fs-writeback.c (80669B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * fs/fs-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * Contains all the functions related to writing back and waiting 8 * upon dirty inodes against superblocks, and writing back dirty 9 * pages against inodes. ie: data writeback. Writeout of the 10 * inode itself is not handled here. 11 * 12 * 10Apr2002 Andrew Morton 13 * Split out of fs/inode.c 14 * Additions for address_space-based writeback 15 */ 16 17#include <linux/kernel.h> 18#include <linux/export.h> 19#include <linux/spinlock.h> 20#include <linux/slab.h> 21#include <linux/sched.h> 22#include <linux/fs.h> 23#include <linux/mm.h> 24#include <linux/pagemap.h> 25#include <linux/kthread.h> 26#include <linux/writeback.h> 27#include <linux/blkdev.h> 28#include <linux/backing-dev.h> 29#include <linux/tracepoint.h> 30#include <linux/device.h> 31#include <linux/memcontrol.h> 32#include "internal.h" 33 34/* 35 * 4MB minimal write chunk size 36 */ 37#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) 38 39/* 40 * Passed into wb_writeback(), essentially a subset of writeback_control 41 */ 42struct wb_writeback_work { 43 long nr_pages; 44 struct super_block *sb; 45 enum writeback_sync_modes sync_mode; 46 unsigned int tagged_writepages:1; 47 unsigned int for_kupdate:1; 48 unsigned int range_cyclic:1; 49 unsigned int for_background:1; 50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 51 unsigned int auto_free:1; /* free on completion */ 52 enum wb_reason reason; /* why was writeback initiated? */ 53 54 struct list_head list; /* pending work list */ 55 struct wb_completion *done; /* set if the caller waits */ 56}; 57 58/* 59 * If an inode is constantly having its pages dirtied, but then the 60 * updates stop dirtytime_expire_interval seconds in the past, it's 61 * possible for the worst case time between when an inode has its 62 * timestamps updated and when they finally get written out to be two 63 * dirtytime_expire_intervals. We set the default to 12 hours (in 64 * seconds), which means most of the time inodes will have their 65 * timestamps written to disk after 12 hours, but in the worst case a 66 * few inodes might not their timestamps updated for 24 hours. 67 */ 68unsigned int dirtytime_expire_interval = 12 * 60 * 60; 69 70static inline struct inode *wb_inode(struct list_head *head) 71{ 72 return list_entry(head, struct inode, i_io_list); 73} 74 75/* 76 * Include the creation of the trace points after defining the 77 * wb_writeback_work structure and inline functions so that the definition 78 * remains local to this file. 79 */ 80#define CREATE_TRACE_POINTS 81#include <trace/events/writeback.h> 82 83EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 84 85static bool wb_io_lists_populated(struct bdi_writeback *wb) 86{ 87 if (wb_has_dirty_io(wb)) { 88 return false; 89 } else { 90 set_bit(WB_has_dirty_io, &wb->state); 91 WARN_ON_ONCE(!wb->avg_write_bandwidth); 92 atomic_long_add(wb->avg_write_bandwidth, 93 &wb->bdi->tot_write_bandwidth); 94 return true; 95 } 96} 97 98static void wb_io_lists_depopulated(struct bdi_writeback *wb) 99{ 100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && 101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { 102 clear_bit(WB_has_dirty_io, &wb->state); 103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, 104 &wb->bdi->tot_write_bandwidth) < 0); 105 } 106} 107 108/** 109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list 110 * @inode: inode to be moved 111 * @wb: target bdi_writeback 112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time} 113 * 114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. 115 * Returns %true if @inode is the first occupant of the !dirty_time IO 116 * lists; otherwise, %false. 117 */ 118static bool inode_io_list_move_locked(struct inode *inode, 119 struct bdi_writeback *wb, 120 struct list_head *head) 121{ 122 assert_spin_locked(&wb->list_lock); 123 assert_spin_locked(&inode->i_lock); 124 125 list_move(&inode->i_io_list, head); 126 127 /* dirty_time doesn't count as dirty_io until expiration */ 128 if (head != &wb->b_dirty_time) 129 return wb_io_lists_populated(wb); 130 131 wb_io_lists_depopulated(wb); 132 return false; 133} 134 135static void wb_wakeup(struct bdi_writeback *wb) 136{ 137 spin_lock_bh(&wb->work_lock); 138 if (test_bit(WB_registered, &wb->state)) 139 mod_delayed_work(bdi_wq, &wb->dwork, 0); 140 spin_unlock_bh(&wb->work_lock); 141} 142 143static void finish_writeback_work(struct bdi_writeback *wb, 144 struct wb_writeback_work *work) 145{ 146 struct wb_completion *done = work->done; 147 148 if (work->auto_free) 149 kfree(work); 150 if (done) { 151 wait_queue_head_t *waitq = done->waitq; 152 153 /* @done can't be accessed after the following dec */ 154 if (atomic_dec_and_test(&done->cnt)) 155 wake_up_all(waitq); 156 } 157} 158 159static void wb_queue_work(struct bdi_writeback *wb, 160 struct wb_writeback_work *work) 161{ 162 trace_writeback_queue(wb, work); 163 164 if (work->done) 165 atomic_inc(&work->done->cnt); 166 167 spin_lock_bh(&wb->work_lock); 168 169 if (test_bit(WB_registered, &wb->state)) { 170 list_add_tail(&work->list, &wb->work_list); 171 mod_delayed_work(bdi_wq, &wb->dwork, 0); 172 } else 173 finish_writeback_work(wb, work); 174 175 spin_unlock_bh(&wb->work_lock); 176} 177 178/** 179 * wb_wait_for_completion - wait for completion of bdi_writeback_works 180 * @done: target wb_completion 181 * 182 * Wait for one or more work items issued to @bdi with their ->done field 183 * set to @done, which should have been initialized with 184 * DEFINE_WB_COMPLETION(). This function returns after all such work items 185 * are completed. Work items which are waited upon aren't freed 186 * automatically on completion. 187 */ 188void wb_wait_for_completion(struct wb_completion *done) 189{ 190 atomic_dec(&done->cnt); /* put down the initial count */ 191 wait_event(*done->waitq, !atomic_read(&done->cnt)); 192} 193 194#ifdef CONFIG_CGROUP_WRITEBACK 195 196/* 197 * Parameters for foreign inode detection, see wbc_detach_inode() to see 198 * how they're used. 199 * 200 * These paramters are inherently heuristical as the detection target 201 * itself is fuzzy. All we want to do is detaching an inode from the 202 * current owner if it's being written to by some other cgroups too much. 203 * 204 * The current cgroup writeback is built on the assumption that multiple 205 * cgroups writing to the same inode concurrently is very rare and a mode 206 * of operation which isn't well supported. As such, the goal is not 207 * taking too long when a different cgroup takes over an inode while 208 * avoiding too aggressive flip-flops from occasional foreign writes. 209 * 210 * We record, very roughly, 2s worth of IO time history and if more than 211 * half of that is foreign, trigger the switch. The recording is quantized 212 * to 16 slots. To avoid tiny writes from swinging the decision too much, 213 * writes smaller than 1/8 of avg size are ignored. 214 */ 215#define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ 216#define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ 217#define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */ 218#define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ 219 220#define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ 221#define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) 222 /* each slot's duration is 2s / 16 */ 223#define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) 224 /* if foreign slots >= 8, switch */ 225#define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) 226 /* one round can affect upto 5 slots */ 227#define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */ 228 229/* 230 * Maximum inodes per isw. A specific value has been chosen to make 231 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc. 232 */ 233#define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \ 234 / sizeof(struct inode *)) 235 236static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); 237static struct workqueue_struct *isw_wq; 238 239void __inode_attach_wb(struct inode *inode, struct page *page) 240{ 241 struct backing_dev_info *bdi = inode_to_bdi(inode); 242 struct bdi_writeback *wb = NULL; 243 244 if (inode_cgwb_enabled(inode)) { 245 struct cgroup_subsys_state *memcg_css; 246 247 if (page) { 248 memcg_css = mem_cgroup_css_from_page(page); 249 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 250 } else { 251 /* must pin memcg_css, see wb_get_create() */ 252 memcg_css = task_get_css(current, memory_cgrp_id); 253 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 254 css_put(memcg_css); 255 } 256 } 257 258 if (!wb) 259 wb = &bdi->wb; 260 261 /* 262 * There may be multiple instances of this function racing to 263 * update the same inode. Use cmpxchg() to tell the winner. 264 */ 265 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) 266 wb_put(wb); 267} 268EXPORT_SYMBOL_GPL(__inode_attach_wb); 269 270/** 271 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list 272 * @inode: inode of interest with i_lock held 273 * @wb: target bdi_writeback 274 * 275 * Remove the inode from wb's io lists and if necessarily put onto b_attached 276 * list. Only inodes attached to cgwb's are kept on this list. 277 */ 278static void inode_cgwb_move_to_attached(struct inode *inode, 279 struct bdi_writeback *wb) 280{ 281 assert_spin_locked(&wb->list_lock); 282 assert_spin_locked(&inode->i_lock); 283 284 inode->i_state &= ~I_SYNC_QUEUED; 285 if (wb != &wb->bdi->wb) 286 list_move(&inode->i_io_list, &wb->b_attached); 287 else 288 list_del_init(&inode->i_io_list); 289 wb_io_lists_depopulated(wb); 290} 291 292/** 293 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it 294 * @inode: inode of interest with i_lock held 295 * 296 * Returns @inode's wb with its list_lock held. @inode->i_lock must be 297 * held on entry and is released on return. The returned wb is guaranteed 298 * to stay @inode's associated wb until its list_lock is released. 299 */ 300static struct bdi_writeback * 301locked_inode_to_wb_and_lock_list(struct inode *inode) 302 __releases(&inode->i_lock) 303 __acquires(&wb->list_lock) 304{ 305 while (true) { 306 struct bdi_writeback *wb = inode_to_wb(inode); 307 308 /* 309 * inode_to_wb() association is protected by both 310 * @inode->i_lock and @wb->list_lock but list_lock nests 311 * outside i_lock. Drop i_lock and verify that the 312 * association hasn't changed after acquiring list_lock. 313 */ 314 wb_get(wb); 315 spin_unlock(&inode->i_lock); 316 spin_lock(&wb->list_lock); 317 318 /* i_wb may have changed inbetween, can't use inode_to_wb() */ 319 if (likely(wb == inode->i_wb)) { 320 wb_put(wb); /* @inode already has ref */ 321 return wb; 322 } 323 324 spin_unlock(&wb->list_lock); 325 wb_put(wb); 326 cpu_relax(); 327 spin_lock(&inode->i_lock); 328 } 329} 330 331/** 332 * inode_to_wb_and_lock_list - determine an inode's wb and lock it 333 * @inode: inode of interest 334 * 335 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held 336 * on entry. 337 */ 338static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 339 __acquires(&wb->list_lock) 340{ 341 spin_lock(&inode->i_lock); 342 return locked_inode_to_wb_and_lock_list(inode); 343} 344 345struct inode_switch_wbs_context { 346 struct rcu_work work; 347 348 /* 349 * Multiple inodes can be switched at once. The switching procedure 350 * consists of two parts, separated by a RCU grace period. To make 351 * sure that the second part is executed for each inode gone through 352 * the first part, all inode pointers are placed into a NULL-terminated 353 * array embedded into struct inode_switch_wbs_context. Otherwise 354 * an inode could be left in a non-consistent state. 355 */ 356 struct bdi_writeback *new_wb; 357 struct inode *inodes[]; 358}; 359 360static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) 361{ 362 down_write(&bdi->wb_switch_rwsem); 363} 364 365static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) 366{ 367 up_write(&bdi->wb_switch_rwsem); 368} 369 370static bool inode_do_switch_wbs(struct inode *inode, 371 struct bdi_writeback *old_wb, 372 struct bdi_writeback *new_wb) 373{ 374 struct address_space *mapping = inode->i_mapping; 375 XA_STATE(xas, &mapping->i_pages, 0); 376 struct folio *folio; 377 bool switched = false; 378 379 spin_lock(&inode->i_lock); 380 xa_lock_irq(&mapping->i_pages); 381 382 /* 383 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction 384 * path owns the inode and we shouldn't modify ->i_io_list. 385 */ 386 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE))) 387 goto skip_switch; 388 389 trace_inode_switch_wbs(inode, old_wb, new_wb); 390 391 /* 392 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points 393 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to 394 * folios actually under writeback. 395 */ 396 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) { 397 if (folio_test_dirty(folio)) { 398 long nr = folio_nr_pages(folio); 399 wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr); 400 wb_stat_mod(new_wb, WB_RECLAIMABLE, nr); 401 } 402 } 403 404 xas_set(&xas, 0); 405 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) { 406 long nr = folio_nr_pages(folio); 407 WARN_ON_ONCE(!folio_test_writeback(folio)); 408 wb_stat_mod(old_wb, WB_WRITEBACK, -nr); 409 wb_stat_mod(new_wb, WB_WRITEBACK, nr); 410 } 411 412 if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) { 413 atomic_dec(&old_wb->writeback_inodes); 414 atomic_inc(&new_wb->writeback_inodes); 415 } 416 417 wb_get(new_wb); 418 419 /* 420 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty, 421 * the specific list @inode was on is ignored and the @inode is put on 422 * ->b_dirty which is always correct including from ->b_dirty_time. 423 * The transfer preserves @inode->dirtied_when ordering. If the @inode 424 * was clean, it means it was on the b_attached list, so move it onto 425 * the b_attached list of @new_wb. 426 */ 427 if (!list_empty(&inode->i_io_list)) { 428 inode->i_wb = new_wb; 429 430 if (inode->i_state & I_DIRTY_ALL) { 431 struct inode *pos; 432 433 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) 434 if (time_after_eq(inode->dirtied_when, 435 pos->dirtied_when)) 436 break; 437 inode_io_list_move_locked(inode, new_wb, 438 pos->i_io_list.prev); 439 } else { 440 inode_cgwb_move_to_attached(inode, new_wb); 441 } 442 } else { 443 inode->i_wb = new_wb; 444 } 445 446 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ 447 inode->i_wb_frn_winner = 0; 448 inode->i_wb_frn_avg_time = 0; 449 inode->i_wb_frn_history = 0; 450 switched = true; 451skip_switch: 452 /* 453 * Paired with load_acquire in unlocked_inode_to_wb_begin() and 454 * ensures that the new wb is visible if they see !I_WB_SWITCH. 455 */ 456 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); 457 458 xa_unlock_irq(&mapping->i_pages); 459 spin_unlock(&inode->i_lock); 460 461 return switched; 462} 463 464static void inode_switch_wbs_work_fn(struct work_struct *work) 465{ 466 struct inode_switch_wbs_context *isw = 467 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work); 468 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]); 469 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb; 470 struct bdi_writeback *new_wb = isw->new_wb; 471 unsigned long nr_switched = 0; 472 struct inode **inodep; 473 474 /* 475 * If @inode switches cgwb membership while sync_inodes_sb() is 476 * being issued, sync_inodes_sb() might miss it. Synchronize. 477 */ 478 down_read(&bdi->wb_switch_rwsem); 479 480 /* 481 * By the time control reaches here, RCU grace period has passed 482 * since I_WB_SWITCH assertion and all wb stat update transactions 483 * between unlocked_inode_to_wb_begin/end() are guaranteed to be 484 * synchronizing against the i_pages lock. 485 * 486 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock 487 * gives us exclusion against all wb related operations on @inode 488 * including IO list manipulations and stat updates. 489 */ 490 if (old_wb < new_wb) { 491 spin_lock(&old_wb->list_lock); 492 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); 493 } else { 494 spin_lock(&new_wb->list_lock); 495 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); 496 } 497 498 for (inodep = isw->inodes; *inodep; inodep++) { 499 WARN_ON_ONCE((*inodep)->i_wb != old_wb); 500 if (inode_do_switch_wbs(*inodep, old_wb, new_wb)) 501 nr_switched++; 502 } 503 504 spin_unlock(&new_wb->list_lock); 505 spin_unlock(&old_wb->list_lock); 506 507 up_read(&bdi->wb_switch_rwsem); 508 509 if (nr_switched) { 510 wb_wakeup(new_wb); 511 wb_put_many(old_wb, nr_switched); 512 } 513 514 for (inodep = isw->inodes; *inodep; inodep++) 515 iput(*inodep); 516 wb_put(new_wb); 517 kfree(isw); 518 atomic_dec(&isw_nr_in_flight); 519} 520 521static bool inode_prepare_wbs_switch(struct inode *inode, 522 struct bdi_writeback *new_wb) 523{ 524 /* 525 * Paired with smp_mb() in cgroup_writeback_umount(). 526 * isw_nr_in_flight must be increased before checking SB_ACTIVE and 527 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0 528 * in cgroup_writeback_umount() and the isw_wq will be not flushed. 529 */ 530 smp_mb(); 531 532 if (IS_DAX(inode)) 533 return false; 534 535 /* while holding I_WB_SWITCH, no one else can update the association */ 536 spin_lock(&inode->i_lock); 537 if (!(inode->i_sb->s_flags & SB_ACTIVE) || 538 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) || 539 inode_to_wb(inode) == new_wb) { 540 spin_unlock(&inode->i_lock); 541 return false; 542 } 543 inode->i_state |= I_WB_SWITCH; 544 __iget(inode); 545 spin_unlock(&inode->i_lock); 546 547 return true; 548} 549 550/** 551 * inode_switch_wbs - change the wb association of an inode 552 * @inode: target inode 553 * @new_wb_id: ID of the new wb 554 * 555 * Switch @inode's wb association to the wb identified by @new_wb_id. The 556 * switching is performed asynchronously and may fail silently. 557 */ 558static void inode_switch_wbs(struct inode *inode, int new_wb_id) 559{ 560 struct backing_dev_info *bdi = inode_to_bdi(inode); 561 struct cgroup_subsys_state *memcg_css; 562 struct inode_switch_wbs_context *isw; 563 564 /* noop if seems to be already in progress */ 565 if (inode->i_state & I_WB_SWITCH) 566 return; 567 568 /* avoid queueing a new switch if too many are already in flight */ 569 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT) 570 return; 571 572 isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC); 573 if (!isw) 574 return; 575 576 atomic_inc(&isw_nr_in_flight); 577 578 /* find and pin the new wb */ 579 rcu_read_lock(); 580 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); 581 if (memcg_css && !css_tryget(memcg_css)) 582 memcg_css = NULL; 583 rcu_read_unlock(); 584 if (!memcg_css) 585 goto out_free; 586 587 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 588 css_put(memcg_css); 589 if (!isw->new_wb) 590 goto out_free; 591 592 if (!inode_prepare_wbs_switch(inode, isw->new_wb)) 593 goto out_free; 594 595 isw->inodes[0] = inode; 596 597 /* 598 * In addition to synchronizing among switchers, I_WB_SWITCH tells 599 * the RCU protected stat update paths to grab the i_page 600 * lock so that stat transfer can synchronize against them. 601 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 602 */ 603 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); 604 queue_rcu_work(isw_wq, &isw->work); 605 return; 606 607out_free: 608 atomic_dec(&isw_nr_in_flight); 609 if (isw->new_wb) 610 wb_put(isw->new_wb); 611 kfree(isw); 612} 613 614/** 615 * cleanup_offline_cgwb - detach associated inodes 616 * @wb: target wb 617 * 618 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order 619 * to eventually release the dying @wb. Returns %true if not all inodes were 620 * switched and the function has to be restarted. 621 */ 622bool cleanup_offline_cgwb(struct bdi_writeback *wb) 623{ 624 struct cgroup_subsys_state *memcg_css; 625 struct inode_switch_wbs_context *isw; 626 struct inode *inode; 627 int nr; 628 bool restart = false; 629 630 isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW), 631 GFP_KERNEL); 632 if (!isw) 633 return restart; 634 635 atomic_inc(&isw_nr_in_flight); 636 637 for (memcg_css = wb->memcg_css->parent; memcg_css; 638 memcg_css = memcg_css->parent) { 639 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL); 640 if (isw->new_wb) 641 break; 642 } 643 if (unlikely(!isw->new_wb)) 644 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */ 645 646 nr = 0; 647 spin_lock(&wb->list_lock); 648 list_for_each_entry(inode, &wb->b_attached, i_io_list) { 649 if (!inode_prepare_wbs_switch(inode, isw->new_wb)) 650 continue; 651 652 isw->inodes[nr++] = inode; 653 654 if (nr >= WB_MAX_INODES_PER_ISW - 1) { 655 restart = true; 656 break; 657 } 658 } 659 spin_unlock(&wb->list_lock); 660 661 /* no attached inodes? bail out */ 662 if (nr == 0) { 663 atomic_dec(&isw_nr_in_flight); 664 wb_put(isw->new_wb); 665 kfree(isw); 666 return restart; 667 } 668 669 /* 670 * In addition to synchronizing among switchers, I_WB_SWITCH tells 671 * the RCU protected stat update paths to grab the i_page 672 * lock so that stat transfer can synchronize against them. 673 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 674 */ 675 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); 676 queue_rcu_work(isw_wq, &isw->work); 677 678 return restart; 679} 680 681/** 682 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it 683 * @wbc: writeback_control of interest 684 * @inode: target inode 685 * 686 * @inode is locked and about to be written back under the control of @wbc. 687 * Record @inode's writeback context into @wbc and unlock the i_lock. On 688 * writeback completion, wbc_detach_inode() should be called. This is used 689 * to track the cgroup writeback context. 690 */ 691void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 692 struct inode *inode) 693{ 694 if (!inode_cgwb_enabled(inode)) { 695 spin_unlock(&inode->i_lock); 696 return; 697 } 698 699 wbc->wb = inode_to_wb(inode); 700 wbc->inode = inode; 701 702 wbc->wb_id = wbc->wb->memcg_css->id; 703 wbc->wb_lcand_id = inode->i_wb_frn_winner; 704 wbc->wb_tcand_id = 0; 705 wbc->wb_bytes = 0; 706 wbc->wb_lcand_bytes = 0; 707 wbc->wb_tcand_bytes = 0; 708 709 wb_get(wbc->wb); 710 spin_unlock(&inode->i_lock); 711 712 /* 713 * A dying wb indicates that either the blkcg associated with the 714 * memcg changed or the associated memcg is dying. In the first 715 * case, a replacement wb should already be available and we should 716 * refresh the wb immediately. In the second case, trying to 717 * refresh will keep failing. 718 */ 719 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css))) 720 inode_switch_wbs(inode, wbc->wb_id); 721} 722EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode); 723 724/** 725 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection 726 * @wbc: writeback_control of the just finished writeback 727 * 728 * To be called after a writeback attempt of an inode finishes and undoes 729 * wbc_attach_and_unlock_inode(). Can be called under any context. 730 * 731 * As concurrent write sharing of an inode is expected to be very rare and 732 * memcg only tracks page ownership on first-use basis severely confining 733 * the usefulness of such sharing, cgroup writeback tracks ownership 734 * per-inode. While the support for concurrent write sharing of an inode 735 * is deemed unnecessary, an inode being written to by different cgroups at 736 * different points in time is a lot more common, and, more importantly, 737 * charging only by first-use can too readily lead to grossly incorrect 738 * behaviors (single foreign page can lead to gigabytes of writeback to be 739 * incorrectly attributed). 740 * 741 * To resolve this issue, cgroup writeback detects the majority dirtier of 742 * an inode and transfers the ownership to it. To avoid unnecessary 743 * oscillation, the detection mechanism keeps track of history and gives 744 * out the switch verdict only if the foreign usage pattern is stable over 745 * a certain amount of time and/or writeback attempts. 746 * 747 * On each writeback attempt, @wbc tries to detect the majority writer 748 * using Boyer-Moore majority vote algorithm. In addition to the byte 749 * count from the majority voting, it also counts the bytes written for the 750 * current wb and the last round's winner wb (max of last round's current 751 * wb, the winner from two rounds ago, and the last round's majority 752 * candidate). Keeping track of the historical winner helps the algorithm 753 * to semi-reliably detect the most active writer even when it's not the 754 * absolute majority. 755 * 756 * Once the winner of the round is determined, whether the winner is 757 * foreign or not and how much IO time the round consumed is recorded in 758 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is 759 * over a certain threshold, the switch verdict is given. 760 */ 761void wbc_detach_inode(struct writeback_control *wbc) 762{ 763 struct bdi_writeback *wb = wbc->wb; 764 struct inode *inode = wbc->inode; 765 unsigned long avg_time, max_bytes, max_time; 766 u16 history; 767 int max_id; 768 769 if (!wb) 770 return; 771 772 history = inode->i_wb_frn_history; 773 avg_time = inode->i_wb_frn_avg_time; 774 775 /* pick the winner of this round */ 776 if (wbc->wb_bytes >= wbc->wb_lcand_bytes && 777 wbc->wb_bytes >= wbc->wb_tcand_bytes) { 778 max_id = wbc->wb_id; 779 max_bytes = wbc->wb_bytes; 780 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { 781 max_id = wbc->wb_lcand_id; 782 max_bytes = wbc->wb_lcand_bytes; 783 } else { 784 max_id = wbc->wb_tcand_id; 785 max_bytes = wbc->wb_tcand_bytes; 786 } 787 788 /* 789 * Calculate the amount of IO time the winner consumed and fold it 790 * into the running average kept per inode. If the consumed IO 791 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for 792 * deciding whether to switch or not. This is to prevent one-off 793 * small dirtiers from skewing the verdict. 794 */ 795 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, 796 wb->avg_write_bandwidth); 797 if (avg_time) 798 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - 799 (avg_time >> WB_FRN_TIME_AVG_SHIFT); 800 else 801 avg_time = max_time; /* immediate catch up on first run */ 802 803 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { 804 int slots; 805 806 /* 807 * The switch verdict is reached if foreign wb's consume 808 * more than a certain proportion of IO time in a 809 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot 810 * history mask where each bit represents one sixteenth of 811 * the period. Determine the number of slots to shift into 812 * history from @max_time. 813 */ 814 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), 815 (unsigned long)WB_FRN_HIST_MAX_SLOTS); 816 history <<= slots; 817 if (wbc->wb_id != max_id) 818 history |= (1U << slots) - 1; 819 820 if (history) 821 trace_inode_foreign_history(inode, wbc, history); 822 823 /* 824 * Switch if the current wb isn't the consistent winner. 825 * If there are multiple closely competing dirtiers, the 826 * inode may switch across them repeatedly over time, which 827 * is okay. The main goal is avoiding keeping an inode on 828 * the wrong wb for an extended period of time. 829 */ 830 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS) 831 inode_switch_wbs(inode, max_id); 832 } 833 834 /* 835 * Multiple instances of this function may race to update the 836 * following fields but we don't mind occassional inaccuracies. 837 */ 838 inode->i_wb_frn_winner = max_id; 839 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); 840 inode->i_wb_frn_history = history; 841 842 wb_put(wbc->wb); 843 wbc->wb = NULL; 844} 845EXPORT_SYMBOL_GPL(wbc_detach_inode); 846 847/** 848 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership 849 * @wbc: writeback_control of the writeback in progress 850 * @page: page being written out 851 * @bytes: number of bytes being written out 852 * 853 * @bytes from @page are about to written out during the writeback 854 * controlled by @wbc. Keep the book for foreign inode detection. See 855 * wbc_detach_inode(). 856 */ 857void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page, 858 size_t bytes) 859{ 860 struct cgroup_subsys_state *css; 861 int id; 862 863 /* 864 * pageout() path doesn't attach @wbc to the inode being written 865 * out. This is intentional as we don't want the function to block 866 * behind a slow cgroup. Ultimately, we want pageout() to kick off 867 * regular writeback instead of writing things out itself. 868 */ 869 if (!wbc->wb || wbc->no_cgroup_owner) 870 return; 871 872 css = mem_cgroup_css_from_page(page); 873 /* dead cgroups shouldn't contribute to inode ownership arbitration */ 874 if (!(css->flags & CSS_ONLINE)) 875 return; 876 877 id = css->id; 878 879 if (id == wbc->wb_id) { 880 wbc->wb_bytes += bytes; 881 return; 882 } 883 884 if (id == wbc->wb_lcand_id) 885 wbc->wb_lcand_bytes += bytes; 886 887 /* Boyer-Moore majority vote algorithm */ 888 if (!wbc->wb_tcand_bytes) 889 wbc->wb_tcand_id = id; 890 if (id == wbc->wb_tcand_id) 891 wbc->wb_tcand_bytes += bytes; 892 else 893 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); 894} 895EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner); 896 897/** 898 * wb_split_bdi_pages - split nr_pages to write according to bandwidth 899 * @wb: target bdi_writeback to split @nr_pages to 900 * @nr_pages: number of pages to write for the whole bdi 901 * 902 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in 903 * relation to the total write bandwidth of all wb's w/ dirty inodes on 904 * @wb->bdi. 905 */ 906static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 907{ 908 unsigned long this_bw = wb->avg_write_bandwidth; 909 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 910 911 if (nr_pages == LONG_MAX) 912 return LONG_MAX; 913 914 /* 915 * This may be called on clean wb's and proportional distribution 916 * may not make sense, just use the original @nr_pages in those 917 * cases. In general, we wanna err on the side of writing more. 918 */ 919 if (!tot_bw || this_bw >= tot_bw) 920 return nr_pages; 921 else 922 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); 923} 924 925/** 926 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi 927 * @bdi: target backing_dev_info 928 * @base_work: wb_writeback_work to issue 929 * @skip_if_busy: skip wb's which already have writeback in progress 930 * 931 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which 932 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's 933 * distributed to the busy wbs according to each wb's proportion in the 934 * total active write bandwidth of @bdi. 935 */ 936static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 937 struct wb_writeback_work *base_work, 938 bool skip_if_busy) 939{ 940 struct bdi_writeback *last_wb = NULL; 941 struct bdi_writeback *wb = list_entry(&bdi->wb_list, 942 struct bdi_writeback, bdi_node); 943 944 might_sleep(); 945restart: 946 rcu_read_lock(); 947 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { 948 DEFINE_WB_COMPLETION(fallback_work_done, bdi); 949 struct wb_writeback_work fallback_work; 950 struct wb_writeback_work *work; 951 long nr_pages; 952 953 if (last_wb) { 954 wb_put(last_wb); 955 last_wb = NULL; 956 } 957 958 /* SYNC_ALL writes out I_DIRTY_TIME too */ 959 if (!wb_has_dirty_io(wb) && 960 (base_work->sync_mode == WB_SYNC_NONE || 961 list_empty(&wb->b_dirty_time))) 962 continue; 963 if (skip_if_busy && writeback_in_progress(wb)) 964 continue; 965 966 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); 967 968 work = kmalloc(sizeof(*work), GFP_ATOMIC); 969 if (work) { 970 *work = *base_work; 971 work->nr_pages = nr_pages; 972 work->auto_free = 1; 973 wb_queue_work(wb, work); 974 continue; 975 } 976 977 /* alloc failed, execute synchronously using on-stack fallback */ 978 work = &fallback_work; 979 *work = *base_work; 980 work->nr_pages = nr_pages; 981 work->auto_free = 0; 982 work->done = &fallback_work_done; 983 984 wb_queue_work(wb, work); 985 986 /* 987 * Pin @wb so that it stays on @bdi->wb_list. This allows 988 * continuing iteration from @wb after dropping and 989 * regrabbing rcu read lock. 990 */ 991 wb_get(wb); 992 last_wb = wb; 993 994 rcu_read_unlock(); 995 wb_wait_for_completion(&fallback_work_done); 996 goto restart; 997 } 998 rcu_read_unlock(); 999 1000 if (last_wb) 1001 wb_put(last_wb); 1002} 1003 1004/** 1005 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs 1006 * @bdi_id: target bdi id 1007 * @memcg_id: target memcg css id 1008 * @reason: reason why some writeback work initiated 1009 * @done: target wb_completion 1010 * 1011 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id 1012 * with the specified parameters. 1013 */ 1014int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, 1015 enum wb_reason reason, struct wb_completion *done) 1016{ 1017 struct backing_dev_info *bdi; 1018 struct cgroup_subsys_state *memcg_css; 1019 struct bdi_writeback *wb; 1020 struct wb_writeback_work *work; 1021 unsigned long dirty; 1022 int ret; 1023 1024 /* lookup bdi and memcg */ 1025 bdi = bdi_get_by_id(bdi_id); 1026 if (!bdi) 1027 return -ENOENT; 1028 1029 rcu_read_lock(); 1030 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys); 1031 if (memcg_css && !css_tryget(memcg_css)) 1032 memcg_css = NULL; 1033 rcu_read_unlock(); 1034 if (!memcg_css) { 1035 ret = -ENOENT; 1036 goto out_bdi_put; 1037 } 1038 1039 /* 1040 * And find the associated wb. If the wb isn't there already 1041 * there's nothing to flush, don't create one. 1042 */ 1043 wb = wb_get_lookup(bdi, memcg_css); 1044 if (!wb) { 1045 ret = -ENOENT; 1046 goto out_css_put; 1047 } 1048 1049 /* 1050 * The caller is attempting to write out most of 1051 * the currently dirty pages. Let's take the current dirty page 1052 * count and inflate it by 25% which should be large enough to 1053 * flush out most dirty pages while avoiding getting livelocked by 1054 * concurrent dirtiers. 1055 * 1056 * BTW the memcg stats are flushed periodically and this is best-effort 1057 * estimation, so some potential error is ok. 1058 */ 1059 dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY); 1060 dirty = dirty * 10 / 8; 1061 1062 /* issue the writeback work */ 1063 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN); 1064 if (work) { 1065 work->nr_pages = dirty; 1066 work->sync_mode = WB_SYNC_NONE; 1067 work->range_cyclic = 1; 1068 work->reason = reason; 1069 work->done = done; 1070 work->auto_free = 1; 1071 wb_queue_work(wb, work); 1072 ret = 0; 1073 } else { 1074 ret = -ENOMEM; 1075 } 1076 1077 wb_put(wb); 1078out_css_put: 1079 css_put(memcg_css); 1080out_bdi_put: 1081 bdi_put(bdi); 1082 return ret; 1083} 1084 1085/** 1086 * cgroup_writeback_umount - flush inode wb switches for umount 1087 * 1088 * This function is called when a super_block is about to be destroyed and 1089 * flushes in-flight inode wb switches. An inode wb switch goes through 1090 * RCU and then workqueue, so the two need to be flushed in order to ensure 1091 * that all previously scheduled switches are finished. As wb switches are 1092 * rare occurrences and synchronize_rcu() can take a while, perform 1093 * flushing iff wb switches are in flight. 1094 */ 1095void cgroup_writeback_umount(void) 1096{ 1097 /* 1098 * SB_ACTIVE should be reliably cleared before checking 1099 * isw_nr_in_flight, see generic_shutdown_super(). 1100 */ 1101 smp_mb(); 1102 1103 if (atomic_read(&isw_nr_in_flight)) { 1104 /* 1105 * Use rcu_barrier() to wait for all pending callbacks to 1106 * ensure that all in-flight wb switches are in the workqueue. 1107 */ 1108 rcu_barrier(); 1109 flush_workqueue(isw_wq); 1110 } 1111} 1112 1113static int __init cgroup_writeback_init(void) 1114{ 1115 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); 1116 if (!isw_wq) 1117 return -ENOMEM; 1118 return 0; 1119} 1120fs_initcall(cgroup_writeback_init); 1121 1122#else /* CONFIG_CGROUP_WRITEBACK */ 1123 1124static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1125static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1126 1127static void inode_cgwb_move_to_attached(struct inode *inode, 1128 struct bdi_writeback *wb) 1129{ 1130 assert_spin_locked(&wb->list_lock); 1131 assert_spin_locked(&inode->i_lock); 1132 1133 inode->i_state &= ~I_SYNC_QUEUED; 1134 list_del_init(&inode->i_io_list); 1135 wb_io_lists_depopulated(wb); 1136} 1137 1138static struct bdi_writeback * 1139locked_inode_to_wb_and_lock_list(struct inode *inode) 1140 __releases(&inode->i_lock) 1141 __acquires(&wb->list_lock) 1142{ 1143 struct bdi_writeback *wb = inode_to_wb(inode); 1144 1145 spin_unlock(&inode->i_lock); 1146 spin_lock(&wb->list_lock); 1147 return wb; 1148} 1149 1150static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 1151 __acquires(&wb->list_lock) 1152{ 1153 struct bdi_writeback *wb = inode_to_wb(inode); 1154 1155 spin_lock(&wb->list_lock); 1156 return wb; 1157} 1158 1159static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 1160{ 1161 return nr_pages; 1162} 1163 1164static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 1165 struct wb_writeback_work *base_work, 1166 bool skip_if_busy) 1167{ 1168 might_sleep(); 1169 1170 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { 1171 base_work->auto_free = 0; 1172 wb_queue_work(&bdi->wb, base_work); 1173 } 1174} 1175 1176#endif /* CONFIG_CGROUP_WRITEBACK */ 1177 1178/* 1179 * Add in the number of potentially dirty inodes, because each inode 1180 * write can dirty pagecache in the underlying blockdev. 1181 */ 1182static unsigned long get_nr_dirty_pages(void) 1183{ 1184 return global_node_page_state(NR_FILE_DIRTY) + 1185 get_nr_dirty_inodes(); 1186} 1187 1188static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason) 1189{ 1190 if (!wb_has_dirty_io(wb)) 1191 return; 1192 1193 /* 1194 * All callers of this function want to start writeback of all 1195 * dirty pages. Places like vmscan can call this at a very 1196 * high frequency, causing pointless allocations of tons of 1197 * work items and keeping the flusher threads busy retrieving 1198 * that work. Ensure that we only allow one of them pending and 1199 * inflight at the time. 1200 */ 1201 if (test_bit(WB_start_all, &wb->state) || 1202 test_and_set_bit(WB_start_all, &wb->state)) 1203 return; 1204 1205 wb->start_all_reason = reason; 1206 wb_wakeup(wb); 1207} 1208 1209/** 1210 * wb_start_background_writeback - start background writeback 1211 * @wb: bdi_writback to write from 1212 * 1213 * Description: 1214 * This makes sure WB_SYNC_NONE background writeback happens. When 1215 * this function returns, it is only guaranteed that for given wb 1216 * some IO is happening if we are over background dirty threshold. 1217 * Caller need not hold sb s_umount semaphore. 1218 */ 1219void wb_start_background_writeback(struct bdi_writeback *wb) 1220{ 1221 /* 1222 * We just wake up the flusher thread. It will perform background 1223 * writeback as soon as there is no other work to do. 1224 */ 1225 trace_writeback_wake_background(wb); 1226 wb_wakeup(wb); 1227} 1228 1229/* 1230 * Remove the inode from the writeback list it is on. 1231 */ 1232void inode_io_list_del(struct inode *inode) 1233{ 1234 struct bdi_writeback *wb; 1235 1236 wb = inode_to_wb_and_lock_list(inode); 1237 spin_lock(&inode->i_lock); 1238 1239 inode->i_state &= ~I_SYNC_QUEUED; 1240 list_del_init(&inode->i_io_list); 1241 wb_io_lists_depopulated(wb); 1242 1243 spin_unlock(&inode->i_lock); 1244 spin_unlock(&wb->list_lock); 1245} 1246EXPORT_SYMBOL(inode_io_list_del); 1247 1248/* 1249 * mark an inode as under writeback on the sb 1250 */ 1251void sb_mark_inode_writeback(struct inode *inode) 1252{ 1253 struct super_block *sb = inode->i_sb; 1254 unsigned long flags; 1255 1256 if (list_empty(&inode->i_wb_list)) { 1257 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1258 if (list_empty(&inode->i_wb_list)) { 1259 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb); 1260 trace_sb_mark_inode_writeback(inode); 1261 } 1262 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1263 } 1264} 1265 1266/* 1267 * clear an inode as under writeback on the sb 1268 */ 1269void sb_clear_inode_writeback(struct inode *inode) 1270{ 1271 struct super_block *sb = inode->i_sb; 1272 unsigned long flags; 1273 1274 if (!list_empty(&inode->i_wb_list)) { 1275 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1276 if (!list_empty(&inode->i_wb_list)) { 1277 list_del_init(&inode->i_wb_list); 1278 trace_sb_clear_inode_writeback(inode); 1279 } 1280 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1281 } 1282} 1283 1284/* 1285 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 1286 * furthest end of its superblock's dirty-inode list. 1287 * 1288 * Before stamping the inode's ->dirtied_when, we check to see whether it is 1289 * already the most-recently-dirtied inode on the b_dirty list. If that is 1290 * the case then the inode must have been redirtied while it was being written 1291 * out and we don't reset its dirtied_when. 1292 */ 1293static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb) 1294{ 1295 assert_spin_locked(&inode->i_lock); 1296 1297 if (!list_empty(&wb->b_dirty)) { 1298 struct inode *tail; 1299 1300 tail = wb_inode(wb->b_dirty.next); 1301 if (time_before(inode->dirtied_when, tail->dirtied_when)) 1302 inode->dirtied_when = jiffies; 1303 } 1304 inode_io_list_move_locked(inode, wb, &wb->b_dirty); 1305 inode->i_state &= ~I_SYNC_QUEUED; 1306} 1307 1308static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 1309{ 1310 spin_lock(&inode->i_lock); 1311 redirty_tail_locked(inode, wb); 1312 spin_unlock(&inode->i_lock); 1313} 1314 1315/* 1316 * requeue inode for re-scanning after bdi->b_io list is exhausted. 1317 */ 1318static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 1319{ 1320 inode_io_list_move_locked(inode, wb, &wb->b_more_io); 1321} 1322 1323static void inode_sync_complete(struct inode *inode) 1324{ 1325 inode->i_state &= ~I_SYNC; 1326 /* If inode is clean an unused, put it into LRU now... */ 1327 inode_add_lru(inode); 1328 /* Waiters must see I_SYNC cleared before being woken up */ 1329 smp_mb(); 1330 wake_up_bit(&inode->i_state, __I_SYNC); 1331} 1332 1333static bool inode_dirtied_after(struct inode *inode, unsigned long t) 1334{ 1335 bool ret = time_after(inode->dirtied_when, t); 1336#ifndef CONFIG_64BIT 1337 /* 1338 * For inodes being constantly redirtied, dirtied_when can get stuck. 1339 * It _appears_ to be in the future, but is actually in distant past. 1340 * This test is necessary to prevent such wrapped-around relative times 1341 * from permanently stopping the whole bdi writeback. 1342 */ 1343 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 1344#endif 1345 return ret; 1346} 1347 1348#define EXPIRE_DIRTY_ATIME 0x0001 1349 1350/* 1351 * Move expired (dirtied before dirtied_before) dirty inodes from 1352 * @delaying_queue to @dispatch_queue. 1353 */ 1354static int move_expired_inodes(struct list_head *delaying_queue, 1355 struct list_head *dispatch_queue, 1356 unsigned long dirtied_before) 1357{ 1358 LIST_HEAD(tmp); 1359 struct list_head *pos, *node; 1360 struct super_block *sb = NULL; 1361 struct inode *inode; 1362 int do_sb_sort = 0; 1363 int moved = 0; 1364 1365 while (!list_empty(delaying_queue)) { 1366 inode = wb_inode(delaying_queue->prev); 1367 if (inode_dirtied_after(inode, dirtied_before)) 1368 break; 1369 spin_lock(&inode->i_lock); 1370 list_move(&inode->i_io_list, &tmp); 1371 moved++; 1372 inode->i_state |= I_SYNC_QUEUED; 1373 spin_unlock(&inode->i_lock); 1374 if (sb_is_blkdev_sb(inode->i_sb)) 1375 continue; 1376 if (sb && sb != inode->i_sb) 1377 do_sb_sort = 1; 1378 sb = inode->i_sb; 1379 } 1380 1381 /* just one sb in list, splice to dispatch_queue and we're done */ 1382 if (!do_sb_sort) { 1383 list_splice(&tmp, dispatch_queue); 1384 goto out; 1385 } 1386 1387 /* 1388 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue', 1389 * we don't take inode->i_lock here because it is just a pointless overhead. 1390 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is 1391 * fully under our control. 1392 */ 1393 while (!list_empty(&tmp)) { 1394 sb = wb_inode(tmp.prev)->i_sb; 1395 list_for_each_prev_safe(pos, node, &tmp) { 1396 inode = wb_inode(pos); 1397 if (inode->i_sb == sb) 1398 list_move(&inode->i_io_list, dispatch_queue); 1399 } 1400 } 1401out: 1402 return moved; 1403} 1404 1405/* 1406 * Queue all expired dirty inodes for io, eldest first. 1407 * Before 1408 * newly dirtied b_dirty b_io b_more_io 1409 * =============> gf edc BA 1410 * After 1411 * newly dirtied b_dirty b_io b_more_io 1412 * =============> g fBAedc 1413 * | 1414 * +--> dequeue for IO 1415 */ 1416static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work, 1417 unsigned long dirtied_before) 1418{ 1419 int moved; 1420 unsigned long time_expire_jif = dirtied_before; 1421 1422 assert_spin_locked(&wb->list_lock); 1423 list_splice_init(&wb->b_more_io, &wb->b_io); 1424 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before); 1425 if (!work->for_sync) 1426 time_expire_jif = jiffies - dirtytime_expire_interval * HZ; 1427 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 1428 time_expire_jif); 1429 if (moved) 1430 wb_io_lists_populated(wb); 1431 trace_writeback_queue_io(wb, work, dirtied_before, moved); 1432} 1433 1434static int write_inode(struct inode *inode, struct writeback_control *wbc) 1435{ 1436 int ret; 1437 1438 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 1439 trace_writeback_write_inode_start(inode, wbc); 1440 ret = inode->i_sb->s_op->write_inode(inode, wbc); 1441 trace_writeback_write_inode(inode, wbc); 1442 return ret; 1443 } 1444 return 0; 1445} 1446 1447/* 1448 * Wait for writeback on an inode to complete. Called with i_lock held. 1449 * Caller must make sure inode cannot go away when we drop i_lock. 1450 */ 1451static void __inode_wait_for_writeback(struct inode *inode) 1452 __releases(inode->i_lock) 1453 __acquires(inode->i_lock) 1454{ 1455 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 1456 wait_queue_head_t *wqh; 1457 1458 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1459 while (inode->i_state & I_SYNC) { 1460 spin_unlock(&inode->i_lock); 1461 __wait_on_bit(wqh, &wq, bit_wait, 1462 TASK_UNINTERRUPTIBLE); 1463 spin_lock(&inode->i_lock); 1464 } 1465} 1466 1467/* 1468 * Wait for writeback on an inode to complete. Caller must have inode pinned. 1469 */ 1470void inode_wait_for_writeback(struct inode *inode) 1471{ 1472 spin_lock(&inode->i_lock); 1473 __inode_wait_for_writeback(inode); 1474 spin_unlock(&inode->i_lock); 1475} 1476 1477/* 1478 * Sleep until I_SYNC is cleared. This function must be called with i_lock 1479 * held and drops it. It is aimed for callers not holding any inode reference 1480 * so once i_lock is dropped, inode can go away. 1481 */ 1482static void inode_sleep_on_writeback(struct inode *inode) 1483 __releases(inode->i_lock) 1484{ 1485 DEFINE_WAIT(wait); 1486 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1487 int sleep; 1488 1489 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1490 sleep = inode->i_state & I_SYNC; 1491 spin_unlock(&inode->i_lock); 1492 if (sleep) 1493 schedule(); 1494 finish_wait(wqh, &wait); 1495} 1496 1497/* 1498 * Find proper writeback list for the inode depending on its current state and 1499 * possibly also change of its state while we were doing writeback. Here we 1500 * handle things such as livelock prevention or fairness of writeback among 1501 * inodes. This function can be called only by flusher thread - noone else 1502 * processes all inodes in writeback lists and requeueing inodes behind flusher 1503 * thread's back can have unexpected consequences. 1504 */ 1505static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 1506 struct writeback_control *wbc) 1507{ 1508 if (inode->i_state & I_FREEING) 1509 return; 1510 1511 /* 1512 * Sync livelock prevention. Each inode is tagged and synced in one 1513 * shot. If still dirty, it will be redirty_tail()'ed below. Update 1514 * the dirty time to prevent enqueue and sync it again. 1515 */ 1516 if ((inode->i_state & I_DIRTY) && 1517 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 1518 inode->dirtied_when = jiffies; 1519 1520 if (wbc->pages_skipped) { 1521 /* 1522 * writeback is not making progress due to locked 1523 * buffers. Skip this inode for now. 1524 */ 1525 redirty_tail_locked(inode, wb); 1526 return; 1527 } 1528 1529 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 1530 /* 1531 * We didn't write back all the pages. nfs_writepages() 1532 * sometimes bales out without doing anything. 1533 */ 1534 if (wbc->nr_to_write <= 0) { 1535 /* Slice used up. Queue for next turn. */ 1536 requeue_io(inode, wb); 1537 } else { 1538 /* 1539 * Writeback blocked by something other than 1540 * congestion. Delay the inode for some time to 1541 * avoid spinning on the CPU (100% iowait) 1542 * retrying writeback of the dirty page/inode 1543 * that cannot be performed immediately. 1544 */ 1545 redirty_tail_locked(inode, wb); 1546 } 1547 } else if (inode->i_state & I_DIRTY) { 1548 /* 1549 * Filesystems can dirty the inode during writeback operations, 1550 * such as delayed allocation during submission or metadata 1551 * updates after data IO completion. 1552 */ 1553 redirty_tail_locked(inode, wb); 1554 } else if (inode->i_state & I_DIRTY_TIME) { 1555 inode->dirtied_when = jiffies; 1556 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); 1557 inode->i_state &= ~I_SYNC_QUEUED; 1558 } else { 1559 /* The inode is clean. Remove from writeback lists. */ 1560 inode_cgwb_move_to_attached(inode, wb); 1561 } 1562} 1563 1564/* 1565 * Write out an inode and its dirty pages (or some of its dirty pages, depending 1566 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state. 1567 * 1568 * This doesn't remove the inode from the writeback list it is on, except 1569 * potentially to move it from b_dirty_time to b_dirty due to timestamp 1570 * expiration. The caller is otherwise responsible for writeback list handling. 1571 * 1572 * The caller is also responsible for setting the I_SYNC flag beforehand and 1573 * calling inode_sync_complete() to clear it afterwards. 1574 */ 1575static int 1576__writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 1577{ 1578 struct address_space *mapping = inode->i_mapping; 1579 long nr_to_write = wbc->nr_to_write; 1580 unsigned dirty; 1581 int ret; 1582 1583 WARN_ON(!(inode->i_state & I_SYNC)); 1584 1585 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 1586 1587 ret = do_writepages(mapping, wbc); 1588 1589 /* 1590 * Make sure to wait on the data before writing out the metadata. 1591 * This is important for filesystems that modify metadata on data 1592 * I/O completion. We don't do it for sync(2) writeback because it has a 1593 * separate, external IO completion path and ->sync_fs for guaranteeing 1594 * inode metadata is written back correctly. 1595 */ 1596 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 1597 int err = filemap_fdatawait(mapping); 1598 if (ret == 0) 1599 ret = err; 1600 } 1601 1602 /* 1603 * If the inode has dirty timestamps and we need to write them, call 1604 * mark_inode_dirty_sync() to notify the filesystem about it and to 1605 * change I_DIRTY_TIME into I_DIRTY_SYNC. 1606 */ 1607 if ((inode->i_state & I_DIRTY_TIME) && 1608 (wbc->sync_mode == WB_SYNC_ALL || 1609 time_after(jiffies, inode->dirtied_time_when + 1610 dirtytime_expire_interval * HZ))) { 1611 trace_writeback_lazytime(inode); 1612 mark_inode_dirty_sync(inode); 1613 } 1614 1615 /* 1616 * Get and clear the dirty flags from i_state. This needs to be done 1617 * after calling writepages because some filesystems may redirty the 1618 * inode during writepages due to delalloc. It also needs to be done 1619 * after handling timestamp expiration, as that may dirty the inode too. 1620 */ 1621 spin_lock(&inode->i_lock); 1622 dirty = inode->i_state & I_DIRTY; 1623 inode->i_state &= ~dirty; 1624 1625 /* 1626 * Paired with smp_mb() in __mark_inode_dirty(). This allows 1627 * __mark_inode_dirty() to test i_state without grabbing i_lock - 1628 * either they see the I_DIRTY bits cleared or we see the dirtied 1629 * inode. 1630 * 1631 * I_DIRTY_PAGES is always cleared together above even if @mapping 1632 * still has dirty pages. The flag is reinstated after smp_mb() if 1633 * necessary. This guarantees that either __mark_inode_dirty() 1634 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 1635 */ 1636 smp_mb(); 1637 1638 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1639 inode->i_state |= I_DIRTY_PAGES; 1640 else if (unlikely(inode->i_state & I_PINNING_FSCACHE_WB)) { 1641 if (!(inode->i_state & I_DIRTY_PAGES)) { 1642 inode->i_state &= ~I_PINNING_FSCACHE_WB; 1643 wbc->unpinned_fscache_wb = true; 1644 dirty |= I_PINNING_FSCACHE_WB; /* Cause write_inode */ 1645 } 1646 } 1647 1648 spin_unlock(&inode->i_lock); 1649 1650 /* Don't write the inode if only I_DIRTY_PAGES was set */ 1651 if (dirty & ~I_DIRTY_PAGES) { 1652 int err = write_inode(inode, wbc); 1653 if (ret == 0) 1654 ret = err; 1655 } 1656 wbc->unpinned_fscache_wb = false; 1657 trace_writeback_single_inode(inode, wbc, nr_to_write); 1658 return ret; 1659} 1660 1661/* 1662 * Write out an inode's dirty data and metadata on-demand, i.e. separately from 1663 * the regular batched writeback done by the flusher threads in 1664 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as 1665 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE). 1666 * 1667 * To prevent the inode from going away, either the caller must have a reference 1668 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set. 1669 */ 1670static int writeback_single_inode(struct inode *inode, 1671 struct writeback_control *wbc) 1672{ 1673 struct bdi_writeback *wb; 1674 int ret = 0; 1675 1676 spin_lock(&inode->i_lock); 1677 if (!atomic_read(&inode->i_count)) 1678 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 1679 else 1680 WARN_ON(inode->i_state & I_WILL_FREE); 1681 1682 if (inode->i_state & I_SYNC) { 1683 /* 1684 * Writeback is already running on the inode. For WB_SYNC_NONE, 1685 * that's enough and we can just return. For WB_SYNC_ALL, we 1686 * must wait for the existing writeback to complete, then do 1687 * writeback again if there's anything left. 1688 */ 1689 if (wbc->sync_mode != WB_SYNC_ALL) 1690 goto out; 1691 __inode_wait_for_writeback(inode); 1692 } 1693 WARN_ON(inode->i_state & I_SYNC); 1694 /* 1695 * If the inode is already fully clean, then there's nothing to do. 1696 * 1697 * For data-integrity syncs we also need to check whether any pages are 1698 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If 1699 * there are any such pages, we'll need to wait for them. 1700 */ 1701 if (!(inode->i_state & I_DIRTY_ALL) && 1702 (wbc->sync_mode != WB_SYNC_ALL || 1703 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 1704 goto out; 1705 inode->i_state |= I_SYNC; 1706 wbc_attach_and_unlock_inode(wbc, inode); 1707 1708 ret = __writeback_single_inode(inode, wbc); 1709 1710 wbc_detach_inode(wbc); 1711 1712 wb = inode_to_wb_and_lock_list(inode); 1713 spin_lock(&inode->i_lock); 1714 /* 1715 * If the inode is now fully clean, then it can be safely removed from 1716 * its writeback list (if any). Otherwise the flusher threads are 1717 * responsible for the writeback lists. 1718 */ 1719 if (!(inode->i_state & I_DIRTY_ALL)) 1720 inode_cgwb_move_to_attached(inode, wb); 1721 else if (!(inode->i_state & I_SYNC_QUEUED) && 1722 (inode->i_state & I_DIRTY)) 1723 redirty_tail_locked(inode, wb); 1724 1725 spin_unlock(&wb->list_lock); 1726 inode_sync_complete(inode); 1727out: 1728 spin_unlock(&inode->i_lock); 1729 return ret; 1730} 1731 1732static long writeback_chunk_size(struct bdi_writeback *wb, 1733 struct wb_writeback_work *work) 1734{ 1735 long pages; 1736 1737 /* 1738 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 1739 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 1740 * here avoids calling into writeback_inodes_wb() more than once. 1741 * 1742 * The intended call sequence for WB_SYNC_ALL writeback is: 1743 * 1744 * wb_writeback() 1745 * writeback_sb_inodes() <== called only once 1746 * write_cache_pages() <== called once for each inode 1747 * (quickly) tag currently dirty pages 1748 * (maybe slowly) sync all tagged pages 1749 */ 1750 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 1751 pages = LONG_MAX; 1752 else { 1753 pages = min(wb->avg_write_bandwidth / 2, 1754 global_wb_domain.dirty_limit / DIRTY_SCOPE); 1755 pages = min(pages, work->nr_pages); 1756 pages = round_down(pages + MIN_WRITEBACK_PAGES, 1757 MIN_WRITEBACK_PAGES); 1758 } 1759 1760 return pages; 1761} 1762 1763/* 1764 * Write a portion of b_io inodes which belong to @sb. 1765 * 1766 * Return the number of pages and/or inodes written. 1767 * 1768 * NOTE! This is called with wb->list_lock held, and will 1769 * unlock and relock that for each inode it ends up doing 1770 * IO for. 1771 */ 1772static long writeback_sb_inodes(struct super_block *sb, 1773 struct bdi_writeback *wb, 1774 struct wb_writeback_work *work) 1775{ 1776 struct writeback_control wbc = { 1777 .sync_mode = work->sync_mode, 1778 .tagged_writepages = work->tagged_writepages, 1779 .for_kupdate = work->for_kupdate, 1780 .for_background = work->for_background, 1781 .for_sync = work->for_sync, 1782 .range_cyclic = work->range_cyclic, 1783 .range_start = 0, 1784 .range_end = LLONG_MAX, 1785 }; 1786 unsigned long start_time = jiffies; 1787 long write_chunk; 1788 long total_wrote = 0; /* count both pages and inodes */ 1789 1790 while (!list_empty(&wb->b_io)) { 1791 struct inode *inode = wb_inode(wb->b_io.prev); 1792 struct bdi_writeback *tmp_wb; 1793 long wrote; 1794 1795 if (inode->i_sb != sb) { 1796 if (work->sb) { 1797 /* 1798 * We only want to write back data for this 1799 * superblock, move all inodes not belonging 1800 * to it back onto the dirty list. 1801 */ 1802 redirty_tail(inode, wb); 1803 continue; 1804 } 1805 1806 /* 1807 * The inode belongs to a different superblock. 1808 * Bounce back to the caller to unpin this and 1809 * pin the next superblock. 1810 */ 1811 break; 1812 } 1813 1814 /* 1815 * Don't bother with new inodes or inodes being freed, first 1816 * kind does not need periodic writeout yet, and for the latter 1817 * kind writeout is handled by the freer. 1818 */ 1819 spin_lock(&inode->i_lock); 1820 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 1821 redirty_tail_locked(inode, wb); 1822 spin_unlock(&inode->i_lock); 1823 continue; 1824 } 1825 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 1826 /* 1827 * If this inode is locked for writeback and we are not 1828 * doing writeback-for-data-integrity, move it to 1829 * b_more_io so that writeback can proceed with the 1830 * other inodes on s_io. 1831 * 1832 * We'll have another go at writing back this inode 1833 * when we completed a full scan of b_io. 1834 */ 1835 requeue_io(inode, wb); 1836 spin_unlock(&inode->i_lock); 1837 trace_writeback_sb_inodes_requeue(inode); 1838 continue; 1839 } 1840 spin_unlock(&wb->list_lock); 1841 1842 /* 1843 * We already requeued the inode if it had I_SYNC set and we 1844 * are doing WB_SYNC_NONE writeback. So this catches only the 1845 * WB_SYNC_ALL case. 1846 */ 1847 if (inode->i_state & I_SYNC) { 1848 /* Wait for I_SYNC. This function drops i_lock... */ 1849 inode_sleep_on_writeback(inode); 1850 /* Inode may be gone, start again */ 1851 spin_lock(&wb->list_lock); 1852 continue; 1853 } 1854 inode->i_state |= I_SYNC; 1855 wbc_attach_and_unlock_inode(&wbc, inode); 1856 1857 write_chunk = writeback_chunk_size(wb, work); 1858 wbc.nr_to_write = write_chunk; 1859 wbc.pages_skipped = 0; 1860 1861 /* 1862 * We use I_SYNC to pin the inode in memory. While it is set 1863 * evict_inode() will wait so the inode cannot be freed. 1864 */ 1865 __writeback_single_inode(inode, &wbc); 1866 1867 wbc_detach_inode(&wbc); 1868 work->nr_pages -= write_chunk - wbc.nr_to_write; 1869 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped; 1870 wrote = wrote < 0 ? 0 : wrote; 1871 total_wrote += wrote; 1872 1873 if (need_resched()) { 1874 /* 1875 * We're trying to balance between building up a nice 1876 * long list of IOs to improve our merge rate, and 1877 * getting those IOs out quickly for anyone throttling 1878 * in balance_dirty_pages(). cond_resched() doesn't 1879 * unplug, so get our IOs out the door before we 1880 * give up the CPU. 1881 */ 1882 blk_flush_plug(current->plug, false); 1883 cond_resched(); 1884 } 1885 1886 /* 1887 * Requeue @inode if still dirty. Be careful as @inode may 1888 * have been switched to another wb in the meantime. 1889 */ 1890 tmp_wb = inode_to_wb_and_lock_list(inode); 1891 spin_lock(&inode->i_lock); 1892 if (!(inode->i_state & I_DIRTY_ALL)) 1893 total_wrote++; 1894 requeue_inode(inode, tmp_wb, &wbc); 1895 inode_sync_complete(inode); 1896 spin_unlock(&inode->i_lock); 1897 1898 if (unlikely(tmp_wb != wb)) { 1899 spin_unlock(&tmp_wb->list_lock); 1900 spin_lock(&wb->list_lock); 1901 } 1902 1903 /* 1904 * bail out to wb_writeback() often enough to check 1905 * background threshold and other termination conditions. 1906 */ 1907 if (total_wrote) { 1908 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1909 break; 1910 if (work->nr_pages <= 0) 1911 break; 1912 } 1913 } 1914 return total_wrote; 1915} 1916 1917static long __writeback_inodes_wb(struct bdi_writeback *wb, 1918 struct wb_writeback_work *work) 1919{ 1920 unsigned long start_time = jiffies; 1921 long wrote = 0; 1922 1923 while (!list_empty(&wb->b_io)) { 1924 struct inode *inode = wb_inode(wb->b_io.prev); 1925 struct super_block *sb = inode->i_sb; 1926 1927 if (!trylock_super(sb)) { 1928 /* 1929 * trylock_super() may fail consistently due to 1930 * s_umount being grabbed by someone else. Don't use 1931 * requeue_io() to avoid busy retrying the inode/sb. 1932 */ 1933 redirty_tail(inode, wb); 1934 continue; 1935 } 1936 wrote += writeback_sb_inodes(sb, wb, work); 1937 up_read(&sb->s_umount); 1938 1939 /* refer to the same tests at the end of writeback_sb_inodes */ 1940 if (wrote) { 1941 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1942 break; 1943 if (work->nr_pages <= 0) 1944 break; 1945 } 1946 } 1947 /* Leave any unwritten inodes on b_io */ 1948 return wrote; 1949} 1950 1951static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 1952 enum wb_reason reason) 1953{ 1954 struct wb_writeback_work work = { 1955 .nr_pages = nr_pages, 1956 .sync_mode = WB_SYNC_NONE, 1957 .range_cyclic = 1, 1958 .reason = reason, 1959 }; 1960 struct blk_plug plug; 1961 1962 blk_start_plug(&plug); 1963 spin_lock(&wb->list_lock); 1964 if (list_empty(&wb->b_io)) 1965 queue_io(wb, &work, jiffies); 1966 __writeback_inodes_wb(wb, &work); 1967 spin_unlock(&wb->list_lock); 1968 blk_finish_plug(&plug); 1969 1970 return nr_pages - work.nr_pages; 1971} 1972 1973/* 1974 * Explicit flushing or periodic writeback of "old" data. 1975 * 1976 * Define "old": the first time one of an inode's pages is dirtied, we mark the 1977 * dirtying-time in the inode's address_space. So this periodic writeback code 1978 * just walks the superblock inode list, writing back any inodes which are 1979 * older than a specific point in time. 1980 * 1981 * Try to run once per dirty_writeback_interval. But if a writeback event 1982 * takes longer than a dirty_writeback_interval interval, then leave a 1983 * one-second gap. 1984 * 1985 * dirtied_before takes precedence over nr_to_write. So we'll only write back 1986 * all dirty pages if they are all attached to "old" mappings. 1987 */ 1988static long wb_writeback(struct bdi_writeback *wb, 1989 struct wb_writeback_work *work) 1990{ 1991 long nr_pages = work->nr_pages; 1992 unsigned long dirtied_before = jiffies; 1993 struct inode *inode; 1994 long progress; 1995 struct blk_plug plug; 1996 1997 blk_start_plug(&plug); 1998 spin_lock(&wb->list_lock); 1999 for (;;) { 2000 /* 2001 * Stop writeback when nr_pages has been consumed 2002 */ 2003 if (work->nr_pages <= 0) 2004 break; 2005 2006 /* 2007 * Background writeout and kupdate-style writeback may 2008 * run forever. Stop them if there is other work to do 2009 * so that e.g. sync can proceed. They'll be restarted 2010 * after the other works are all done. 2011 */ 2012 if ((work->for_background || work->for_kupdate) && 2013 !list_empty(&wb->work_list)) 2014 break; 2015 2016 /* 2017 * For background writeout, stop when we are below the 2018 * background dirty threshold 2019 */ 2020 if (work->for_background && !wb_over_bg_thresh(wb)) 2021 break; 2022 2023 /* 2024 * Kupdate and background works are special and we want to 2025 * include all inodes that need writing. Livelock avoidance is 2026 * handled by these works yielding to any other work so we are 2027 * safe. 2028 */ 2029 if (work->for_kupdate) { 2030 dirtied_before = jiffies - 2031 msecs_to_jiffies(dirty_expire_interval * 10); 2032 } else if (work->for_background) 2033 dirtied_before = jiffies; 2034 2035 trace_writeback_start(wb, work); 2036 if (list_empty(&wb->b_io)) 2037 queue_io(wb, work, dirtied_before); 2038 if (work->sb) 2039 progress = writeback_sb_inodes(work->sb, wb, work); 2040 else 2041 progress = __writeback_inodes_wb(wb, work); 2042 trace_writeback_written(wb, work); 2043 2044 /* 2045 * Did we write something? Try for more 2046 * 2047 * Dirty inodes are moved to b_io for writeback in batches. 2048 * The completion of the current batch does not necessarily 2049 * mean the overall work is done. So we keep looping as long 2050 * as made some progress on cleaning pages or inodes. 2051 */ 2052 if (progress) 2053 continue; 2054 /* 2055 * No more inodes for IO, bail 2056 */ 2057 if (list_empty(&wb->b_more_io)) 2058 break; 2059 /* 2060 * Nothing written. Wait for some inode to 2061 * become available for writeback. Otherwise 2062 * we'll just busyloop. 2063 */ 2064 trace_writeback_wait(wb, work); 2065 inode = wb_inode(wb->b_more_io.prev); 2066 spin_lock(&inode->i_lock); 2067 spin_unlock(&wb->list_lock); 2068 /* This function drops i_lock... */ 2069 inode_sleep_on_writeback(inode); 2070 spin_lock(&wb->list_lock); 2071 } 2072 spin_unlock(&wb->list_lock); 2073 blk_finish_plug(&plug); 2074 2075 return nr_pages - work->nr_pages; 2076} 2077 2078/* 2079 * Return the next wb_writeback_work struct that hasn't been processed yet. 2080 */ 2081static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) 2082{ 2083 struct wb_writeback_work *work = NULL; 2084 2085 spin_lock_bh(&wb->work_lock); 2086 if (!list_empty(&wb->work_list)) { 2087 work = list_entry(wb->work_list.next, 2088 struct wb_writeback_work, list); 2089 list_del_init(&work->list); 2090 } 2091 spin_unlock_bh(&wb->work_lock); 2092 return work; 2093} 2094 2095static long wb_check_background_flush(struct bdi_writeback *wb) 2096{ 2097 if (wb_over_bg_thresh(wb)) { 2098 2099 struct wb_writeback_work work = { 2100 .nr_pages = LONG_MAX, 2101 .sync_mode = WB_SYNC_NONE, 2102 .for_background = 1, 2103 .range_cyclic = 1, 2104 .reason = WB_REASON_BACKGROUND, 2105 }; 2106 2107 return wb_writeback(wb, &work); 2108 } 2109 2110 return 0; 2111} 2112 2113static long wb_check_old_data_flush(struct bdi_writeback *wb) 2114{ 2115 unsigned long expired; 2116 long nr_pages; 2117 2118 /* 2119 * When set to zero, disable periodic writeback 2120 */ 2121 if (!dirty_writeback_interval) 2122 return 0; 2123 2124 expired = wb->last_old_flush + 2125 msecs_to_jiffies(dirty_writeback_interval * 10); 2126 if (time_before(jiffies, expired)) 2127 return 0; 2128 2129 wb->last_old_flush = jiffies; 2130 nr_pages = get_nr_dirty_pages(); 2131 2132 if (nr_pages) { 2133 struct wb_writeback_work work = { 2134 .nr_pages = nr_pages, 2135 .sync_mode = WB_SYNC_NONE, 2136 .for_kupdate = 1, 2137 .range_cyclic = 1, 2138 .reason = WB_REASON_PERIODIC, 2139 }; 2140 2141 return wb_writeback(wb, &work); 2142 } 2143 2144 return 0; 2145} 2146 2147static long wb_check_start_all(struct bdi_writeback *wb) 2148{ 2149 long nr_pages; 2150 2151 if (!test_bit(WB_start_all, &wb->state)) 2152 return 0; 2153 2154 nr_pages = get_nr_dirty_pages(); 2155 if (nr_pages) { 2156 struct wb_writeback_work work = { 2157 .nr_pages = wb_split_bdi_pages(wb, nr_pages), 2158 .sync_mode = WB_SYNC_NONE, 2159 .range_cyclic = 1, 2160 .reason = wb->start_all_reason, 2161 }; 2162 2163 nr_pages = wb_writeback(wb, &work); 2164 } 2165 2166 clear_bit(WB_start_all, &wb->state); 2167 return nr_pages; 2168} 2169 2170 2171/* 2172 * Retrieve work items and do the writeback they describe 2173 */ 2174static long wb_do_writeback(struct bdi_writeback *wb) 2175{ 2176 struct wb_writeback_work *work; 2177 long wrote = 0; 2178 2179 set_bit(WB_writeback_running, &wb->state); 2180 while ((work = get_next_work_item(wb)) != NULL) { 2181 trace_writeback_exec(wb, work); 2182 wrote += wb_writeback(wb, work); 2183 finish_writeback_work(wb, work); 2184 } 2185 2186 /* 2187 * Check for a flush-everything request 2188 */ 2189 wrote += wb_check_start_all(wb); 2190 2191 /* 2192 * Check for periodic writeback, kupdated() style 2193 */ 2194 wrote += wb_check_old_data_flush(wb); 2195 wrote += wb_check_background_flush(wb); 2196 clear_bit(WB_writeback_running, &wb->state); 2197 2198 return wrote; 2199} 2200 2201/* 2202 * Handle writeback of dirty data for the device backed by this bdi. Also 2203 * reschedules periodically and does kupdated style flushing. 2204 */ 2205void wb_workfn(struct work_struct *work) 2206{ 2207 struct bdi_writeback *wb = container_of(to_delayed_work(work), 2208 struct bdi_writeback, dwork); 2209 long pages_written; 2210 2211 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi)); 2212 2213 if (likely(!current_is_workqueue_rescuer() || 2214 !test_bit(WB_registered, &wb->state))) { 2215 /* 2216 * The normal path. Keep writing back @wb until its 2217 * work_list is empty. Note that this path is also taken 2218 * if @wb is shutting down even when we're running off the 2219 * rescuer as work_list needs to be drained. 2220 */ 2221 do { 2222 pages_written = wb_do_writeback(wb); 2223 trace_writeback_pages_written(pages_written); 2224 } while (!list_empty(&wb->work_list)); 2225 } else { 2226 /* 2227 * bdi_wq can't get enough workers and we're running off 2228 * the emergency worker. Don't hog it. Hopefully, 1024 is 2229 * enough for efficient IO. 2230 */ 2231 pages_written = writeback_inodes_wb(wb, 1024, 2232 WB_REASON_FORKER_THREAD); 2233 trace_writeback_pages_written(pages_written); 2234 } 2235 2236 if (!list_empty(&wb->work_list)) 2237 wb_wakeup(wb); 2238 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 2239 wb_wakeup_delayed(wb); 2240} 2241 2242/* 2243 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero, 2244 * write back the whole world. 2245 */ 2246static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2247 enum wb_reason reason) 2248{ 2249 struct bdi_writeback *wb; 2250 2251 if (!bdi_has_dirty_io(bdi)) 2252 return; 2253 2254 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2255 wb_start_writeback(wb, reason); 2256} 2257 2258void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2259 enum wb_reason reason) 2260{ 2261 rcu_read_lock(); 2262 __wakeup_flusher_threads_bdi(bdi, reason); 2263 rcu_read_unlock(); 2264} 2265 2266/* 2267 * Wakeup the flusher threads to start writeback of all currently dirty pages 2268 */ 2269void wakeup_flusher_threads(enum wb_reason reason) 2270{ 2271 struct backing_dev_info *bdi; 2272 2273 /* 2274 * If we are expecting writeback progress we must submit plugged IO. 2275 */ 2276 blk_flush_plug(current->plug, true); 2277 2278 rcu_read_lock(); 2279 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2280 __wakeup_flusher_threads_bdi(bdi, reason); 2281 rcu_read_unlock(); 2282} 2283 2284/* 2285 * Wake up bdi's periodically to make sure dirtytime inodes gets 2286 * written back periodically. We deliberately do *not* check the 2287 * b_dirtytime list in wb_has_dirty_io(), since this would cause the 2288 * kernel to be constantly waking up once there are any dirtytime 2289 * inodes on the system. So instead we define a separate delayed work 2290 * function which gets called much more rarely. (By default, only 2291 * once every 12 hours.) 2292 * 2293 * If there is any other write activity going on in the file system, 2294 * this function won't be necessary. But if the only thing that has 2295 * happened on the file system is a dirtytime inode caused by an atime 2296 * update, we need this infrastructure below to make sure that inode 2297 * eventually gets pushed out to disk. 2298 */ 2299static void wakeup_dirtytime_writeback(struct work_struct *w); 2300static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); 2301 2302static void wakeup_dirtytime_writeback(struct work_struct *w) 2303{ 2304 struct backing_dev_info *bdi; 2305 2306 rcu_read_lock(); 2307 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 2308 struct bdi_writeback *wb; 2309 2310 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2311 if (!list_empty(&wb->b_dirty_time)) 2312 wb_wakeup(wb); 2313 } 2314 rcu_read_unlock(); 2315 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2316} 2317 2318static int __init start_dirtytime_writeback(void) 2319{ 2320 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2321 return 0; 2322} 2323__initcall(start_dirtytime_writeback); 2324 2325int dirtytime_interval_handler(struct ctl_table *table, int write, 2326 void *buffer, size_t *lenp, loff_t *ppos) 2327{ 2328 int ret; 2329 2330 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2331 if (ret == 0 && write) 2332 mod_delayed_work(system_wq, &dirtytime_work, 0); 2333 return ret; 2334} 2335 2336/** 2337 * __mark_inode_dirty - internal function to mark an inode dirty 2338 * 2339 * @inode: inode to mark 2340 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of 2341 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined 2342 * with I_DIRTY_PAGES. 2343 * 2344 * Mark an inode as dirty. We notify the filesystem, then update the inode's 2345 * dirty flags. Then, if needed we add the inode to the appropriate dirty list. 2346 * 2347 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync() 2348 * instead of calling this directly. 2349 * 2350 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it 2351 * refers to a blockdev. Unhashed inodes will never be added to the dirty list 2352 * even if they are later hashed, as they will have been marked dirty already. 2353 * 2354 * In short, ensure you hash any inodes _before_ you start marking them dirty. 2355 * 2356 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 2357 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 2358 * the kernel-internal blockdev inode represents the dirtying time of the 2359 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 2360 * page->mapping->host, so the page-dirtying time is recorded in the internal 2361 * blockdev inode. 2362 */ 2363void __mark_inode_dirty(struct inode *inode, int flags) 2364{ 2365 struct super_block *sb = inode->i_sb; 2366 int dirtytime = 0; 2367 struct bdi_writeback *wb = NULL; 2368 2369 trace_writeback_mark_inode_dirty(inode, flags); 2370 2371 if (flags & I_DIRTY_INODE) { 2372 /* 2373 * Notify the filesystem about the inode being dirtied, so that 2374 * (if needed) it can update on-disk fields and journal the 2375 * inode. This is only needed when the inode itself is being 2376 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not 2377 * for just I_DIRTY_PAGES or I_DIRTY_TIME. 2378 */ 2379 trace_writeback_dirty_inode_start(inode, flags); 2380 if (sb->s_op->dirty_inode) 2381 sb->s_op->dirty_inode(inode, flags & I_DIRTY_INODE); 2382 trace_writeback_dirty_inode(inode, flags); 2383 2384 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */ 2385 flags &= ~I_DIRTY_TIME; 2386 } else { 2387 /* 2388 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing. 2389 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME 2390 * in one call to __mark_inode_dirty().) 2391 */ 2392 dirtytime = flags & I_DIRTY_TIME; 2393 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME); 2394 } 2395 2396 /* 2397 * Paired with smp_mb() in __writeback_single_inode() for the 2398 * following lockless i_state test. See there for details. 2399 */ 2400 smp_mb(); 2401 2402 if (((inode->i_state & flags) == flags) || 2403 (dirtytime && (inode->i_state & I_DIRTY_INODE))) 2404 return; 2405 2406 spin_lock(&inode->i_lock); 2407 if (dirtytime && (inode->i_state & I_DIRTY_INODE)) 2408 goto out_unlock_inode; 2409 if ((inode->i_state & flags) != flags) { 2410 const int was_dirty = inode->i_state & I_DIRTY; 2411 2412 inode_attach_wb(inode, NULL); 2413 2414 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */ 2415 if (flags & I_DIRTY_INODE) 2416 inode->i_state &= ~I_DIRTY_TIME; 2417 inode->i_state |= flags; 2418 2419 /* 2420 * Grab inode's wb early because it requires dropping i_lock and we 2421 * need to make sure following checks happen atomically with dirty 2422 * list handling so that we don't move inodes under flush worker's 2423 * hands. 2424 */ 2425 if (!was_dirty) { 2426 wb = locked_inode_to_wb_and_lock_list(inode); 2427 spin_lock(&inode->i_lock); 2428 } 2429 2430 /* 2431 * If the inode is queued for writeback by flush worker, just 2432 * update its dirty state. Once the flush worker is done with 2433 * the inode it will place it on the appropriate superblock 2434 * list, based upon its state. 2435 */ 2436 if (inode->i_state & I_SYNC_QUEUED) 2437 goto out_unlock; 2438 2439 /* 2440 * Only add valid (hashed) inodes to the superblock's 2441 * dirty list. Add blockdev inodes as well. 2442 */ 2443 if (!S_ISBLK(inode->i_mode)) { 2444 if (inode_unhashed(inode)) 2445 goto out_unlock; 2446 } 2447 if (inode->i_state & I_FREEING) 2448 goto out_unlock; 2449 2450 /* 2451 * If the inode was already on b_dirty/b_io/b_more_io, don't 2452 * reposition it (that would break b_dirty time-ordering). 2453 */ 2454 if (!was_dirty) { 2455 struct list_head *dirty_list; 2456 bool wakeup_bdi = false; 2457 2458 inode->dirtied_when = jiffies; 2459 if (dirtytime) 2460 inode->dirtied_time_when = jiffies; 2461 2462 if (inode->i_state & I_DIRTY) 2463 dirty_list = &wb->b_dirty; 2464 else 2465 dirty_list = &wb->b_dirty_time; 2466 2467 wakeup_bdi = inode_io_list_move_locked(inode, wb, 2468 dirty_list); 2469 2470 spin_unlock(&wb->list_lock); 2471 spin_unlock(&inode->i_lock); 2472 trace_writeback_dirty_inode_enqueue(inode); 2473 2474 /* 2475 * If this is the first dirty inode for this bdi, 2476 * we have to wake-up the corresponding bdi thread 2477 * to make sure background write-back happens 2478 * later. 2479 */ 2480 if (wakeup_bdi && 2481 (wb->bdi->capabilities & BDI_CAP_WRITEBACK)) 2482 wb_wakeup_delayed(wb); 2483 return; 2484 } 2485 } 2486out_unlock: 2487 if (wb) 2488 spin_unlock(&wb->list_lock); 2489out_unlock_inode: 2490 spin_unlock(&inode->i_lock); 2491} 2492EXPORT_SYMBOL(__mark_inode_dirty); 2493 2494/* 2495 * The @s_sync_lock is used to serialise concurrent sync operations 2496 * to avoid lock contention problems with concurrent wait_sb_inodes() calls. 2497 * Concurrent callers will block on the s_sync_lock rather than doing contending 2498 * walks. The queueing maintains sync(2) required behaviour as all the IO that 2499 * has been issued up to the time this function is enter is guaranteed to be 2500 * completed by the time we have gained the lock and waited for all IO that is 2501 * in progress regardless of the order callers are granted the lock. 2502 */ 2503static void wait_sb_inodes(struct super_block *sb) 2504{ 2505 LIST_HEAD(sync_list); 2506 2507 /* 2508 * We need to be protected against the filesystem going from 2509 * r/o to r/w or vice versa. 2510 */ 2511 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2512 2513 mutex_lock(&sb->s_sync_lock); 2514 2515 /* 2516 * Splice the writeback list onto a temporary list to avoid waiting on 2517 * inodes that have started writeback after this point. 2518 * 2519 * Use rcu_read_lock() to keep the inodes around until we have a 2520 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as 2521 * the local list because inodes can be dropped from either by writeback 2522 * completion. 2523 */ 2524 rcu_read_lock(); 2525 spin_lock_irq(&sb->s_inode_wblist_lock); 2526 list_splice_init(&sb->s_inodes_wb, &sync_list); 2527 2528 /* 2529 * Data integrity sync. Must wait for all pages under writeback, because 2530 * there may have been pages dirtied before our sync call, but which had 2531 * writeout started before we write it out. In which case, the inode 2532 * may not be on the dirty list, but we still have to wait for that 2533 * writeout. 2534 */ 2535 while (!list_empty(&sync_list)) { 2536 struct inode *inode = list_first_entry(&sync_list, struct inode, 2537 i_wb_list); 2538 struct address_space *mapping = inode->i_mapping; 2539 2540 /* 2541 * Move each inode back to the wb list before we drop the lock 2542 * to preserve consistency between i_wb_list and the mapping 2543 * writeback tag. Writeback completion is responsible to remove 2544 * the inode from either list once the writeback tag is cleared. 2545 */ 2546 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb); 2547 2548 /* 2549 * The mapping can appear untagged while still on-list since we 2550 * do not have the mapping lock. Skip it here, wb completion 2551 * will remove it. 2552 */ 2553 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 2554 continue; 2555 2556 spin_unlock_irq(&sb->s_inode_wblist_lock); 2557 2558 spin_lock(&inode->i_lock); 2559 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { 2560 spin_unlock(&inode->i_lock); 2561 2562 spin_lock_irq(&sb->s_inode_wblist_lock); 2563 continue; 2564 } 2565 __iget(inode); 2566 spin_unlock(&inode->i_lock); 2567 rcu_read_unlock(); 2568 2569 /* 2570 * We keep the error status of individual mapping so that 2571 * applications can catch the writeback error using fsync(2). 2572 * See filemap_fdatawait_keep_errors() for details. 2573 */ 2574 filemap_fdatawait_keep_errors(mapping); 2575 2576 cond_resched(); 2577 2578 iput(inode); 2579 2580 rcu_read_lock(); 2581 spin_lock_irq(&sb->s_inode_wblist_lock); 2582 } 2583 spin_unlock_irq(&sb->s_inode_wblist_lock); 2584 rcu_read_unlock(); 2585 mutex_unlock(&sb->s_sync_lock); 2586} 2587 2588static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2589 enum wb_reason reason, bool skip_if_busy) 2590{ 2591 struct backing_dev_info *bdi = sb->s_bdi; 2592 DEFINE_WB_COMPLETION(done, bdi); 2593 struct wb_writeback_work work = { 2594 .sb = sb, 2595 .sync_mode = WB_SYNC_NONE, 2596 .tagged_writepages = 1, 2597 .done = &done, 2598 .nr_pages = nr, 2599 .reason = reason, 2600 }; 2601 2602 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) 2603 return; 2604 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2605 2606 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); 2607 wb_wait_for_completion(&done); 2608} 2609 2610/** 2611 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 2612 * @sb: the superblock 2613 * @nr: the number of pages to write 2614 * @reason: reason why some writeback work initiated 2615 * 2616 * Start writeback on some inodes on this super_block. No guarantees are made 2617 * on how many (if any) will be written, and this function does not wait 2618 * for IO completion of submitted IO. 2619 */ 2620void writeback_inodes_sb_nr(struct super_block *sb, 2621 unsigned long nr, 2622 enum wb_reason reason) 2623{ 2624 __writeback_inodes_sb_nr(sb, nr, reason, false); 2625} 2626EXPORT_SYMBOL(writeback_inodes_sb_nr); 2627 2628/** 2629 * writeback_inodes_sb - writeback dirty inodes from given super_block 2630 * @sb: the superblock 2631 * @reason: reason why some writeback work was initiated 2632 * 2633 * Start writeback on some inodes on this super_block. No guarantees are made 2634 * on how many (if any) will be written, and this function does not wait 2635 * for IO completion of submitted IO. 2636 */ 2637void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2638{ 2639 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2640} 2641EXPORT_SYMBOL(writeback_inodes_sb); 2642 2643/** 2644 * try_to_writeback_inodes_sb - try to start writeback if none underway 2645 * @sb: the superblock 2646 * @reason: reason why some writeback work was initiated 2647 * 2648 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway. 2649 */ 2650void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2651{ 2652 if (!down_read_trylock(&sb->s_umount)) 2653 return; 2654 2655 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true); 2656 up_read(&sb->s_umount); 2657} 2658EXPORT_SYMBOL(try_to_writeback_inodes_sb); 2659 2660/** 2661 * sync_inodes_sb - sync sb inode pages 2662 * @sb: the superblock 2663 * 2664 * This function writes and waits on any dirty inode belonging to this 2665 * super_block. 2666 */ 2667void sync_inodes_sb(struct super_block *sb) 2668{ 2669 struct backing_dev_info *bdi = sb->s_bdi; 2670 DEFINE_WB_COMPLETION(done, bdi); 2671 struct wb_writeback_work work = { 2672 .sb = sb, 2673 .sync_mode = WB_SYNC_ALL, 2674 .nr_pages = LONG_MAX, 2675 .range_cyclic = 0, 2676 .done = &done, 2677 .reason = WB_REASON_SYNC, 2678 .for_sync = 1, 2679 }; 2680 2681 /* 2682 * Can't skip on !bdi_has_dirty() because we should wait for !dirty 2683 * inodes under writeback and I_DIRTY_TIME inodes ignored by 2684 * bdi_has_dirty() need to be written out too. 2685 */ 2686 if (bdi == &noop_backing_dev_info) 2687 return; 2688 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2689 2690 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */ 2691 bdi_down_write_wb_switch_rwsem(bdi); 2692 bdi_split_work_to_wbs(bdi, &work, false); 2693 wb_wait_for_completion(&done); 2694 bdi_up_write_wb_switch_rwsem(bdi); 2695 2696 wait_sb_inodes(sb); 2697} 2698EXPORT_SYMBOL(sync_inodes_sb); 2699 2700/** 2701 * write_inode_now - write an inode to disk 2702 * @inode: inode to write to disk 2703 * @sync: whether the write should be synchronous or not 2704 * 2705 * This function commits an inode to disk immediately if it is dirty. This is 2706 * primarily needed by knfsd. 2707 * 2708 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 2709 */ 2710int write_inode_now(struct inode *inode, int sync) 2711{ 2712 struct writeback_control wbc = { 2713 .nr_to_write = LONG_MAX, 2714 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 2715 .range_start = 0, 2716 .range_end = LLONG_MAX, 2717 }; 2718 2719 if (!mapping_can_writeback(inode->i_mapping)) 2720 wbc.nr_to_write = 0; 2721 2722 might_sleep(); 2723 return writeback_single_inode(inode, &wbc); 2724} 2725EXPORT_SYMBOL(write_inode_now); 2726 2727/** 2728 * sync_inode_metadata - write an inode to disk 2729 * @inode: the inode to sync 2730 * @wait: wait for I/O to complete. 2731 * 2732 * Write an inode to disk and adjust its dirty state after completion. 2733 * 2734 * Note: only writes the actual inode, no associated data or other metadata. 2735 */ 2736int sync_inode_metadata(struct inode *inode, int wait) 2737{ 2738 struct writeback_control wbc = { 2739 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 2740 .nr_to_write = 0, /* metadata-only */ 2741 }; 2742 2743 return writeback_single_inode(inode, &wbc); 2744} 2745EXPORT_SYMBOL(sync_inode_metadata);