fs_context.c (18110B)
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* Provide a way to create a superblock configuration context within the kernel 3 * that allows a superblock to be set up prior to mounting. 4 * 5 * Copyright (C) 2017 Red Hat, Inc. All Rights Reserved. 6 * Written by David Howells (dhowells@redhat.com) 7 */ 8 9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10#include <linux/module.h> 11#include <linux/fs_context.h> 12#include <linux/fs_parser.h> 13#include <linux/fs.h> 14#include <linux/mount.h> 15#include <linux/nsproxy.h> 16#include <linux/slab.h> 17#include <linux/magic.h> 18#include <linux/security.h> 19#include <linux/mnt_namespace.h> 20#include <linux/pid_namespace.h> 21#include <linux/user_namespace.h> 22#include <net/net_namespace.h> 23#include <asm/sections.h> 24#include "mount.h" 25#include "internal.h" 26 27enum legacy_fs_param { 28 LEGACY_FS_UNSET_PARAMS, 29 LEGACY_FS_MONOLITHIC_PARAMS, 30 LEGACY_FS_INDIVIDUAL_PARAMS, 31}; 32 33struct legacy_fs_context { 34 char *legacy_data; /* Data page for legacy filesystems */ 35 size_t data_size; 36 enum legacy_fs_param param_type; 37}; 38 39static int legacy_init_fs_context(struct fs_context *fc); 40 41static const struct constant_table common_set_sb_flag[] = { 42 { "dirsync", SB_DIRSYNC }, 43 { "lazytime", SB_LAZYTIME }, 44 { "mand", SB_MANDLOCK }, 45 { "ro", SB_RDONLY }, 46 { "sync", SB_SYNCHRONOUS }, 47 { }, 48}; 49 50static const struct constant_table common_clear_sb_flag[] = { 51 { "async", SB_SYNCHRONOUS }, 52 { "nolazytime", SB_LAZYTIME }, 53 { "nomand", SB_MANDLOCK }, 54 { "rw", SB_RDONLY }, 55 { }, 56}; 57 58/* 59 * Check for a common mount option that manipulates s_flags. 60 */ 61static int vfs_parse_sb_flag(struct fs_context *fc, const char *key) 62{ 63 unsigned int token; 64 65 token = lookup_constant(common_set_sb_flag, key, 0); 66 if (token) { 67 fc->sb_flags |= token; 68 fc->sb_flags_mask |= token; 69 return 0; 70 } 71 72 token = lookup_constant(common_clear_sb_flag, key, 0); 73 if (token) { 74 fc->sb_flags &= ~token; 75 fc->sb_flags_mask |= token; 76 return 0; 77 } 78 79 return -ENOPARAM; 80} 81 82/** 83 * vfs_parse_fs_param_source - Handle setting "source" via parameter 84 * @fc: The filesystem context to modify 85 * @param: The parameter 86 * 87 * This is a simple helper for filesystems to verify that the "source" they 88 * accept is sane. 89 * 90 * Returns 0 on success, -ENOPARAM if this is not "source" parameter, and 91 * -EINVAL otherwise. In the event of failure, supplementary error information 92 * is logged. 93 */ 94int vfs_parse_fs_param_source(struct fs_context *fc, struct fs_parameter *param) 95{ 96 if (strcmp(param->key, "source") != 0) 97 return -ENOPARAM; 98 99 if (param->type != fs_value_is_string) 100 return invalf(fc, "Non-string source"); 101 102 if (fc->source) 103 return invalf(fc, "Multiple sources"); 104 105 fc->source = param->string; 106 param->string = NULL; 107 return 0; 108} 109EXPORT_SYMBOL(vfs_parse_fs_param_source); 110 111/** 112 * vfs_parse_fs_param - Add a single parameter to a superblock config 113 * @fc: The filesystem context to modify 114 * @param: The parameter 115 * 116 * A single mount option in string form is applied to the filesystem context 117 * being set up. Certain standard options (for example "ro") are translated 118 * into flag bits without going to the filesystem. The active security module 119 * is allowed to observe and poach options. Any other options are passed over 120 * to the filesystem to parse. 121 * 122 * This may be called multiple times for a context. 123 * 124 * Returns 0 on success and a negative error code on failure. In the event of 125 * failure, supplementary error information may have been set. 126 */ 127int vfs_parse_fs_param(struct fs_context *fc, struct fs_parameter *param) 128{ 129 int ret; 130 131 if (!param->key) 132 return invalf(fc, "Unnamed parameter\n"); 133 134 ret = vfs_parse_sb_flag(fc, param->key); 135 if (ret != -ENOPARAM) 136 return ret; 137 138 ret = security_fs_context_parse_param(fc, param); 139 if (ret != -ENOPARAM) 140 /* Param belongs to the LSM or is disallowed by the LSM; so 141 * don't pass to the FS. 142 */ 143 return ret; 144 145 if (fc->ops->parse_param) { 146 ret = fc->ops->parse_param(fc, param); 147 if (ret != -ENOPARAM) 148 return ret; 149 } 150 151 /* If the filesystem doesn't take any arguments, give it the 152 * default handling of source. 153 */ 154 ret = vfs_parse_fs_param_source(fc, param); 155 if (ret != -ENOPARAM) 156 return ret; 157 158 return invalf(fc, "%s: Unknown parameter '%s'", 159 fc->fs_type->name, param->key); 160} 161EXPORT_SYMBOL(vfs_parse_fs_param); 162 163/** 164 * vfs_parse_fs_string - Convenience function to just parse a string. 165 */ 166int vfs_parse_fs_string(struct fs_context *fc, const char *key, 167 const char *value, size_t v_size) 168{ 169 int ret; 170 171 struct fs_parameter param = { 172 .key = key, 173 .type = fs_value_is_flag, 174 .size = v_size, 175 }; 176 177 if (value) { 178 param.string = kmemdup_nul(value, v_size, GFP_KERNEL); 179 if (!param.string) 180 return -ENOMEM; 181 param.type = fs_value_is_string; 182 } 183 184 ret = vfs_parse_fs_param(fc, ¶m); 185 kfree(param.string); 186 return ret; 187} 188EXPORT_SYMBOL(vfs_parse_fs_string); 189 190/** 191 * generic_parse_monolithic - Parse key[=val][,key[=val]]* mount data 192 * @ctx: The superblock configuration to fill in. 193 * @data: The data to parse 194 * 195 * Parse a blob of data that's in key[=val][,key[=val]]* form. This can be 196 * called from the ->monolithic_mount_data() fs_context operation. 197 * 198 * Returns 0 on success or the error returned by the ->parse_option() fs_context 199 * operation on failure. 200 */ 201int generic_parse_monolithic(struct fs_context *fc, void *data) 202{ 203 char *options = data, *key; 204 int ret = 0; 205 206 if (!options) 207 return 0; 208 209 ret = security_sb_eat_lsm_opts(options, &fc->security); 210 if (ret) 211 return ret; 212 213 while ((key = strsep(&options, ",")) != NULL) { 214 if (*key) { 215 size_t v_len = 0; 216 char *value = strchr(key, '='); 217 218 if (value) { 219 if (value == key) 220 continue; 221 *value++ = 0; 222 v_len = strlen(value); 223 } 224 ret = vfs_parse_fs_string(fc, key, value, v_len); 225 if (ret < 0) 226 break; 227 } 228 } 229 230 return ret; 231} 232EXPORT_SYMBOL(generic_parse_monolithic); 233 234/** 235 * alloc_fs_context - Create a filesystem context. 236 * @fs_type: The filesystem type. 237 * @reference: The dentry from which this one derives (or NULL) 238 * @sb_flags: Filesystem/superblock flags (SB_*) 239 * @sb_flags_mask: Applicable members of @sb_flags 240 * @purpose: The purpose that this configuration shall be used for. 241 * 242 * Open a filesystem and create a mount context. The mount context is 243 * initialised with the supplied flags and, if a submount/automount from 244 * another superblock (referred to by @reference) is supplied, may have 245 * parameters such as namespaces copied across from that superblock. 246 */ 247static struct fs_context *alloc_fs_context(struct file_system_type *fs_type, 248 struct dentry *reference, 249 unsigned int sb_flags, 250 unsigned int sb_flags_mask, 251 enum fs_context_purpose purpose) 252{ 253 int (*init_fs_context)(struct fs_context *); 254 struct fs_context *fc; 255 int ret = -ENOMEM; 256 257 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL_ACCOUNT); 258 if (!fc) 259 return ERR_PTR(-ENOMEM); 260 261 fc->purpose = purpose; 262 fc->sb_flags = sb_flags; 263 fc->sb_flags_mask = sb_flags_mask; 264 fc->fs_type = get_filesystem(fs_type); 265 fc->cred = get_current_cred(); 266 fc->net_ns = get_net(current->nsproxy->net_ns); 267 fc->log.prefix = fs_type->name; 268 269 mutex_init(&fc->uapi_mutex); 270 271 switch (purpose) { 272 case FS_CONTEXT_FOR_MOUNT: 273 fc->user_ns = get_user_ns(fc->cred->user_ns); 274 break; 275 case FS_CONTEXT_FOR_SUBMOUNT: 276 fc->user_ns = get_user_ns(reference->d_sb->s_user_ns); 277 break; 278 case FS_CONTEXT_FOR_RECONFIGURE: 279 atomic_inc(&reference->d_sb->s_active); 280 fc->user_ns = get_user_ns(reference->d_sb->s_user_ns); 281 fc->root = dget(reference); 282 break; 283 } 284 285 /* TODO: Make all filesystems support this unconditionally */ 286 init_fs_context = fc->fs_type->init_fs_context; 287 if (!init_fs_context) 288 init_fs_context = legacy_init_fs_context; 289 290 ret = init_fs_context(fc); 291 if (ret < 0) 292 goto err_fc; 293 fc->need_free = true; 294 return fc; 295 296err_fc: 297 put_fs_context(fc); 298 return ERR_PTR(ret); 299} 300 301struct fs_context *fs_context_for_mount(struct file_system_type *fs_type, 302 unsigned int sb_flags) 303{ 304 return alloc_fs_context(fs_type, NULL, sb_flags, 0, 305 FS_CONTEXT_FOR_MOUNT); 306} 307EXPORT_SYMBOL(fs_context_for_mount); 308 309struct fs_context *fs_context_for_reconfigure(struct dentry *dentry, 310 unsigned int sb_flags, 311 unsigned int sb_flags_mask) 312{ 313 return alloc_fs_context(dentry->d_sb->s_type, dentry, sb_flags, 314 sb_flags_mask, FS_CONTEXT_FOR_RECONFIGURE); 315} 316EXPORT_SYMBOL(fs_context_for_reconfigure); 317 318struct fs_context *fs_context_for_submount(struct file_system_type *type, 319 struct dentry *reference) 320{ 321 return alloc_fs_context(type, reference, 0, 0, FS_CONTEXT_FOR_SUBMOUNT); 322} 323EXPORT_SYMBOL(fs_context_for_submount); 324 325void fc_drop_locked(struct fs_context *fc) 326{ 327 struct super_block *sb = fc->root->d_sb; 328 dput(fc->root); 329 fc->root = NULL; 330 deactivate_locked_super(sb); 331} 332 333static void legacy_fs_context_free(struct fs_context *fc); 334 335/** 336 * vfs_dup_fc_config: Duplicate a filesystem context. 337 * @src_fc: The context to copy. 338 */ 339struct fs_context *vfs_dup_fs_context(struct fs_context *src_fc) 340{ 341 struct fs_context *fc; 342 int ret; 343 344 if (!src_fc->ops->dup) 345 return ERR_PTR(-EOPNOTSUPP); 346 347 fc = kmemdup(src_fc, sizeof(struct fs_context), GFP_KERNEL); 348 if (!fc) 349 return ERR_PTR(-ENOMEM); 350 351 mutex_init(&fc->uapi_mutex); 352 353 fc->fs_private = NULL; 354 fc->s_fs_info = NULL; 355 fc->source = NULL; 356 fc->security = NULL; 357 get_filesystem(fc->fs_type); 358 get_net(fc->net_ns); 359 get_user_ns(fc->user_ns); 360 get_cred(fc->cred); 361 if (fc->log.log) 362 refcount_inc(&fc->log.log->usage); 363 364 /* Can't call put until we've called ->dup */ 365 ret = fc->ops->dup(fc, src_fc); 366 if (ret < 0) 367 goto err_fc; 368 369 ret = security_fs_context_dup(fc, src_fc); 370 if (ret < 0) 371 goto err_fc; 372 return fc; 373 374err_fc: 375 put_fs_context(fc); 376 return ERR_PTR(ret); 377} 378EXPORT_SYMBOL(vfs_dup_fs_context); 379 380/** 381 * logfc - Log a message to a filesystem context 382 * @fc: The filesystem context to log to. 383 * @fmt: The format of the buffer. 384 */ 385void logfc(struct fc_log *log, const char *prefix, char level, const char *fmt, ...) 386{ 387 va_list va; 388 struct va_format vaf = {.fmt = fmt, .va = &va}; 389 390 va_start(va, fmt); 391 if (!log) { 392 switch (level) { 393 case 'w': 394 printk(KERN_WARNING "%s%s%pV\n", prefix ? prefix : "", 395 prefix ? ": " : "", &vaf); 396 break; 397 case 'e': 398 printk(KERN_ERR "%s%s%pV\n", prefix ? prefix : "", 399 prefix ? ": " : "", &vaf); 400 break; 401 default: 402 printk(KERN_NOTICE "%s%s%pV\n", prefix ? prefix : "", 403 prefix ? ": " : "", &vaf); 404 break; 405 } 406 } else { 407 unsigned int logsize = ARRAY_SIZE(log->buffer); 408 u8 index; 409 char *q = kasprintf(GFP_KERNEL, "%c %s%s%pV\n", level, 410 prefix ? prefix : "", 411 prefix ? ": " : "", &vaf); 412 413 index = log->head & (logsize - 1); 414 BUILD_BUG_ON(sizeof(log->head) != sizeof(u8) || 415 sizeof(log->tail) != sizeof(u8)); 416 if ((u8)(log->head - log->tail) == logsize) { 417 /* The buffer is full, discard the oldest message */ 418 if (log->need_free & (1 << index)) 419 kfree(log->buffer[index]); 420 log->tail++; 421 } 422 423 log->buffer[index] = q ? q : "OOM: Can't store error string"; 424 if (q) 425 log->need_free |= 1 << index; 426 else 427 log->need_free &= ~(1 << index); 428 log->head++; 429 } 430 va_end(va); 431} 432EXPORT_SYMBOL(logfc); 433 434/* 435 * Free a logging structure. 436 */ 437static void put_fc_log(struct fs_context *fc) 438{ 439 struct fc_log *log = fc->log.log; 440 int i; 441 442 if (log) { 443 if (refcount_dec_and_test(&log->usage)) { 444 fc->log.log = NULL; 445 for (i = 0; i <= 7; i++) 446 if (log->need_free & (1 << i)) 447 kfree(log->buffer[i]); 448 kfree(log); 449 } 450 } 451} 452 453/** 454 * put_fs_context - Dispose of a superblock configuration context. 455 * @fc: The context to dispose of. 456 */ 457void put_fs_context(struct fs_context *fc) 458{ 459 struct super_block *sb; 460 461 if (fc->root) { 462 sb = fc->root->d_sb; 463 dput(fc->root); 464 fc->root = NULL; 465 deactivate_super(sb); 466 } 467 468 if (fc->need_free && fc->ops && fc->ops->free) 469 fc->ops->free(fc); 470 471 security_free_mnt_opts(&fc->security); 472 put_net(fc->net_ns); 473 put_user_ns(fc->user_ns); 474 put_cred(fc->cred); 475 put_fc_log(fc); 476 put_filesystem(fc->fs_type); 477 kfree(fc->source); 478 kfree(fc); 479} 480EXPORT_SYMBOL(put_fs_context); 481 482/* 483 * Free the config for a filesystem that doesn't support fs_context. 484 */ 485static void legacy_fs_context_free(struct fs_context *fc) 486{ 487 struct legacy_fs_context *ctx = fc->fs_private; 488 489 if (ctx) { 490 if (ctx->param_type == LEGACY_FS_INDIVIDUAL_PARAMS) 491 kfree(ctx->legacy_data); 492 kfree(ctx); 493 } 494} 495 496/* 497 * Duplicate a legacy config. 498 */ 499static int legacy_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 500{ 501 struct legacy_fs_context *ctx; 502 struct legacy_fs_context *src_ctx = src_fc->fs_private; 503 504 ctx = kmemdup(src_ctx, sizeof(*src_ctx), GFP_KERNEL); 505 if (!ctx) 506 return -ENOMEM; 507 508 if (ctx->param_type == LEGACY_FS_INDIVIDUAL_PARAMS) { 509 ctx->legacy_data = kmemdup(src_ctx->legacy_data, 510 src_ctx->data_size, GFP_KERNEL); 511 if (!ctx->legacy_data) { 512 kfree(ctx); 513 return -ENOMEM; 514 } 515 } 516 517 fc->fs_private = ctx; 518 return 0; 519} 520 521/* 522 * Add a parameter to a legacy config. We build up a comma-separated list of 523 * options. 524 */ 525static int legacy_parse_param(struct fs_context *fc, struct fs_parameter *param) 526{ 527 struct legacy_fs_context *ctx = fc->fs_private; 528 unsigned int size = ctx->data_size; 529 size_t len = 0; 530 int ret; 531 532 ret = vfs_parse_fs_param_source(fc, param); 533 if (ret != -ENOPARAM) 534 return ret; 535 536 if (ctx->param_type == LEGACY_FS_MONOLITHIC_PARAMS) 537 return invalf(fc, "VFS: Legacy: Can't mix monolithic and individual options"); 538 539 switch (param->type) { 540 case fs_value_is_string: 541 len = 1 + param->size; 542 fallthrough; 543 case fs_value_is_flag: 544 len += strlen(param->key); 545 break; 546 default: 547 return invalf(fc, "VFS: Legacy: Parameter type for '%s' not supported", 548 param->key); 549 } 550 551 if (size + len + 2 > PAGE_SIZE) 552 return invalf(fc, "VFS: Legacy: Cumulative options too large"); 553 if (strchr(param->key, ',') || 554 (param->type == fs_value_is_string && 555 memchr(param->string, ',', param->size))) 556 return invalf(fc, "VFS: Legacy: Option '%s' contained comma", 557 param->key); 558 if (!ctx->legacy_data) { 559 ctx->legacy_data = kmalloc(PAGE_SIZE, GFP_KERNEL); 560 if (!ctx->legacy_data) 561 return -ENOMEM; 562 } 563 564 ctx->legacy_data[size++] = ','; 565 len = strlen(param->key); 566 memcpy(ctx->legacy_data + size, param->key, len); 567 size += len; 568 if (param->type == fs_value_is_string) { 569 ctx->legacy_data[size++] = '='; 570 memcpy(ctx->legacy_data + size, param->string, param->size); 571 size += param->size; 572 } 573 ctx->legacy_data[size] = '\0'; 574 ctx->data_size = size; 575 ctx->param_type = LEGACY_FS_INDIVIDUAL_PARAMS; 576 return 0; 577} 578 579/* 580 * Add monolithic mount data. 581 */ 582static int legacy_parse_monolithic(struct fs_context *fc, void *data) 583{ 584 struct legacy_fs_context *ctx = fc->fs_private; 585 586 if (ctx->param_type != LEGACY_FS_UNSET_PARAMS) { 587 pr_warn("VFS: Can't mix monolithic and individual options\n"); 588 return -EINVAL; 589 } 590 591 ctx->legacy_data = data; 592 ctx->param_type = LEGACY_FS_MONOLITHIC_PARAMS; 593 if (!ctx->legacy_data) 594 return 0; 595 596 if (fc->fs_type->fs_flags & FS_BINARY_MOUNTDATA) 597 return 0; 598 return security_sb_eat_lsm_opts(ctx->legacy_data, &fc->security); 599} 600 601/* 602 * Get a mountable root with the legacy mount command. 603 */ 604static int legacy_get_tree(struct fs_context *fc) 605{ 606 struct legacy_fs_context *ctx = fc->fs_private; 607 struct super_block *sb; 608 struct dentry *root; 609 610 root = fc->fs_type->mount(fc->fs_type, fc->sb_flags, 611 fc->source, ctx->legacy_data); 612 if (IS_ERR(root)) 613 return PTR_ERR(root); 614 615 sb = root->d_sb; 616 BUG_ON(!sb); 617 618 fc->root = root; 619 return 0; 620} 621 622/* 623 * Handle remount. 624 */ 625static int legacy_reconfigure(struct fs_context *fc) 626{ 627 struct legacy_fs_context *ctx = fc->fs_private; 628 struct super_block *sb = fc->root->d_sb; 629 630 if (!sb->s_op->remount_fs) 631 return 0; 632 633 return sb->s_op->remount_fs(sb, &fc->sb_flags, 634 ctx ? ctx->legacy_data : NULL); 635} 636 637const struct fs_context_operations legacy_fs_context_ops = { 638 .free = legacy_fs_context_free, 639 .dup = legacy_fs_context_dup, 640 .parse_param = legacy_parse_param, 641 .parse_monolithic = legacy_parse_monolithic, 642 .get_tree = legacy_get_tree, 643 .reconfigure = legacy_reconfigure, 644}; 645 646/* 647 * Initialise a legacy context for a filesystem that doesn't support 648 * fs_context. 649 */ 650static int legacy_init_fs_context(struct fs_context *fc) 651{ 652 fc->fs_private = kzalloc(sizeof(struct legacy_fs_context), GFP_KERNEL_ACCOUNT); 653 if (!fc->fs_private) 654 return -ENOMEM; 655 fc->ops = &legacy_fs_context_ops; 656 return 0; 657} 658 659int parse_monolithic_mount_data(struct fs_context *fc, void *data) 660{ 661 int (*monolithic_mount_data)(struct fs_context *, void *); 662 663 monolithic_mount_data = fc->ops->parse_monolithic; 664 if (!monolithic_mount_data) 665 monolithic_mount_data = generic_parse_monolithic; 666 667 return monolithic_mount_data(fc, data); 668} 669 670/* 671 * Clean up a context after performing an action on it and put it into a state 672 * from where it can be used to reconfigure a superblock. 673 * 674 * Note that here we do only the parts that can't fail; the rest is in 675 * finish_clean_context() below and in between those fs_context is marked 676 * FS_CONTEXT_AWAITING_RECONF. The reason for splitup is that after 677 * successful mount or remount we need to report success to userland. 678 * Trying to do full reinit (for the sake of possible subsequent remount) 679 * and failing to allocate memory would've put us into a nasty situation. 680 * So here we only discard the old state and reinitialization is left 681 * until we actually try to reconfigure. 682 */ 683void vfs_clean_context(struct fs_context *fc) 684{ 685 if (fc->need_free && fc->ops && fc->ops->free) 686 fc->ops->free(fc); 687 fc->need_free = false; 688 fc->fs_private = NULL; 689 fc->s_fs_info = NULL; 690 fc->sb_flags = 0; 691 security_free_mnt_opts(&fc->security); 692 kfree(fc->source); 693 fc->source = NULL; 694 695 fc->purpose = FS_CONTEXT_FOR_RECONFIGURE; 696 fc->phase = FS_CONTEXT_AWAITING_RECONF; 697} 698 699int finish_clean_context(struct fs_context *fc) 700{ 701 int error; 702 703 if (fc->phase != FS_CONTEXT_AWAITING_RECONF) 704 return 0; 705 706 if (fc->fs_type->init_fs_context) 707 error = fc->fs_type->init_fs_context(fc); 708 else 709 error = legacy_init_fs_context(fc); 710 if (unlikely(error)) { 711 fc->phase = FS_CONTEXT_FAILED; 712 return error; 713 } 714 fc->need_free = true; 715 fc->phase = FS_CONTEXT_RECONF_PARAMS; 716 return 0; 717}