cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

file.c (40692B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
      4 * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
      5 */
      6
      7#include <linux/slab.h>
      8#include <linux/spinlock.h>
      9#include <linux/compat.h>
     10#include <linux/completion.h>
     11#include <linux/buffer_head.h>
     12#include <linux/pagemap.h>
     13#include <linux/uio.h>
     14#include <linux/blkdev.h>
     15#include <linux/mm.h>
     16#include <linux/mount.h>
     17#include <linux/fs.h>
     18#include <linux/gfs2_ondisk.h>
     19#include <linux/falloc.h>
     20#include <linux/swap.h>
     21#include <linux/crc32.h>
     22#include <linux/writeback.h>
     23#include <linux/uaccess.h>
     24#include <linux/dlm.h>
     25#include <linux/dlm_plock.h>
     26#include <linux/delay.h>
     27#include <linux/backing-dev.h>
     28#include <linux/fileattr.h>
     29
     30#include "gfs2.h"
     31#include "incore.h"
     32#include "bmap.h"
     33#include "aops.h"
     34#include "dir.h"
     35#include "glock.h"
     36#include "glops.h"
     37#include "inode.h"
     38#include "log.h"
     39#include "meta_io.h"
     40#include "quota.h"
     41#include "rgrp.h"
     42#include "trans.h"
     43#include "util.h"
     44
     45/**
     46 * gfs2_llseek - seek to a location in a file
     47 * @file: the file
     48 * @offset: the offset
     49 * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
     50 *
     51 * SEEK_END requires the glock for the file because it references the
     52 * file's size.
     53 *
     54 * Returns: The new offset, or errno
     55 */
     56
     57static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence)
     58{
     59	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
     60	struct gfs2_holder i_gh;
     61	loff_t error;
     62
     63	switch (whence) {
     64	case SEEK_END:
     65		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
     66					   &i_gh);
     67		if (!error) {
     68			error = generic_file_llseek(file, offset, whence);
     69			gfs2_glock_dq_uninit(&i_gh);
     70		}
     71		break;
     72
     73	case SEEK_DATA:
     74		error = gfs2_seek_data(file, offset);
     75		break;
     76
     77	case SEEK_HOLE:
     78		error = gfs2_seek_hole(file, offset);
     79		break;
     80
     81	case SEEK_CUR:
     82	case SEEK_SET:
     83		/*
     84		 * These don't reference inode->i_size and don't depend on the
     85		 * block mapping, so we don't need the glock.
     86		 */
     87		error = generic_file_llseek(file, offset, whence);
     88		break;
     89	default:
     90		error = -EINVAL;
     91	}
     92
     93	return error;
     94}
     95
     96/**
     97 * gfs2_readdir - Iterator for a directory
     98 * @file: The directory to read from
     99 * @ctx: What to feed directory entries to
    100 *
    101 * Returns: errno
    102 */
    103
    104static int gfs2_readdir(struct file *file, struct dir_context *ctx)
    105{
    106	struct inode *dir = file->f_mapping->host;
    107	struct gfs2_inode *dip = GFS2_I(dir);
    108	struct gfs2_holder d_gh;
    109	int error;
    110
    111	error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh);
    112	if (error)
    113		return error;
    114
    115	error = gfs2_dir_read(dir, ctx, &file->f_ra);
    116
    117	gfs2_glock_dq_uninit(&d_gh);
    118
    119	return error;
    120}
    121
    122/*
    123 * struct fsflag_gfs2flag
    124 *
    125 * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories,
    126 * and to GFS2_DIF_JDATA for non-directories.
    127 */
    128static struct {
    129	u32 fsflag;
    130	u32 gfsflag;
    131} fsflag_gfs2flag[] = {
    132	{FS_SYNC_FL, GFS2_DIF_SYNC},
    133	{FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE},
    134	{FS_APPEND_FL, GFS2_DIF_APPENDONLY},
    135	{FS_NOATIME_FL, GFS2_DIF_NOATIME},
    136	{FS_INDEX_FL, GFS2_DIF_EXHASH},
    137	{FS_TOPDIR_FL, GFS2_DIF_TOPDIR},
    138	{FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA},
    139};
    140
    141static inline u32 gfs2_gfsflags_to_fsflags(struct inode *inode, u32 gfsflags)
    142{
    143	int i;
    144	u32 fsflags = 0;
    145
    146	if (S_ISDIR(inode->i_mode))
    147		gfsflags &= ~GFS2_DIF_JDATA;
    148	else
    149		gfsflags &= ~GFS2_DIF_INHERIT_JDATA;
    150
    151	for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++)
    152		if (gfsflags & fsflag_gfs2flag[i].gfsflag)
    153			fsflags |= fsflag_gfs2flag[i].fsflag;
    154	return fsflags;
    155}
    156
    157int gfs2_fileattr_get(struct dentry *dentry, struct fileattr *fa)
    158{
    159	struct inode *inode = d_inode(dentry);
    160	struct gfs2_inode *ip = GFS2_I(inode);
    161	struct gfs2_holder gh;
    162	int error;
    163	u32 fsflags;
    164
    165	if (d_is_special(dentry))
    166		return -ENOTTY;
    167
    168	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
    169	error = gfs2_glock_nq(&gh);
    170	if (error)
    171		goto out_uninit;
    172
    173	fsflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags);
    174
    175	fileattr_fill_flags(fa, fsflags);
    176
    177	gfs2_glock_dq(&gh);
    178out_uninit:
    179	gfs2_holder_uninit(&gh);
    180	return error;
    181}
    182
    183void gfs2_set_inode_flags(struct inode *inode)
    184{
    185	struct gfs2_inode *ip = GFS2_I(inode);
    186	unsigned int flags = inode->i_flags;
    187
    188	flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC);
    189	if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode))
    190		flags |= S_NOSEC;
    191	if (ip->i_diskflags & GFS2_DIF_IMMUTABLE)
    192		flags |= S_IMMUTABLE;
    193	if (ip->i_diskflags & GFS2_DIF_APPENDONLY)
    194		flags |= S_APPEND;
    195	if (ip->i_diskflags & GFS2_DIF_NOATIME)
    196		flags |= S_NOATIME;
    197	if (ip->i_diskflags & GFS2_DIF_SYNC)
    198		flags |= S_SYNC;
    199	inode->i_flags = flags;
    200}
    201
    202/* Flags that can be set by user space */
    203#define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA|			\
    204			     GFS2_DIF_IMMUTABLE|		\
    205			     GFS2_DIF_APPENDONLY|		\
    206			     GFS2_DIF_NOATIME|			\
    207			     GFS2_DIF_SYNC|			\
    208			     GFS2_DIF_TOPDIR|			\
    209			     GFS2_DIF_INHERIT_JDATA)
    210
    211/**
    212 * do_gfs2_set_flags - set flags on an inode
    213 * @inode: The inode
    214 * @reqflags: The flags to set
    215 * @mask: Indicates which flags are valid
    216 *
    217 */
    218static int do_gfs2_set_flags(struct inode *inode, u32 reqflags, u32 mask)
    219{
    220	struct gfs2_inode *ip = GFS2_I(inode);
    221	struct gfs2_sbd *sdp = GFS2_SB(inode);
    222	struct buffer_head *bh;
    223	struct gfs2_holder gh;
    224	int error;
    225	u32 new_flags, flags;
    226
    227	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
    228	if (error)
    229		return error;
    230
    231	error = 0;
    232	flags = ip->i_diskflags;
    233	new_flags = (flags & ~mask) | (reqflags & mask);
    234	if ((new_flags ^ flags) == 0)
    235		goto out;
    236
    237	if (!IS_IMMUTABLE(inode)) {
    238		error = gfs2_permission(&init_user_ns, inode, MAY_WRITE);
    239		if (error)
    240			goto out;
    241	}
    242	if ((flags ^ new_flags) & GFS2_DIF_JDATA) {
    243		if (new_flags & GFS2_DIF_JDATA)
    244			gfs2_log_flush(sdp, ip->i_gl,
    245				       GFS2_LOG_HEAD_FLUSH_NORMAL |
    246				       GFS2_LFC_SET_FLAGS);
    247		error = filemap_fdatawrite(inode->i_mapping);
    248		if (error)
    249			goto out;
    250		error = filemap_fdatawait(inode->i_mapping);
    251		if (error)
    252			goto out;
    253		if (new_flags & GFS2_DIF_JDATA)
    254			gfs2_ordered_del_inode(ip);
    255	}
    256	error = gfs2_trans_begin(sdp, RES_DINODE, 0);
    257	if (error)
    258		goto out;
    259	error = gfs2_meta_inode_buffer(ip, &bh);
    260	if (error)
    261		goto out_trans_end;
    262	inode->i_ctime = current_time(inode);
    263	gfs2_trans_add_meta(ip->i_gl, bh);
    264	ip->i_diskflags = new_flags;
    265	gfs2_dinode_out(ip, bh->b_data);
    266	brelse(bh);
    267	gfs2_set_inode_flags(inode);
    268	gfs2_set_aops(inode);
    269out_trans_end:
    270	gfs2_trans_end(sdp);
    271out:
    272	gfs2_glock_dq_uninit(&gh);
    273	return error;
    274}
    275
    276int gfs2_fileattr_set(struct user_namespace *mnt_userns,
    277		      struct dentry *dentry, struct fileattr *fa)
    278{
    279	struct inode *inode = d_inode(dentry);
    280	u32 fsflags = fa->flags, gfsflags = 0;
    281	u32 mask;
    282	int i;
    283
    284	if (d_is_special(dentry))
    285		return -ENOTTY;
    286
    287	if (fileattr_has_fsx(fa))
    288		return -EOPNOTSUPP;
    289
    290	for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) {
    291		if (fsflags & fsflag_gfs2flag[i].fsflag) {
    292			fsflags &= ~fsflag_gfs2flag[i].fsflag;
    293			gfsflags |= fsflag_gfs2flag[i].gfsflag;
    294		}
    295	}
    296	if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET)
    297		return -EINVAL;
    298
    299	mask = GFS2_FLAGS_USER_SET;
    300	if (S_ISDIR(inode->i_mode)) {
    301		mask &= ~GFS2_DIF_JDATA;
    302	} else {
    303		/* The GFS2_DIF_TOPDIR flag is only valid for directories. */
    304		if (gfsflags & GFS2_DIF_TOPDIR)
    305			return -EINVAL;
    306		mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA);
    307	}
    308
    309	return do_gfs2_set_flags(inode, gfsflags, mask);
    310}
    311
    312static int gfs2_getlabel(struct file *filp, char __user *label)
    313{
    314	struct inode *inode = file_inode(filp);
    315	struct gfs2_sbd *sdp = GFS2_SB(inode);
    316
    317	if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN))
    318		return -EFAULT;
    319
    320	return 0;
    321}
    322
    323static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
    324{
    325	switch(cmd) {
    326	case FITRIM:
    327		return gfs2_fitrim(filp, (void __user *)arg);
    328	case FS_IOC_GETFSLABEL:
    329		return gfs2_getlabel(filp, (char __user *)arg);
    330	}
    331
    332	return -ENOTTY;
    333}
    334
    335#ifdef CONFIG_COMPAT
    336static long gfs2_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
    337{
    338	switch(cmd) {
    339	/* Keep this list in sync with gfs2_ioctl */
    340	case FITRIM:
    341	case FS_IOC_GETFSLABEL:
    342		break;
    343	default:
    344		return -ENOIOCTLCMD;
    345	}
    346
    347	return gfs2_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
    348}
    349#else
    350#define gfs2_compat_ioctl NULL
    351#endif
    352
    353/**
    354 * gfs2_size_hint - Give a hint to the size of a write request
    355 * @filep: The struct file
    356 * @offset: The file offset of the write
    357 * @size: The length of the write
    358 *
    359 * When we are about to do a write, this function records the total
    360 * write size in order to provide a suitable hint to the lower layers
    361 * about how many blocks will be required.
    362 *
    363 */
    364
    365static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size)
    366{
    367	struct inode *inode = file_inode(filep);
    368	struct gfs2_sbd *sdp = GFS2_SB(inode);
    369	struct gfs2_inode *ip = GFS2_I(inode);
    370	size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift;
    371	int hint = min_t(size_t, INT_MAX, blks);
    372
    373	if (hint > atomic_read(&ip->i_sizehint))
    374		atomic_set(&ip->i_sizehint, hint);
    375}
    376
    377/**
    378 * gfs2_allocate_page_backing - Allocate blocks for a write fault
    379 * @page: The (locked) page to allocate backing for
    380 * @length: Size of the allocation
    381 *
    382 * We try to allocate all the blocks required for the page in one go.  This
    383 * might fail for various reasons, so we keep trying until all the blocks to
    384 * back this page are allocated.  If some of the blocks are already allocated,
    385 * that is ok too.
    386 */
    387static int gfs2_allocate_page_backing(struct page *page, unsigned int length)
    388{
    389	u64 pos = page_offset(page);
    390
    391	do {
    392		struct iomap iomap = { };
    393
    394		if (gfs2_iomap_alloc(page->mapping->host, pos, length, &iomap))
    395			return -EIO;
    396
    397		if (length < iomap.length)
    398			iomap.length = length;
    399		length -= iomap.length;
    400		pos += iomap.length;
    401	} while (length > 0);
    402
    403	return 0;
    404}
    405
    406/**
    407 * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
    408 * @vmf: The virtual memory fault containing the page to become writable
    409 *
    410 * When the page becomes writable, we need to ensure that we have
    411 * blocks allocated on disk to back that page.
    412 */
    413
    414static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf)
    415{
    416	struct page *page = vmf->page;
    417	struct inode *inode = file_inode(vmf->vma->vm_file);
    418	struct gfs2_inode *ip = GFS2_I(inode);
    419	struct gfs2_sbd *sdp = GFS2_SB(inode);
    420	struct gfs2_alloc_parms ap = { .aflags = 0, };
    421	u64 offset = page_offset(page);
    422	unsigned int data_blocks, ind_blocks, rblocks;
    423	vm_fault_t ret = VM_FAULT_LOCKED;
    424	struct gfs2_holder gh;
    425	unsigned int length;
    426	loff_t size;
    427	int err;
    428
    429	sb_start_pagefault(inode->i_sb);
    430
    431	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
    432	err = gfs2_glock_nq(&gh);
    433	if (err) {
    434		ret = block_page_mkwrite_return(err);
    435		goto out_uninit;
    436	}
    437
    438	/* Check page index against inode size */
    439	size = i_size_read(inode);
    440	if (offset >= size) {
    441		ret = VM_FAULT_SIGBUS;
    442		goto out_unlock;
    443	}
    444
    445	/* Update file times before taking page lock */
    446	file_update_time(vmf->vma->vm_file);
    447
    448	/* page is wholly or partially inside EOF */
    449	if (size - offset < PAGE_SIZE)
    450		length = size - offset;
    451	else
    452		length = PAGE_SIZE;
    453
    454	gfs2_size_hint(vmf->vma->vm_file, offset, length);
    455
    456	set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
    457	set_bit(GIF_SW_PAGED, &ip->i_flags);
    458
    459	/*
    460	 * iomap_writepage / iomap_writepages currently don't support inline
    461	 * files, so always unstuff here.
    462	 */
    463
    464	if (!gfs2_is_stuffed(ip) &&
    465	    !gfs2_write_alloc_required(ip, offset, length)) {
    466		lock_page(page);
    467		if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
    468			ret = VM_FAULT_NOPAGE;
    469			unlock_page(page);
    470		}
    471		goto out_unlock;
    472	}
    473
    474	err = gfs2_rindex_update(sdp);
    475	if (err) {
    476		ret = block_page_mkwrite_return(err);
    477		goto out_unlock;
    478	}
    479
    480	gfs2_write_calc_reserv(ip, length, &data_blocks, &ind_blocks);
    481	ap.target = data_blocks + ind_blocks;
    482	err = gfs2_quota_lock_check(ip, &ap);
    483	if (err) {
    484		ret = block_page_mkwrite_return(err);
    485		goto out_unlock;
    486	}
    487	err = gfs2_inplace_reserve(ip, &ap);
    488	if (err) {
    489		ret = block_page_mkwrite_return(err);
    490		goto out_quota_unlock;
    491	}
    492
    493	rblocks = RES_DINODE + ind_blocks;
    494	if (gfs2_is_jdata(ip))
    495		rblocks += data_blocks ? data_blocks : 1;
    496	if (ind_blocks || data_blocks) {
    497		rblocks += RES_STATFS + RES_QUOTA;
    498		rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
    499	}
    500	err = gfs2_trans_begin(sdp, rblocks, 0);
    501	if (err) {
    502		ret = block_page_mkwrite_return(err);
    503		goto out_trans_fail;
    504	}
    505
    506	/* Unstuff, if required, and allocate backing blocks for page */
    507	if (gfs2_is_stuffed(ip)) {
    508		err = gfs2_unstuff_dinode(ip);
    509		if (err) {
    510			ret = block_page_mkwrite_return(err);
    511			goto out_trans_end;
    512		}
    513	}
    514
    515	lock_page(page);
    516	/* If truncated, we must retry the operation, we may have raced
    517	 * with the glock demotion code.
    518	 */
    519	if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
    520		ret = VM_FAULT_NOPAGE;
    521		goto out_page_locked;
    522	}
    523
    524	err = gfs2_allocate_page_backing(page, length);
    525	if (err)
    526		ret = block_page_mkwrite_return(err);
    527
    528out_page_locked:
    529	if (ret != VM_FAULT_LOCKED)
    530		unlock_page(page);
    531out_trans_end:
    532	gfs2_trans_end(sdp);
    533out_trans_fail:
    534	gfs2_inplace_release(ip);
    535out_quota_unlock:
    536	gfs2_quota_unlock(ip);
    537out_unlock:
    538	gfs2_glock_dq(&gh);
    539out_uninit:
    540	gfs2_holder_uninit(&gh);
    541	if (ret == VM_FAULT_LOCKED) {
    542		set_page_dirty(page);
    543		wait_for_stable_page(page);
    544	}
    545	sb_end_pagefault(inode->i_sb);
    546	return ret;
    547}
    548
    549static vm_fault_t gfs2_fault(struct vm_fault *vmf)
    550{
    551	struct inode *inode = file_inode(vmf->vma->vm_file);
    552	struct gfs2_inode *ip = GFS2_I(inode);
    553	struct gfs2_holder gh;
    554	vm_fault_t ret;
    555	int err;
    556
    557	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
    558	err = gfs2_glock_nq(&gh);
    559	if (err) {
    560		ret = block_page_mkwrite_return(err);
    561		goto out_uninit;
    562	}
    563	ret = filemap_fault(vmf);
    564	gfs2_glock_dq(&gh);
    565out_uninit:
    566	gfs2_holder_uninit(&gh);
    567	return ret;
    568}
    569
    570static const struct vm_operations_struct gfs2_vm_ops = {
    571	.fault = gfs2_fault,
    572	.map_pages = filemap_map_pages,
    573	.page_mkwrite = gfs2_page_mkwrite,
    574};
    575
    576/**
    577 * gfs2_mmap
    578 * @file: The file to map
    579 * @vma: The VMA which described the mapping
    580 *
    581 * There is no need to get a lock here unless we should be updating
    582 * atime. We ignore any locking errors since the only consequence is
    583 * a missed atime update (which will just be deferred until later).
    584 *
    585 * Returns: 0
    586 */
    587
    588static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
    589{
    590	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
    591
    592	if (!(file->f_flags & O_NOATIME) &&
    593	    !IS_NOATIME(&ip->i_inode)) {
    594		struct gfs2_holder i_gh;
    595		int error;
    596
    597		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
    598					   &i_gh);
    599		if (error)
    600			return error;
    601		/* grab lock to update inode */
    602		gfs2_glock_dq_uninit(&i_gh);
    603		file_accessed(file);
    604	}
    605	vma->vm_ops = &gfs2_vm_ops;
    606
    607	return 0;
    608}
    609
    610/**
    611 * gfs2_open_common - This is common to open and atomic_open
    612 * @inode: The inode being opened
    613 * @file: The file being opened
    614 *
    615 * This maybe called under a glock or not depending upon how it has
    616 * been called. We must always be called under a glock for regular
    617 * files, however. For other file types, it does not matter whether
    618 * we hold the glock or not.
    619 *
    620 * Returns: Error code or 0 for success
    621 */
    622
    623int gfs2_open_common(struct inode *inode, struct file *file)
    624{
    625	struct gfs2_file *fp;
    626	int ret;
    627
    628	if (S_ISREG(inode->i_mode)) {
    629		ret = generic_file_open(inode, file);
    630		if (ret)
    631			return ret;
    632	}
    633
    634	fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS);
    635	if (!fp)
    636		return -ENOMEM;
    637
    638	mutex_init(&fp->f_fl_mutex);
    639
    640	gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
    641	file->private_data = fp;
    642	if (file->f_mode & FMODE_WRITE) {
    643		ret = gfs2_qa_get(GFS2_I(inode));
    644		if (ret)
    645			goto fail;
    646	}
    647	return 0;
    648
    649fail:
    650	kfree(file->private_data);
    651	file->private_data = NULL;
    652	return ret;
    653}
    654
    655/**
    656 * gfs2_open - open a file
    657 * @inode: the inode to open
    658 * @file: the struct file for this opening
    659 *
    660 * After atomic_open, this function is only used for opening files
    661 * which are already cached. We must still get the glock for regular
    662 * files to ensure that we have the file size uptodate for the large
    663 * file check which is in the common code. That is only an issue for
    664 * regular files though.
    665 *
    666 * Returns: errno
    667 */
    668
    669static int gfs2_open(struct inode *inode, struct file *file)
    670{
    671	struct gfs2_inode *ip = GFS2_I(inode);
    672	struct gfs2_holder i_gh;
    673	int error;
    674	bool need_unlock = false;
    675
    676	if (S_ISREG(ip->i_inode.i_mode)) {
    677		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
    678					   &i_gh);
    679		if (error)
    680			return error;
    681		need_unlock = true;
    682	}
    683
    684	error = gfs2_open_common(inode, file);
    685
    686	if (need_unlock)
    687		gfs2_glock_dq_uninit(&i_gh);
    688
    689	return error;
    690}
    691
    692/**
    693 * gfs2_release - called to close a struct file
    694 * @inode: the inode the struct file belongs to
    695 * @file: the struct file being closed
    696 *
    697 * Returns: errno
    698 */
    699
    700static int gfs2_release(struct inode *inode, struct file *file)
    701{
    702	struct gfs2_inode *ip = GFS2_I(inode);
    703
    704	kfree(file->private_data);
    705	file->private_data = NULL;
    706
    707	if (file->f_mode & FMODE_WRITE) {
    708		if (gfs2_rs_active(&ip->i_res))
    709			gfs2_rs_delete(ip);
    710		gfs2_qa_put(ip);
    711	}
    712	return 0;
    713}
    714
    715/**
    716 * gfs2_fsync - sync the dirty data for a file (across the cluster)
    717 * @file: the file that points to the dentry
    718 * @start: the start position in the file to sync
    719 * @end: the end position in the file to sync
    720 * @datasync: set if we can ignore timestamp changes
    721 *
    722 * We split the data flushing here so that we don't wait for the data
    723 * until after we've also sent the metadata to disk. Note that for
    724 * data=ordered, we will write & wait for the data at the log flush
    725 * stage anyway, so this is unlikely to make much of a difference
    726 * except in the data=writeback case.
    727 *
    728 * If the fdatawrite fails due to any reason except -EIO, we will
    729 * continue the remainder of the fsync, although we'll still report
    730 * the error at the end. This is to match filemap_write_and_wait_range()
    731 * behaviour.
    732 *
    733 * Returns: errno
    734 */
    735
    736static int gfs2_fsync(struct file *file, loff_t start, loff_t end,
    737		      int datasync)
    738{
    739	struct address_space *mapping = file->f_mapping;
    740	struct inode *inode = mapping->host;
    741	int sync_state = inode->i_state & I_DIRTY;
    742	struct gfs2_inode *ip = GFS2_I(inode);
    743	int ret = 0, ret1 = 0;
    744
    745	if (mapping->nrpages) {
    746		ret1 = filemap_fdatawrite_range(mapping, start, end);
    747		if (ret1 == -EIO)
    748			return ret1;
    749	}
    750
    751	if (!gfs2_is_jdata(ip))
    752		sync_state &= ~I_DIRTY_PAGES;
    753	if (datasync)
    754		sync_state &= ~I_DIRTY_SYNC;
    755
    756	if (sync_state) {
    757		ret = sync_inode_metadata(inode, 1);
    758		if (ret)
    759			return ret;
    760		if (gfs2_is_jdata(ip))
    761			ret = file_write_and_wait(file);
    762		if (ret)
    763			return ret;
    764		gfs2_ail_flush(ip->i_gl, 1);
    765	}
    766
    767	if (mapping->nrpages)
    768		ret = file_fdatawait_range(file, start, end);
    769
    770	return ret ? ret : ret1;
    771}
    772
    773static inline bool should_fault_in_pages(struct iov_iter *i,
    774					 struct kiocb *iocb,
    775					 size_t *prev_count,
    776					 size_t *window_size)
    777{
    778	size_t count = iov_iter_count(i);
    779	size_t size, offs;
    780
    781	if (!count)
    782		return false;
    783	if (!iter_is_iovec(i))
    784		return false;
    785
    786	size = PAGE_SIZE;
    787	offs = offset_in_page(iocb->ki_pos);
    788	if (*prev_count != count || !*window_size) {
    789		size_t nr_dirtied;
    790
    791		nr_dirtied = max(current->nr_dirtied_pause -
    792				 current->nr_dirtied, 8);
    793		size = min_t(size_t, SZ_1M, nr_dirtied << PAGE_SHIFT);
    794	}
    795
    796	*prev_count = count;
    797	*window_size = size - offs;
    798	return true;
    799}
    800
    801static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to,
    802				     struct gfs2_holder *gh)
    803{
    804	struct file *file = iocb->ki_filp;
    805	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
    806	size_t prev_count = 0, window_size = 0;
    807	size_t read = 0;
    808	ssize_t ret;
    809
    810	/*
    811	 * In this function, we disable page faults when we're holding the
    812	 * inode glock while doing I/O.  If a page fault occurs, we indicate
    813	 * that the inode glock may be dropped, fault in the pages manually,
    814	 * and retry.
    815	 *
    816	 * Unlike generic_file_read_iter, for reads, iomap_dio_rw can trigger
    817	 * physical as well as manual page faults, and we need to disable both
    818	 * kinds.
    819	 *
    820	 * For direct I/O, gfs2 takes the inode glock in deferred mode.  This
    821	 * locking mode is compatible with other deferred holders, so multiple
    822	 * processes and nodes can do direct I/O to a file at the same time.
    823	 * There's no guarantee that reads or writes will be atomic.  Any
    824	 * coordination among readers and writers needs to happen externally.
    825	 */
    826
    827	if (!iov_iter_count(to))
    828		return 0; /* skip atime */
    829
    830	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
    831retry:
    832	ret = gfs2_glock_nq(gh);
    833	if (ret)
    834		goto out_uninit;
    835	pagefault_disable();
    836	to->nofault = true;
    837	ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL,
    838			   IOMAP_DIO_PARTIAL, NULL, read);
    839	to->nofault = false;
    840	pagefault_enable();
    841	if (ret <= 0 && ret != -EFAULT)
    842		goto out_unlock;
    843	/* No increment (+=) because iomap_dio_rw returns a cumulative value. */
    844	if (ret > 0)
    845		read = ret;
    846
    847	if (should_fault_in_pages(to, iocb, &prev_count, &window_size)) {
    848		gfs2_glock_dq(gh);
    849		window_size -= fault_in_iov_iter_writeable(to, window_size);
    850		if (window_size)
    851			goto retry;
    852	}
    853out_unlock:
    854	if (gfs2_holder_queued(gh))
    855		gfs2_glock_dq(gh);
    856out_uninit:
    857	gfs2_holder_uninit(gh);
    858	/* User space doesn't expect partial success. */
    859	if (ret < 0)
    860		return ret;
    861	return read;
    862}
    863
    864static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from,
    865				      struct gfs2_holder *gh)
    866{
    867	struct file *file = iocb->ki_filp;
    868	struct inode *inode = file->f_mapping->host;
    869	struct gfs2_inode *ip = GFS2_I(inode);
    870	size_t prev_count = 0, window_size = 0;
    871	size_t written = 0;
    872	ssize_t ret;
    873
    874	/*
    875	 * In this function, we disable page faults when we're holding the
    876	 * inode glock while doing I/O.  If a page fault occurs, we indicate
    877	 * that the inode glock may be dropped, fault in the pages manually,
    878	 * and retry.
    879	 *
    880	 * For writes, iomap_dio_rw only triggers manual page faults, so we
    881	 * don't need to disable physical ones.
    882	 */
    883
    884	/*
    885	 * Deferred lock, even if its a write, since we do no allocation on
    886	 * this path. All we need to change is the atime, and this lock mode
    887	 * ensures that other nodes have flushed their buffered read caches
    888	 * (i.e. their page cache entries for this inode). We do not,
    889	 * unfortunately, have the option of only flushing a range like the
    890	 * VFS does.
    891	 */
    892	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
    893retry:
    894	ret = gfs2_glock_nq(gh);
    895	if (ret)
    896		goto out_uninit;
    897	/* Silently fall back to buffered I/O when writing beyond EOF */
    898	if (iocb->ki_pos + iov_iter_count(from) > i_size_read(&ip->i_inode))
    899		goto out_unlock;
    900
    901	from->nofault = true;
    902	ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL,
    903			   IOMAP_DIO_PARTIAL, NULL, written);
    904	from->nofault = false;
    905	if (ret <= 0) {
    906		if (ret == -ENOTBLK)
    907			ret = 0;
    908		if (ret != -EFAULT)
    909			goto out_unlock;
    910	}
    911	/* No increment (+=) because iomap_dio_rw returns a cumulative value. */
    912	if (ret > 0)
    913		written = ret;
    914
    915	if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) {
    916		gfs2_glock_dq(gh);
    917		window_size -= fault_in_iov_iter_readable(from, window_size);
    918		if (window_size)
    919			goto retry;
    920	}
    921out_unlock:
    922	if (gfs2_holder_queued(gh))
    923		gfs2_glock_dq(gh);
    924out_uninit:
    925	gfs2_holder_uninit(gh);
    926	/* User space doesn't expect partial success. */
    927	if (ret < 0)
    928		return ret;
    929	return written;
    930}
    931
    932static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
    933{
    934	struct gfs2_inode *ip;
    935	struct gfs2_holder gh;
    936	size_t prev_count = 0, window_size = 0;
    937	size_t read = 0;
    938	ssize_t ret;
    939
    940	/*
    941	 * In this function, we disable page faults when we're holding the
    942	 * inode glock while doing I/O.  If a page fault occurs, we indicate
    943	 * that the inode glock may be dropped, fault in the pages manually,
    944	 * and retry.
    945	 */
    946
    947	if (iocb->ki_flags & IOCB_DIRECT)
    948		return gfs2_file_direct_read(iocb, to, &gh);
    949
    950	pagefault_disable();
    951	iocb->ki_flags |= IOCB_NOIO;
    952	ret = generic_file_read_iter(iocb, to);
    953	iocb->ki_flags &= ~IOCB_NOIO;
    954	pagefault_enable();
    955	if (ret >= 0) {
    956		if (!iov_iter_count(to))
    957			return ret;
    958		read = ret;
    959	} else if (ret != -EFAULT) {
    960		if (ret != -EAGAIN)
    961			return ret;
    962		if (iocb->ki_flags & IOCB_NOWAIT)
    963			return ret;
    964	}
    965	ip = GFS2_I(iocb->ki_filp->f_mapping->host);
    966	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
    967retry:
    968	ret = gfs2_glock_nq(&gh);
    969	if (ret)
    970		goto out_uninit;
    971	pagefault_disable();
    972	ret = generic_file_read_iter(iocb, to);
    973	pagefault_enable();
    974	if (ret <= 0 && ret != -EFAULT)
    975		goto out_unlock;
    976	if (ret > 0)
    977		read += ret;
    978
    979	if (should_fault_in_pages(to, iocb, &prev_count, &window_size)) {
    980		gfs2_glock_dq(&gh);
    981		window_size -= fault_in_iov_iter_writeable(to, window_size);
    982		if (window_size)
    983			goto retry;
    984	}
    985out_unlock:
    986	if (gfs2_holder_queued(&gh))
    987		gfs2_glock_dq(&gh);
    988out_uninit:
    989	gfs2_holder_uninit(&gh);
    990	return read ? read : ret;
    991}
    992
    993static ssize_t gfs2_file_buffered_write(struct kiocb *iocb,
    994					struct iov_iter *from,
    995					struct gfs2_holder *gh)
    996{
    997	struct file *file = iocb->ki_filp;
    998	struct inode *inode = file_inode(file);
    999	struct gfs2_inode *ip = GFS2_I(inode);
   1000	struct gfs2_sbd *sdp = GFS2_SB(inode);
   1001	struct gfs2_holder *statfs_gh = NULL;
   1002	size_t prev_count = 0, window_size = 0;
   1003	size_t orig_count = iov_iter_count(from);
   1004	size_t written = 0;
   1005	ssize_t ret;
   1006
   1007	/*
   1008	 * In this function, we disable page faults when we're holding the
   1009	 * inode glock while doing I/O.  If a page fault occurs, we indicate
   1010	 * that the inode glock may be dropped, fault in the pages manually,
   1011	 * and retry.
   1012	 */
   1013
   1014	if (inode == sdp->sd_rindex) {
   1015		statfs_gh = kmalloc(sizeof(*statfs_gh), GFP_NOFS);
   1016		if (!statfs_gh)
   1017			return -ENOMEM;
   1018	}
   1019
   1020	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, gh);
   1021retry:
   1022	if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) {
   1023		window_size -= fault_in_iov_iter_readable(from, window_size);
   1024		if (!window_size) {
   1025			ret = -EFAULT;
   1026			goto out_uninit;
   1027		}
   1028		from->count = min(from->count, window_size);
   1029	}
   1030	ret = gfs2_glock_nq(gh);
   1031	if (ret)
   1032		goto out_uninit;
   1033
   1034	if (inode == sdp->sd_rindex) {
   1035		struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
   1036
   1037		ret = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
   1038					 GL_NOCACHE, statfs_gh);
   1039		if (ret)
   1040			goto out_unlock;
   1041	}
   1042
   1043	current->backing_dev_info = inode_to_bdi(inode);
   1044	pagefault_disable();
   1045	ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
   1046	pagefault_enable();
   1047	current->backing_dev_info = NULL;
   1048	if (ret > 0) {
   1049		iocb->ki_pos += ret;
   1050		written += ret;
   1051	}
   1052
   1053	if (inode == sdp->sd_rindex)
   1054		gfs2_glock_dq_uninit(statfs_gh);
   1055
   1056	if (ret <= 0 && ret != -EFAULT)
   1057		goto out_unlock;
   1058
   1059	from->count = orig_count - written;
   1060	if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) {
   1061		gfs2_glock_dq(gh);
   1062		goto retry;
   1063	}
   1064out_unlock:
   1065	if (gfs2_holder_queued(gh))
   1066		gfs2_glock_dq(gh);
   1067out_uninit:
   1068	gfs2_holder_uninit(gh);
   1069	if (statfs_gh)
   1070		kfree(statfs_gh);
   1071	from->count = orig_count - written;
   1072	return written ? written : ret;
   1073}
   1074
   1075/**
   1076 * gfs2_file_write_iter - Perform a write to a file
   1077 * @iocb: The io context
   1078 * @from: The data to write
   1079 *
   1080 * We have to do a lock/unlock here to refresh the inode size for
   1081 * O_APPEND writes, otherwise we can land up writing at the wrong
   1082 * offset. There is still a race, but provided the app is using its
   1083 * own file locking, this will make O_APPEND work as expected.
   1084 *
   1085 */
   1086
   1087static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
   1088{
   1089	struct file *file = iocb->ki_filp;
   1090	struct inode *inode = file_inode(file);
   1091	struct gfs2_inode *ip = GFS2_I(inode);
   1092	struct gfs2_holder gh;
   1093	ssize_t ret;
   1094
   1095	gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from));
   1096
   1097	if (iocb->ki_flags & IOCB_APPEND) {
   1098		ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
   1099		if (ret)
   1100			return ret;
   1101		gfs2_glock_dq_uninit(&gh);
   1102	}
   1103
   1104	inode_lock(inode);
   1105	ret = generic_write_checks(iocb, from);
   1106	if (ret <= 0)
   1107		goto out_unlock;
   1108
   1109	ret = file_remove_privs(file);
   1110	if (ret)
   1111		goto out_unlock;
   1112
   1113	ret = file_update_time(file);
   1114	if (ret)
   1115		goto out_unlock;
   1116
   1117	if (iocb->ki_flags & IOCB_DIRECT) {
   1118		struct address_space *mapping = file->f_mapping;
   1119		ssize_t buffered, ret2;
   1120
   1121		ret = gfs2_file_direct_write(iocb, from, &gh);
   1122		if (ret < 0 || !iov_iter_count(from))
   1123			goto out_unlock;
   1124
   1125		iocb->ki_flags |= IOCB_DSYNC;
   1126		buffered = gfs2_file_buffered_write(iocb, from, &gh);
   1127		if (unlikely(buffered <= 0)) {
   1128			if (!ret)
   1129				ret = buffered;
   1130			goto out_unlock;
   1131		}
   1132
   1133		/*
   1134		 * We need to ensure that the page cache pages are written to
   1135		 * disk and invalidated to preserve the expected O_DIRECT
   1136		 * semantics.  If the writeback or invalidate fails, only report
   1137		 * the direct I/O range as we don't know if the buffered pages
   1138		 * made it to disk.
   1139		 */
   1140		ret2 = generic_write_sync(iocb, buffered);
   1141		invalidate_mapping_pages(mapping,
   1142				(iocb->ki_pos - buffered) >> PAGE_SHIFT,
   1143				(iocb->ki_pos - 1) >> PAGE_SHIFT);
   1144		if (!ret || ret2 > 0)
   1145			ret += ret2;
   1146	} else {
   1147		ret = gfs2_file_buffered_write(iocb, from, &gh);
   1148		if (likely(ret > 0))
   1149			ret = generic_write_sync(iocb, ret);
   1150	}
   1151
   1152out_unlock:
   1153	inode_unlock(inode);
   1154	return ret;
   1155}
   1156
   1157static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len,
   1158			   int mode)
   1159{
   1160	struct super_block *sb = inode->i_sb;
   1161	struct gfs2_inode *ip = GFS2_I(inode);
   1162	loff_t end = offset + len;
   1163	struct buffer_head *dibh;
   1164	int error;
   1165
   1166	error = gfs2_meta_inode_buffer(ip, &dibh);
   1167	if (unlikely(error))
   1168		return error;
   1169
   1170	gfs2_trans_add_meta(ip->i_gl, dibh);
   1171
   1172	if (gfs2_is_stuffed(ip)) {
   1173		error = gfs2_unstuff_dinode(ip);
   1174		if (unlikely(error))
   1175			goto out;
   1176	}
   1177
   1178	while (offset < end) {
   1179		struct iomap iomap = { };
   1180
   1181		error = gfs2_iomap_alloc(inode, offset, end - offset, &iomap);
   1182		if (error)
   1183			goto out;
   1184		offset = iomap.offset + iomap.length;
   1185		if (!(iomap.flags & IOMAP_F_NEW))
   1186			continue;
   1187		error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits,
   1188					 iomap.length >> inode->i_blkbits,
   1189					 GFP_NOFS);
   1190		if (error) {
   1191			fs_err(GFS2_SB(inode), "Failed to zero data buffers\n");
   1192			goto out;
   1193		}
   1194	}
   1195out:
   1196	brelse(dibh);
   1197	return error;
   1198}
   1199
   1200/**
   1201 * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of
   1202 *                     blocks, determine how many bytes can be written.
   1203 * @ip:          The inode in question.
   1204 * @len:         Max cap of bytes. What we return in *len must be <= this.
   1205 * @data_blocks: Compute and return the number of data blocks needed
   1206 * @ind_blocks:  Compute and return the number of indirect blocks needed
   1207 * @max_blocks:  The total blocks available to work with.
   1208 *
   1209 * Returns: void, but @len, @data_blocks and @ind_blocks are filled in.
   1210 */
   1211static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len,
   1212			    unsigned int *data_blocks, unsigned int *ind_blocks,
   1213			    unsigned int max_blocks)
   1214{
   1215	loff_t max = *len;
   1216	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
   1217	unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1);
   1218
   1219	for (tmp = max_data; tmp > sdp->sd_diptrs;) {
   1220		tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs);
   1221		max_data -= tmp;
   1222	}
   1223
   1224	*data_blocks = max_data;
   1225	*ind_blocks = max_blocks - max_data;
   1226	*len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift;
   1227	if (*len > max) {
   1228		*len = max;
   1229		gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks);
   1230	}
   1231}
   1232
   1233static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
   1234{
   1235	struct inode *inode = file_inode(file);
   1236	struct gfs2_sbd *sdp = GFS2_SB(inode);
   1237	struct gfs2_inode *ip = GFS2_I(inode);
   1238	struct gfs2_alloc_parms ap = { .aflags = 0, };
   1239	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
   1240	loff_t bytes, max_bytes, max_blks;
   1241	int error;
   1242	const loff_t pos = offset;
   1243	const loff_t count = len;
   1244	loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1);
   1245	loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift;
   1246	loff_t max_chunk_size = UINT_MAX & bsize_mask;
   1247
   1248	next = (next + 1) << sdp->sd_sb.sb_bsize_shift;
   1249
   1250	offset &= bsize_mask;
   1251
   1252	len = next - offset;
   1253	bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2;
   1254	if (!bytes)
   1255		bytes = UINT_MAX;
   1256	bytes &= bsize_mask;
   1257	if (bytes == 0)
   1258		bytes = sdp->sd_sb.sb_bsize;
   1259
   1260	gfs2_size_hint(file, offset, len);
   1261
   1262	gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
   1263	ap.min_target = data_blocks + ind_blocks;
   1264
   1265	while (len > 0) {
   1266		if (len < bytes)
   1267			bytes = len;
   1268		if (!gfs2_write_alloc_required(ip, offset, bytes)) {
   1269			len -= bytes;
   1270			offset += bytes;
   1271			continue;
   1272		}
   1273
   1274		/* We need to determine how many bytes we can actually
   1275		 * fallocate without exceeding quota or going over the
   1276		 * end of the fs. We start off optimistically by assuming
   1277		 * we can write max_bytes */
   1278		max_bytes = (len > max_chunk_size) ? max_chunk_size : len;
   1279
   1280		/* Since max_bytes is most likely a theoretical max, we
   1281		 * calculate a more realistic 'bytes' to serve as a good
   1282		 * starting point for the number of bytes we may be able
   1283		 * to write */
   1284		gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks);
   1285		ap.target = data_blocks + ind_blocks;
   1286
   1287		error = gfs2_quota_lock_check(ip, &ap);
   1288		if (error)
   1289			return error;
   1290		/* ap.allowed tells us how many blocks quota will allow
   1291		 * us to write. Check if this reduces max_blks */
   1292		max_blks = UINT_MAX;
   1293		if (ap.allowed)
   1294			max_blks = ap.allowed;
   1295
   1296		error = gfs2_inplace_reserve(ip, &ap);
   1297		if (error)
   1298			goto out_qunlock;
   1299
   1300		/* check if the selected rgrp limits our max_blks further */
   1301		if (ip->i_res.rs_reserved < max_blks)
   1302			max_blks = ip->i_res.rs_reserved;
   1303
   1304		/* Almost done. Calculate bytes that can be written using
   1305		 * max_blks. We also recompute max_bytes, data_blocks and
   1306		 * ind_blocks */
   1307		calc_max_reserv(ip, &max_bytes, &data_blocks,
   1308				&ind_blocks, max_blks);
   1309
   1310		rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA +
   1311			  RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks);
   1312		if (gfs2_is_jdata(ip))
   1313			rblocks += data_blocks ? data_blocks : 1;
   1314
   1315		error = gfs2_trans_begin(sdp, rblocks,
   1316					 PAGE_SIZE >> inode->i_blkbits);
   1317		if (error)
   1318			goto out_trans_fail;
   1319
   1320		error = fallocate_chunk(inode, offset, max_bytes, mode);
   1321		gfs2_trans_end(sdp);
   1322
   1323		if (error)
   1324			goto out_trans_fail;
   1325
   1326		len -= max_bytes;
   1327		offset += max_bytes;
   1328		gfs2_inplace_release(ip);
   1329		gfs2_quota_unlock(ip);
   1330	}
   1331
   1332	if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size)
   1333		i_size_write(inode, pos + count);
   1334	file_update_time(file);
   1335	mark_inode_dirty(inode);
   1336
   1337	if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host))
   1338		return vfs_fsync_range(file, pos, pos + count - 1,
   1339			       (file->f_flags & __O_SYNC) ? 0 : 1);
   1340	return 0;
   1341
   1342out_trans_fail:
   1343	gfs2_inplace_release(ip);
   1344out_qunlock:
   1345	gfs2_quota_unlock(ip);
   1346	return error;
   1347}
   1348
   1349static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
   1350{
   1351	struct inode *inode = file_inode(file);
   1352	struct gfs2_sbd *sdp = GFS2_SB(inode);
   1353	struct gfs2_inode *ip = GFS2_I(inode);
   1354	struct gfs2_holder gh;
   1355	int ret;
   1356
   1357	if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE))
   1358		return -EOPNOTSUPP;
   1359	/* fallocate is needed by gfs2_grow to reserve space in the rindex */
   1360	if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex)
   1361		return -EOPNOTSUPP;
   1362
   1363	inode_lock(inode);
   1364
   1365	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
   1366	ret = gfs2_glock_nq(&gh);
   1367	if (ret)
   1368		goto out_uninit;
   1369
   1370	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
   1371	    (offset + len) > inode->i_size) {
   1372		ret = inode_newsize_ok(inode, offset + len);
   1373		if (ret)
   1374			goto out_unlock;
   1375	}
   1376
   1377	ret = get_write_access(inode);
   1378	if (ret)
   1379		goto out_unlock;
   1380
   1381	if (mode & FALLOC_FL_PUNCH_HOLE) {
   1382		ret = __gfs2_punch_hole(file, offset, len);
   1383	} else {
   1384		ret = __gfs2_fallocate(file, mode, offset, len);
   1385		if (ret)
   1386			gfs2_rs_deltree(&ip->i_res);
   1387	}
   1388
   1389	put_write_access(inode);
   1390out_unlock:
   1391	gfs2_glock_dq(&gh);
   1392out_uninit:
   1393	gfs2_holder_uninit(&gh);
   1394	inode_unlock(inode);
   1395	return ret;
   1396}
   1397
   1398static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe,
   1399				      struct file *out, loff_t *ppos,
   1400				      size_t len, unsigned int flags)
   1401{
   1402	ssize_t ret;
   1403
   1404	gfs2_size_hint(out, *ppos, len);
   1405
   1406	ret = iter_file_splice_write(pipe, out, ppos, len, flags);
   1407	return ret;
   1408}
   1409
   1410#ifdef CONFIG_GFS2_FS_LOCKING_DLM
   1411
   1412/**
   1413 * gfs2_lock - acquire/release a posix lock on a file
   1414 * @file: the file pointer
   1415 * @cmd: either modify or retrieve lock state, possibly wait
   1416 * @fl: type and range of lock
   1417 *
   1418 * Returns: errno
   1419 */
   1420
   1421static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl)
   1422{
   1423	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
   1424	struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
   1425	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
   1426
   1427	if (!(fl->fl_flags & FL_POSIX))
   1428		return -ENOLCK;
   1429	if (cmd == F_CANCELLK) {
   1430		/* Hack: */
   1431		cmd = F_SETLK;
   1432		fl->fl_type = F_UNLCK;
   1433	}
   1434	if (unlikely(gfs2_withdrawn(sdp))) {
   1435		if (fl->fl_type == F_UNLCK)
   1436			locks_lock_file_wait(file, fl);
   1437		return -EIO;
   1438	}
   1439	if (IS_GETLK(cmd))
   1440		return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl);
   1441	else if (fl->fl_type == F_UNLCK)
   1442		return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl);
   1443	else
   1444		return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl);
   1445}
   1446
   1447static int do_flock(struct file *file, int cmd, struct file_lock *fl)
   1448{
   1449	struct gfs2_file *fp = file->private_data;
   1450	struct gfs2_holder *fl_gh = &fp->f_fl_gh;
   1451	struct gfs2_inode *ip = GFS2_I(file_inode(file));
   1452	struct gfs2_glock *gl;
   1453	unsigned int state;
   1454	u16 flags;
   1455	int error = 0;
   1456	int sleeptime;
   1457
   1458	state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED;
   1459	flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY_1CB) | GL_EXACT;
   1460
   1461	mutex_lock(&fp->f_fl_mutex);
   1462
   1463	if (gfs2_holder_initialized(fl_gh)) {
   1464		struct file_lock request;
   1465		if (fl_gh->gh_state == state)
   1466			goto out;
   1467		locks_init_lock(&request);
   1468		request.fl_type = F_UNLCK;
   1469		request.fl_flags = FL_FLOCK;
   1470		locks_lock_file_wait(file, &request);
   1471		gfs2_glock_dq(fl_gh);
   1472		gfs2_holder_reinit(state, flags, fl_gh);
   1473	} else {
   1474		error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr,
   1475				       &gfs2_flock_glops, CREATE, &gl);
   1476		if (error)
   1477			goto out;
   1478		gfs2_holder_init(gl, state, flags, fl_gh);
   1479		gfs2_glock_put(gl);
   1480	}
   1481	for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) {
   1482		error = gfs2_glock_nq(fl_gh);
   1483		if (error != GLR_TRYFAILED)
   1484			break;
   1485		fl_gh->gh_flags = LM_FLAG_TRY | GL_EXACT;
   1486		msleep(sleeptime);
   1487	}
   1488	if (error) {
   1489		gfs2_holder_uninit(fl_gh);
   1490		if (error == GLR_TRYFAILED)
   1491			error = -EAGAIN;
   1492	} else {
   1493		error = locks_lock_file_wait(file, fl);
   1494		gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error);
   1495	}
   1496
   1497out:
   1498	mutex_unlock(&fp->f_fl_mutex);
   1499	return error;
   1500}
   1501
   1502static void do_unflock(struct file *file, struct file_lock *fl)
   1503{
   1504	struct gfs2_file *fp = file->private_data;
   1505	struct gfs2_holder *fl_gh = &fp->f_fl_gh;
   1506
   1507	mutex_lock(&fp->f_fl_mutex);
   1508	locks_lock_file_wait(file, fl);
   1509	if (gfs2_holder_initialized(fl_gh)) {
   1510		gfs2_glock_dq(fl_gh);
   1511		gfs2_holder_uninit(fl_gh);
   1512	}
   1513	mutex_unlock(&fp->f_fl_mutex);
   1514}
   1515
   1516/**
   1517 * gfs2_flock - acquire/release a flock lock on a file
   1518 * @file: the file pointer
   1519 * @cmd: either modify or retrieve lock state, possibly wait
   1520 * @fl: type and range of lock
   1521 *
   1522 * Returns: errno
   1523 */
   1524
   1525static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl)
   1526{
   1527	if (!(fl->fl_flags & FL_FLOCK))
   1528		return -ENOLCK;
   1529
   1530	if (fl->fl_type == F_UNLCK) {
   1531		do_unflock(file, fl);
   1532		return 0;
   1533	} else {
   1534		return do_flock(file, cmd, fl);
   1535	}
   1536}
   1537
   1538const struct file_operations gfs2_file_fops = {
   1539	.llseek		= gfs2_llseek,
   1540	.read_iter	= gfs2_file_read_iter,
   1541	.write_iter	= gfs2_file_write_iter,
   1542	.iopoll		= iocb_bio_iopoll,
   1543	.unlocked_ioctl	= gfs2_ioctl,
   1544	.compat_ioctl	= gfs2_compat_ioctl,
   1545	.mmap		= gfs2_mmap,
   1546	.open		= gfs2_open,
   1547	.release	= gfs2_release,
   1548	.fsync		= gfs2_fsync,
   1549	.lock		= gfs2_lock,
   1550	.flock		= gfs2_flock,
   1551	.splice_read	= generic_file_splice_read,
   1552	.splice_write	= gfs2_file_splice_write,
   1553	.setlease	= simple_nosetlease,
   1554	.fallocate	= gfs2_fallocate,
   1555};
   1556
   1557const struct file_operations gfs2_dir_fops = {
   1558	.iterate_shared	= gfs2_readdir,
   1559	.unlocked_ioctl	= gfs2_ioctl,
   1560	.compat_ioctl	= gfs2_compat_ioctl,
   1561	.open		= gfs2_open,
   1562	.release	= gfs2_release,
   1563	.fsync		= gfs2_fsync,
   1564	.lock		= gfs2_lock,
   1565	.flock		= gfs2_flock,
   1566	.llseek		= default_llseek,
   1567};
   1568
   1569#endif /* CONFIG_GFS2_FS_LOCKING_DLM */
   1570
   1571const struct file_operations gfs2_file_fops_nolock = {
   1572	.llseek		= gfs2_llseek,
   1573	.read_iter	= gfs2_file_read_iter,
   1574	.write_iter	= gfs2_file_write_iter,
   1575	.iopoll		= iocb_bio_iopoll,
   1576	.unlocked_ioctl	= gfs2_ioctl,
   1577	.compat_ioctl	= gfs2_compat_ioctl,
   1578	.mmap		= gfs2_mmap,
   1579	.open		= gfs2_open,
   1580	.release	= gfs2_release,
   1581	.fsync		= gfs2_fsync,
   1582	.splice_read	= generic_file_splice_read,
   1583	.splice_write	= gfs2_file_splice_write,
   1584	.setlease	= generic_setlease,
   1585	.fallocate	= gfs2_fallocate,
   1586};
   1587
   1588const struct file_operations gfs2_dir_fops_nolock = {
   1589	.iterate_shared	= gfs2_readdir,
   1590	.unlocked_ioctl	= gfs2_ioctl,
   1591	.compat_ioctl	= gfs2_compat_ioctl,
   1592	.open		= gfs2_open,
   1593	.release	= gfs2_release,
   1594	.fsync		= gfs2_fsync,
   1595	.llseek		= default_llseek,
   1596};
   1597