cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

node.h (12225B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2/*
      3 * fs/f2fs/node.h
      4 *
      5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
      6 *             http://www.samsung.com/
      7 */
      8/* start node id of a node block dedicated to the given node id */
      9#define	START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
     10
     11/* node block offset on the NAT area dedicated to the given start node id */
     12#define	NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
     13
     14/* # of pages to perform synchronous readahead before building free nids */
     15#define FREE_NID_PAGES	8
     16#define MAX_FREE_NIDS	(NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
     17
     18/* size of free nid batch when shrinking */
     19#define SHRINK_NID_BATCH_SIZE	8
     20
     21#define DEF_RA_NID_PAGES	0	/* # of nid pages to be readaheaded */
     22
     23/* maximum readahead size for node during getting data blocks */
     24#define MAX_RA_NODE		128
     25
     26/* control the memory footprint threshold (10MB per 1GB ram) */
     27#define DEF_RAM_THRESHOLD	1
     28
     29/* control dirty nats ratio threshold (default: 10% over max nid count) */
     30#define DEF_DIRTY_NAT_RATIO_THRESHOLD		10
     31/* control total # of nats */
     32#define DEF_NAT_CACHE_THRESHOLD			100000
     33
     34/* control total # of node writes used for roll-fowrad recovery */
     35#define DEF_RF_NODE_BLOCKS			0
     36
     37/* vector size for gang look-up from nat cache that consists of radix tree */
     38#define NATVEC_SIZE	64
     39#define SETVEC_SIZE	32
     40
     41/* return value for read_node_page */
     42#define LOCKED_PAGE	1
     43
     44/* check pinned file's alignment status of physical blocks */
     45#define FILE_NOT_ALIGNED	1
     46
     47/* For flag in struct node_info */
     48enum {
     49	IS_CHECKPOINTED,	/* is it checkpointed before? */
     50	HAS_FSYNCED_INODE,	/* is the inode fsynced before? */
     51	HAS_LAST_FSYNC,		/* has the latest node fsync mark? */
     52	IS_DIRTY,		/* this nat entry is dirty? */
     53	IS_PREALLOC,		/* nat entry is preallocated */
     54};
     55
     56/*
     57 * For node information
     58 */
     59struct node_info {
     60	nid_t nid;		/* node id */
     61	nid_t ino;		/* inode number of the node's owner */
     62	block_t	blk_addr;	/* block address of the node */
     63	unsigned char version;	/* version of the node */
     64	unsigned char flag;	/* for node information bits */
     65};
     66
     67struct nat_entry {
     68	struct list_head list;	/* for clean or dirty nat list */
     69	struct node_info ni;	/* in-memory node information */
     70};
     71
     72#define nat_get_nid(nat)		((nat)->ni.nid)
     73#define nat_set_nid(nat, n)		((nat)->ni.nid = (n))
     74#define nat_get_blkaddr(nat)		((nat)->ni.blk_addr)
     75#define nat_set_blkaddr(nat, b)		((nat)->ni.blk_addr = (b))
     76#define nat_get_ino(nat)		((nat)->ni.ino)
     77#define nat_set_ino(nat, i)		((nat)->ni.ino = (i))
     78#define nat_get_version(nat)		((nat)->ni.version)
     79#define nat_set_version(nat, v)		((nat)->ni.version = (v))
     80
     81#define inc_node_version(version)	(++(version))
     82
     83static inline void copy_node_info(struct node_info *dst,
     84						struct node_info *src)
     85{
     86	dst->nid = src->nid;
     87	dst->ino = src->ino;
     88	dst->blk_addr = src->blk_addr;
     89	dst->version = src->version;
     90	/* should not copy flag here */
     91}
     92
     93static inline void set_nat_flag(struct nat_entry *ne,
     94				unsigned int type, bool set)
     95{
     96	unsigned char mask = 0x01 << type;
     97	if (set)
     98		ne->ni.flag |= mask;
     99	else
    100		ne->ni.flag &= ~mask;
    101}
    102
    103static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
    104{
    105	unsigned char mask = 0x01 << type;
    106	return ne->ni.flag & mask;
    107}
    108
    109static inline void nat_reset_flag(struct nat_entry *ne)
    110{
    111	/* these states can be set only after checkpoint was done */
    112	set_nat_flag(ne, IS_CHECKPOINTED, true);
    113	set_nat_flag(ne, HAS_FSYNCED_INODE, false);
    114	set_nat_flag(ne, HAS_LAST_FSYNC, true);
    115}
    116
    117static inline void node_info_from_raw_nat(struct node_info *ni,
    118						struct f2fs_nat_entry *raw_ne)
    119{
    120	ni->ino = le32_to_cpu(raw_ne->ino);
    121	ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
    122	ni->version = raw_ne->version;
    123}
    124
    125static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
    126						struct node_info *ni)
    127{
    128	raw_ne->ino = cpu_to_le32(ni->ino);
    129	raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
    130	raw_ne->version = ni->version;
    131}
    132
    133static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
    134{
    135	return NM_I(sbi)->nat_cnt[DIRTY_NAT] >= NM_I(sbi)->max_nid *
    136					NM_I(sbi)->dirty_nats_ratio / 100;
    137}
    138
    139static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
    140{
    141	return NM_I(sbi)->nat_cnt[TOTAL_NAT] >= DEF_NAT_CACHE_THRESHOLD;
    142}
    143
    144enum mem_type {
    145	FREE_NIDS,	/* indicates the free nid list */
    146	NAT_ENTRIES,	/* indicates the cached nat entry */
    147	DIRTY_DENTS,	/* indicates dirty dentry pages */
    148	INO_ENTRIES,	/* indicates inode entries */
    149	EXTENT_CACHE,	/* indicates extent cache */
    150	DISCARD_CACHE,	/* indicates memory of cached discard cmds */
    151	COMPRESS_PAGE,	/* indicates memory of cached compressed pages */
    152	BASE_CHECK,	/* check kernel status */
    153};
    154
    155struct nat_entry_set {
    156	struct list_head set_list;	/* link with other nat sets */
    157	struct list_head entry_list;	/* link with dirty nat entries */
    158	nid_t set;			/* set number*/
    159	unsigned int entry_cnt;		/* the # of nat entries in set */
    160};
    161
    162struct free_nid {
    163	struct list_head list;	/* for free node id list */
    164	nid_t nid;		/* node id */
    165	int state;		/* in use or not: FREE_NID or PREALLOC_NID */
    166};
    167
    168static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
    169{
    170	struct f2fs_nm_info *nm_i = NM_I(sbi);
    171	struct free_nid *fnid;
    172
    173	spin_lock(&nm_i->nid_list_lock);
    174	if (nm_i->nid_cnt[FREE_NID] <= 0) {
    175		spin_unlock(&nm_i->nid_list_lock);
    176		return;
    177	}
    178	fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
    179	*nid = fnid->nid;
    180	spin_unlock(&nm_i->nid_list_lock);
    181}
    182
    183/*
    184 * inline functions
    185 */
    186static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
    187{
    188	struct f2fs_nm_info *nm_i = NM_I(sbi);
    189
    190#ifdef CONFIG_F2FS_CHECK_FS
    191	if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
    192						nm_i->bitmap_size))
    193		f2fs_bug_on(sbi, 1);
    194#endif
    195	memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
    196}
    197
    198static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
    199{
    200	struct f2fs_nm_info *nm_i = NM_I(sbi);
    201	pgoff_t block_off;
    202	pgoff_t block_addr;
    203
    204	/*
    205	 * block_off = segment_off * 512 + off_in_segment
    206	 * OLD = (segment_off * 512) * 2 + off_in_segment
    207	 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
    208	 */
    209	block_off = NAT_BLOCK_OFFSET(start);
    210
    211	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
    212		(block_off << 1) -
    213		(block_off & (sbi->blocks_per_seg - 1)));
    214
    215	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
    216		block_addr += sbi->blocks_per_seg;
    217
    218	return block_addr;
    219}
    220
    221static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
    222						pgoff_t block_addr)
    223{
    224	struct f2fs_nm_info *nm_i = NM_I(sbi);
    225
    226	block_addr -= nm_i->nat_blkaddr;
    227	block_addr ^= 1 << sbi->log_blocks_per_seg;
    228	return block_addr + nm_i->nat_blkaddr;
    229}
    230
    231static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
    232{
    233	unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
    234
    235	f2fs_change_bit(block_off, nm_i->nat_bitmap);
    236#ifdef CONFIG_F2FS_CHECK_FS
    237	f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
    238#endif
    239}
    240
    241static inline nid_t ino_of_node(struct page *node_page)
    242{
    243	struct f2fs_node *rn = F2FS_NODE(node_page);
    244	return le32_to_cpu(rn->footer.ino);
    245}
    246
    247static inline nid_t nid_of_node(struct page *node_page)
    248{
    249	struct f2fs_node *rn = F2FS_NODE(node_page);
    250	return le32_to_cpu(rn->footer.nid);
    251}
    252
    253static inline unsigned int ofs_of_node(struct page *node_page)
    254{
    255	struct f2fs_node *rn = F2FS_NODE(node_page);
    256	unsigned flag = le32_to_cpu(rn->footer.flag);
    257	return flag >> OFFSET_BIT_SHIFT;
    258}
    259
    260static inline __u64 cpver_of_node(struct page *node_page)
    261{
    262	struct f2fs_node *rn = F2FS_NODE(node_page);
    263	return le64_to_cpu(rn->footer.cp_ver);
    264}
    265
    266static inline block_t next_blkaddr_of_node(struct page *node_page)
    267{
    268	struct f2fs_node *rn = F2FS_NODE(node_page);
    269	return le32_to_cpu(rn->footer.next_blkaddr);
    270}
    271
    272static inline void fill_node_footer(struct page *page, nid_t nid,
    273				nid_t ino, unsigned int ofs, bool reset)
    274{
    275	struct f2fs_node *rn = F2FS_NODE(page);
    276	unsigned int old_flag = 0;
    277
    278	if (reset)
    279		memset(rn, 0, sizeof(*rn));
    280	else
    281		old_flag = le32_to_cpu(rn->footer.flag);
    282
    283	rn->footer.nid = cpu_to_le32(nid);
    284	rn->footer.ino = cpu_to_le32(ino);
    285
    286	/* should remain old flag bits such as COLD_BIT_SHIFT */
    287	rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
    288					(old_flag & OFFSET_BIT_MASK));
    289}
    290
    291static inline void copy_node_footer(struct page *dst, struct page *src)
    292{
    293	struct f2fs_node *src_rn = F2FS_NODE(src);
    294	struct f2fs_node *dst_rn = F2FS_NODE(dst);
    295	memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
    296}
    297
    298static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
    299{
    300	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
    301	struct f2fs_node *rn = F2FS_NODE(page);
    302	__u64 cp_ver = cur_cp_version(ckpt);
    303
    304	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
    305		cp_ver |= (cur_cp_crc(ckpt) << 32);
    306
    307	rn->footer.cp_ver = cpu_to_le64(cp_ver);
    308	rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
    309}
    310
    311static inline bool is_recoverable_dnode(struct page *page)
    312{
    313	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
    314	__u64 cp_ver = cur_cp_version(ckpt);
    315
    316	/* Don't care crc part, if fsck.f2fs sets it. */
    317	if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
    318		return (cp_ver << 32) == (cpver_of_node(page) << 32);
    319
    320	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
    321		cp_ver |= (cur_cp_crc(ckpt) << 32);
    322
    323	return cp_ver == cpver_of_node(page);
    324}
    325
    326/*
    327 * f2fs assigns the following node offsets described as (num).
    328 * N = NIDS_PER_BLOCK
    329 *
    330 *  Inode block (0)
    331 *    |- direct node (1)
    332 *    |- direct node (2)
    333 *    |- indirect node (3)
    334 *    |            `- direct node (4 => 4 + N - 1)
    335 *    |- indirect node (4 + N)
    336 *    |            `- direct node (5 + N => 5 + 2N - 1)
    337 *    `- double indirect node (5 + 2N)
    338 *                 `- indirect node (6 + 2N)
    339 *                       `- direct node
    340 *                 ......
    341 *                 `- indirect node ((6 + 2N) + x(N + 1))
    342 *                       `- direct node
    343 *                 ......
    344 *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
    345 *                       `- direct node
    346 */
    347static inline bool IS_DNODE(struct page *node_page)
    348{
    349	unsigned int ofs = ofs_of_node(node_page);
    350
    351	if (f2fs_has_xattr_block(ofs))
    352		return true;
    353
    354	if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
    355			ofs == 5 + 2 * NIDS_PER_BLOCK)
    356		return false;
    357	if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
    358		ofs -= 6 + 2 * NIDS_PER_BLOCK;
    359		if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
    360			return false;
    361	}
    362	return true;
    363}
    364
    365static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
    366{
    367	struct f2fs_node *rn = F2FS_NODE(p);
    368
    369	f2fs_wait_on_page_writeback(p, NODE, true, true);
    370
    371	if (i)
    372		rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
    373	else
    374		rn->in.nid[off] = cpu_to_le32(nid);
    375	return set_page_dirty(p);
    376}
    377
    378static inline nid_t get_nid(struct page *p, int off, bool i)
    379{
    380	struct f2fs_node *rn = F2FS_NODE(p);
    381
    382	if (i)
    383		return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
    384	return le32_to_cpu(rn->in.nid[off]);
    385}
    386
    387/*
    388 * Coldness identification:
    389 *  - Mark cold files in f2fs_inode_info
    390 *  - Mark cold node blocks in their node footer
    391 *  - Mark cold data pages in page cache
    392 */
    393
    394static inline int is_node(struct page *page, int type)
    395{
    396	struct f2fs_node *rn = F2FS_NODE(page);
    397	return le32_to_cpu(rn->footer.flag) & (1 << type);
    398}
    399
    400#define is_cold_node(page)	is_node(page, COLD_BIT_SHIFT)
    401#define is_fsync_dnode(page)	is_node(page, FSYNC_BIT_SHIFT)
    402#define is_dent_dnode(page)	is_node(page, DENT_BIT_SHIFT)
    403
    404static inline void set_cold_node(struct page *page, bool is_dir)
    405{
    406	struct f2fs_node *rn = F2FS_NODE(page);
    407	unsigned int flag = le32_to_cpu(rn->footer.flag);
    408
    409	if (is_dir)
    410		flag &= ~(0x1 << COLD_BIT_SHIFT);
    411	else
    412		flag |= (0x1 << COLD_BIT_SHIFT);
    413	rn->footer.flag = cpu_to_le32(flag);
    414}
    415
    416static inline void set_mark(struct page *page, int mark, int type)
    417{
    418	struct f2fs_node *rn = F2FS_NODE(page);
    419	unsigned int flag = le32_to_cpu(rn->footer.flag);
    420	if (mark)
    421		flag |= (0x1 << type);
    422	else
    423		flag &= ~(0x1 << type);
    424	rn->footer.flag = cpu_to_le32(flag);
    425
    426#ifdef CONFIG_F2FS_CHECK_FS
    427	f2fs_inode_chksum_set(F2FS_P_SB(page), page);
    428#endif
    429}
    430#define set_dentry_mark(page, mark)	set_mark(page, mark, DENT_BIT_SHIFT)
    431#define set_fsync_mark(page, mark)	set_mark(page, mark, FSYNC_BIT_SHIFT)