;
   1347				break;
   1348			}
   1349		}
   1350
   1351		if (!subtree) {
   1352			if (partial == chain) {
   1353				/* Shared branch grows from the inode */
   1354				ext4_free_branches(handle, inode, NULL,
   1355						   &nr, &nr+1,
   1356						   (chain+n-1) - partial);
   1357				*partial->p = 0;
   1358			} else {
   1359				/* Shared branch grows from an indirect block */
   1360				BUFFER_TRACE(partial->bh, "get_write_access");
   1361				ext4_free_branches(handle, inode, partial->bh,
   1362						   partial->p,
   1363						   partial->p+1,
   1364						   (chain+n-1) - partial);
   1365			}
   1366		}
   1367	}
   1368
   1369	if (!nr2) {
   1370		/*
   1371		 * ext4_find_shared returns Indirect structure which
   1372		 * points to the last element which should not be
   1373		 * removed by truncate. But this is end of the range
   1374		 * in punch_hole so we need to point to the next element
   1375		 */
   1376		partial2->p++;
   1377	}
   1378
   1379	while (partial > chain || partial2 > chain2) {
   1380		int depth = (chain+n-1) - partial;
   1381		int depth2 = (chain2+n2-1) - partial2;
   1382
   1383		if (partial > chain && partial2 > chain2 &&
   1384		    partial->bh->b_blocknr == partial2->bh->b_blocknr) {
   1385			/*
   1386			 * We've converged on the same block. Clear the range,
   1387			 * then we're done.
   1388			 */
   1389			ext4_free_branches(handle, inode, partial->bh,
   1390					   partial->p + 1,
   1391					   partial2->p,
   1392					   (chain+n-1) - partial);
   1393			goto cleanup;
   1394		}
   1395
   1396		/*
   1397		 * The start and end partial branches may not be at the same
   1398		 * level even though the punch happened within one level. So, we
   1399		 * give them a chance to arrive at the same level, then walk
   1400		 * them in step with each other until we converge on the same
   1401		 * block.
   1402		 */
   1403		if (partial > chain && depth <= depth2) {
   1404			ext4_free_branches(handle, inode, partial->bh,
   1405					   partial->p + 1,
   1406					   (__le32 *)partial->bh->b_data+addr_per_block,
   1407					   (chain+n-1) - partial);
   1408			partial--;
   1409		}
   1410		if (partial2 > chain2 && depth2 <= depth) {
   1411			ext4_free_branches(handle, inode, partial2->bh,
   1412					   (__le32 *)partial2->bh->b_data,
   1413					   partial2->p,
   1414					   (chain2+n2-1) - partial2);
   1415			partial2--;
   1416		}
   1417	}
   1418
   1419cleanup:
   1420	while (p && p > chain) {
   1421		BUFFER_TRACE(p->bh, "call brelse");
   1422		brelse(p->bh);
   1423		p--;
   1424	}
   1425	while (p2 && p2 > chain2) {
   1426		BUFFER_TRACE(p2->bh, "call brelse");
   1427		brelse(p2->bh);
   1428		p2--;
   1429	}
   1430	return 0;
   1431
   1432do_indirects:
   1433	/* Kill the remaining (whole) subtrees */
   1434	switch (offsets[0]) {
   1435	default:
   1436		if (++n >= n2)
   1437			break;
   1438		nr = i_data[EXT4_IND_BLOCK];
   1439		if (nr) {
   1440			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
   1441			i_data[EXT4_IND_BLOCK] = 0;
   1442		}
   1443		fallthrough;
   1444	case EXT4_IND_BLOCK:
   1445		if (++n >= n2)
   1446			break;
   1447		nr = i_data[EXT4_DIND_BLOCK];
   1448		if (nr) {
   1449			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
   1450			i_data[EXT4_DIND_BLOCK] = 0;
   1451		}
   1452		fallthrough;
   1453	case EXT4_DIND_BLOCK:
   1454		if (++n >= n2)
   1455			break;
   1456		nr = i_data[EXT4_TIND_BLOCK];
   1457		if (nr) {
   1458			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
   1459			i_data[EXT4_TIND_BLOCK] = 0;
   1460		}
   1461		fallthrough;
   1462	case EXT4_TIND_BLOCK:
   1463		;
   1464	}
   1465	goto cleanup;
   1466}