cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

lock_dlm.c (41639B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
      4 * Copyright 2004-2011 Red Hat, Inc.
      5 */
      6
      7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
      8
      9#include <linux/fs.h>
     10#include <linux/dlm.h>
     11#include <linux/slab.h>
     12#include <linux/types.h>
     13#include <linux/delay.h>
     14#include <linux/gfs2_ondisk.h>
     15#include <linux/sched/signal.h>
     16
     17#include "incore.h"
     18#include "glock.h"
     19#include "glops.h"
     20#include "recovery.h"
     21#include "util.h"
     22#include "sys.h"
     23#include "trace_gfs2.h"
     24
     25/**
     26 * gfs2_update_stats - Update time based stats
     27 * @s: The stats to update (local or global)
     28 * @index: The index inside @s
     29 * @sample: New data to include
     30 */
     31static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
     32				     s64 sample)
     33{
     34	/*
     35	 * @delta is the difference between the current rtt sample and the
     36	 * running average srtt. We add 1/8 of that to the srtt in order to
     37	 * update the current srtt estimate. The variance estimate is a bit
     38	 * more complicated. We subtract the current variance estimate from
     39	 * the abs value of the @delta and add 1/4 of that to the running
     40	 * total.  That's equivalent to 3/4 of the current variance
     41	 * estimate plus 1/4 of the abs of @delta.
     42	 *
     43	 * Note that the index points at the array entry containing the
     44	 * smoothed mean value, and the variance is always in the following
     45	 * entry
     46	 *
     47	 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
     48	 * All times are in units of integer nanoseconds. Unlike the TCP/IP
     49	 * case, they are not scaled fixed point.
     50	 */
     51
     52	s64 delta = sample - s->stats[index];
     53	s->stats[index] += (delta >> 3);
     54	index++;
     55	s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2;
     56}
     57
     58/**
     59 * gfs2_update_reply_times - Update locking statistics
     60 * @gl: The glock to update
     61 *
     62 * This assumes that gl->gl_dstamp has been set earlier.
     63 *
     64 * The rtt (lock round trip time) is an estimate of the time
     65 * taken to perform a dlm lock request. We update it on each
     66 * reply from the dlm.
     67 *
     68 * The blocking flag is set on the glock for all dlm requests
     69 * which may potentially block due to lock requests from other nodes.
     70 * DLM requests where the current lock state is exclusive, the
     71 * requested state is null (or unlocked) or where the TRY or
     72 * TRY_1CB flags are set are classified as non-blocking. All
     73 * other DLM requests are counted as (potentially) blocking.
     74 */
     75static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
     76{
     77	struct gfs2_pcpu_lkstats *lks;
     78	const unsigned gltype = gl->gl_name.ln_type;
     79	unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
     80			 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
     81	s64 rtt;
     82
     83	preempt_disable();
     84	rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
     85	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
     86	gfs2_update_stats(&gl->gl_stats, index, rtt);		/* Local */
     87	gfs2_update_stats(&lks->lkstats[gltype], index, rtt);	/* Global */
     88	preempt_enable();
     89
     90	trace_gfs2_glock_lock_time(gl, rtt);
     91}
     92
     93/**
     94 * gfs2_update_request_times - Update locking statistics
     95 * @gl: The glock to update
     96 *
     97 * The irt (lock inter-request times) measures the average time
     98 * between requests to the dlm. It is updated immediately before
     99 * each dlm call.
    100 */
    101
    102static inline void gfs2_update_request_times(struct gfs2_glock *gl)
    103{
    104	struct gfs2_pcpu_lkstats *lks;
    105	const unsigned gltype = gl->gl_name.ln_type;
    106	ktime_t dstamp;
    107	s64 irt;
    108
    109	preempt_disable();
    110	dstamp = gl->gl_dstamp;
    111	gl->gl_dstamp = ktime_get_real();
    112	irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
    113	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
    114	gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt);		/* Local */
    115	gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt);	/* Global */
    116	preempt_enable();
    117}
    118 
    119static void gdlm_ast(void *arg)
    120{
    121	struct gfs2_glock *gl = arg;
    122	unsigned ret = gl->gl_state;
    123
    124	gfs2_update_reply_times(gl);
    125	BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
    126
    127	if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
    128		memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
    129
    130	switch (gl->gl_lksb.sb_status) {
    131	case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
    132		if (gl->gl_ops->go_free)
    133			gl->gl_ops->go_free(gl);
    134		gfs2_glock_free(gl);
    135		return;
    136	case -DLM_ECANCEL: /* Cancel while getting lock */
    137		ret |= LM_OUT_CANCELED;
    138		goto out;
    139	case -EAGAIN: /* Try lock fails */
    140	case -EDEADLK: /* Deadlock detected */
    141		goto out;
    142	case -ETIMEDOUT: /* Canceled due to timeout */
    143		ret |= LM_OUT_ERROR;
    144		goto out;
    145	case 0: /* Success */
    146		break;
    147	default: /* Something unexpected */
    148		BUG();
    149	}
    150
    151	ret = gl->gl_req;
    152	if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
    153		if (gl->gl_req == LM_ST_SHARED)
    154			ret = LM_ST_DEFERRED;
    155		else if (gl->gl_req == LM_ST_DEFERRED)
    156			ret = LM_ST_SHARED;
    157		else
    158			BUG();
    159	}
    160
    161	set_bit(GLF_INITIAL, &gl->gl_flags);
    162	gfs2_glock_complete(gl, ret);
    163	return;
    164out:
    165	if (!test_bit(GLF_INITIAL, &gl->gl_flags))
    166		gl->gl_lksb.sb_lkid = 0;
    167	gfs2_glock_complete(gl, ret);
    168}
    169
    170static void gdlm_bast(void *arg, int mode)
    171{
    172	struct gfs2_glock *gl = arg;
    173
    174	switch (mode) {
    175	case DLM_LOCK_EX:
    176		gfs2_glock_cb(gl, LM_ST_UNLOCKED);
    177		break;
    178	case DLM_LOCK_CW:
    179		gfs2_glock_cb(gl, LM_ST_DEFERRED);
    180		break;
    181	case DLM_LOCK_PR:
    182		gfs2_glock_cb(gl, LM_ST_SHARED);
    183		break;
    184	default:
    185		fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode);
    186		BUG();
    187	}
    188}
    189
    190/* convert gfs lock-state to dlm lock-mode */
    191
    192static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate)
    193{
    194	switch (lmstate) {
    195	case LM_ST_UNLOCKED:
    196		return DLM_LOCK_NL;
    197	case LM_ST_EXCLUSIVE:
    198		return DLM_LOCK_EX;
    199	case LM_ST_DEFERRED:
    200		return DLM_LOCK_CW;
    201	case LM_ST_SHARED:
    202		return DLM_LOCK_PR;
    203	}
    204	fs_err(sdp, "unknown LM state %d\n", lmstate);
    205	BUG();
    206	return -1;
    207}
    208
    209static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
    210		      const int req)
    211{
    212	u32 lkf = 0;
    213
    214	if (gl->gl_lksb.sb_lvbptr)
    215		lkf |= DLM_LKF_VALBLK;
    216
    217	if (gfs_flags & LM_FLAG_TRY)
    218		lkf |= DLM_LKF_NOQUEUE;
    219
    220	if (gfs_flags & LM_FLAG_TRY_1CB) {
    221		lkf |= DLM_LKF_NOQUEUE;
    222		lkf |= DLM_LKF_NOQUEUEBAST;
    223	}
    224
    225	if (gfs_flags & LM_FLAG_PRIORITY) {
    226		lkf |= DLM_LKF_NOORDER;
    227		lkf |= DLM_LKF_HEADQUE;
    228	}
    229
    230	if (gfs_flags & LM_FLAG_ANY) {
    231		if (req == DLM_LOCK_PR)
    232			lkf |= DLM_LKF_ALTCW;
    233		else if (req == DLM_LOCK_CW)
    234			lkf |= DLM_LKF_ALTPR;
    235		else
    236			BUG();
    237	}
    238
    239	if (gl->gl_lksb.sb_lkid != 0) {
    240		lkf |= DLM_LKF_CONVERT;
    241		if (test_bit(GLF_BLOCKING, &gl->gl_flags))
    242			lkf |= DLM_LKF_QUECVT;
    243	}
    244
    245	return lkf;
    246}
    247
    248static void gfs2_reverse_hex(char *c, u64 value)
    249{
    250	*c = '0';
    251	while (value) {
    252		*c-- = hex_asc[value & 0x0f];
    253		value >>= 4;
    254	}
    255}
    256
    257static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
    258		     unsigned int flags)
    259{
    260	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
    261	int req;
    262	u32 lkf;
    263	char strname[GDLM_STRNAME_BYTES] = "";
    264	int error;
    265
    266	req = make_mode(gl->gl_name.ln_sbd, req_state);
    267	lkf = make_flags(gl, flags, req);
    268	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
    269	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
    270	if (gl->gl_lksb.sb_lkid) {
    271		gfs2_update_request_times(gl);
    272	} else {
    273		memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
    274		strname[GDLM_STRNAME_BYTES - 1] = '\0';
    275		gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
    276		gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
    277		gl->gl_dstamp = ktime_get_real();
    278	}
    279	/*
    280	 * Submit the actual lock request.
    281	 */
    282
    283again:
    284	error = dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
    285			GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
    286	if (error == -EBUSY) {
    287		msleep(20);
    288		goto again;
    289	}
    290	return error;
    291}
    292
    293static void gdlm_put_lock(struct gfs2_glock *gl)
    294{
    295	struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
    296	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
    297	int error;
    298
    299	if (gl->gl_lksb.sb_lkid == 0) {
    300		gfs2_glock_free(gl);
    301		return;
    302	}
    303
    304	clear_bit(GLF_BLOCKING, &gl->gl_flags);
    305	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
    306	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
    307	gfs2_update_request_times(gl);
    308
    309	/* don't want to call dlm if we've unmounted the lock protocol */
    310	if (test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) {
    311		gfs2_glock_free(gl);
    312		return;
    313	}
    314	/* don't want to skip dlm_unlock writing the lvb when lock has one */
    315
    316	if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
    317	    !gl->gl_lksb.sb_lvbptr) {
    318		gfs2_glock_free(gl);
    319		return;
    320	}
    321
    322again:
    323	error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
    324			   NULL, gl);
    325	if (error == -EBUSY) {
    326		msleep(20);
    327		goto again;
    328	}
    329
    330	if (error) {
    331		fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n",
    332		       gl->gl_name.ln_type,
    333		       (unsigned long long)gl->gl_name.ln_number, error);
    334		return;
    335	}
    336}
    337
    338static void gdlm_cancel(struct gfs2_glock *gl)
    339{
    340	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
    341	dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
    342}
    343
    344/*
    345 * dlm/gfs2 recovery coordination using dlm_recover callbacks
    346 *
    347 *  0. gfs2 checks for another cluster node withdraw, needing journal replay
    348 *  1. dlm_controld sees lockspace members change
    349 *  2. dlm_controld blocks dlm-kernel locking activity
    350 *  3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
    351 *  4. dlm_controld starts and finishes its own user level recovery
    352 *  5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
    353 *  6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
    354 *  7. dlm_recoverd does its own lock recovery
    355 *  8. dlm_recoverd unblocks dlm-kernel locking activity
    356 *  9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
    357 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
    358 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
    359 * 12. gfs2_recover dequeues and recovers journals of failed nodes
    360 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
    361 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
    362 * 15. gfs2_control unblocks normal locking when all journals are recovered
    363 *
    364 * - failures during recovery
    365 *
    366 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
    367 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
    368 * recovering for a prior failure.  gfs2_control needs a way to detect
    369 * this so it can leave BLOCK_LOCKS set in step 15.  This is managed using
    370 * the recover_block and recover_start values.
    371 *
    372 * recover_done() provides a new lockspace generation number each time it
    373 * is called (step 9).  This generation number is saved as recover_start.
    374 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
    375 * recover_block = recover_start.  So, while recover_block is equal to
    376 * recover_start, BLOCK_LOCKS should remain set.  (recover_spin must
    377 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
    378 *
    379 * - more specific gfs2 steps in sequence above
    380 *
    381 *  3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
    382 *  6. recover_slot records any failed jids (maybe none)
    383 *  9. recover_done sets recover_start = new generation number
    384 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
    385 * 12. gfs2_recover does journal recoveries for failed jids identified above
    386 * 14. gfs2_control clears control_lock lvb bits for recovered jids
    387 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
    388 *     again) then do nothing, otherwise if recover_start > recover_block
    389 *     then clear BLOCK_LOCKS.
    390 *
    391 * - parallel recovery steps across all nodes
    392 *
    393 * All nodes attempt to update the control_lock lvb with the new generation
    394 * number and jid bits, but only the first to get the control_lock EX will
    395 * do so; others will see that it's already done (lvb already contains new
    396 * generation number.)
    397 *
    398 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
    399 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
    400 * . One node gets control_lock first and writes the lvb, others see it's done
    401 * . All nodes attempt to recover jids for which they see control_lock bits set
    402 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
    403 * . All nodes will eventually see all lvb bits clear and unblock locks
    404 *
    405 * - is there a problem with clearing an lvb bit that should be set
    406 *   and missing a journal recovery?
    407 *
    408 * 1. jid fails
    409 * 2. lvb bit set for step 1
    410 * 3. jid recovered for step 1
    411 * 4. jid taken again (new mount)
    412 * 5. jid fails (for step 4)
    413 * 6. lvb bit set for step 5 (will already be set)
    414 * 7. lvb bit cleared for step 3
    415 *
    416 * This is not a problem because the failure in step 5 does not
    417 * require recovery, because the mount in step 4 could not have
    418 * progressed far enough to unblock locks and access the fs.  The
    419 * control_mount() function waits for all recoveries to be complete
    420 * for the latest lockspace generation before ever unblocking locks
    421 * and returning.  The mount in step 4 waits until the recovery in
    422 * step 1 is done.
    423 *
    424 * - special case of first mounter: first node to mount the fs
    425 *
    426 * The first node to mount a gfs2 fs needs to check all the journals
    427 * and recover any that need recovery before other nodes are allowed
    428 * to mount the fs.  (Others may begin mounting, but they must wait
    429 * for the first mounter to be done before taking locks on the fs
    430 * or accessing the fs.)  This has two parts:
    431 *
    432 * 1. The mounted_lock tells a node it's the first to mount the fs.
    433 * Each node holds the mounted_lock in PR while it's mounted.
    434 * Each node tries to acquire the mounted_lock in EX when it mounts.
    435 * If a node is granted the mounted_lock EX it means there are no
    436 * other mounted nodes (no PR locks exist), and it is the first mounter.
    437 * The mounted_lock is demoted to PR when first recovery is done, so
    438 * others will fail to get an EX lock, but will get a PR lock.
    439 *
    440 * 2. The control_lock blocks others in control_mount() while the first
    441 * mounter is doing first mount recovery of all journals.
    442 * A mounting node needs to acquire control_lock in EX mode before
    443 * it can proceed.  The first mounter holds control_lock in EX while doing
    444 * the first mount recovery, blocking mounts from other nodes, then demotes
    445 * control_lock to NL when it's done (others_may_mount/first_done),
    446 * allowing other nodes to continue mounting.
    447 *
    448 * first mounter:
    449 * control_lock EX/NOQUEUE success
    450 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
    451 * set first=1
    452 * do first mounter recovery
    453 * mounted_lock EX->PR
    454 * control_lock EX->NL, write lvb generation
    455 *
    456 * other mounter:
    457 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
    458 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
    459 * mounted_lock PR/NOQUEUE success
    460 * read lvb generation
    461 * control_lock EX->NL
    462 * set first=0
    463 *
    464 * - mount during recovery
    465 *
    466 * If a node mounts while others are doing recovery (not first mounter),
    467 * the mounting node will get its initial recover_done() callback without
    468 * having seen any previous failures/callbacks.
    469 *
    470 * It must wait for all recoveries preceding its mount to be finished
    471 * before it unblocks locks.  It does this by repeating the "other mounter"
    472 * steps above until the lvb generation number is >= its mount generation
    473 * number (from initial recover_done) and all lvb bits are clear.
    474 *
    475 * - control_lock lvb format
    476 *
    477 * 4 bytes generation number: the latest dlm lockspace generation number
    478 * from recover_done callback.  Indicates the jid bitmap has been updated
    479 * to reflect all slot failures through that generation.
    480 * 4 bytes unused.
    481 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
    482 * that jid N needs recovery.
    483 */
    484
    485#define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
    486
    487static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
    488			     char *lvb_bits)
    489{
    490	__le32 gen;
    491	memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
    492	memcpy(&gen, lvb_bits, sizeof(__le32));
    493	*lvb_gen = le32_to_cpu(gen);
    494}
    495
    496static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
    497			      char *lvb_bits)
    498{
    499	__le32 gen;
    500	memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
    501	gen = cpu_to_le32(lvb_gen);
    502	memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
    503}
    504
    505static int all_jid_bits_clear(char *lvb)
    506{
    507	return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
    508			GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
    509}
    510
    511static void sync_wait_cb(void *arg)
    512{
    513	struct lm_lockstruct *ls = arg;
    514	complete(&ls->ls_sync_wait);
    515}
    516
    517static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
    518{
    519	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
    520	int error;
    521
    522	error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
    523	if (error) {
    524		fs_err(sdp, "%s lkid %x error %d\n",
    525		       name, lksb->sb_lkid, error);
    526		return error;
    527	}
    528
    529	wait_for_completion(&ls->ls_sync_wait);
    530
    531	if (lksb->sb_status != -DLM_EUNLOCK) {
    532		fs_err(sdp, "%s lkid %x status %d\n",
    533		       name, lksb->sb_lkid, lksb->sb_status);
    534		return -1;
    535	}
    536	return 0;
    537}
    538
    539static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
    540		     unsigned int num, struct dlm_lksb *lksb, char *name)
    541{
    542	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
    543	char strname[GDLM_STRNAME_BYTES];
    544	int error, status;
    545
    546	memset(strname, 0, GDLM_STRNAME_BYTES);
    547	snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
    548
    549	error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
    550			 strname, GDLM_STRNAME_BYTES - 1,
    551			 0, sync_wait_cb, ls, NULL);
    552	if (error) {
    553		fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
    554		       name, lksb->sb_lkid, flags, mode, error);
    555		return error;
    556	}
    557
    558	wait_for_completion(&ls->ls_sync_wait);
    559
    560	status = lksb->sb_status;
    561
    562	if (status && status != -EAGAIN) {
    563		fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
    564		       name, lksb->sb_lkid, flags, mode, status);
    565	}
    566
    567	return status;
    568}
    569
    570static int mounted_unlock(struct gfs2_sbd *sdp)
    571{
    572	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
    573	return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
    574}
    575
    576static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
    577{
    578	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
    579	return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
    580			 &ls->ls_mounted_lksb, "mounted_lock");
    581}
    582
    583static int control_unlock(struct gfs2_sbd *sdp)
    584{
    585	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
    586	return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
    587}
    588
    589static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
    590{
    591	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
    592	return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
    593			 &ls->ls_control_lksb, "control_lock");
    594}
    595
    596/**
    597 * remote_withdraw - react to a node withdrawing from the file system
    598 * @sdp: The superblock
    599 */
    600static void remote_withdraw(struct gfs2_sbd *sdp)
    601{
    602	struct gfs2_jdesc *jd;
    603	int ret = 0, count = 0;
    604
    605	list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) {
    606		if (jd->jd_jid == sdp->sd_lockstruct.ls_jid)
    607			continue;
    608		ret = gfs2_recover_journal(jd, true);
    609		if (ret)
    610			break;
    611		count++;
    612	}
    613
    614	/* Now drop the additional reference we acquired */
    615	fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret);
    616}
    617
    618static void gfs2_control_func(struct work_struct *work)
    619{
    620	struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
    621	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
    622	uint32_t block_gen, start_gen, lvb_gen, flags;
    623	int recover_set = 0;
    624	int write_lvb = 0;
    625	int recover_size;
    626	int i, error;
    627
    628	/* First check for other nodes that may have done a withdraw. */
    629	if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) {
    630		remote_withdraw(sdp);
    631		clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags);
    632		return;
    633	}
    634
    635	spin_lock(&ls->ls_recover_spin);
    636	/*
    637	 * No MOUNT_DONE means we're still mounting; control_mount()
    638	 * will set this flag, after which this thread will take over
    639	 * all further clearing of BLOCK_LOCKS.
    640	 *
    641	 * FIRST_MOUNT means this node is doing first mounter recovery,
    642	 * for which recovery control is handled by
    643	 * control_mount()/control_first_done(), not this thread.
    644	 */
    645	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
    646	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
    647		spin_unlock(&ls->ls_recover_spin);
    648		return;
    649	}
    650	block_gen = ls->ls_recover_block;
    651	start_gen = ls->ls_recover_start;
    652	spin_unlock(&ls->ls_recover_spin);
    653
    654	/*
    655	 * Equal block_gen and start_gen implies we are between
    656	 * recover_prep and recover_done callbacks, which means
    657	 * dlm recovery is in progress and dlm locking is blocked.
    658	 * There's no point trying to do any work until recover_done.
    659	 */
    660
    661	if (block_gen == start_gen)
    662		return;
    663
    664	/*
    665	 * Propagate recover_submit[] and recover_result[] to lvb:
    666	 * dlm_recoverd adds to recover_submit[] jids needing recovery
    667	 * gfs2_recover adds to recover_result[] journal recovery results
    668	 *
    669	 * set lvb bit for jids in recover_submit[] if the lvb has not
    670	 * yet been updated for the generation of the failure
    671	 *
    672	 * clear lvb bit for jids in recover_result[] if the result of
    673	 * the journal recovery is SUCCESS
    674	 */
    675
    676	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
    677	if (error) {
    678		fs_err(sdp, "control lock EX error %d\n", error);
    679		return;
    680	}
    681
    682	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
    683
    684	spin_lock(&ls->ls_recover_spin);
    685	if (block_gen != ls->ls_recover_block ||
    686	    start_gen != ls->ls_recover_start) {
    687		fs_info(sdp, "recover generation %u block1 %u %u\n",
    688			start_gen, block_gen, ls->ls_recover_block);
    689		spin_unlock(&ls->ls_recover_spin);
    690		control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
    691		return;
    692	}
    693
    694	recover_size = ls->ls_recover_size;
    695
    696	if (lvb_gen <= start_gen) {
    697		/*
    698		 * Clear lvb bits for jids we've successfully recovered.
    699		 * Because all nodes attempt to recover failed journals,
    700		 * a journal can be recovered multiple times successfully
    701		 * in succession.  Only the first will really do recovery,
    702		 * the others find it clean, but still report a successful
    703		 * recovery.  So, another node may have already recovered
    704		 * the jid and cleared the lvb bit for it.
    705		 */
    706		for (i = 0; i < recover_size; i++) {
    707			if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
    708				continue;
    709
    710			ls->ls_recover_result[i] = 0;
    711
    712			if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
    713				continue;
    714
    715			__clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
    716			write_lvb = 1;
    717		}
    718	}
    719
    720	if (lvb_gen == start_gen) {
    721		/*
    722		 * Failed slots before start_gen are already set in lvb.
    723		 */
    724		for (i = 0; i < recover_size; i++) {
    725			if (!ls->ls_recover_submit[i])
    726				continue;
    727			if (ls->ls_recover_submit[i] < lvb_gen)
    728				ls->ls_recover_submit[i] = 0;
    729		}
    730	} else if (lvb_gen < start_gen) {
    731		/*
    732		 * Failed slots before start_gen are not yet set in lvb.
    733		 */
    734		for (i = 0; i < recover_size; i++) {
    735			if (!ls->ls_recover_submit[i])
    736				continue;
    737			if (ls->ls_recover_submit[i] < start_gen) {
    738				ls->ls_recover_submit[i] = 0;
    739				__set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
    740			}
    741		}
    742		/* even if there are no bits to set, we need to write the
    743		   latest generation to the lvb */
    744		write_lvb = 1;
    745	} else {
    746		/*
    747		 * we should be getting a recover_done() for lvb_gen soon
    748		 */
    749	}
    750	spin_unlock(&ls->ls_recover_spin);
    751
    752	if (write_lvb) {
    753		control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
    754		flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
    755	} else {
    756		flags = DLM_LKF_CONVERT;
    757	}
    758
    759	error = control_lock(sdp, DLM_LOCK_NL, flags);
    760	if (error) {
    761		fs_err(sdp, "control lock NL error %d\n", error);
    762		return;
    763	}
    764
    765	/*
    766	 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
    767	 * and clear a jid bit in the lvb if the recovery is a success.
    768	 * Eventually all journals will be recovered, all jid bits will
    769	 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
    770	 */
    771
    772	for (i = 0; i < recover_size; i++) {
    773		if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
    774			fs_info(sdp, "recover generation %u jid %d\n",
    775				start_gen, i);
    776			gfs2_recover_set(sdp, i);
    777			recover_set++;
    778		}
    779	}
    780	if (recover_set)
    781		return;
    782
    783	/*
    784	 * No more jid bits set in lvb, all recovery is done, unblock locks
    785	 * (unless a new recover_prep callback has occured blocking locks
    786	 * again while working above)
    787	 */
    788
    789	spin_lock(&ls->ls_recover_spin);
    790	if (ls->ls_recover_block == block_gen &&
    791	    ls->ls_recover_start == start_gen) {
    792		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
    793		spin_unlock(&ls->ls_recover_spin);
    794		fs_info(sdp, "recover generation %u done\n", start_gen);
    795		gfs2_glock_thaw(sdp);
    796	} else {
    797		fs_info(sdp, "recover generation %u block2 %u %u\n",
    798			start_gen, block_gen, ls->ls_recover_block);
    799		spin_unlock(&ls->ls_recover_spin);
    800	}
    801}
    802
    803static int control_mount(struct gfs2_sbd *sdp)
    804{
    805	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
    806	uint32_t start_gen, block_gen, mount_gen, lvb_gen;
    807	int mounted_mode;
    808	int retries = 0;
    809	int error;
    810
    811	memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
    812	memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
    813	memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
    814	ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
    815	init_completion(&ls->ls_sync_wait);
    816
    817	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
    818
    819	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
    820	if (error) {
    821		fs_err(sdp, "control_mount control_lock NL error %d\n", error);
    822		return error;
    823	}
    824
    825	error = mounted_lock(sdp, DLM_LOCK_NL, 0);
    826	if (error) {
    827		fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
    828		control_unlock(sdp);
    829		return error;
    830	}
    831	mounted_mode = DLM_LOCK_NL;
    832
    833restart:
    834	if (retries++ && signal_pending(current)) {
    835		error = -EINTR;
    836		goto fail;
    837	}
    838
    839	/*
    840	 * We always start with both locks in NL. control_lock is
    841	 * demoted to NL below so we don't need to do it here.
    842	 */
    843
    844	if (mounted_mode != DLM_LOCK_NL) {
    845		error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
    846		if (error)
    847			goto fail;
    848		mounted_mode = DLM_LOCK_NL;
    849	}
    850
    851	/*
    852	 * Other nodes need to do some work in dlm recovery and gfs2_control
    853	 * before the recover_done and control_lock will be ready for us below.
    854	 * A delay here is not required but often avoids having to retry.
    855	 */
    856
    857	msleep_interruptible(500);
    858
    859	/*
    860	 * Acquire control_lock in EX and mounted_lock in either EX or PR.
    861	 * control_lock lvb keeps track of any pending journal recoveries.
    862	 * mounted_lock indicates if any other nodes have the fs mounted.
    863	 */
    864
    865	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
    866	if (error == -EAGAIN) {
    867		goto restart;
    868	} else if (error) {
    869		fs_err(sdp, "control_mount control_lock EX error %d\n", error);
    870		goto fail;
    871	}
    872
    873	/**
    874	 * If we're a spectator, we don't want to take the lock in EX because
    875	 * we cannot do the first-mount responsibility it implies: recovery.
    876	 */
    877	if (sdp->sd_args.ar_spectator)
    878		goto locks_done;
    879
    880	error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
    881	if (!error) {
    882		mounted_mode = DLM_LOCK_EX;
    883		goto locks_done;
    884	} else if (error != -EAGAIN) {
    885		fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
    886		goto fail;
    887	}
    888
    889	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
    890	if (!error) {
    891		mounted_mode = DLM_LOCK_PR;
    892		goto locks_done;
    893	} else {
    894		/* not even -EAGAIN should happen here */
    895		fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
    896		goto fail;
    897	}
    898
    899locks_done:
    900	/*
    901	 * If we got both locks above in EX, then we're the first mounter.
    902	 * If not, then we need to wait for the control_lock lvb to be
    903	 * updated by other mounted nodes to reflect our mount generation.
    904	 *
    905	 * In simple first mounter cases, first mounter will see zero lvb_gen,
    906	 * but in cases where all existing nodes leave/fail before mounting
    907	 * nodes finish control_mount, then all nodes will be mounting and
    908	 * lvb_gen will be non-zero.
    909	 */
    910
    911	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
    912
    913	if (lvb_gen == 0xFFFFFFFF) {
    914		/* special value to force mount attempts to fail */
    915		fs_err(sdp, "control_mount control_lock disabled\n");
    916		error = -EINVAL;
    917		goto fail;
    918	}
    919
    920	if (mounted_mode == DLM_LOCK_EX) {
    921		/* first mounter, keep both EX while doing first recovery */
    922		spin_lock(&ls->ls_recover_spin);
    923		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
    924		set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
    925		set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
    926		spin_unlock(&ls->ls_recover_spin);
    927		fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
    928		return 0;
    929	}
    930
    931	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
    932	if (error)
    933		goto fail;
    934
    935	/*
    936	 * We are not first mounter, now we need to wait for the control_lock
    937	 * lvb generation to be >= the generation from our first recover_done
    938	 * and all lvb bits to be clear (no pending journal recoveries.)
    939	 */
    940
    941	if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
    942		/* journals need recovery, wait until all are clear */
    943		fs_info(sdp, "control_mount wait for journal recovery\n");
    944		goto restart;
    945	}
    946
    947	spin_lock(&ls->ls_recover_spin);
    948	block_gen = ls->ls_recover_block;
    949	start_gen = ls->ls_recover_start;
    950	mount_gen = ls->ls_recover_mount;
    951
    952	if (lvb_gen < mount_gen) {
    953		/* wait for mounted nodes to update control_lock lvb to our
    954		   generation, which might include new recovery bits set */
    955		if (sdp->sd_args.ar_spectator) {
    956			fs_info(sdp, "Recovery is required. Waiting for a "
    957				"non-spectator to mount.\n");
    958			msleep_interruptible(1000);
    959		} else {
    960			fs_info(sdp, "control_mount wait1 block %u start %u "
    961				"mount %u lvb %u flags %lx\n", block_gen,
    962				start_gen, mount_gen, lvb_gen,
    963				ls->ls_recover_flags);
    964		}
    965		spin_unlock(&ls->ls_recover_spin);
    966		goto restart;
    967	}
    968
    969	if (lvb_gen != start_gen) {
    970		/* wait for mounted nodes to update control_lock lvb to the
    971		   latest recovery generation */
    972		fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
    973			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
    974			lvb_gen, ls->ls_recover_flags);
    975		spin_unlock(&ls->ls_recover_spin);
    976		goto restart;
    977	}
    978
    979	if (block_gen == start_gen) {
    980		/* dlm recovery in progress, wait for it to finish */
    981		fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
    982			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
    983			lvb_gen, ls->ls_recover_flags);
    984		spin_unlock(&ls->ls_recover_spin);
    985		goto restart;
    986	}
    987
    988	clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
    989	set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
    990	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
    991	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
    992	spin_unlock(&ls->ls_recover_spin);
    993	return 0;
    994
    995fail:
    996	mounted_unlock(sdp);
    997	control_unlock(sdp);
    998	return error;
    999}
   1000
   1001static int control_first_done(struct gfs2_sbd *sdp)
   1002{
   1003	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
   1004	uint32_t start_gen, block_gen;
   1005	int error;
   1006
   1007restart:
   1008	spin_lock(&ls->ls_recover_spin);
   1009	start_gen = ls->ls_recover_start;
   1010	block_gen = ls->ls_recover_block;
   1011
   1012	if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
   1013	    !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
   1014	    !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
   1015		/* sanity check, should not happen */
   1016		fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
   1017		       start_gen, block_gen, ls->ls_recover_flags);
   1018		spin_unlock(&ls->ls_recover_spin);
   1019		control_unlock(sdp);
   1020		return -1;
   1021	}
   1022
   1023	if (start_gen == block_gen) {
   1024		/*
   1025		 * Wait for the end of a dlm recovery cycle to switch from
   1026		 * first mounter recovery.  We can ignore any recover_slot
   1027		 * callbacks between the recover_prep and next recover_done
   1028		 * because we are still the first mounter and any failed nodes
   1029		 * have not fully mounted, so they don't need recovery.
   1030		 */
   1031		spin_unlock(&ls->ls_recover_spin);
   1032		fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
   1033
   1034		wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
   1035			    TASK_UNINTERRUPTIBLE);
   1036		goto restart;
   1037	}
   1038
   1039	clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
   1040	set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
   1041	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
   1042	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
   1043	spin_unlock(&ls->ls_recover_spin);
   1044
   1045	memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
   1046	control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
   1047
   1048	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
   1049	if (error)
   1050		fs_err(sdp, "control_first_done mounted PR error %d\n", error);
   1051
   1052	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
   1053	if (error)
   1054		fs_err(sdp, "control_first_done control NL error %d\n", error);
   1055
   1056	return error;
   1057}
   1058
   1059/*
   1060 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
   1061 * to accomodate the largest slot number.  (NB dlm slot numbers start at 1,
   1062 * gfs2 jids start at 0, so jid = slot - 1)
   1063 */
   1064
   1065#define RECOVER_SIZE_INC 16
   1066
   1067static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
   1068			    int num_slots)
   1069{
   1070	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
   1071	uint32_t *submit = NULL;
   1072	uint32_t *result = NULL;
   1073	uint32_t old_size, new_size;
   1074	int i, max_jid;
   1075
   1076	if (!ls->ls_lvb_bits) {
   1077		ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
   1078		if (!ls->ls_lvb_bits)
   1079			return -ENOMEM;
   1080	}
   1081
   1082	max_jid = 0;
   1083	for (i = 0; i < num_slots; i++) {
   1084		if (max_jid < slots[i].slot - 1)
   1085			max_jid = slots[i].slot - 1;
   1086	}
   1087
   1088	old_size = ls->ls_recover_size;
   1089	new_size = old_size;
   1090	while (new_size < max_jid + 1)
   1091		new_size += RECOVER_SIZE_INC;
   1092	if (new_size == old_size)
   1093		return 0;
   1094
   1095	submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
   1096	result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
   1097	if (!submit || !result) {
   1098		kfree(submit);
   1099		kfree(result);
   1100		return -ENOMEM;
   1101	}
   1102
   1103	spin_lock(&ls->ls_recover_spin);
   1104	memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
   1105	memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
   1106	kfree(ls->ls_recover_submit);
   1107	kfree(ls->ls_recover_result);
   1108	ls->ls_recover_submit = submit;
   1109	ls->ls_recover_result = result;
   1110	ls->ls_recover_size = new_size;
   1111	spin_unlock(&ls->ls_recover_spin);
   1112	return 0;
   1113}
   1114
   1115static void free_recover_size(struct lm_lockstruct *ls)
   1116{
   1117	kfree(ls->ls_lvb_bits);
   1118	kfree(ls->ls_recover_submit);
   1119	kfree(ls->ls_recover_result);
   1120	ls->ls_recover_submit = NULL;
   1121	ls->ls_recover_result = NULL;
   1122	ls->ls_recover_size = 0;
   1123	ls->ls_lvb_bits = NULL;
   1124}
   1125
   1126/* dlm calls before it does lock recovery */
   1127
   1128static void gdlm_recover_prep(void *arg)
   1129{
   1130	struct gfs2_sbd *sdp = arg;
   1131	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
   1132
   1133	if (gfs2_withdrawn(sdp)) {
   1134		fs_err(sdp, "recover_prep ignored due to withdraw.\n");
   1135		return;
   1136	}
   1137	spin_lock(&ls->ls_recover_spin);
   1138	ls->ls_recover_block = ls->ls_recover_start;
   1139	set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
   1140
   1141	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
   1142	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
   1143		spin_unlock(&ls->ls_recover_spin);
   1144		return;
   1145	}
   1146	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
   1147	spin_unlock(&ls->ls_recover_spin);
   1148}
   1149
   1150/* dlm calls after recover_prep has been completed on all lockspace members;
   1151   identifies slot/jid of failed member */
   1152
   1153static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
   1154{
   1155	struct gfs2_sbd *sdp = arg;
   1156	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
   1157	int jid = slot->slot - 1;
   1158
   1159	if (gfs2_withdrawn(sdp)) {
   1160		fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n",
   1161		       jid);
   1162		return;
   1163	}
   1164	spin_lock(&ls->ls_recover_spin);
   1165	if (ls->ls_recover_size < jid + 1) {
   1166		fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
   1167		       jid, ls->ls_recover_block, ls->ls_recover_size);
   1168		spin_unlock(&ls->ls_recover_spin);
   1169		return;
   1170	}
   1171
   1172	if (ls->ls_recover_submit[jid]) {
   1173		fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
   1174			jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
   1175	}
   1176	ls->ls_recover_submit[jid] = ls->ls_recover_block;
   1177	spin_unlock(&ls->ls_recover_spin);
   1178}
   1179
   1180/* dlm calls after recover_slot and after it completes lock recovery */
   1181
   1182static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
   1183			      int our_slot, uint32_t generation)
   1184{
   1185	struct gfs2_sbd *sdp = arg;
   1186	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
   1187
   1188	if (gfs2_withdrawn(sdp)) {
   1189		fs_err(sdp, "recover_done ignored due to withdraw.\n");
   1190		return;
   1191	}
   1192	/* ensure the ls jid arrays are large enough */
   1193	set_recover_size(sdp, slots, num_slots);
   1194
   1195	spin_lock(&ls->ls_recover_spin);
   1196	ls->ls_recover_start = generation;
   1197
   1198	if (!ls->ls_recover_mount) {
   1199		ls->ls_recover_mount = generation;
   1200		ls->ls_jid = our_slot - 1;
   1201	}
   1202
   1203	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
   1204		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
   1205
   1206	clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
   1207	smp_mb__after_atomic();
   1208	wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
   1209	spin_unlock(&ls->ls_recover_spin);
   1210}
   1211
   1212/* gfs2_recover thread has a journal recovery result */
   1213
   1214static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
   1215				 unsigned int result)
   1216{
   1217	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
   1218
   1219	if (gfs2_withdrawn(sdp)) {
   1220		fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n",
   1221		       jid);
   1222		return;
   1223	}
   1224	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
   1225		return;
   1226
   1227	/* don't care about the recovery of own journal during mount */
   1228	if (jid == ls->ls_jid)
   1229		return;
   1230
   1231	spin_lock(&ls->ls_recover_spin);
   1232	if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
   1233		spin_unlock(&ls->ls_recover_spin);
   1234		return;
   1235	}
   1236	if (ls->ls_recover_size < jid + 1) {
   1237		fs_err(sdp, "recovery_result jid %d short size %d\n",
   1238		       jid, ls->ls_recover_size);
   1239		spin_unlock(&ls->ls_recover_spin);
   1240		return;
   1241	}
   1242
   1243	fs_info(sdp, "recover jid %d result %s\n", jid,
   1244		result == LM_RD_GAVEUP ? "busy" : "success");
   1245
   1246	ls->ls_recover_result[jid] = result;
   1247
   1248	/* GAVEUP means another node is recovering the journal; delay our
   1249	   next attempt to recover it, to give the other node a chance to
   1250	   finish before trying again */
   1251
   1252	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
   1253		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
   1254				   result == LM_RD_GAVEUP ? HZ : 0);
   1255	spin_unlock(&ls->ls_recover_spin);
   1256}
   1257
   1258static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
   1259	.recover_prep = gdlm_recover_prep,
   1260	.recover_slot = gdlm_recover_slot,
   1261	.recover_done = gdlm_recover_done,
   1262};
   1263
   1264static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
   1265{
   1266	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
   1267	char cluster[GFS2_LOCKNAME_LEN];
   1268	const char *fsname;
   1269	uint32_t flags;
   1270	int error, ops_result;
   1271
   1272	/*
   1273	 * initialize everything
   1274	 */
   1275
   1276	INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
   1277	spin_lock_init(&ls->ls_recover_spin);
   1278	ls->ls_recover_flags = 0;
   1279	ls->ls_recover_mount = 0;
   1280	ls->ls_recover_start = 0;
   1281	ls->ls_recover_block = 0;
   1282	ls->ls_recover_size = 0;
   1283	ls->ls_recover_submit = NULL;
   1284	ls->ls_recover_result = NULL;
   1285	ls->ls_lvb_bits = NULL;
   1286
   1287	error = set_recover_size(sdp, NULL, 0);
   1288	if (error)
   1289		goto fail;
   1290
   1291	/*
   1292	 * prepare dlm_new_lockspace args
   1293	 */
   1294
   1295	fsname = strchr(table, ':');
   1296	if (!fsname) {
   1297		fs_info(sdp, "no fsname found\n");
   1298		error = -EINVAL;
   1299		goto fail_free;
   1300	}
   1301	memset(cluster, 0, sizeof(cluster));
   1302	memcpy(cluster, table, strlen(table) - strlen(fsname));
   1303	fsname++;
   1304
   1305	flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
   1306
   1307	/*
   1308	 * create/join lockspace
   1309	 */
   1310
   1311	error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
   1312				  &gdlm_lockspace_ops, sdp, &ops_result,
   1313				  &ls->ls_dlm);
   1314	if (error) {
   1315		fs_err(sdp, "dlm_new_lockspace error %d\n", error);
   1316		goto fail_free;
   1317	}
   1318
   1319	if (ops_result < 0) {
   1320		/*
   1321		 * dlm does not support ops callbacks,
   1322		 * old dlm_controld/gfs_controld are used, try without ops.
   1323		 */
   1324		fs_info(sdp, "dlm lockspace ops not used\n");
   1325		free_recover_size(ls);
   1326		set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
   1327		return 0;
   1328	}
   1329
   1330	if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
   1331		fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
   1332		error = -EINVAL;
   1333		goto fail_release;
   1334	}
   1335
   1336	/*
   1337	 * control_mount() uses control_lock to determine first mounter,
   1338	 * and for later mounts, waits for any recoveries to be cleared.
   1339	 */
   1340
   1341	error = control_mount(sdp);
   1342	if (error) {
   1343		fs_err(sdp, "mount control error %d\n", error);
   1344		goto fail_release;
   1345	}
   1346
   1347	ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
   1348	clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
   1349	smp_mb__after_atomic();
   1350	wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
   1351	return 0;
   1352
   1353fail_release:
   1354	dlm_release_lockspace(ls->ls_dlm, 2);
   1355fail_free:
   1356	free_recover_size(ls);
   1357fail:
   1358	return error;
   1359}
   1360
   1361static void gdlm_first_done(struct gfs2_sbd *sdp)
   1362{
   1363	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
   1364	int error;
   1365
   1366	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
   1367		return;
   1368
   1369	error = control_first_done(sdp);
   1370	if (error)
   1371		fs_err(sdp, "mount first_done error %d\n", error);
   1372}
   1373
   1374static void gdlm_unmount(struct gfs2_sbd *sdp)
   1375{
   1376	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
   1377
   1378	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
   1379		goto release;
   1380
   1381	/* wait for gfs2_control_wq to be done with this mount */
   1382
   1383	spin_lock(&ls->ls_recover_spin);
   1384	set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
   1385	spin_unlock(&ls->ls_recover_spin);
   1386	flush_delayed_work(&sdp->sd_control_work);
   1387
   1388	/* mounted_lock and control_lock will be purged in dlm recovery */
   1389release:
   1390	if (ls->ls_dlm) {
   1391		dlm_release_lockspace(ls->ls_dlm, 2);
   1392		ls->ls_dlm = NULL;
   1393	}
   1394
   1395	free_recover_size(ls);
   1396}
   1397
   1398static const match_table_t dlm_tokens = {
   1399	{ Opt_jid, "jid=%d"},
   1400	{ Opt_id, "id=%d"},
   1401	{ Opt_first, "first=%d"},
   1402	{ Opt_nodir, "nodir=%d"},
   1403	{ Opt_err, NULL },
   1404};
   1405
   1406const struct lm_lockops gfs2_dlm_ops = {
   1407	.lm_proto_name = "lock_dlm",
   1408	.lm_mount = gdlm_mount,
   1409	.lm_first_done = gdlm_first_done,
   1410	.lm_recovery_result = gdlm_recovery_result,
   1411	.lm_unmount = gdlm_unmount,
   1412	.lm_put_lock = gdlm_put_lock,
   1413	.lm_lock = gdlm_lock,
   1414	.lm_cancel = gdlm_cancel,
   1415	.lm_tokens = &dlm_tokens,
   1416};
   1417