cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

segment.h (29258B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2/*
      3 * fs/f2fs/segment.h
      4 *
      5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
      6 *             http://www.samsung.com/
      7 */
      8#include <linux/blkdev.h>
      9#include <linux/backing-dev.h>
     10
     11/* constant macro */
     12#define NULL_SEGNO			((unsigned int)(~0))
     13#define NULL_SECNO			((unsigned int)(~0))
     14
     15#define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
     16#define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
     17
     18#define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
     19#define F2FS_MIN_META_SEGMENTS	8 /* SB + 2 (CP + SIT + NAT) + SSA */
     20
     21/* L: Logical segment # in volume, R: Relative segment # in main area */
     22#define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno)
     23#define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno)
     24
     25#define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA)
     26#define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
     27#define SE_PAGETYPE(se)	((IS_NODESEG((se)->type) ? NODE : DATA))
     28
     29static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
     30						unsigned short seg_type)
     31{
     32	f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
     33}
     34
     35#define IS_HOT(t)	((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
     36#define IS_WARM(t)	((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
     37#define IS_COLD(t)	((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
     38
     39#define IS_CURSEG(sbi, seg)						\
     40	(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
     41	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
     42	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
     43	 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
     44	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
     45	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) ||	\
     46	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) ||	\
     47	 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
     48
     49#define IS_CURSEC(sbi, secno)						\
     50	(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
     51	  (sbi)->segs_per_sec) ||	\
     52	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
     53	  (sbi)->segs_per_sec) ||	\
     54	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
     55	  (sbi)->segs_per_sec) ||	\
     56	 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
     57	  (sbi)->segs_per_sec) ||	\
     58	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
     59	  (sbi)->segs_per_sec) ||	\
     60	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
     61	  (sbi)->segs_per_sec) ||	\
     62	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno /	\
     63	  (sbi)->segs_per_sec) ||	\
     64	 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno /	\
     65	  (sbi)->segs_per_sec))
     66
     67#define MAIN_BLKADDR(sbi)						\
     68	(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : 				\
     69		le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
     70#define SEG0_BLKADDR(sbi)						\
     71	(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : 				\
     72		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
     73
     74#define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
     75#define MAIN_SECS(sbi)	((sbi)->total_sections)
     76
     77#define TOTAL_SEGS(sbi)							\
     78	(SM_I(sbi) ? SM_I(sbi)->segment_count : 				\
     79		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
     80#define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
     81
     82#define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
     83#define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\
     84					(sbi)->log_blocks_per_seg))
     85
     86#define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
     87	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
     88
     89#define NEXT_FREE_BLKADDR(sbi, curseg)					\
     90	(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
     91
     92#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
     93#define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
     94	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
     95#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
     96	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
     97
     98#define GET_SEGNO(sbi, blk_addr)					\
     99	((!__is_valid_data_blkaddr(blk_addr)) ?			\
    100	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
    101		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
    102#define BLKS_PER_SEC(sbi)					\
    103	((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
    104#define GET_SEC_FROM_SEG(sbi, segno)				\
    105	(((segno) == -1) ? -1: (segno) / (sbi)->segs_per_sec)
    106#define GET_SEG_FROM_SEC(sbi, secno)				\
    107	((secno) * (sbi)->segs_per_sec)
    108#define GET_ZONE_FROM_SEC(sbi, secno)				\
    109	(((secno) == -1) ? -1: (secno) / (sbi)->secs_per_zone)
    110#define GET_ZONE_FROM_SEG(sbi, segno)				\
    111	GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
    112
    113#define GET_SUM_BLOCK(sbi, segno)				\
    114	((sbi)->sm_info->ssa_blkaddr + (segno))
    115
    116#define GET_SUM_TYPE(footer) ((footer)->entry_type)
    117#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
    118
    119#define SIT_ENTRY_OFFSET(sit_i, segno)					\
    120	((segno) % (sit_i)->sents_per_block)
    121#define SIT_BLOCK_OFFSET(segno)					\
    122	((segno) / SIT_ENTRY_PER_BLOCK)
    123#define	START_SEGNO(segno)		\
    124	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
    125#define SIT_BLK_CNT(sbi)			\
    126	DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
    127#define f2fs_bitmap_size(nr)			\
    128	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
    129
    130#define SECTOR_FROM_BLOCK(blk_addr)					\
    131	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
    132#define SECTOR_TO_BLOCK(sectors)					\
    133	((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
    134
    135/*
    136 * indicate a block allocation direction: RIGHT and LEFT.
    137 * RIGHT means allocating new sections towards the end of volume.
    138 * LEFT means the opposite direction.
    139 */
    140enum {
    141	ALLOC_RIGHT = 0,
    142	ALLOC_LEFT
    143};
    144
    145/*
    146 * In the victim_sel_policy->alloc_mode, there are three block allocation modes.
    147 * LFS writes data sequentially with cleaning operations.
    148 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
    149 * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
    150 * fragmented segment which has similar aging degree.
    151 */
    152enum {
    153	LFS = 0,
    154	SSR,
    155	AT_SSR,
    156};
    157
    158/*
    159 * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes.
    160 * GC_CB is based on cost-benefit algorithm.
    161 * GC_GREEDY is based on greedy algorithm.
    162 * GC_AT is based on age-threshold algorithm.
    163 */
    164enum {
    165	GC_CB = 0,
    166	GC_GREEDY,
    167	GC_AT,
    168	ALLOC_NEXT,
    169	FLUSH_DEVICE,
    170	MAX_GC_POLICY,
    171};
    172
    173/*
    174 * BG_GC means the background cleaning job.
    175 * FG_GC means the on-demand cleaning job.
    176 */
    177enum {
    178	BG_GC = 0,
    179	FG_GC,
    180};
    181
    182/* for a function parameter to select a victim segment */
    183struct victim_sel_policy {
    184	int alloc_mode;			/* LFS or SSR */
    185	int gc_mode;			/* GC_CB or GC_GREEDY */
    186	unsigned long *dirty_bitmap;	/* dirty segment/section bitmap */
    187	unsigned int max_search;	/*
    188					 * maximum # of segments/sections
    189					 * to search
    190					 */
    191	unsigned int offset;		/* last scanned bitmap offset */
    192	unsigned int ofs_unit;		/* bitmap search unit */
    193	unsigned int min_cost;		/* minimum cost */
    194	unsigned long long oldest_age;	/* oldest age of segments having the same min cost */
    195	unsigned int min_segno;		/* segment # having min. cost */
    196	unsigned long long age;		/* mtime of GCed section*/
    197	unsigned long long age_threshold;/* age threshold */
    198};
    199
    200struct seg_entry {
    201	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
    202	unsigned int valid_blocks:10;	/* # of valid blocks */
    203	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
    204	unsigned int padding:6;		/* padding */
    205	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
    206#ifdef CONFIG_F2FS_CHECK_FS
    207	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
    208#endif
    209	/*
    210	 * # of valid blocks and the validity bitmap stored in the last
    211	 * checkpoint pack. This information is used by the SSR mode.
    212	 */
    213	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
    214	unsigned char *discard_map;
    215	unsigned long long mtime;	/* modification time of the segment */
    216};
    217
    218struct sec_entry {
    219	unsigned int valid_blocks;	/* # of valid blocks in a section */
    220};
    221
    222struct segment_allocation {
    223	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
    224};
    225
    226#define MAX_SKIP_GC_COUNT			16
    227
    228struct revoke_entry {
    229	struct list_head list;
    230	block_t old_addr;		/* for revoking when fail to commit */
    231	pgoff_t index;
    232};
    233
    234struct sit_info {
    235	const struct segment_allocation *s_ops;
    236
    237	block_t sit_base_addr;		/* start block address of SIT area */
    238	block_t sit_blocks;		/* # of blocks used by SIT area */
    239	block_t written_valid_blocks;	/* # of valid blocks in main area */
    240	char *bitmap;			/* all bitmaps pointer */
    241	char *sit_bitmap;		/* SIT bitmap pointer */
    242#ifdef CONFIG_F2FS_CHECK_FS
    243	char *sit_bitmap_mir;		/* SIT bitmap mirror */
    244
    245	/* bitmap of segments to be ignored by GC in case of errors */
    246	unsigned long *invalid_segmap;
    247#endif
    248	unsigned int bitmap_size;	/* SIT bitmap size */
    249
    250	unsigned long *tmp_map;			/* bitmap for temporal use */
    251	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
    252	unsigned int dirty_sentries;		/* # of dirty sentries */
    253	unsigned int sents_per_block;		/* # of SIT entries per block */
    254	struct rw_semaphore sentry_lock;	/* to protect SIT cache */
    255	struct seg_entry *sentries;		/* SIT segment-level cache */
    256	struct sec_entry *sec_entries;		/* SIT section-level cache */
    257
    258	/* for cost-benefit algorithm in cleaning procedure */
    259	unsigned long long elapsed_time;	/* elapsed time after mount */
    260	unsigned long long mounted_time;	/* mount time */
    261	unsigned long long min_mtime;		/* min. modification time */
    262	unsigned long long max_mtime;		/* max. modification time */
    263	unsigned long long dirty_min_mtime;	/* rerange candidates in GC_AT */
    264	unsigned long long dirty_max_mtime;	/* rerange candidates in GC_AT */
    265
    266	unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
    267};
    268
    269struct free_segmap_info {
    270	unsigned int start_segno;	/* start segment number logically */
    271	unsigned int free_segments;	/* # of free segments */
    272	unsigned int free_sections;	/* # of free sections */
    273	spinlock_t segmap_lock;		/* free segmap lock */
    274	unsigned long *free_segmap;	/* free segment bitmap */
    275	unsigned long *free_secmap;	/* free section bitmap */
    276};
    277
    278/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
    279enum dirty_type {
    280	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
    281	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
    282	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
    283	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
    284	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
    285	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
    286	DIRTY,			/* to count # of dirty segments */
    287	PRE,			/* to count # of entirely obsolete segments */
    288	NR_DIRTY_TYPE
    289};
    290
    291struct dirty_seglist_info {
    292	const struct victim_selection *v_ops;	/* victim selction operation */
    293	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
    294	unsigned long *dirty_secmap;
    295	struct mutex seglist_lock;		/* lock for segment bitmaps */
    296	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
    297	unsigned long *victim_secmap;		/* background GC victims */
    298	unsigned long *pinned_secmap;		/* pinned victims from foreground GC */
    299	unsigned int pinned_secmap_cnt;		/* count of victims which has pinned data */
    300	bool enable_pin_section;		/* enable pinning section */
    301};
    302
    303/* victim selection function for cleaning and SSR */
    304struct victim_selection {
    305	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
    306					int, int, char, unsigned long long);
    307};
    308
    309/* for active log information */
    310struct curseg_info {
    311	struct mutex curseg_mutex;		/* lock for consistency */
    312	struct f2fs_summary_block *sum_blk;	/* cached summary block */
    313	struct rw_semaphore journal_rwsem;	/* protect journal area */
    314	struct f2fs_journal *journal;		/* cached journal info */
    315	unsigned char alloc_type;		/* current allocation type */
    316	unsigned short seg_type;		/* segment type like CURSEG_XXX_TYPE */
    317	unsigned int segno;			/* current segment number */
    318	unsigned short next_blkoff;		/* next block offset to write */
    319	unsigned int zone;			/* current zone number */
    320	unsigned int next_segno;		/* preallocated segment */
    321	int fragment_remained_chunk;		/* remained block size in a chunk for block fragmentation mode */
    322	bool inited;				/* indicate inmem log is inited */
    323};
    324
    325struct sit_entry_set {
    326	struct list_head set_list;	/* link with all sit sets */
    327	unsigned int start_segno;	/* start segno of sits in set */
    328	unsigned int entry_cnt;		/* the # of sit entries in set */
    329};
    330
    331/*
    332 * inline functions
    333 */
    334static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
    335{
    336	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
    337}
    338
    339static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
    340						unsigned int segno)
    341{
    342	struct sit_info *sit_i = SIT_I(sbi);
    343	return &sit_i->sentries[segno];
    344}
    345
    346static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
    347						unsigned int segno)
    348{
    349	struct sit_info *sit_i = SIT_I(sbi);
    350	return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
    351}
    352
    353static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
    354				unsigned int segno, bool use_section)
    355{
    356	/*
    357	 * In order to get # of valid blocks in a section instantly from many
    358	 * segments, f2fs manages two counting structures separately.
    359	 */
    360	if (use_section && __is_large_section(sbi))
    361		return get_sec_entry(sbi, segno)->valid_blocks;
    362	else
    363		return get_seg_entry(sbi, segno)->valid_blocks;
    364}
    365
    366static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
    367				unsigned int segno, bool use_section)
    368{
    369	if (use_section && __is_large_section(sbi)) {
    370		unsigned int start_segno = START_SEGNO(segno);
    371		unsigned int blocks = 0;
    372		int i;
    373
    374		for (i = 0; i < sbi->segs_per_sec; i++, start_segno++) {
    375			struct seg_entry *se = get_seg_entry(sbi, start_segno);
    376
    377			blocks += se->ckpt_valid_blocks;
    378		}
    379		return blocks;
    380	}
    381	return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
    382}
    383
    384static inline void seg_info_from_raw_sit(struct seg_entry *se,
    385					struct f2fs_sit_entry *rs)
    386{
    387	se->valid_blocks = GET_SIT_VBLOCKS(rs);
    388	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
    389	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
    390	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
    391#ifdef CONFIG_F2FS_CHECK_FS
    392	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
    393#endif
    394	se->type = GET_SIT_TYPE(rs);
    395	se->mtime = le64_to_cpu(rs->mtime);
    396}
    397
    398static inline void __seg_info_to_raw_sit(struct seg_entry *se,
    399					struct f2fs_sit_entry *rs)
    400{
    401	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
    402					se->valid_blocks;
    403	rs->vblocks = cpu_to_le16(raw_vblocks);
    404	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
    405	rs->mtime = cpu_to_le64(se->mtime);
    406}
    407
    408static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
    409				struct page *page, unsigned int start)
    410{
    411	struct f2fs_sit_block *raw_sit;
    412	struct seg_entry *se;
    413	struct f2fs_sit_entry *rs;
    414	unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
    415					(unsigned long)MAIN_SEGS(sbi));
    416	int i;
    417
    418	raw_sit = (struct f2fs_sit_block *)page_address(page);
    419	memset(raw_sit, 0, PAGE_SIZE);
    420	for (i = 0; i < end - start; i++) {
    421		rs = &raw_sit->entries[i];
    422		se = get_seg_entry(sbi, start + i);
    423		__seg_info_to_raw_sit(se, rs);
    424	}
    425}
    426
    427static inline void seg_info_to_raw_sit(struct seg_entry *se,
    428					struct f2fs_sit_entry *rs)
    429{
    430	__seg_info_to_raw_sit(se, rs);
    431
    432	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
    433	se->ckpt_valid_blocks = se->valid_blocks;
    434}
    435
    436static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
    437		unsigned int max, unsigned int segno)
    438{
    439	unsigned int ret;
    440	spin_lock(&free_i->segmap_lock);
    441	ret = find_next_bit(free_i->free_segmap, max, segno);
    442	spin_unlock(&free_i->segmap_lock);
    443	return ret;
    444}
    445
    446static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
    447{
    448	struct free_segmap_info *free_i = FREE_I(sbi);
    449	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
    450	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
    451	unsigned int next;
    452	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
    453
    454	spin_lock(&free_i->segmap_lock);
    455	clear_bit(segno, free_i->free_segmap);
    456	free_i->free_segments++;
    457
    458	next = find_next_bit(free_i->free_segmap,
    459			start_segno + sbi->segs_per_sec, start_segno);
    460	if (next >= start_segno + usable_segs) {
    461		clear_bit(secno, free_i->free_secmap);
    462		free_i->free_sections++;
    463	}
    464	spin_unlock(&free_i->segmap_lock);
    465}
    466
    467static inline void __set_inuse(struct f2fs_sb_info *sbi,
    468		unsigned int segno)
    469{
    470	struct free_segmap_info *free_i = FREE_I(sbi);
    471	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
    472
    473	set_bit(segno, free_i->free_segmap);
    474	free_i->free_segments--;
    475	if (!test_and_set_bit(secno, free_i->free_secmap))
    476		free_i->free_sections--;
    477}
    478
    479static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
    480		unsigned int segno, bool inmem)
    481{
    482	struct free_segmap_info *free_i = FREE_I(sbi);
    483	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
    484	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
    485	unsigned int next;
    486	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
    487
    488	spin_lock(&free_i->segmap_lock);
    489	if (test_and_clear_bit(segno, free_i->free_segmap)) {
    490		free_i->free_segments++;
    491
    492		if (!inmem && IS_CURSEC(sbi, secno))
    493			goto skip_free;
    494		next = find_next_bit(free_i->free_segmap,
    495				start_segno + sbi->segs_per_sec, start_segno);
    496		if (next >= start_segno + usable_segs) {
    497			if (test_and_clear_bit(secno, free_i->free_secmap))
    498				free_i->free_sections++;
    499		}
    500	}
    501skip_free:
    502	spin_unlock(&free_i->segmap_lock);
    503}
    504
    505static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
    506		unsigned int segno)
    507{
    508	struct free_segmap_info *free_i = FREE_I(sbi);
    509	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
    510
    511	spin_lock(&free_i->segmap_lock);
    512	if (!test_and_set_bit(segno, free_i->free_segmap)) {
    513		free_i->free_segments--;
    514		if (!test_and_set_bit(secno, free_i->free_secmap))
    515			free_i->free_sections--;
    516	}
    517	spin_unlock(&free_i->segmap_lock);
    518}
    519
    520static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
    521		void *dst_addr)
    522{
    523	struct sit_info *sit_i = SIT_I(sbi);
    524
    525#ifdef CONFIG_F2FS_CHECK_FS
    526	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
    527						sit_i->bitmap_size))
    528		f2fs_bug_on(sbi, 1);
    529#endif
    530	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
    531}
    532
    533static inline block_t written_block_count(struct f2fs_sb_info *sbi)
    534{
    535	return SIT_I(sbi)->written_valid_blocks;
    536}
    537
    538static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
    539{
    540	return FREE_I(sbi)->free_segments;
    541}
    542
    543static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
    544{
    545	return SM_I(sbi)->reserved_segments +
    546			SM_I(sbi)->additional_reserved_segments;
    547}
    548
    549static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
    550{
    551	return FREE_I(sbi)->free_sections;
    552}
    553
    554static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
    555{
    556	return DIRTY_I(sbi)->nr_dirty[PRE];
    557}
    558
    559static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
    560{
    561	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
    562		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
    563		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
    564		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
    565		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
    566		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
    567}
    568
    569static inline int overprovision_segments(struct f2fs_sb_info *sbi)
    570{
    571	return SM_I(sbi)->ovp_segments;
    572}
    573
    574static inline int reserved_sections(struct f2fs_sb_info *sbi)
    575{
    576	return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
    577}
    578
    579static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi,
    580			unsigned int node_blocks, unsigned int dent_blocks)
    581{
    582
    583	unsigned int segno, left_blocks;
    584	int i;
    585
    586	/* check current node segment */
    587	for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
    588		segno = CURSEG_I(sbi, i)->segno;
    589		left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
    590				get_seg_entry(sbi, segno)->ckpt_valid_blocks;
    591
    592		if (node_blocks > left_blocks)
    593			return false;
    594	}
    595
    596	/* check current data segment */
    597	segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
    598	left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
    599			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
    600	if (dent_blocks > left_blocks)
    601		return false;
    602	return true;
    603}
    604
    605static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
    606					int freed, int needed)
    607{
    608	unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
    609					get_pages(sbi, F2FS_DIRTY_DENTS) +
    610					get_pages(sbi, F2FS_DIRTY_IMETA);
    611	unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
    612	unsigned int node_secs = total_node_blocks / BLKS_PER_SEC(sbi);
    613	unsigned int dent_secs = total_dent_blocks / BLKS_PER_SEC(sbi);
    614	unsigned int node_blocks = total_node_blocks % BLKS_PER_SEC(sbi);
    615	unsigned int dent_blocks = total_dent_blocks % BLKS_PER_SEC(sbi);
    616	unsigned int free, need_lower, need_upper;
    617
    618	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
    619		return false;
    620
    621	free = free_sections(sbi) + freed;
    622	need_lower = node_secs + dent_secs + reserved_sections(sbi) + needed;
    623	need_upper = need_lower + (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0);
    624
    625	if (free > need_upper)
    626		return false;
    627	else if (free <= need_lower)
    628		return true;
    629	return !has_curseg_enough_space(sbi, node_blocks, dent_blocks);
    630}
    631
    632static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
    633{
    634	if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
    635		return true;
    636	if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
    637		return true;
    638	return false;
    639}
    640
    641static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
    642{
    643	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
    644}
    645
    646static inline int utilization(struct f2fs_sb_info *sbi)
    647{
    648	return div_u64((u64)valid_user_blocks(sbi) * 100,
    649					sbi->user_block_count);
    650}
    651
    652/*
    653 * Sometimes f2fs may be better to drop out-of-place update policy.
    654 * And, users can control the policy through sysfs entries.
    655 * There are five policies with triggering conditions as follows.
    656 * F2FS_IPU_FORCE - all the time,
    657 * F2FS_IPU_SSR - if SSR mode is activated,
    658 * F2FS_IPU_UTIL - if FS utilization is over threashold,
    659 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
    660 *                     threashold,
    661 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
    662 *                     storages. IPU will be triggered only if the # of dirty
    663 *                     pages over min_fsync_blocks. (=default option)
    664 * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
    665 * F2FS_IPU_NOCACHE - disable IPU bio cache.
    666 * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has
    667 *                            FI_OPU_WRITE flag.
    668 * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode)
    669 */
    670#define DEF_MIN_IPU_UTIL	70
    671#define DEF_MIN_FSYNC_BLOCKS	8
    672#define DEF_MIN_HOT_BLOCKS	16
    673
    674#define SMALL_VOLUME_SEGMENTS	(16 * 512)	/* 16GB */
    675
    676enum {
    677	F2FS_IPU_FORCE,
    678	F2FS_IPU_SSR,
    679	F2FS_IPU_UTIL,
    680	F2FS_IPU_SSR_UTIL,
    681	F2FS_IPU_FSYNC,
    682	F2FS_IPU_ASYNC,
    683	F2FS_IPU_NOCACHE,
    684	F2FS_IPU_HONOR_OPU_WRITE,
    685};
    686
    687static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
    688		int type)
    689{
    690	struct curseg_info *curseg = CURSEG_I(sbi, type);
    691	return curseg->segno;
    692}
    693
    694static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
    695		int type)
    696{
    697	struct curseg_info *curseg = CURSEG_I(sbi, type);
    698	return curseg->alloc_type;
    699}
    700
    701static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
    702{
    703	struct curseg_info *curseg = CURSEG_I(sbi, type);
    704	return curseg->next_blkoff;
    705}
    706
    707static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
    708{
    709	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
    710}
    711
    712static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
    713{
    714	struct f2fs_sb_info *sbi = fio->sbi;
    715
    716	if (__is_valid_data_blkaddr(fio->old_blkaddr))
    717		verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
    718					META_GENERIC : DATA_GENERIC);
    719	verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
    720					META_GENERIC : DATA_GENERIC_ENHANCE);
    721}
    722
    723/*
    724 * Summary block is always treated as an invalid block
    725 */
    726static inline int check_block_count(struct f2fs_sb_info *sbi,
    727		int segno, struct f2fs_sit_entry *raw_sit)
    728{
    729	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
    730	int valid_blocks = 0;
    731	int cur_pos = 0, next_pos;
    732	unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
    733
    734	/* check bitmap with valid block count */
    735	do {
    736		if (is_valid) {
    737			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
    738					usable_blks_per_seg,
    739					cur_pos);
    740			valid_blocks += next_pos - cur_pos;
    741		} else
    742			next_pos = find_next_bit_le(&raw_sit->valid_map,
    743					usable_blks_per_seg,
    744					cur_pos);
    745		cur_pos = next_pos;
    746		is_valid = !is_valid;
    747	} while (cur_pos < usable_blks_per_seg);
    748
    749	if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
    750		f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
    751			 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
    752		set_sbi_flag(sbi, SBI_NEED_FSCK);
    753		return -EFSCORRUPTED;
    754	}
    755
    756	if (usable_blks_per_seg < sbi->blocks_per_seg)
    757		f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
    758				sbi->blocks_per_seg,
    759				usable_blks_per_seg) != sbi->blocks_per_seg);
    760
    761	/* check segment usage, and check boundary of a given segment number */
    762	if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
    763					|| segno > TOTAL_SEGS(sbi) - 1)) {
    764		f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
    765			 GET_SIT_VBLOCKS(raw_sit), segno);
    766		set_sbi_flag(sbi, SBI_NEED_FSCK);
    767		return -EFSCORRUPTED;
    768	}
    769	return 0;
    770}
    771
    772static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
    773						unsigned int start)
    774{
    775	struct sit_info *sit_i = SIT_I(sbi);
    776	unsigned int offset = SIT_BLOCK_OFFSET(start);
    777	block_t blk_addr = sit_i->sit_base_addr + offset;
    778
    779	check_seg_range(sbi, start);
    780
    781#ifdef CONFIG_F2FS_CHECK_FS
    782	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
    783			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
    784		f2fs_bug_on(sbi, 1);
    785#endif
    786
    787	/* calculate sit block address */
    788	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
    789		blk_addr += sit_i->sit_blocks;
    790
    791	return blk_addr;
    792}
    793
    794static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
    795						pgoff_t block_addr)
    796{
    797	struct sit_info *sit_i = SIT_I(sbi);
    798	block_addr -= sit_i->sit_base_addr;
    799	if (block_addr < sit_i->sit_blocks)
    800		block_addr += sit_i->sit_blocks;
    801	else
    802		block_addr -= sit_i->sit_blocks;
    803
    804	return block_addr + sit_i->sit_base_addr;
    805}
    806
    807static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
    808{
    809	unsigned int block_off = SIT_BLOCK_OFFSET(start);
    810
    811	f2fs_change_bit(block_off, sit_i->sit_bitmap);
    812#ifdef CONFIG_F2FS_CHECK_FS
    813	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
    814#endif
    815}
    816
    817static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
    818						bool base_time)
    819{
    820	struct sit_info *sit_i = SIT_I(sbi);
    821	time64_t diff, now = ktime_get_boottime_seconds();
    822
    823	if (now >= sit_i->mounted_time)
    824		return sit_i->elapsed_time + now - sit_i->mounted_time;
    825
    826	/* system time is set to the past */
    827	if (!base_time) {
    828		diff = sit_i->mounted_time - now;
    829		if (sit_i->elapsed_time >= diff)
    830			return sit_i->elapsed_time - diff;
    831		return 0;
    832	}
    833	return sit_i->elapsed_time;
    834}
    835
    836static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
    837			unsigned int ofs_in_node, unsigned char version)
    838{
    839	sum->nid = cpu_to_le32(nid);
    840	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
    841	sum->version = version;
    842}
    843
    844static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
    845{
    846	return __start_cp_addr(sbi) +
    847		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
    848}
    849
    850static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
    851{
    852	return __start_cp_addr(sbi) +
    853		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
    854				- (base + 1) + type;
    855}
    856
    857static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
    858{
    859	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
    860		return true;
    861	return false;
    862}
    863
    864/*
    865 * It is very important to gather dirty pages and write at once, so that we can
    866 * submit a big bio without interfering other data writes.
    867 * By default, 512 pages for directory data,
    868 * 512 pages (2MB) * 8 for nodes, and
    869 * 256 pages * 8 for meta are set.
    870 */
    871static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
    872{
    873	if (sbi->sb->s_bdi->wb.dirty_exceeded)
    874		return 0;
    875
    876	if (type == DATA)
    877		return sbi->blocks_per_seg;
    878	else if (type == NODE)
    879		return 8 * sbi->blocks_per_seg;
    880	else if (type == META)
    881		return 8 * BIO_MAX_VECS;
    882	else
    883		return 0;
    884}
    885
    886/*
    887 * When writing pages, it'd better align nr_to_write for segment size.
    888 */
    889static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
    890					struct writeback_control *wbc)
    891{
    892	long nr_to_write, desired;
    893
    894	if (wbc->sync_mode != WB_SYNC_NONE)
    895		return 0;
    896
    897	nr_to_write = wbc->nr_to_write;
    898	desired = BIO_MAX_VECS;
    899	if (type == NODE)
    900		desired <<= 1;
    901
    902	wbc->nr_to_write = desired;
    903	return desired - nr_to_write;
    904}
    905
    906static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
    907{
    908	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
    909	bool wakeup = false;
    910	int i;
    911
    912	if (force)
    913		goto wake_up;
    914
    915	mutex_lock(&dcc->cmd_lock);
    916	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
    917		if (i + 1 < dcc->discard_granularity)
    918			break;
    919		if (!list_empty(&dcc->pend_list[i])) {
    920			wakeup = true;
    921			break;
    922		}
    923	}
    924	mutex_unlock(&dcc->cmd_lock);
    925	if (!wakeup || !is_idle(sbi, DISCARD_TIME))
    926		return;
    927wake_up:
    928	dcc->discard_wake = 1;
    929	wake_up_interruptible_all(&dcc->discard_wait_queue);
    930}