cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

hpfs.h (18380B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2/*
      3 *  linux/fs/hpfs/hpfs.h
      4 *
      5 *  HPFS structures by Chris Smith, 1993
      6 *
      7 *  a little bit modified by Mikulas Patocka, 1998-1999
      8 */
      9
     10/* The paper
     11
     12     Duncan, Roy
     13     Design goals and implementation of the new High Performance File System
     14     Microsoft Systems Journal  Sept 1989  v4 n5 p1(13)
     15
     16   describes what HPFS looked like when it was new, and it is the source
     17   of most of the information given here.  The rest is conjecture.
     18
     19   For definitive information on the Duncan paper, see it, not this file.
     20   For definitive information on HPFS, ask somebody else -- this is guesswork.
     21   There are certain to be many mistakes. */
     22
     23#if !defined(__LITTLE_ENDIAN) && !defined(__BIG_ENDIAN)
     24#error unknown endian
     25#endif
     26
     27/* Notation */
     28
     29typedef u32 secno;			/* sector number, partition relative */
     30
     31typedef secno dnode_secno;		/* sector number of a dnode */
     32typedef secno fnode_secno;		/* sector number of an fnode */
     33typedef secno anode_secno;		/* sector number of an anode */
     34
     35typedef u32 time32_t;		/* 32-bit time_t type */
     36
     37/* sector 0 */
     38
     39/* The boot block is very like a FAT boot block, except that the
     40   29h signature byte is 28h instead, and the ID string is "HPFS". */
     41
     42#define BB_MAGIC 0xaa55
     43
     44struct hpfs_boot_block
     45{
     46  u8 jmp[3];
     47  u8 oem_id[8];
     48  u8 bytes_per_sector[2];	/* 512 */
     49  u8 sectors_per_cluster;
     50  u8 n_reserved_sectors[2];
     51  u8 n_fats;
     52  u8 n_rootdir_entries[2];
     53  u8 n_sectors_s[2];
     54  u8 media_byte;
     55  __le16 sectors_per_fat;
     56  __le16 sectors_per_track;
     57  __le16 heads_per_cyl;
     58  __le32 n_hidden_sectors;
     59  __le32 n_sectors_l;		/* size of partition */
     60  u8 drive_number;
     61  u8 mbz;
     62  u8 sig_28h;			/* 28h */
     63  u8 vol_serno[4];
     64  u8 vol_label[11];
     65  u8 sig_hpfs[8];		/* "HPFS    " */
     66  u8 pad[448];
     67  __le16 magic;			/* aa55 */
     68};
     69
     70
     71/* sector 16 */
     72
     73/* The super block has the pointer to the root directory. */
     74
     75#define SB_MAGIC 0xf995e849
     76
     77struct hpfs_super_block
     78{
     79  __le32 magic;				/* f995 e849 */
     80  __le32 magic1;			/* fa53 e9c5, more magic? */
     81  u8 version;				/* version of a filesystem  usually 2 */
     82  u8 funcversion;			/* functional version - oldest version
     83  					   of filesystem that can understand
     84					   this disk */
     85  __le16 zero;				/* 0 */
     86  __le32 root;				/* fnode of root directory */
     87  __le32 n_sectors;			/* size of filesystem */
     88  __le32 n_badblocks;			/* number of bad blocks */
     89  __le32 bitmaps;			/* pointers to free space bit maps */
     90  __le32 zero1;				/* 0 */
     91  __le32 badblocks;			/* bad block list */
     92  __le32 zero3;				/* 0 */
     93  __le32 last_chkdsk;			/* date last checked, 0 if never */
     94  __le32 last_optimize;			/* date last optimized, 0 if never */
     95  __le32 n_dir_band;			/* number of sectors in dir band */
     96  __le32 dir_band_start;			/* first sector in dir band */
     97  __le32 dir_band_end;			/* last sector in dir band */
     98  __le32 dir_band_bitmap;		/* free space map, 1 dnode per bit */
     99  u8 volume_name[32];			/* not used */
    100  __le32 user_id_table;			/* 8 preallocated sectors - user id */
    101  u32 zero6[103];			/* 0 */
    102};
    103
    104
    105/* sector 17 */
    106
    107/* The spare block has pointers to spare sectors.  */
    108
    109#define SP_MAGIC 0xf9911849
    110
    111struct hpfs_spare_block
    112{
    113  __le32 magic;				/* f991 1849 */
    114  __le32 magic1;				/* fa52 29c5, more magic? */
    115
    116#ifdef __LITTLE_ENDIAN
    117  u8 dirty: 1;				/* 0 clean, 1 "improperly stopped" */
    118  u8 sparedir_used: 1;			/* spare dirblks used */
    119  u8 hotfixes_used: 1;			/* hotfixes used */
    120  u8 bad_sector: 1;			/* bad sector, corrupted disk (???) */
    121  u8 bad_bitmap: 1;			/* bad bitmap */
    122  u8 fast: 1;				/* partition was fast formatted */
    123  u8 old_wrote: 1;			/* old version wrote to partition */
    124  u8 old_wrote_1: 1;			/* old version wrote to partition (?) */
    125#else
    126  u8 old_wrote_1: 1;			/* old version wrote to partition (?) */
    127  u8 old_wrote: 1;			/* old version wrote to partition */
    128  u8 fast: 1;				/* partition was fast formatted */
    129  u8 bad_bitmap: 1;			/* bad bitmap */
    130  u8 bad_sector: 1;			/* bad sector, corrupted disk (???) */
    131  u8 hotfixes_used: 1;			/* hotfixes used */
    132  u8 sparedir_used: 1;			/* spare dirblks used */
    133  u8 dirty: 1;				/* 0 clean, 1 "improperly stopped" */
    134#endif
    135
    136#ifdef __LITTLE_ENDIAN
    137  u8 install_dasd_limits: 1;		/* HPFS386 flags */
    138  u8 resynch_dasd_limits: 1;
    139  u8 dasd_limits_operational: 1;
    140  u8 multimedia_active: 1;
    141  u8 dce_acls_active: 1;
    142  u8 dasd_limits_dirty: 1;
    143  u8 flag67: 2;
    144#else
    145  u8 flag67: 2;
    146  u8 dasd_limits_dirty: 1;
    147  u8 dce_acls_active: 1;
    148  u8 multimedia_active: 1;
    149  u8 dasd_limits_operational: 1;
    150  u8 resynch_dasd_limits: 1;
    151  u8 install_dasd_limits: 1;		/* HPFS386 flags */
    152#endif
    153
    154  u8 mm_contlgulty;
    155  u8 unused;
    156
    157  __le32 hotfix_map;			/* info about remapped bad sectors */
    158  __le32 n_spares_used;			/* number of hotfixes */
    159  __le32 n_spares;			/* number of spares in hotfix map */
    160  __le32 n_dnode_spares_free;		/* spare dnodes unused */
    161  __le32 n_dnode_spares;		/* length of spare_dnodes[] list,
    162					   follows in this block*/
    163  __le32 code_page_dir;			/* code page directory block */
    164  __le32 n_code_pages;			/* number of code pages */
    165  __le32 super_crc;			/* on HPFS386 and LAN Server this is
    166  					   checksum of superblock, on normal
    167					   OS/2 unused */
    168  __le32 spare_crc;			/* on HPFS386 checksum of spareblock */
    169  __le32 zero1[15];			/* unused */
    170  __le32 spare_dnodes[100];		/* emergency free dnode list */
    171  __le32 zero2[1];			/* room for more? */
    172};
    173
    174/* The bad block list is 4 sectors long.  The first word must be zero,
    175   the remaining words give n_badblocks bad block numbers.
    176   I bet you can see it coming... */
    177
    178#define BAD_MAGIC 0
    179       
    180/* The hotfix map is 4 sectors long.  It looks like
    181
    182       secno from[n_spares];
    183       secno to[n_spares];
    184
    185   The to[] list is initialized to point to n_spares preallocated empty
    186   sectors.  The from[] list contains the sector numbers of bad blocks
    187   which have been remapped to corresponding sectors in the to[] list.
    188   n_spares_used gives the length of the from[] list. */
    189
    190
    191/* Sectors 18 and 19 are preallocated and unused.
    192   Maybe they're spares for 16 and 17, but simple substitution fails. */
    193
    194
    195/* The code page info pointed to by the spare block consists of an index
    196   block and blocks containing uppercasing tables.  I don't know what
    197   these are for (CHKDSK, maybe?) -- OS/2 does not seem to use them
    198   itself.  Linux doesn't use them either. */
    199
    200/* block pointed to by spareblock->code_page_dir */
    201
    202#define CP_DIR_MAGIC 0x494521f7
    203
    204struct code_page_directory
    205{
    206  __le32 magic;				/* 4945 21f7 */
    207  __le32 n_code_pages;			/* number of pointers following */
    208  __le32 zero1[2];
    209  struct {
    210    __le16 ix;				/* index */
    211    __le16 code_page_number;		/* code page number */
    212    __le32 bounds;			/* matches corresponding word
    213					   in data block */
    214    __le32 code_page_data;		/* sector number of a code_page_data
    215					   containing c.p. array */
    216    __le16 index;			/* index in c.p. array in that sector*/
    217    __le16 unknown;			/* some unknown value; usually 0;
    218    					   2 in Japanese version */
    219  } array[31];				/* unknown length */
    220};
    221
    222/* blocks pointed to by code_page_directory */
    223
    224#define CP_DATA_MAGIC 0x894521f7
    225
    226struct code_page_data
    227{
    228  __le32 magic;				/* 8945 21f7 */
    229  __le32 n_used;			/* # elements used in c_p_data[] */
    230  __le32 bounds[3];			/* looks a bit like
    231					     (beg1,end1), (beg2,end2)
    232					   one byte each */
    233  __le16 offs[3];			/* offsets from start of sector
    234					   to start of c_p_data[ix] */
    235  struct {
    236    __le16 ix;				/* index */
    237    __le16 code_page_number;		/* code page number */
    238    __le16 unknown;			/* the same as in cp directory */
    239    u8 map[128];			/* upcase table for chars 80..ff */
    240    __le16 zero2;
    241  } code_page[3];
    242  u8 incognita[78];
    243};
    244
    245
    246/* Free space bitmaps are 4 sectors long, which is 16384 bits.
    247   16384 sectors is 8 meg, and each 8 meg band has a 4-sector bitmap.
    248   Bit order in the maps is little-endian.  0 means taken, 1 means free.
    249
    250   Bit map sectors are marked allocated in the bit maps, and so are sectors 
    251   off the end of the partition.
    252
    253   Band 0 is sectors 0-3fff, its map is in sectors 18-1b.
    254   Band 1 is 4000-7fff, its map is in 7ffc-7fff.
    255   Band 2 is 8000-ffff, its map is in 8000-8003.
    256   The remaining bands have maps in their first (even) or last (odd) 4 sectors
    257     -- if the last, partial, band is odd its map is in its last 4 sectors.
    258
    259   The bitmap locations are given in a table pointed to by the super block.
    260   No doubt they aren't constrained to be at 18, 7ffc, 8000, ...; that is
    261   just where they usually are.
    262
    263   The "directory band" is a bunch of sectors preallocated for dnodes.
    264   It has a 4-sector free space bitmap of its own.  Each bit in the map
    265   corresponds to one 4-sector dnode, bit 0 of the map corresponding to
    266   the first 4 sectors of the directory band.  The entire band is marked
    267   allocated in the main bitmap.   The super block gives the locations
    268   of the directory band and its bitmap.  ("band" doesn't mean it is
    269   8 meg long; it isn't.)  */
    270
    271
    272/* dnode: directory.  4 sectors long */
    273
    274/* A directory is a tree of dnodes.  The fnode for a directory
    275   contains one pointer, to the root dnode of the tree.  The fnode
    276   never moves, the dnodes do the B-tree thing, splitting and merging
    277   as files are added and removed.  */
    278
    279#define DNODE_MAGIC   0x77e40aae
    280
    281struct dnode {
    282  __le32 magic;				/* 77e4 0aae */
    283  __le32 first_free;			/* offset from start of dnode to
    284					   first free dir entry */
    285#ifdef __LITTLE_ENDIAN
    286  u8 root_dnode: 1;			/* Is it root dnode? */
    287  u8 increment_me: 7;			/* some kind of activity counter? */
    288					/* Neither HPFS.IFS nor CHKDSK cares
    289					   if you change this word */
    290#else
    291  u8 increment_me: 7;			/* some kind of activity counter? */
    292					/* Neither HPFS.IFS nor CHKDSK cares
    293					   if you change this word */
    294  u8 root_dnode: 1;			/* Is it root dnode? */
    295#endif
    296  u8 increment_me2[3];
    297  __le32 up;				/* (root dnode) directory's fnode
    298					   (nonroot) parent dnode */
    299  __le32 self;			/* pointer to this dnode */
    300  u8 dirent[2028];			/* one or more dirents */
    301};
    302
    303struct hpfs_dirent {
    304  __le16 length;			/* offset to next dirent */
    305
    306#ifdef __LITTLE_ENDIAN
    307  u8 first: 1;				/* set on phony ^A^A (".") entry */
    308  u8 has_acl: 1;
    309  u8 down: 1;				/* down pointer present (after name) */
    310  u8 last: 1;				/* set on phony \377 entry */
    311  u8 has_ea: 1;				/* entry has EA */
    312  u8 has_xtd_perm: 1;			/* has extended perm list (???) */
    313  u8 has_explicit_acl: 1;
    314  u8 has_needea: 1;			/* ?? some EA has NEEDEA set
    315					   I have no idea why this is
    316					   interesting in a dir entry */
    317#else
    318  u8 has_needea: 1;			/* ?? some EA has NEEDEA set
    319					   I have no idea why this is
    320					   interesting in a dir entry */
    321  u8 has_explicit_acl: 1;
    322  u8 has_xtd_perm: 1;			/* has extended perm list (???) */
    323  u8 has_ea: 1;				/* entry has EA */
    324  u8 last: 1;				/* set on phony \377 entry */
    325  u8 down: 1;				/* down pointer present (after name) */
    326  u8 has_acl: 1;
    327  u8 first: 1;				/* set on phony ^A^A (".") entry */
    328#endif
    329
    330#ifdef __LITTLE_ENDIAN
    331  u8 read_only: 1;			/* dos attrib */
    332  u8 hidden: 1;				/* dos attrib */
    333  u8 system: 1;				/* dos attrib */
    334  u8 flag11: 1;				/* would be volume label dos attrib */
    335  u8 directory: 1;			/* dos attrib */
    336  u8 archive: 1;			/* dos attrib */
    337  u8 not_8x3: 1;			/* name is not 8.3 */
    338  u8 flag15: 1;
    339#else
    340  u8 flag15: 1;
    341  u8 not_8x3: 1;			/* name is not 8.3 */
    342  u8 archive: 1;			/* dos attrib */
    343  u8 directory: 1;			/* dos attrib */
    344  u8 flag11: 1;				/* would be volume label dos attrib */
    345  u8 system: 1;				/* dos attrib */
    346  u8 hidden: 1;				/* dos attrib */
    347  u8 read_only: 1;			/* dos attrib */
    348#endif
    349
    350  __le32 fnode;				/* fnode giving allocation info */
    351  __le32 write_date;			/* mtime */
    352  __le32 file_size;			/* file length, bytes */
    353  __le32 read_date;			/* atime */
    354  __le32 creation_date;			/* ctime */
    355  __le32 ea_size;			/* total EA length, bytes */
    356  u8 no_of_acls;			/* number of ACL's (low 3 bits) */
    357  u8 ix;				/* code page index (of filename), see
    358					   struct code_page_data */
    359  u8 namelen;				/* file name length */
    360  u8 name[];				/* file name */
    361  /* dnode_secno down;	  btree down pointer, if present,
    362     			  follows name on next word boundary, or maybe it
    363			  precedes next dirent, which is on a word boundary. */
    364};
    365
    366
    367/* B+ tree: allocation info in fnodes and anodes */
    368
    369/* dnodes point to fnodes which are responsible for listing the sectors
    370   assigned to the file.  This is done with trees of (length,address)
    371   pairs.  (Actually triples, of (length, file-address, disk-address)
    372   which can represent holes.  Find out if HPFS does that.)
    373   At any rate, fnodes contain a small tree; if subtrees are needed
    374   they occupy essentially a full block in anodes.  A leaf-level tree node
    375   has 3-word entries giving sector runs, a non-leaf node has 2-word
    376   entries giving subtree pointers.  A flag in the header says which. */
    377
    378struct bplus_leaf_node
    379{
    380  __le32 file_secno;			/* first file sector in extent */
    381  __le32 length;			/* length, sectors */
    382  __le32 disk_secno;			/* first corresponding disk sector */
    383};
    384
    385struct bplus_internal_node
    386{
    387  __le32 file_secno;			/* subtree maps sectors < this  */
    388  __le32 down;				/* pointer to subtree */
    389};
    390
    391enum {
    392	BP_hbff = 1,
    393	BP_fnode_parent = 0x20,
    394	BP_binary_search = 0x40,
    395	BP_internal = 0x80
    396};
    397struct bplus_header
    398{
    399  u8 flags;				/* bit 0 - high bit of first free entry offset
    400					   bit 5 - we're pointed to by an fnode,
    401					   the data btree or some ea or the
    402					   main ea bootage pointer ea_secno
    403					   bit 6 - suggest binary search (unused)
    404					   bit 7 - 1 -> (internal) tree of anodes
    405						   0 -> (leaf) list of extents */
    406  u8 fill[3];
    407  u8 n_free_nodes;			/* free nodes in following array */
    408  u8 n_used_nodes;			/* used nodes in following array */
    409  __le16 first_free;			/* offset from start of header to
    410					   first free node in array */
    411  union {
    412	/* (internal) 2-word entries giving subtree pointers */
    413	DECLARE_FLEX_ARRAY(struct bplus_internal_node, internal);
    414	/* (external) 3-word entries giving sector runs */
    415	DECLARE_FLEX_ARRAY(struct bplus_leaf_node, external);
    416  } u;
    417};
    418
    419static inline bool bp_internal(struct bplus_header *bp)
    420{
    421	return bp->flags & BP_internal;
    422}
    423
    424static inline bool bp_fnode_parent(struct bplus_header *bp)
    425{
    426	return bp->flags & BP_fnode_parent;
    427}
    428
    429/* fnode: root of allocation b+ tree, and EA's */
    430
    431/* Every file and every directory has one fnode, pointed to by the directory
    432   entry and pointing to the file's sectors or directory's root dnode.  EA's
    433   are also stored here, and there are said to be ACL's somewhere here too. */
    434
    435#define FNODE_MAGIC 0xf7e40aae
    436
    437enum {FNODE_anode = cpu_to_le16(2), FNODE_dir = cpu_to_le16(256)};
    438struct fnode
    439{
    440  __le32 magic;				/* f7e4 0aae */
    441  __le32 zero1[2];			/* read history */
    442  u8 len, name[15];			/* true length, truncated name */
    443  __le32 up;				/* pointer to file's directory fnode */
    444  __le32 acl_size_l;
    445  __le32 acl_secno;
    446  __le16 acl_size_s;
    447  u8 acl_anode;
    448  u8 zero2;				/* history bit count */
    449  __le32 ea_size_l;			/* length of disk-resident ea's */
    450  __le32 ea_secno;			/* first sector of disk-resident ea's*/
    451  __le16 ea_size_s;			/* length of fnode-resident ea's */
    452
    453  __le16 flags;				/* bit 1 set -> ea_secno is an anode */
    454					/* bit 8 set -> directory.  first & only extent
    455					   points to dnode. */
    456  struct bplus_header btree;		/* b+ tree, 8 extents or 12 subtrees */
    457  union {
    458    struct bplus_leaf_node external[8];
    459    struct bplus_internal_node internal[12];
    460  } u;
    461
    462  __le32 file_size;			/* file length, bytes */
    463  __le32 n_needea;			/* number of EA's with NEEDEA set */
    464  u8 user_id[16];			/* unused */
    465  __le16 ea_offs;			/* offset from start of fnode
    466					   to first fnode-resident ea */
    467  u8 dasd_limit_treshhold;
    468  u8 dasd_limit_delta;
    469  __le32 dasd_limit;
    470  __le32 dasd_usage;
    471  u8 ea[316];				/* zero or more EA's, packed together
    472					   with no alignment padding.
    473					   (Do not use this name, get here
    474					   via fnode + ea_offs. I think.) */
    475};
    476
    477static inline bool fnode_in_anode(struct fnode *p)
    478{
    479	return (p->flags & FNODE_anode) != 0;
    480}
    481
    482static inline bool fnode_is_dir(struct fnode *p)
    483{
    484	return (p->flags & FNODE_dir) != 0;
    485}
    486
    487
    488/* anode: 99.44% pure allocation tree */
    489
    490#define ANODE_MAGIC 0x37e40aae
    491
    492struct anode
    493{
    494  __le32 magic;				/* 37e4 0aae */
    495  __le32 self;				/* pointer to this anode */
    496  __le32 up;				/* parent anode or fnode */
    497
    498  struct bplus_header btree;		/* b+tree, 40 extents or 60 subtrees */
    499  union {
    500    struct bplus_leaf_node external[40];
    501    struct bplus_internal_node internal[60];
    502  } u;
    503
    504  __le32 fill[3];			/* unused */
    505};
    506
    507
    508/* extended attributes.
    509
    510   A file's EA info is stored as a list of (name,value) pairs.  It is
    511   usually in the fnode, but (if it's large) it is moved to a single
    512   sector run outside the fnode, or to multiple runs with an anode tree
    513   that points to them.
    514
    515   The value of a single EA is stored along with the name, or (if large)
    516   it is moved to a single sector run, or multiple runs pointed to by an
    517   anode tree, pointed to by the value field of the (name,value) pair.
    518
    519   Flags in the EA tell whether the value is immediate, in a single sector
    520   run, or in multiple runs.  Flags in the fnode tell whether the EA list
    521   is immediate, in a single run, or in multiple runs. */
    522
    523enum {EA_indirect = 1, EA_anode = 2, EA_needea = 128 };
    524struct extended_attribute
    525{
    526  u8 flags;				/* bit 0 set -> value gives sector number
    527					   where real value starts */
    528					/* bit 1 set -> sector is an anode
    529					   that points to fragmented value */
    530					/* bit 7 set -> required ea */
    531  u8 namelen;				/* length of name, bytes */
    532  u8 valuelen_lo;			/* length of value, bytes */
    533  u8 valuelen_hi;			/* length of value, bytes */
    534  u8 name[];
    535  /*
    536    u8 name[namelen];			ascii attrib name
    537    u8 nul;				terminating '\0', not counted
    538    u8 value[valuelen];			value, arbitrary
    539      if this.flags & 1, valuelen is 8 and the value is
    540        u32 length;			real length of value, bytes
    541        secno secno;			sector address where it starts
    542      if this.anode, the above sector number is the root of an anode tree
    543        which points to the value.
    544  */
    545};
    546
    547static inline bool ea_indirect(struct extended_attribute *ea)
    548{
    549	return ea->flags & EA_indirect;
    550}
    551
    552static inline bool ea_in_anode(struct extended_attribute *ea)
    553{
    554	return ea->flags & EA_anode;
    555}
    556
    557/*
    558   Local Variables:
    559   comment-column: 40
    560   End:
    561*/