cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

inode.c (65779B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * (C) 1997 Linus Torvalds
      4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
      5 */
      6#include <linux/export.h>
      7#include <linux/fs.h>
      8#include <linux/mm.h>
      9#include <linux/backing-dev.h>
     10#include <linux/hash.h>
     11#include <linux/swap.h>
     12#include <linux/security.h>
     13#include <linux/cdev.h>
     14#include <linux/memblock.h>
     15#include <linux/fsnotify.h>
     16#include <linux/mount.h>
     17#include <linux/posix_acl.h>
     18#include <linux/prefetch.h>
     19#include <linux/buffer_head.h> /* for inode_has_buffers */
     20#include <linux/ratelimit.h>
     21#include <linux/list_lru.h>
     22#include <linux/iversion.h>
     23#include <trace/events/writeback.h>
     24#include "internal.h"
     25
     26/*
     27 * Inode locking rules:
     28 *
     29 * inode->i_lock protects:
     30 *   inode->i_state, inode->i_hash, __iget(), inode->i_io_list
     31 * Inode LRU list locks protect:
     32 *   inode->i_sb->s_inode_lru, inode->i_lru
     33 * inode->i_sb->s_inode_list_lock protects:
     34 *   inode->i_sb->s_inodes, inode->i_sb_list
     35 * bdi->wb.list_lock protects:
     36 *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
     37 * inode_hash_lock protects:
     38 *   inode_hashtable, inode->i_hash
     39 *
     40 * Lock ordering:
     41 *
     42 * inode->i_sb->s_inode_list_lock
     43 *   inode->i_lock
     44 *     Inode LRU list locks
     45 *
     46 * bdi->wb.list_lock
     47 *   inode->i_lock
     48 *
     49 * inode_hash_lock
     50 *   inode->i_sb->s_inode_list_lock
     51 *   inode->i_lock
     52 *
     53 * iunique_lock
     54 *   inode_hash_lock
     55 */
     56
     57static unsigned int i_hash_mask __read_mostly;
     58static unsigned int i_hash_shift __read_mostly;
     59static struct hlist_head *inode_hashtable __read_mostly;
     60static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
     61
     62/*
     63 * Empty aops. Can be used for the cases where the user does not
     64 * define any of the address_space operations.
     65 */
     66const struct address_space_operations empty_aops = {
     67};
     68EXPORT_SYMBOL(empty_aops);
     69
     70static DEFINE_PER_CPU(unsigned long, nr_inodes);
     71static DEFINE_PER_CPU(unsigned long, nr_unused);
     72
     73static struct kmem_cache *inode_cachep __read_mostly;
     74
     75static long get_nr_inodes(void)
     76{
     77	int i;
     78	long sum = 0;
     79	for_each_possible_cpu(i)
     80		sum += per_cpu(nr_inodes, i);
     81	return sum < 0 ? 0 : sum;
     82}
     83
     84static inline long get_nr_inodes_unused(void)
     85{
     86	int i;
     87	long sum = 0;
     88	for_each_possible_cpu(i)
     89		sum += per_cpu(nr_unused, i);
     90	return sum < 0 ? 0 : sum;
     91}
     92
     93long get_nr_dirty_inodes(void)
     94{
     95	/* not actually dirty inodes, but a wild approximation */
     96	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
     97	return nr_dirty > 0 ? nr_dirty : 0;
     98}
     99
    100/*
    101 * Handle nr_inode sysctl
    102 */
    103#ifdef CONFIG_SYSCTL
    104/*
    105 * Statistics gathering..
    106 */
    107static struct inodes_stat_t inodes_stat;
    108
    109static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer,
    110			  size_t *lenp, loff_t *ppos)
    111{
    112	inodes_stat.nr_inodes = get_nr_inodes();
    113	inodes_stat.nr_unused = get_nr_inodes_unused();
    114	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
    115}
    116
    117static struct ctl_table inodes_sysctls[] = {
    118	{
    119		.procname	= "inode-nr",
    120		.data		= &inodes_stat,
    121		.maxlen		= 2*sizeof(long),
    122		.mode		= 0444,
    123		.proc_handler	= proc_nr_inodes,
    124	},
    125	{
    126		.procname	= "inode-state",
    127		.data		= &inodes_stat,
    128		.maxlen		= 7*sizeof(long),
    129		.mode		= 0444,
    130		.proc_handler	= proc_nr_inodes,
    131	},
    132	{ }
    133};
    134
    135static int __init init_fs_inode_sysctls(void)
    136{
    137	register_sysctl_init("fs", inodes_sysctls);
    138	return 0;
    139}
    140early_initcall(init_fs_inode_sysctls);
    141#endif
    142
    143static int no_open(struct inode *inode, struct file *file)
    144{
    145	return -ENXIO;
    146}
    147
    148/**
    149 * inode_init_always - perform inode structure initialisation
    150 * @sb: superblock inode belongs to
    151 * @inode: inode to initialise
    152 *
    153 * These are initializations that need to be done on every inode
    154 * allocation as the fields are not initialised by slab allocation.
    155 */
    156int inode_init_always(struct super_block *sb, struct inode *inode)
    157{
    158	static const struct inode_operations empty_iops;
    159	static const struct file_operations no_open_fops = {.open = no_open};
    160	struct address_space *const mapping = &inode->i_data;
    161
    162	inode->i_sb = sb;
    163	inode->i_blkbits = sb->s_blocksize_bits;
    164	inode->i_flags = 0;
    165	atomic64_set(&inode->i_sequence, 0);
    166	atomic_set(&inode->i_count, 1);
    167	inode->i_op = &empty_iops;
    168	inode->i_fop = &no_open_fops;
    169	inode->i_ino = 0;
    170	inode->__i_nlink = 1;
    171	inode->i_opflags = 0;
    172	if (sb->s_xattr)
    173		inode->i_opflags |= IOP_XATTR;
    174	i_uid_write(inode, 0);
    175	i_gid_write(inode, 0);
    176	atomic_set(&inode->i_writecount, 0);
    177	inode->i_size = 0;
    178	inode->i_write_hint = WRITE_LIFE_NOT_SET;
    179	inode->i_blocks = 0;
    180	inode->i_bytes = 0;
    181	inode->i_generation = 0;
    182	inode->i_pipe = NULL;
    183	inode->i_cdev = NULL;
    184	inode->i_link = NULL;
    185	inode->i_dir_seq = 0;
    186	inode->i_rdev = 0;
    187	inode->dirtied_when = 0;
    188
    189#ifdef CONFIG_CGROUP_WRITEBACK
    190	inode->i_wb_frn_winner = 0;
    191	inode->i_wb_frn_avg_time = 0;
    192	inode->i_wb_frn_history = 0;
    193#endif
    194
    195	if (security_inode_alloc(inode))
    196		goto out;
    197	spin_lock_init(&inode->i_lock);
    198	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
    199
    200	init_rwsem(&inode->i_rwsem);
    201	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
    202
    203	atomic_set(&inode->i_dio_count, 0);
    204
    205	mapping->a_ops = &empty_aops;
    206	mapping->host = inode;
    207	mapping->flags = 0;
    208	mapping->wb_err = 0;
    209	atomic_set(&mapping->i_mmap_writable, 0);
    210#ifdef CONFIG_READ_ONLY_THP_FOR_FS
    211	atomic_set(&mapping->nr_thps, 0);
    212#endif
    213	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
    214	mapping->private_data = NULL;
    215	mapping->writeback_index = 0;
    216	init_rwsem(&mapping->invalidate_lock);
    217	lockdep_set_class_and_name(&mapping->invalidate_lock,
    218				   &sb->s_type->invalidate_lock_key,
    219				   "mapping.invalidate_lock");
    220	inode->i_private = NULL;
    221	inode->i_mapping = mapping;
    222	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
    223#ifdef CONFIG_FS_POSIX_ACL
    224	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
    225#endif
    226
    227#ifdef CONFIG_FSNOTIFY
    228	inode->i_fsnotify_mask = 0;
    229#endif
    230	inode->i_flctx = NULL;
    231	this_cpu_inc(nr_inodes);
    232
    233	return 0;
    234out:
    235	return -ENOMEM;
    236}
    237EXPORT_SYMBOL(inode_init_always);
    238
    239void free_inode_nonrcu(struct inode *inode)
    240{
    241	kmem_cache_free(inode_cachep, inode);
    242}
    243EXPORT_SYMBOL(free_inode_nonrcu);
    244
    245static void i_callback(struct rcu_head *head)
    246{
    247	struct inode *inode = container_of(head, struct inode, i_rcu);
    248	if (inode->free_inode)
    249		inode->free_inode(inode);
    250	else
    251		free_inode_nonrcu(inode);
    252}
    253
    254static struct inode *alloc_inode(struct super_block *sb)
    255{
    256	const struct super_operations *ops = sb->s_op;
    257	struct inode *inode;
    258
    259	if (ops->alloc_inode)
    260		inode = ops->alloc_inode(sb);
    261	else
    262		inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
    263
    264	if (!inode)
    265		return NULL;
    266
    267	if (unlikely(inode_init_always(sb, inode))) {
    268		if (ops->destroy_inode) {
    269			ops->destroy_inode(inode);
    270			if (!ops->free_inode)
    271				return NULL;
    272		}
    273		inode->free_inode = ops->free_inode;
    274		i_callback(&inode->i_rcu);
    275		return NULL;
    276	}
    277
    278	return inode;
    279}
    280
    281void __destroy_inode(struct inode *inode)
    282{
    283	BUG_ON(inode_has_buffers(inode));
    284	inode_detach_wb(inode);
    285	security_inode_free(inode);
    286	fsnotify_inode_delete(inode);
    287	locks_free_lock_context(inode);
    288	if (!inode->i_nlink) {
    289		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
    290		atomic_long_dec(&inode->i_sb->s_remove_count);
    291	}
    292
    293#ifdef CONFIG_FS_POSIX_ACL
    294	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
    295		posix_acl_release(inode->i_acl);
    296	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
    297		posix_acl_release(inode->i_default_acl);
    298#endif
    299	this_cpu_dec(nr_inodes);
    300}
    301EXPORT_SYMBOL(__destroy_inode);
    302
    303static void destroy_inode(struct inode *inode)
    304{
    305	const struct super_operations *ops = inode->i_sb->s_op;
    306
    307	BUG_ON(!list_empty(&inode->i_lru));
    308	__destroy_inode(inode);
    309	if (ops->destroy_inode) {
    310		ops->destroy_inode(inode);
    311		if (!ops->free_inode)
    312			return;
    313	}
    314	inode->free_inode = ops->free_inode;
    315	call_rcu(&inode->i_rcu, i_callback);
    316}
    317
    318/**
    319 * drop_nlink - directly drop an inode's link count
    320 * @inode: inode
    321 *
    322 * This is a low-level filesystem helper to replace any
    323 * direct filesystem manipulation of i_nlink.  In cases
    324 * where we are attempting to track writes to the
    325 * filesystem, a decrement to zero means an imminent
    326 * write when the file is truncated and actually unlinked
    327 * on the filesystem.
    328 */
    329void drop_nlink(struct inode *inode)
    330{
    331	WARN_ON(inode->i_nlink == 0);
    332	inode->__i_nlink--;
    333	if (!inode->i_nlink)
    334		atomic_long_inc(&inode->i_sb->s_remove_count);
    335}
    336EXPORT_SYMBOL(drop_nlink);
    337
    338/**
    339 * clear_nlink - directly zero an inode's link count
    340 * @inode: inode
    341 *
    342 * This is a low-level filesystem helper to replace any
    343 * direct filesystem manipulation of i_nlink.  See
    344 * drop_nlink() for why we care about i_nlink hitting zero.
    345 */
    346void clear_nlink(struct inode *inode)
    347{
    348	if (inode->i_nlink) {
    349		inode->__i_nlink = 0;
    350		atomic_long_inc(&inode->i_sb->s_remove_count);
    351	}
    352}
    353EXPORT_SYMBOL(clear_nlink);
    354
    355/**
    356 * set_nlink - directly set an inode's link count
    357 * @inode: inode
    358 * @nlink: new nlink (should be non-zero)
    359 *
    360 * This is a low-level filesystem helper to replace any
    361 * direct filesystem manipulation of i_nlink.
    362 */
    363void set_nlink(struct inode *inode, unsigned int nlink)
    364{
    365	if (!nlink) {
    366		clear_nlink(inode);
    367	} else {
    368		/* Yes, some filesystems do change nlink from zero to one */
    369		if (inode->i_nlink == 0)
    370			atomic_long_dec(&inode->i_sb->s_remove_count);
    371
    372		inode->__i_nlink = nlink;
    373	}
    374}
    375EXPORT_SYMBOL(set_nlink);
    376
    377/**
    378 * inc_nlink - directly increment an inode's link count
    379 * @inode: inode
    380 *
    381 * This is a low-level filesystem helper to replace any
    382 * direct filesystem manipulation of i_nlink.  Currently,
    383 * it is only here for parity with dec_nlink().
    384 */
    385void inc_nlink(struct inode *inode)
    386{
    387	if (unlikely(inode->i_nlink == 0)) {
    388		WARN_ON(!(inode->i_state & I_LINKABLE));
    389		atomic_long_dec(&inode->i_sb->s_remove_count);
    390	}
    391
    392	inode->__i_nlink++;
    393}
    394EXPORT_SYMBOL(inc_nlink);
    395
    396static void __address_space_init_once(struct address_space *mapping)
    397{
    398	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
    399	init_rwsem(&mapping->i_mmap_rwsem);
    400	INIT_LIST_HEAD(&mapping->private_list);
    401	spin_lock_init(&mapping->private_lock);
    402	mapping->i_mmap = RB_ROOT_CACHED;
    403}
    404
    405void address_space_init_once(struct address_space *mapping)
    406{
    407	memset(mapping, 0, sizeof(*mapping));
    408	__address_space_init_once(mapping);
    409}
    410EXPORT_SYMBOL(address_space_init_once);
    411
    412/*
    413 * These are initializations that only need to be done
    414 * once, because the fields are idempotent across use
    415 * of the inode, so let the slab aware of that.
    416 */
    417void inode_init_once(struct inode *inode)
    418{
    419	memset(inode, 0, sizeof(*inode));
    420	INIT_HLIST_NODE(&inode->i_hash);
    421	INIT_LIST_HEAD(&inode->i_devices);
    422	INIT_LIST_HEAD(&inode->i_io_list);
    423	INIT_LIST_HEAD(&inode->i_wb_list);
    424	INIT_LIST_HEAD(&inode->i_lru);
    425	__address_space_init_once(&inode->i_data);
    426	i_size_ordered_init(inode);
    427}
    428EXPORT_SYMBOL(inode_init_once);
    429
    430static void init_once(void *foo)
    431{
    432	struct inode *inode = (struct inode *) foo;
    433
    434	inode_init_once(inode);
    435}
    436
    437/*
    438 * inode->i_lock must be held
    439 */
    440void __iget(struct inode *inode)
    441{
    442	atomic_inc(&inode->i_count);
    443}
    444
    445/*
    446 * get additional reference to inode; caller must already hold one.
    447 */
    448void ihold(struct inode *inode)
    449{
    450	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
    451}
    452EXPORT_SYMBOL(ihold);
    453
    454static void __inode_add_lru(struct inode *inode, bool rotate)
    455{
    456	if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
    457		return;
    458	if (atomic_read(&inode->i_count))
    459		return;
    460	if (!(inode->i_sb->s_flags & SB_ACTIVE))
    461		return;
    462	if (!mapping_shrinkable(&inode->i_data))
    463		return;
    464
    465	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
    466		this_cpu_inc(nr_unused);
    467	else if (rotate)
    468		inode->i_state |= I_REFERENCED;
    469}
    470
    471/*
    472 * Add inode to LRU if needed (inode is unused and clean).
    473 *
    474 * Needs inode->i_lock held.
    475 */
    476void inode_add_lru(struct inode *inode)
    477{
    478	__inode_add_lru(inode, false);
    479}
    480
    481static void inode_lru_list_del(struct inode *inode)
    482{
    483	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
    484		this_cpu_dec(nr_unused);
    485}
    486
    487/**
    488 * inode_sb_list_add - add inode to the superblock list of inodes
    489 * @inode: inode to add
    490 */
    491void inode_sb_list_add(struct inode *inode)
    492{
    493	spin_lock(&inode->i_sb->s_inode_list_lock);
    494	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
    495	spin_unlock(&inode->i_sb->s_inode_list_lock);
    496}
    497EXPORT_SYMBOL_GPL(inode_sb_list_add);
    498
    499static inline void inode_sb_list_del(struct inode *inode)
    500{
    501	if (!list_empty(&inode->i_sb_list)) {
    502		spin_lock(&inode->i_sb->s_inode_list_lock);
    503		list_del_init(&inode->i_sb_list);
    504		spin_unlock(&inode->i_sb->s_inode_list_lock);
    505	}
    506}
    507
    508static unsigned long hash(struct super_block *sb, unsigned long hashval)
    509{
    510	unsigned long tmp;
    511
    512	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
    513			L1_CACHE_BYTES;
    514	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
    515	return tmp & i_hash_mask;
    516}
    517
    518/**
    519 *	__insert_inode_hash - hash an inode
    520 *	@inode: unhashed inode
    521 *	@hashval: unsigned long value used to locate this object in the
    522 *		inode_hashtable.
    523 *
    524 *	Add an inode to the inode hash for this superblock.
    525 */
    526void __insert_inode_hash(struct inode *inode, unsigned long hashval)
    527{
    528	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
    529
    530	spin_lock(&inode_hash_lock);
    531	spin_lock(&inode->i_lock);
    532	hlist_add_head_rcu(&inode->i_hash, b);
    533	spin_unlock(&inode->i_lock);
    534	spin_unlock(&inode_hash_lock);
    535}
    536EXPORT_SYMBOL(__insert_inode_hash);
    537
    538/**
    539 *	__remove_inode_hash - remove an inode from the hash
    540 *	@inode: inode to unhash
    541 *
    542 *	Remove an inode from the superblock.
    543 */
    544void __remove_inode_hash(struct inode *inode)
    545{
    546	spin_lock(&inode_hash_lock);
    547	spin_lock(&inode->i_lock);
    548	hlist_del_init_rcu(&inode->i_hash);
    549	spin_unlock(&inode->i_lock);
    550	spin_unlock(&inode_hash_lock);
    551}
    552EXPORT_SYMBOL(__remove_inode_hash);
    553
    554void dump_mapping(const struct address_space *mapping)
    555{
    556	struct inode *host;
    557	const struct address_space_operations *a_ops;
    558	struct hlist_node *dentry_first;
    559	struct dentry *dentry_ptr;
    560	struct dentry dentry;
    561	unsigned long ino;
    562
    563	/*
    564	 * If mapping is an invalid pointer, we don't want to crash
    565	 * accessing it, so probe everything depending on it carefully.
    566	 */
    567	if (get_kernel_nofault(host, &mapping->host) ||
    568	    get_kernel_nofault(a_ops, &mapping->a_ops)) {
    569		pr_warn("invalid mapping:%px\n", mapping);
    570		return;
    571	}
    572
    573	if (!host) {
    574		pr_warn("aops:%ps\n", a_ops);
    575		return;
    576	}
    577
    578	if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
    579	    get_kernel_nofault(ino, &host->i_ino)) {
    580		pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
    581		return;
    582	}
    583
    584	if (!dentry_first) {
    585		pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
    586		return;
    587	}
    588
    589	dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
    590	if (get_kernel_nofault(dentry, dentry_ptr)) {
    591		pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
    592				a_ops, ino, dentry_ptr);
    593		return;
    594	}
    595
    596	/*
    597	 * if dentry is corrupted, the %pd handler may still crash,
    598	 * but it's unlikely that we reach here with a corrupt mapping
    599	 */
    600	pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry);
    601}
    602
    603void clear_inode(struct inode *inode)
    604{
    605	/*
    606	 * We have to cycle the i_pages lock here because reclaim can be in the
    607	 * process of removing the last page (in __delete_from_page_cache())
    608	 * and we must not free the mapping under it.
    609	 */
    610	xa_lock_irq(&inode->i_data.i_pages);
    611	BUG_ON(inode->i_data.nrpages);
    612	/*
    613	 * Almost always, mapping_empty(&inode->i_data) here; but there are
    614	 * two known and long-standing ways in which nodes may get left behind
    615	 * (when deep radix-tree node allocation failed partway; or when THP
    616	 * collapse_file() failed). Until those two known cases are cleaned up,
    617	 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
    618	 * nor even WARN_ON(!mapping_empty).
    619	 */
    620	xa_unlock_irq(&inode->i_data.i_pages);
    621	BUG_ON(!list_empty(&inode->i_data.private_list));
    622	BUG_ON(!(inode->i_state & I_FREEING));
    623	BUG_ON(inode->i_state & I_CLEAR);
    624	BUG_ON(!list_empty(&inode->i_wb_list));
    625	/* don't need i_lock here, no concurrent mods to i_state */
    626	inode->i_state = I_FREEING | I_CLEAR;
    627}
    628EXPORT_SYMBOL(clear_inode);
    629
    630/*
    631 * Free the inode passed in, removing it from the lists it is still connected
    632 * to. We remove any pages still attached to the inode and wait for any IO that
    633 * is still in progress before finally destroying the inode.
    634 *
    635 * An inode must already be marked I_FREEING so that we avoid the inode being
    636 * moved back onto lists if we race with other code that manipulates the lists
    637 * (e.g. writeback_single_inode). The caller is responsible for setting this.
    638 *
    639 * An inode must already be removed from the LRU list before being evicted from
    640 * the cache. This should occur atomically with setting the I_FREEING state
    641 * flag, so no inodes here should ever be on the LRU when being evicted.
    642 */
    643static void evict(struct inode *inode)
    644{
    645	const struct super_operations *op = inode->i_sb->s_op;
    646
    647	BUG_ON(!(inode->i_state & I_FREEING));
    648	BUG_ON(!list_empty(&inode->i_lru));
    649
    650	if (!list_empty(&inode->i_io_list))
    651		inode_io_list_del(inode);
    652
    653	inode_sb_list_del(inode);
    654
    655	/*
    656	 * Wait for flusher thread to be done with the inode so that filesystem
    657	 * does not start destroying it while writeback is still running. Since
    658	 * the inode has I_FREEING set, flusher thread won't start new work on
    659	 * the inode.  We just have to wait for running writeback to finish.
    660	 */
    661	inode_wait_for_writeback(inode);
    662
    663	if (op->evict_inode) {
    664		op->evict_inode(inode);
    665	} else {
    666		truncate_inode_pages_final(&inode->i_data);
    667		clear_inode(inode);
    668	}
    669	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
    670		cd_forget(inode);
    671
    672	remove_inode_hash(inode);
    673
    674	spin_lock(&inode->i_lock);
    675	wake_up_bit(&inode->i_state, __I_NEW);
    676	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
    677	spin_unlock(&inode->i_lock);
    678
    679	destroy_inode(inode);
    680}
    681
    682/*
    683 * dispose_list - dispose of the contents of a local list
    684 * @head: the head of the list to free
    685 *
    686 * Dispose-list gets a local list with local inodes in it, so it doesn't
    687 * need to worry about list corruption and SMP locks.
    688 */
    689static void dispose_list(struct list_head *head)
    690{
    691	while (!list_empty(head)) {
    692		struct inode *inode;
    693
    694		inode = list_first_entry(head, struct inode, i_lru);
    695		list_del_init(&inode->i_lru);
    696
    697		evict(inode);
    698		cond_resched();
    699	}
    700}
    701
    702/**
    703 * evict_inodes	- evict all evictable inodes for a superblock
    704 * @sb:		superblock to operate on
    705 *
    706 * Make sure that no inodes with zero refcount are retained.  This is
    707 * called by superblock shutdown after having SB_ACTIVE flag removed,
    708 * so any inode reaching zero refcount during or after that call will
    709 * be immediately evicted.
    710 */
    711void evict_inodes(struct super_block *sb)
    712{
    713	struct inode *inode, *next;
    714	LIST_HEAD(dispose);
    715
    716again:
    717	spin_lock(&sb->s_inode_list_lock);
    718	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
    719		if (atomic_read(&inode->i_count))
    720			continue;
    721
    722		spin_lock(&inode->i_lock);
    723		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
    724			spin_unlock(&inode->i_lock);
    725			continue;
    726		}
    727
    728		inode->i_state |= I_FREEING;
    729		inode_lru_list_del(inode);
    730		spin_unlock(&inode->i_lock);
    731		list_add(&inode->i_lru, &dispose);
    732
    733		/*
    734		 * We can have a ton of inodes to evict at unmount time given
    735		 * enough memory, check to see if we need to go to sleep for a
    736		 * bit so we don't livelock.
    737		 */
    738		if (need_resched()) {
    739			spin_unlock(&sb->s_inode_list_lock);
    740			cond_resched();
    741			dispose_list(&dispose);
    742			goto again;
    743		}
    744	}
    745	spin_unlock(&sb->s_inode_list_lock);
    746
    747	dispose_list(&dispose);
    748}
    749EXPORT_SYMBOL_GPL(evict_inodes);
    750
    751/**
    752 * invalidate_inodes	- attempt to free all inodes on a superblock
    753 * @sb:		superblock to operate on
    754 * @kill_dirty: flag to guide handling of dirty inodes
    755 *
    756 * Attempts to free all inodes for a given superblock.  If there were any
    757 * busy inodes return a non-zero value, else zero.
    758 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
    759 * them as busy.
    760 */
    761int invalidate_inodes(struct super_block *sb, bool kill_dirty)
    762{
    763	int busy = 0;
    764	struct inode *inode, *next;
    765	LIST_HEAD(dispose);
    766
    767again:
    768	spin_lock(&sb->s_inode_list_lock);
    769	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
    770		spin_lock(&inode->i_lock);
    771		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
    772			spin_unlock(&inode->i_lock);
    773			continue;
    774		}
    775		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
    776			spin_unlock(&inode->i_lock);
    777			busy = 1;
    778			continue;
    779		}
    780		if (atomic_read(&inode->i_count)) {
    781			spin_unlock(&inode->i_lock);
    782			busy = 1;
    783			continue;
    784		}
    785
    786		inode->i_state |= I_FREEING;
    787		inode_lru_list_del(inode);
    788		spin_unlock(&inode->i_lock);
    789		list_add(&inode->i_lru, &dispose);
    790		if (need_resched()) {
    791			spin_unlock(&sb->s_inode_list_lock);
    792			cond_resched();
    793			dispose_list(&dispose);
    794			goto again;
    795		}
    796	}
    797	spin_unlock(&sb->s_inode_list_lock);
    798
    799	dispose_list(&dispose);
    800
    801	return busy;
    802}
    803
    804/*
    805 * Isolate the inode from the LRU in preparation for freeing it.
    806 *
    807 * If the inode has the I_REFERENCED flag set, then it means that it has been
    808 * used recently - the flag is set in iput_final(). When we encounter such an
    809 * inode, clear the flag and move it to the back of the LRU so it gets another
    810 * pass through the LRU before it gets reclaimed. This is necessary because of
    811 * the fact we are doing lazy LRU updates to minimise lock contention so the
    812 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
    813 * with this flag set because they are the inodes that are out of order.
    814 */
    815static enum lru_status inode_lru_isolate(struct list_head *item,
    816		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
    817{
    818	struct list_head *freeable = arg;
    819	struct inode	*inode = container_of(item, struct inode, i_lru);
    820
    821	/*
    822	 * We are inverting the lru lock/inode->i_lock here, so use a
    823	 * trylock. If we fail to get the lock, just skip it.
    824	 */
    825	if (!spin_trylock(&inode->i_lock))
    826		return LRU_SKIP;
    827
    828	/*
    829	 * Inodes can get referenced, redirtied, or repopulated while
    830	 * they're already on the LRU, and this can make them
    831	 * unreclaimable for a while. Remove them lazily here; iput,
    832	 * sync, or the last page cache deletion will requeue them.
    833	 */
    834	if (atomic_read(&inode->i_count) ||
    835	    (inode->i_state & ~I_REFERENCED) ||
    836	    !mapping_shrinkable(&inode->i_data)) {
    837		list_lru_isolate(lru, &inode->i_lru);
    838		spin_unlock(&inode->i_lock);
    839		this_cpu_dec(nr_unused);
    840		return LRU_REMOVED;
    841	}
    842
    843	/* Recently referenced inodes get one more pass */
    844	if (inode->i_state & I_REFERENCED) {
    845		inode->i_state &= ~I_REFERENCED;
    846		spin_unlock(&inode->i_lock);
    847		return LRU_ROTATE;
    848	}
    849
    850	/*
    851	 * On highmem systems, mapping_shrinkable() permits dropping
    852	 * page cache in order to free up struct inodes: lowmem might
    853	 * be under pressure before the cache inside the highmem zone.
    854	 */
    855	if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
    856		__iget(inode);
    857		spin_unlock(&inode->i_lock);
    858		spin_unlock(lru_lock);
    859		if (remove_inode_buffers(inode)) {
    860			unsigned long reap;
    861			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
    862			if (current_is_kswapd())
    863				__count_vm_events(KSWAPD_INODESTEAL, reap);
    864			else
    865				__count_vm_events(PGINODESTEAL, reap);
    866			if (current->reclaim_state)
    867				current->reclaim_state->reclaimed_slab += reap;
    868		}
    869		iput(inode);
    870		spin_lock(lru_lock);
    871		return LRU_RETRY;
    872	}
    873
    874	WARN_ON(inode->i_state & I_NEW);
    875	inode->i_state |= I_FREEING;
    876	list_lru_isolate_move(lru, &inode->i_lru, freeable);
    877	spin_unlock(&inode->i_lock);
    878
    879	this_cpu_dec(nr_unused);
    880	return LRU_REMOVED;
    881}
    882
    883/*
    884 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
    885 * This is called from the superblock shrinker function with a number of inodes
    886 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
    887 * then are freed outside inode_lock by dispose_list().
    888 */
    889long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
    890{
    891	LIST_HEAD(freeable);
    892	long freed;
    893
    894	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
    895				     inode_lru_isolate, &freeable);
    896	dispose_list(&freeable);
    897	return freed;
    898}
    899
    900static void __wait_on_freeing_inode(struct inode *inode);
    901/*
    902 * Called with the inode lock held.
    903 */
    904static struct inode *find_inode(struct super_block *sb,
    905				struct hlist_head *head,
    906				int (*test)(struct inode *, void *),
    907				void *data)
    908{
    909	struct inode *inode = NULL;
    910
    911repeat:
    912	hlist_for_each_entry(inode, head, i_hash) {
    913		if (inode->i_sb != sb)
    914			continue;
    915		if (!test(inode, data))
    916			continue;
    917		spin_lock(&inode->i_lock);
    918		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
    919			__wait_on_freeing_inode(inode);
    920			goto repeat;
    921		}
    922		if (unlikely(inode->i_state & I_CREATING)) {
    923			spin_unlock(&inode->i_lock);
    924			return ERR_PTR(-ESTALE);
    925		}
    926		__iget(inode);
    927		spin_unlock(&inode->i_lock);
    928		return inode;
    929	}
    930	return NULL;
    931}
    932
    933/*
    934 * find_inode_fast is the fast path version of find_inode, see the comment at
    935 * iget_locked for details.
    936 */
    937static struct inode *find_inode_fast(struct super_block *sb,
    938				struct hlist_head *head, unsigned long ino)
    939{
    940	struct inode *inode = NULL;
    941
    942repeat:
    943	hlist_for_each_entry(inode, head, i_hash) {
    944		if (inode->i_ino != ino)
    945			continue;
    946		if (inode->i_sb != sb)
    947			continue;
    948		spin_lock(&inode->i_lock);
    949		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
    950			__wait_on_freeing_inode(inode);
    951			goto repeat;
    952		}
    953		if (unlikely(inode->i_state & I_CREATING)) {
    954			spin_unlock(&inode->i_lock);
    955			return ERR_PTR(-ESTALE);
    956		}
    957		__iget(inode);
    958		spin_unlock(&inode->i_lock);
    959		return inode;
    960	}
    961	return NULL;
    962}
    963
    964/*
    965 * Each cpu owns a range of LAST_INO_BATCH numbers.
    966 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
    967 * to renew the exhausted range.
    968 *
    969 * This does not significantly increase overflow rate because every CPU can
    970 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
    971 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
    972 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
    973 * overflow rate by 2x, which does not seem too significant.
    974 *
    975 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
    976 * error if st_ino won't fit in target struct field. Use 32bit counter
    977 * here to attempt to avoid that.
    978 */
    979#define LAST_INO_BATCH 1024
    980static DEFINE_PER_CPU(unsigned int, last_ino);
    981
    982unsigned int get_next_ino(void)
    983{
    984	unsigned int *p = &get_cpu_var(last_ino);
    985	unsigned int res = *p;
    986
    987#ifdef CONFIG_SMP
    988	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
    989		static atomic_t shared_last_ino;
    990		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
    991
    992		res = next - LAST_INO_BATCH;
    993	}
    994#endif
    995
    996	res++;
    997	/* get_next_ino should not provide a 0 inode number */
    998	if (unlikely(!res))
    999		res++;
   1000	*p = res;
   1001	put_cpu_var(last_ino);
   1002	return res;
   1003}
   1004EXPORT_SYMBOL(get_next_ino);
   1005
   1006/**
   1007 *	new_inode_pseudo 	- obtain an inode
   1008 *	@sb: superblock
   1009 *
   1010 *	Allocates a new inode for given superblock.
   1011 *	Inode wont be chained in superblock s_inodes list
   1012 *	This means :
   1013 *	- fs can't be unmount
   1014 *	- quotas, fsnotify, writeback can't work
   1015 */
   1016struct inode *new_inode_pseudo(struct super_block *sb)
   1017{
   1018	struct inode *inode = alloc_inode(sb);
   1019
   1020	if (inode) {
   1021		spin_lock(&inode->i_lock);
   1022		inode->i_state = 0;
   1023		spin_unlock(&inode->i_lock);
   1024		INIT_LIST_HEAD(&inode->i_sb_list);
   1025	}
   1026	return inode;
   1027}
   1028
   1029/**
   1030 *	new_inode 	- obtain an inode
   1031 *	@sb: superblock
   1032 *
   1033 *	Allocates a new inode for given superblock. The default gfp_mask
   1034 *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
   1035 *	If HIGHMEM pages are unsuitable or it is known that pages allocated
   1036 *	for the page cache are not reclaimable or migratable,
   1037 *	mapping_set_gfp_mask() must be called with suitable flags on the
   1038 *	newly created inode's mapping
   1039 *
   1040 */
   1041struct inode *new_inode(struct super_block *sb)
   1042{
   1043	struct inode *inode;
   1044
   1045	spin_lock_prefetch(&sb->s_inode_list_lock);
   1046
   1047	inode = new_inode_pseudo(sb);
   1048	if (inode)
   1049		inode_sb_list_add(inode);
   1050	return inode;
   1051}
   1052EXPORT_SYMBOL(new_inode);
   1053
   1054#ifdef CONFIG_DEBUG_LOCK_ALLOC
   1055void lockdep_annotate_inode_mutex_key(struct inode *inode)
   1056{
   1057	if (S_ISDIR(inode->i_mode)) {
   1058		struct file_system_type *type = inode->i_sb->s_type;
   1059
   1060		/* Set new key only if filesystem hasn't already changed it */
   1061		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
   1062			/*
   1063			 * ensure nobody is actually holding i_mutex
   1064			 */
   1065			// mutex_destroy(&inode->i_mutex);
   1066			init_rwsem(&inode->i_rwsem);
   1067			lockdep_set_class(&inode->i_rwsem,
   1068					  &type->i_mutex_dir_key);
   1069		}
   1070	}
   1071}
   1072EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
   1073#endif
   1074
   1075/**
   1076 * unlock_new_inode - clear the I_NEW state and wake up any waiters
   1077 * @inode:	new inode to unlock
   1078 *
   1079 * Called when the inode is fully initialised to clear the new state of the
   1080 * inode and wake up anyone waiting for the inode to finish initialisation.
   1081 */
   1082void unlock_new_inode(struct inode *inode)
   1083{
   1084	lockdep_annotate_inode_mutex_key(inode);
   1085	spin_lock(&inode->i_lock);
   1086	WARN_ON(!(inode->i_state & I_NEW));
   1087	inode->i_state &= ~I_NEW & ~I_CREATING;
   1088	smp_mb();
   1089	wake_up_bit(&inode->i_state, __I_NEW);
   1090	spin_unlock(&inode->i_lock);
   1091}
   1092EXPORT_SYMBOL(unlock_new_inode);
   1093
   1094void discard_new_inode(struct inode *inode)
   1095{
   1096	lockdep_annotate_inode_mutex_key(inode);
   1097	spin_lock(&inode->i_lock);
   1098	WARN_ON(!(inode->i_state & I_NEW));
   1099	inode->i_state &= ~I_NEW;
   1100	smp_mb();
   1101	wake_up_bit(&inode->i_state, __I_NEW);
   1102	spin_unlock(&inode->i_lock);
   1103	iput(inode);
   1104}
   1105EXPORT_SYMBOL(discard_new_inode);
   1106
   1107/**
   1108 * lock_two_nondirectories - take two i_mutexes on non-directory objects
   1109 *
   1110 * Lock any non-NULL argument that is not a directory.
   1111 * Zero, one or two objects may be locked by this function.
   1112 *
   1113 * @inode1: first inode to lock
   1114 * @inode2: second inode to lock
   1115 */
   1116void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
   1117{
   1118	if (inode1 > inode2)
   1119		swap(inode1, inode2);
   1120
   1121	if (inode1 && !S_ISDIR(inode1->i_mode))
   1122		inode_lock(inode1);
   1123	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
   1124		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
   1125}
   1126EXPORT_SYMBOL(lock_two_nondirectories);
   1127
   1128/**
   1129 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
   1130 * @inode1: first inode to unlock
   1131 * @inode2: second inode to unlock
   1132 */
   1133void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
   1134{
   1135	if (inode1 && !S_ISDIR(inode1->i_mode))
   1136		inode_unlock(inode1);
   1137	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
   1138		inode_unlock(inode2);
   1139}
   1140EXPORT_SYMBOL(unlock_two_nondirectories);
   1141
   1142/**
   1143 * inode_insert5 - obtain an inode from a mounted file system
   1144 * @inode:	pre-allocated inode to use for insert to cache
   1145 * @hashval:	hash value (usually inode number) to get
   1146 * @test:	callback used for comparisons between inodes
   1147 * @set:	callback used to initialize a new struct inode
   1148 * @data:	opaque data pointer to pass to @test and @set
   1149 *
   1150 * Search for the inode specified by @hashval and @data in the inode cache,
   1151 * and if present it is return it with an increased reference count. This is
   1152 * a variant of iget5_locked() for callers that don't want to fail on memory
   1153 * allocation of inode.
   1154 *
   1155 * If the inode is not in cache, insert the pre-allocated inode to cache and
   1156 * return it locked, hashed, and with the I_NEW flag set. The file system gets
   1157 * to fill it in before unlocking it via unlock_new_inode().
   1158 *
   1159 * Note both @test and @set are called with the inode_hash_lock held, so can't
   1160 * sleep.
   1161 */
   1162struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
   1163			    int (*test)(struct inode *, void *),
   1164			    int (*set)(struct inode *, void *), void *data)
   1165{
   1166	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
   1167	struct inode *old;
   1168	bool creating = inode->i_state & I_CREATING;
   1169
   1170again:
   1171	spin_lock(&inode_hash_lock);
   1172	old = find_inode(inode->i_sb, head, test, data);
   1173	if (unlikely(old)) {
   1174		/*
   1175		 * Uhhuh, somebody else created the same inode under us.
   1176		 * Use the old inode instead of the preallocated one.
   1177		 */
   1178		spin_unlock(&inode_hash_lock);
   1179		if (IS_ERR(old))
   1180			return NULL;
   1181		wait_on_inode(old);
   1182		if (unlikely(inode_unhashed(old))) {
   1183			iput(old);
   1184			goto again;
   1185		}
   1186		return old;
   1187	}
   1188
   1189	if (set && unlikely(set(inode, data))) {
   1190		inode = NULL;
   1191		goto unlock;
   1192	}
   1193
   1194	/*
   1195	 * Return the locked inode with I_NEW set, the
   1196	 * caller is responsible for filling in the contents
   1197	 */
   1198	spin_lock(&inode->i_lock);
   1199	inode->i_state |= I_NEW;
   1200	hlist_add_head_rcu(&inode->i_hash, head);
   1201	spin_unlock(&inode->i_lock);
   1202	if (!creating)
   1203		inode_sb_list_add(inode);
   1204unlock:
   1205	spin_unlock(&inode_hash_lock);
   1206
   1207	return inode;
   1208}
   1209EXPORT_SYMBOL(inode_insert5);
   1210
   1211/**
   1212 * iget5_locked - obtain an inode from a mounted file system
   1213 * @sb:		super block of file system
   1214 * @hashval:	hash value (usually inode number) to get
   1215 * @test:	callback used for comparisons between inodes
   1216 * @set:	callback used to initialize a new struct inode
   1217 * @data:	opaque data pointer to pass to @test and @set
   1218 *
   1219 * Search for the inode specified by @hashval and @data in the inode cache,
   1220 * and if present it is return it with an increased reference count. This is
   1221 * a generalized version of iget_locked() for file systems where the inode
   1222 * number is not sufficient for unique identification of an inode.
   1223 *
   1224 * If the inode is not in cache, allocate a new inode and return it locked,
   1225 * hashed, and with the I_NEW flag set. The file system gets to fill it in
   1226 * before unlocking it via unlock_new_inode().
   1227 *
   1228 * Note both @test and @set are called with the inode_hash_lock held, so can't
   1229 * sleep.
   1230 */
   1231struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
   1232		int (*test)(struct inode *, void *),
   1233		int (*set)(struct inode *, void *), void *data)
   1234{
   1235	struct inode *inode = ilookup5(sb, hashval, test, data);
   1236
   1237	if (!inode) {
   1238		struct inode *new = alloc_inode(sb);
   1239
   1240		if (new) {
   1241			new->i_state = 0;
   1242			inode = inode_insert5(new, hashval, test, set, data);
   1243			if (unlikely(inode != new))
   1244				destroy_inode(new);
   1245		}
   1246	}
   1247	return inode;
   1248}
   1249EXPORT_SYMBOL(iget5_locked);
   1250
   1251/**
   1252 * iget_locked - obtain an inode from a mounted file system
   1253 * @sb:		super block of file system
   1254 * @ino:	inode number to get
   1255 *
   1256 * Search for the inode specified by @ino in the inode cache and if present
   1257 * return it with an increased reference count. This is for file systems
   1258 * where the inode number is sufficient for unique identification of an inode.
   1259 *
   1260 * If the inode is not in cache, allocate a new inode and return it locked,
   1261 * hashed, and with the I_NEW flag set.  The file system gets to fill it in
   1262 * before unlocking it via unlock_new_inode().
   1263 */
   1264struct inode *iget_locked(struct super_block *sb, unsigned long ino)
   1265{
   1266	struct hlist_head *head = inode_hashtable + hash(sb, ino);
   1267	struct inode *inode;
   1268again:
   1269	spin_lock(&inode_hash_lock);
   1270	inode = find_inode_fast(sb, head, ino);
   1271	spin_unlock(&inode_hash_lock);
   1272	if (inode) {
   1273		if (IS_ERR(inode))
   1274			return NULL;
   1275		wait_on_inode(inode);
   1276		if (unlikely(inode_unhashed(inode))) {
   1277			iput(inode);
   1278			goto again;
   1279		}
   1280		return inode;
   1281	}
   1282
   1283	inode = alloc_inode(sb);
   1284	if (inode) {
   1285		struct inode *old;
   1286
   1287		spin_lock(&inode_hash_lock);
   1288		/* We released the lock, so.. */
   1289		old = find_inode_fast(sb, head, ino);
   1290		if (!old) {
   1291			inode->i_ino = ino;
   1292			spin_lock(&inode->i_lock);
   1293			inode->i_state = I_NEW;
   1294			hlist_add_head_rcu(&inode->i_hash, head);
   1295			spin_unlock(&inode->i_lock);
   1296			inode_sb_list_add(inode);
   1297			spin_unlock(&inode_hash_lock);
   1298
   1299			/* Return the locked inode with I_NEW set, the
   1300			 * caller is responsible for filling in the contents
   1301			 */
   1302			return inode;
   1303		}
   1304
   1305		/*
   1306		 * Uhhuh, somebody else created the same inode under
   1307		 * us. Use the old inode instead of the one we just
   1308		 * allocated.
   1309		 */
   1310		spin_unlock(&inode_hash_lock);
   1311		destroy_inode(inode);
   1312		if (IS_ERR(old))
   1313			return NULL;
   1314		inode = old;
   1315		wait_on_inode(inode);
   1316		if (unlikely(inode_unhashed(inode))) {
   1317			iput(inode);
   1318			goto again;
   1319		}
   1320	}
   1321	return inode;
   1322}
   1323EXPORT_SYMBOL(iget_locked);
   1324
   1325/*
   1326 * search the inode cache for a matching inode number.
   1327 * If we find one, then the inode number we are trying to
   1328 * allocate is not unique and so we should not use it.
   1329 *
   1330 * Returns 1 if the inode number is unique, 0 if it is not.
   1331 */
   1332static int test_inode_iunique(struct super_block *sb, unsigned long ino)
   1333{
   1334	struct hlist_head *b = inode_hashtable + hash(sb, ino);
   1335	struct inode *inode;
   1336
   1337	hlist_for_each_entry_rcu(inode, b, i_hash) {
   1338		if (inode->i_ino == ino && inode->i_sb == sb)
   1339			return 0;
   1340	}
   1341	return 1;
   1342}
   1343
   1344/**
   1345 *	iunique - get a unique inode number
   1346 *	@sb: superblock
   1347 *	@max_reserved: highest reserved inode number
   1348 *
   1349 *	Obtain an inode number that is unique on the system for a given
   1350 *	superblock. This is used by file systems that have no natural
   1351 *	permanent inode numbering system. An inode number is returned that
   1352 *	is higher than the reserved limit but unique.
   1353 *
   1354 *	BUGS:
   1355 *	With a large number of inodes live on the file system this function
   1356 *	currently becomes quite slow.
   1357 */
   1358ino_t iunique(struct super_block *sb, ino_t max_reserved)
   1359{
   1360	/*
   1361	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
   1362	 * error if st_ino won't fit in target struct field. Use 32bit counter
   1363	 * here to attempt to avoid that.
   1364	 */
   1365	static DEFINE_SPINLOCK(iunique_lock);
   1366	static unsigned int counter;
   1367	ino_t res;
   1368
   1369	rcu_read_lock();
   1370	spin_lock(&iunique_lock);
   1371	do {
   1372		if (counter <= max_reserved)
   1373			counter = max_reserved + 1;
   1374		res = counter++;
   1375	} while (!test_inode_iunique(sb, res));
   1376	spin_unlock(&iunique_lock);
   1377	rcu_read_unlock();
   1378
   1379	return res;
   1380}
   1381EXPORT_SYMBOL(iunique);
   1382
   1383struct inode *igrab(struct inode *inode)
   1384{
   1385	spin_lock(&inode->i_lock);
   1386	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
   1387		__iget(inode);
   1388		spin_unlock(&inode->i_lock);
   1389	} else {
   1390		spin_unlock(&inode->i_lock);
   1391		/*
   1392		 * Handle the case where s_op->clear_inode is not been
   1393		 * called yet, and somebody is calling igrab
   1394		 * while the inode is getting freed.
   1395		 */
   1396		inode = NULL;
   1397	}
   1398	return inode;
   1399}
   1400EXPORT_SYMBOL(igrab);
   1401
   1402/**
   1403 * ilookup5_nowait - search for an inode in the inode cache
   1404 * @sb:		super block of file system to search
   1405 * @hashval:	hash value (usually inode number) to search for
   1406 * @test:	callback used for comparisons between inodes
   1407 * @data:	opaque data pointer to pass to @test
   1408 *
   1409 * Search for the inode specified by @hashval and @data in the inode cache.
   1410 * If the inode is in the cache, the inode is returned with an incremented
   1411 * reference count.
   1412 *
   1413 * Note: I_NEW is not waited upon so you have to be very careful what you do
   1414 * with the returned inode.  You probably should be using ilookup5() instead.
   1415 *
   1416 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
   1417 */
   1418struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
   1419		int (*test)(struct inode *, void *), void *data)
   1420{
   1421	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
   1422	struct inode *inode;
   1423
   1424	spin_lock(&inode_hash_lock);
   1425	inode = find_inode(sb, head, test, data);
   1426	spin_unlock(&inode_hash_lock);
   1427
   1428	return IS_ERR(inode) ? NULL : inode;
   1429}
   1430EXPORT_SYMBOL(ilookup5_nowait);
   1431
   1432/**
   1433 * ilookup5 - search for an inode in the inode cache
   1434 * @sb:		super block of file system to search
   1435 * @hashval:	hash value (usually inode number) to search for
   1436 * @test:	callback used for comparisons between inodes
   1437 * @data:	opaque data pointer to pass to @test
   1438 *
   1439 * Search for the inode specified by @hashval and @data in the inode cache,
   1440 * and if the inode is in the cache, return the inode with an incremented
   1441 * reference count.  Waits on I_NEW before returning the inode.
   1442 * returned with an incremented reference count.
   1443 *
   1444 * This is a generalized version of ilookup() for file systems where the
   1445 * inode number is not sufficient for unique identification of an inode.
   1446 *
   1447 * Note: @test is called with the inode_hash_lock held, so can't sleep.
   1448 */
   1449struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
   1450		int (*test)(struct inode *, void *), void *data)
   1451{
   1452	struct inode *inode;
   1453again:
   1454	inode = ilookup5_nowait(sb, hashval, test, data);
   1455	if (inode) {
   1456		wait_on_inode(inode);
   1457		if (unlikely(inode_unhashed(inode))) {
   1458			iput(inode);
   1459			goto again;
   1460		}
   1461	}
   1462	return inode;
   1463}
   1464EXPORT_SYMBOL(ilookup5);
   1465
   1466/**
   1467 * ilookup - search for an inode in the inode cache
   1468 * @sb:		super block of file system to search
   1469 * @ino:	inode number to search for
   1470 *
   1471 * Search for the inode @ino in the inode cache, and if the inode is in the
   1472 * cache, the inode is returned with an incremented reference count.
   1473 */
   1474struct inode *ilookup(struct super_block *sb, unsigned long ino)
   1475{
   1476	struct hlist_head *head = inode_hashtable + hash(sb, ino);
   1477	struct inode *inode;
   1478again:
   1479	spin_lock(&inode_hash_lock);
   1480	inode = find_inode_fast(sb, head, ino);
   1481	spin_unlock(&inode_hash_lock);
   1482
   1483	if (inode) {
   1484		if (IS_ERR(inode))
   1485			return NULL;
   1486		wait_on_inode(inode);
   1487		if (unlikely(inode_unhashed(inode))) {
   1488			iput(inode);
   1489			goto again;
   1490		}
   1491	}
   1492	return inode;
   1493}
   1494EXPORT_SYMBOL(ilookup);
   1495
   1496/**
   1497 * find_inode_nowait - find an inode in the inode cache
   1498 * @sb:		super block of file system to search
   1499 * @hashval:	hash value (usually inode number) to search for
   1500 * @match:	callback used for comparisons between inodes
   1501 * @data:	opaque data pointer to pass to @match
   1502 *
   1503 * Search for the inode specified by @hashval and @data in the inode
   1504 * cache, where the helper function @match will return 0 if the inode
   1505 * does not match, 1 if the inode does match, and -1 if the search
   1506 * should be stopped.  The @match function must be responsible for
   1507 * taking the i_lock spin_lock and checking i_state for an inode being
   1508 * freed or being initialized, and incrementing the reference count
   1509 * before returning 1.  It also must not sleep, since it is called with
   1510 * the inode_hash_lock spinlock held.
   1511 *
   1512 * This is a even more generalized version of ilookup5() when the
   1513 * function must never block --- find_inode() can block in
   1514 * __wait_on_freeing_inode() --- or when the caller can not increment
   1515 * the reference count because the resulting iput() might cause an
   1516 * inode eviction.  The tradeoff is that the @match funtion must be
   1517 * very carefully implemented.
   1518 */
   1519struct inode *find_inode_nowait(struct super_block *sb,
   1520				unsigned long hashval,
   1521				int (*match)(struct inode *, unsigned long,
   1522					     void *),
   1523				void *data)
   1524{
   1525	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
   1526	struct inode *inode, *ret_inode = NULL;
   1527	int mval;
   1528
   1529	spin_lock(&inode_hash_lock);
   1530	hlist_for_each_entry(inode, head, i_hash) {
   1531		if (inode->i_sb != sb)
   1532			continue;
   1533		mval = match(inode, hashval, data);
   1534		if (mval == 0)
   1535			continue;
   1536		if (mval == 1)
   1537			ret_inode = inode;
   1538		goto out;
   1539	}
   1540out:
   1541	spin_unlock(&inode_hash_lock);
   1542	return ret_inode;
   1543}
   1544EXPORT_SYMBOL(find_inode_nowait);
   1545
   1546/**
   1547 * find_inode_rcu - find an inode in the inode cache
   1548 * @sb:		Super block of file system to search
   1549 * @hashval:	Key to hash
   1550 * @test:	Function to test match on an inode
   1551 * @data:	Data for test function
   1552 *
   1553 * Search for the inode specified by @hashval and @data in the inode cache,
   1554 * where the helper function @test will return 0 if the inode does not match
   1555 * and 1 if it does.  The @test function must be responsible for taking the
   1556 * i_lock spin_lock and checking i_state for an inode being freed or being
   1557 * initialized.
   1558 *
   1559 * If successful, this will return the inode for which the @test function
   1560 * returned 1 and NULL otherwise.
   1561 *
   1562 * The @test function is not permitted to take a ref on any inode presented.
   1563 * It is also not permitted to sleep.
   1564 *
   1565 * The caller must hold the RCU read lock.
   1566 */
   1567struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
   1568			     int (*test)(struct inode *, void *), void *data)
   1569{
   1570	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
   1571	struct inode *inode;
   1572
   1573	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
   1574			 "suspicious find_inode_rcu() usage");
   1575
   1576	hlist_for_each_entry_rcu(inode, head, i_hash) {
   1577		if (inode->i_sb == sb &&
   1578		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
   1579		    test(inode, data))
   1580			return inode;
   1581	}
   1582	return NULL;
   1583}
   1584EXPORT_SYMBOL(find_inode_rcu);
   1585
   1586/**
   1587 * find_inode_by_ino_rcu - Find an inode in the inode cache
   1588 * @sb:		Super block of file system to search
   1589 * @ino:	The inode number to match
   1590 *
   1591 * Search for the inode specified by @hashval and @data in the inode cache,
   1592 * where the helper function @test will return 0 if the inode does not match
   1593 * and 1 if it does.  The @test function must be responsible for taking the
   1594 * i_lock spin_lock and checking i_state for an inode being freed or being
   1595 * initialized.
   1596 *
   1597 * If successful, this will return the inode for which the @test function
   1598 * returned 1 and NULL otherwise.
   1599 *
   1600 * The @test function is not permitted to take a ref on any inode presented.
   1601 * It is also not permitted to sleep.
   1602 *
   1603 * The caller must hold the RCU read lock.
   1604 */
   1605struct inode *find_inode_by_ino_rcu(struct super_block *sb,
   1606				    unsigned long ino)
   1607{
   1608	struct hlist_head *head = inode_hashtable + hash(sb, ino);
   1609	struct inode *inode;
   1610
   1611	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
   1612			 "suspicious find_inode_by_ino_rcu() usage");
   1613
   1614	hlist_for_each_entry_rcu(inode, head, i_hash) {
   1615		if (inode->i_ino == ino &&
   1616		    inode->i_sb == sb &&
   1617		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
   1618		    return inode;
   1619	}
   1620	return NULL;
   1621}
   1622EXPORT_SYMBOL(find_inode_by_ino_rcu);
   1623
   1624int insert_inode_locked(struct inode *inode)
   1625{
   1626	struct super_block *sb = inode->i_sb;
   1627	ino_t ino = inode->i_ino;
   1628	struct hlist_head *head = inode_hashtable + hash(sb, ino);
   1629
   1630	while (1) {
   1631		struct inode *old = NULL;
   1632		spin_lock(&inode_hash_lock);
   1633		hlist_for_each_entry(old, head, i_hash) {
   1634			if (old->i_ino != ino)
   1635				continue;
   1636			if (old->i_sb != sb)
   1637				continue;
   1638			spin_lock(&old->i_lock);
   1639			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
   1640				spin_unlock(&old->i_lock);
   1641				continue;
   1642			}
   1643			break;
   1644		}
   1645		if (likely(!old)) {
   1646			spin_lock(&inode->i_lock);
   1647			inode->i_state |= I_NEW | I_CREATING;
   1648			hlist_add_head_rcu(&inode->i_hash, head);
   1649			spin_unlock(&inode->i_lock);
   1650			spin_unlock(&inode_hash_lock);
   1651			return 0;
   1652		}
   1653		if (unlikely(old->i_state & I_CREATING)) {
   1654			spin_unlock(&old->i_lock);
   1655			spin_unlock(&inode_hash_lock);
   1656			return -EBUSY;
   1657		}
   1658		__iget(old);
   1659		spin_unlock(&old->i_lock);
   1660		spin_unlock(&inode_hash_lock);
   1661		wait_on_inode(old);
   1662		if (unlikely(!inode_unhashed(old))) {
   1663			iput(old);
   1664			return -EBUSY;
   1665		}
   1666		iput(old);
   1667	}
   1668}
   1669EXPORT_SYMBOL(insert_inode_locked);
   1670
   1671int insert_inode_locked4(struct inode *inode, unsigned long hashval,
   1672		int (*test)(struct inode *, void *), void *data)
   1673{
   1674	struct inode *old;
   1675
   1676	inode->i_state |= I_CREATING;
   1677	old = inode_insert5(inode, hashval, test, NULL, data);
   1678
   1679	if (old != inode) {
   1680		iput(old);
   1681		return -EBUSY;
   1682	}
   1683	return 0;
   1684}
   1685EXPORT_SYMBOL(insert_inode_locked4);
   1686
   1687
   1688int generic_delete_inode(struct inode *inode)
   1689{
   1690	return 1;
   1691}
   1692EXPORT_SYMBOL(generic_delete_inode);
   1693
   1694/*
   1695 * Called when we're dropping the last reference
   1696 * to an inode.
   1697 *
   1698 * Call the FS "drop_inode()" function, defaulting to
   1699 * the legacy UNIX filesystem behaviour.  If it tells
   1700 * us to evict inode, do so.  Otherwise, retain inode
   1701 * in cache if fs is alive, sync and evict if fs is
   1702 * shutting down.
   1703 */
   1704static void iput_final(struct inode *inode)
   1705{
   1706	struct super_block *sb = inode->i_sb;
   1707	const struct super_operations *op = inode->i_sb->s_op;
   1708	unsigned long state;
   1709	int drop;
   1710
   1711	WARN_ON(inode->i_state & I_NEW);
   1712
   1713	if (op->drop_inode)
   1714		drop = op->drop_inode(inode);
   1715	else
   1716		drop = generic_drop_inode(inode);
   1717
   1718	if (!drop &&
   1719	    !(inode->i_state & I_DONTCACHE) &&
   1720	    (sb->s_flags & SB_ACTIVE)) {
   1721		__inode_add_lru(inode, true);
   1722		spin_unlock(&inode->i_lock);
   1723		return;
   1724	}
   1725
   1726	state = inode->i_state;
   1727	if (!drop) {
   1728		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
   1729		spin_unlock(&inode->i_lock);
   1730
   1731		write_inode_now(inode, 1);
   1732
   1733		spin_lock(&inode->i_lock);
   1734		state = inode->i_state;
   1735		WARN_ON(state & I_NEW);
   1736		state &= ~I_WILL_FREE;
   1737	}
   1738
   1739	WRITE_ONCE(inode->i_state, state | I_FREEING);
   1740	if (!list_empty(&inode->i_lru))
   1741		inode_lru_list_del(inode);
   1742	spin_unlock(&inode->i_lock);
   1743
   1744	evict(inode);
   1745}
   1746
   1747/**
   1748 *	iput	- put an inode
   1749 *	@inode: inode to put
   1750 *
   1751 *	Puts an inode, dropping its usage count. If the inode use count hits
   1752 *	zero, the inode is then freed and may also be destroyed.
   1753 *
   1754 *	Consequently, iput() can sleep.
   1755 */
   1756void iput(struct inode *inode)
   1757{
   1758	if (!inode)
   1759		return;
   1760	BUG_ON(inode->i_state & I_CLEAR);
   1761retry:
   1762	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
   1763		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
   1764			atomic_inc(&inode->i_count);
   1765			spin_unlock(&inode->i_lock);
   1766			trace_writeback_lazytime_iput(inode);
   1767			mark_inode_dirty_sync(inode);
   1768			goto retry;
   1769		}
   1770		iput_final(inode);
   1771	}
   1772}
   1773EXPORT_SYMBOL(iput);
   1774
   1775#ifdef CONFIG_BLOCK
   1776/**
   1777 *	bmap	- find a block number in a file
   1778 *	@inode:  inode owning the block number being requested
   1779 *	@block: pointer containing the block to find
   1780 *
   1781 *	Replaces the value in ``*block`` with the block number on the device holding
   1782 *	corresponding to the requested block number in the file.
   1783 *	That is, asked for block 4 of inode 1 the function will replace the
   1784 *	4 in ``*block``, with disk block relative to the disk start that holds that
   1785 *	block of the file.
   1786 *
   1787 *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
   1788 *	hole, returns 0 and ``*block`` is also set to 0.
   1789 */
   1790int bmap(struct inode *inode, sector_t *block)
   1791{
   1792	if (!inode->i_mapping->a_ops->bmap)
   1793		return -EINVAL;
   1794
   1795	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
   1796	return 0;
   1797}
   1798EXPORT_SYMBOL(bmap);
   1799#endif
   1800
   1801/*
   1802 * With relative atime, only update atime if the previous atime is
   1803 * earlier than either the ctime or mtime or if at least a day has
   1804 * passed since the last atime update.
   1805 */
   1806static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
   1807			     struct timespec64 now)
   1808{
   1809
   1810	if (!(mnt->mnt_flags & MNT_RELATIME))
   1811		return 1;
   1812	/*
   1813	 * Is mtime younger than atime? If yes, update atime:
   1814	 */
   1815	if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
   1816		return 1;
   1817	/*
   1818	 * Is ctime younger than atime? If yes, update atime:
   1819	 */
   1820	if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
   1821		return 1;
   1822
   1823	/*
   1824	 * Is the previous atime value older than a day? If yes,
   1825	 * update atime:
   1826	 */
   1827	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
   1828		return 1;
   1829	/*
   1830	 * Good, we can skip the atime update:
   1831	 */
   1832	return 0;
   1833}
   1834
   1835int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
   1836{
   1837	int dirty_flags = 0;
   1838
   1839	if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
   1840		if (flags & S_ATIME)
   1841			inode->i_atime = *time;
   1842		if (flags & S_CTIME)
   1843			inode->i_ctime = *time;
   1844		if (flags & S_MTIME)
   1845			inode->i_mtime = *time;
   1846
   1847		if (inode->i_sb->s_flags & SB_LAZYTIME)
   1848			dirty_flags |= I_DIRTY_TIME;
   1849		else
   1850			dirty_flags |= I_DIRTY_SYNC;
   1851	}
   1852
   1853	if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
   1854		dirty_flags |= I_DIRTY_SYNC;
   1855
   1856	__mark_inode_dirty(inode, dirty_flags);
   1857	return 0;
   1858}
   1859EXPORT_SYMBOL(generic_update_time);
   1860
   1861/*
   1862 * This does the actual work of updating an inodes time or version.  Must have
   1863 * had called mnt_want_write() before calling this.
   1864 */
   1865int inode_update_time(struct inode *inode, struct timespec64 *time, int flags)
   1866{
   1867	if (inode->i_op->update_time)
   1868		return inode->i_op->update_time(inode, time, flags);
   1869	return generic_update_time(inode, time, flags);
   1870}
   1871EXPORT_SYMBOL(inode_update_time);
   1872
   1873/**
   1874 *	atime_needs_update	-	update the access time
   1875 *	@path: the &struct path to update
   1876 *	@inode: inode to update
   1877 *
   1878 *	Update the accessed time on an inode and mark it for writeback.
   1879 *	This function automatically handles read only file systems and media,
   1880 *	as well as the "noatime" flag and inode specific "noatime" markers.
   1881 */
   1882bool atime_needs_update(const struct path *path, struct inode *inode)
   1883{
   1884	struct vfsmount *mnt = path->mnt;
   1885	struct timespec64 now;
   1886
   1887	if (inode->i_flags & S_NOATIME)
   1888		return false;
   1889
   1890	/* Atime updates will likely cause i_uid and i_gid to be written
   1891	 * back improprely if their true value is unknown to the vfs.
   1892	 */
   1893	if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode))
   1894		return false;
   1895
   1896	if (IS_NOATIME(inode))
   1897		return false;
   1898	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
   1899		return false;
   1900
   1901	if (mnt->mnt_flags & MNT_NOATIME)
   1902		return false;
   1903	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
   1904		return false;
   1905
   1906	now = current_time(inode);
   1907
   1908	if (!relatime_need_update(mnt, inode, now))
   1909		return false;
   1910
   1911	if (timespec64_equal(&inode->i_atime, &now))
   1912		return false;
   1913
   1914	return true;
   1915}
   1916
   1917void touch_atime(const struct path *path)
   1918{
   1919	struct vfsmount *mnt = path->mnt;
   1920	struct inode *inode = d_inode(path->dentry);
   1921	struct timespec64 now;
   1922
   1923	if (!atime_needs_update(path, inode))
   1924		return;
   1925
   1926	if (!sb_start_write_trylock(inode->i_sb))
   1927		return;
   1928
   1929	if (__mnt_want_write(mnt) != 0)
   1930		goto skip_update;
   1931	/*
   1932	 * File systems can error out when updating inodes if they need to
   1933	 * allocate new space to modify an inode (such is the case for
   1934	 * Btrfs), but since we touch atime while walking down the path we
   1935	 * really don't care if we failed to update the atime of the file,
   1936	 * so just ignore the return value.
   1937	 * We may also fail on filesystems that have the ability to make parts
   1938	 * of the fs read only, e.g. subvolumes in Btrfs.
   1939	 */
   1940	now = current_time(inode);
   1941	inode_update_time(inode, &now, S_ATIME);
   1942	__mnt_drop_write(mnt);
   1943skip_update:
   1944	sb_end_write(inode->i_sb);
   1945}
   1946EXPORT_SYMBOL(touch_atime);
   1947
   1948/*
   1949 * The logic we want is
   1950 *
   1951 *	if suid or (sgid and xgrp)
   1952 *		remove privs
   1953 */
   1954int should_remove_suid(struct dentry *dentry)
   1955{
   1956	umode_t mode = d_inode(dentry)->i_mode;
   1957	int kill = 0;
   1958
   1959	/* suid always must be killed */
   1960	if (unlikely(mode & S_ISUID))
   1961		kill = ATTR_KILL_SUID;
   1962
   1963	/*
   1964	 * sgid without any exec bits is just a mandatory locking mark; leave
   1965	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
   1966	 */
   1967	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
   1968		kill |= ATTR_KILL_SGID;
   1969
   1970	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
   1971		return kill;
   1972
   1973	return 0;
   1974}
   1975EXPORT_SYMBOL(should_remove_suid);
   1976
   1977/*
   1978 * Return mask of changes for notify_change() that need to be done as a
   1979 * response to write or truncate. Return 0 if nothing has to be changed.
   1980 * Negative value on error (change should be denied).
   1981 */
   1982int dentry_needs_remove_privs(struct dentry *dentry)
   1983{
   1984	struct inode *inode = d_inode(dentry);
   1985	int mask = 0;
   1986	int ret;
   1987
   1988	if (IS_NOSEC(inode))
   1989		return 0;
   1990
   1991	mask = should_remove_suid(dentry);
   1992	ret = security_inode_need_killpriv(dentry);
   1993	if (ret < 0)
   1994		return ret;
   1995	if (ret)
   1996		mask |= ATTR_KILL_PRIV;
   1997	return mask;
   1998}
   1999
   2000static int __remove_privs(struct user_namespace *mnt_userns,
   2001			  struct dentry *dentry, int kill)
   2002{
   2003	struct iattr newattrs;
   2004
   2005	newattrs.ia_valid = ATTR_FORCE | kill;
   2006	/*
   2007	 * Note we call this on write, so notify_change will not
   2008	 * encounter any conflicting delegations:
   2009	 */
   2010	return notify_change(mnt_userns, dentry, &newattrs, NULL);
   2011}
   2012
   2013/*
   2014 * Remove special file priviledges (suid, capabilities) when file is written
   2015 * to or truncated.
   2016 */
   2017int file_remove_privs(struct file *file)
   2018{
   2019	struct dentry *dentry = file_dentry(file);
   2020	struct inode *inode = file_inode(file);
   2021	int kill;
   2022	int error = 0;
   2023
   2024	/*
   2025	 * Fast path for nothing security related.
   2026	 * As well for non-regular files, e.g. blkdev inodes.
   2027	 * For example, blkdev_write_iter() might get here
   2028	 * trying to remove privs which it is not allowed to.
   2029	 */
   2030	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
   2031		return 0;
   2032
   2033	kill = dentry_needs_remove_privs(dentry);
   2034	if (kill < 0)
   2035		return kill;
   2036	if (kill)
   2037		error = __remove_privs(file_mnt_user_ns(file), dentry, kill);
   2038	if (!error)
   2039		inode_has_no_xattr(inode);
   2040
   2041	return error;
   2042}
   2043EXPORT_SYMBOL(file_remove_privs);
   2044
   2045/**
   2046 *	file_update_time	-	update mtime and ctime time
   2047 *	@file: file accessed
   2048 *
   2049 *	Update the mtime and ctime members of an inode and mark the inode
   2050 *	for writeback.  Note that this function is meant exclusively for
   2051 *	usage in the file write path of filesystems, and filesystems may
   2052 *	choose to explicitly ignore update via this function with the
   2053 *	S_NOCMTIME inode flag, e.g. for network filesystem where these
   2054 *	timestamps are handled by the server.  This can return an error for
   2055 *	file systems who need to allocate space in order to update an inode.
   2056 */
   2057
   2058int file_update_time(struct file *file)
   2059{
   2060	struct inode *inode = file_inode(file);
   2061	struct timespec64 now;
   2062	int sync_it = 0;
   2063	int ret;
   2064
   2065	/* First try to exhaust all avenues to not sync */
   2066	if (IS_NOCMTIME(inode))
   2067		return 0;
   2068
   2069	now = current_time(inode);
   2070	if (!timespec64_equal(&inode->i_mtime, &now))
   2071		sync_it = S_MTIME;
   2072
   2073	if (!timespec64_equal(&inode->i_ctime, &now))
   2074		sync_it |= S_CTIME;
   2075
   2076	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
   2077		sync_it |= S_VERSION;
   2078
   2079	if (!sync_it)
   2080		return 0;
   2081
   2082	/* Finally allowed to write? Takes lock. */
   2083	if (__mnt_want_write_file(file))
   2084		return 0;
   2085
   2086	ret = inode_update_time(inode, &now, sync_it);
   2087	__mnt_drop_write_file(file);
   2088
   2089	return ret;
   2090}
   2091EXPORT_SYMBOL(file_update_time);
   2092
   2093/* Caller must hold the file's inode lock */
   2094int file_modified(struct file *file)
   2095{
   2096	int err;
   2097
   2098	/*
   2099	 * Clear the security bits if the process is not being run by root.
   2100	 * This keeps people from modifying setuid and setgid binaries.
   2101	 */
   2102	err = file_remove_privs(file);
   2103	if (err)
   2104		return err;
   2105
   2106	if (unlikely(file->f_mode & FMODE_NOCMTIME))
   2107		return 0;
   2108
   2109	return file_update_time(file);
   2110}
   2111EXPORT_SYMBOL(file_modified);
   2112
   2113int inode_needs_sync(struct inode *inode)
   2114{
   2115	if (IS_SYNC(inode))
   2116		return 1;
   2117	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
   2118		return 1;
   2119	return 0;
   2120}
   2121EXPORT_SYMBOL(inode_needs_sync);
   2122
   2123/*
   2124 * If we try to find an inode in the inode hash while it is being
   2125 * deleted, we have to wait until the filesystem completes its
   2126 * deletion before reporting that it isn't found.  This function waits
   2127 * until the deletion _might_ have completed.  Callers are responsible
   2128 * to recheck inode state.
   2129 *
   2130 * It doesn't matter if I_NEW is not set initially, a call to
   2131 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
   2132 * will DTRT.
   2133 */
   2134static void __wait_on_freeing_inode(struct inode *inode)
   2135{
   2136	wait_queue_head_t *wq;
   2137	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
   2138	wq = bit_waitqueue(&inode->i_state, __I_NEW);
   2139	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
   2140	spin_unlock(&inode->i_lock);
   2141	spin_unlock(&inode_hash_lock);
   2142	schedule();
   2143	finish_wait(wq, &wait.wq_entry);
   2144	spin_lock(&inode_hash_lock);
   2145}
   2146
   2147static __initdata unsigned long ihash_entries;
   2148static int __init set_ihash_entries(char *str)
   2149{
   2150	if (!str)
   2151		return 0;
   2152	ihash_entries = simple_strtoul(str, &str, 0);
   2153	return 1;
   2154}
   2155__setup("ihash_entries=", set_ihash_entries);
   2156
   2157/*
   2158 * Initialize the waitqueues and inode hash table.
   2159 */
   2160void __init inode_init_early(void)
   2161{
   2162	/* If hashes are distributed across NUMA nodes, defer
   2163	 * hash allocation until vmalloc space is available.
   2164	 */
   2165	if (hashdist)
   2166		return;
   2167
   2168	inode_hashtable =
   2169		alloc_large_system_hash("Inode-cache",
   2170					sizeof(struct hlist_head),
   2171					ihash_entries,
   2172					14,
   2173					HASH_EARLY | HASH_ZERO,
   2174					&i_hash_shift,
   2175					&i_hash_mask,
   2176					0,
   2177					0);
   2178}
   2179
   2180void __init inode_init(void)
   2181{
   2182	/* inode slab cache */
   2183	inode_cachep = kmem_cache_create("inode_cache",
   2184					 sizeof(struct inode),
   2185					 0,
   2186					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
   2187					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
   2188					 init_once);
   2189
   2190	/* Hash may have been set up in inode_init_early */
   2191	if (!hashdist)
   2192		return;
   2193
   2194	inode_hashtable =
   2195		alloc_large_system_hash("Inode-cache",
   2196					sizeof(struct hlist_head),
   2197					ihash_entries,
   2198					14,
   2199					HASH_ZERO,
   2200					&i_hash_shift,
   2201					&i_hash_mask,
   2202					0,
   2203					0);
   2204}
   2205
   2206void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
   2207{
   2208	inode->i_mode = mode;
   2209	if (S_ISCHR(mode)) {
   2210		inode->i_fop = &def_chr_fops;
   2211		inode->i_rdev = rdev;
   2212	} else if (S_ISBLK(mode)) {
   2213		inode->i_fop = &def_blk_fops;
   2214		inode->i_rdev = rdev;
   2215	} else if (S_ISFIFO(mode))
   2216		inode->i_fop = &pipefifo_fops;
   2217	else if (S_ISSOCK(mode))
   2218		;	/* leave it no_open_fops */
   2219	else
   2220		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
   2221				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
   2222				  inode->i_ino);
   2223}
   2224EXPORT_SYMBOL(init_special_inode);
   2225
   2226/**
   2227 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
   2228 * @mnt_userns:	User namespace of the mount the inode was created from
   2229 * @inode: New inode
   2230 * @dir: Directory inode
   2231 * @mode: mode of the new inode
   2232 *
   2233 * If the inode has been created through an idmapped mount the user namespace of
   2234 * the vfsmount must be passed through @mnt_userns. This function will then take
   2235 * care to map the inode according to @mnt_userns before checking permissions
   2236 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
   2237 * checking is to be performed on the raw inode simply passs init_user_ns.
   2238 */
   2239void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode,
   2240		      const struct inode *dir, umode_t mode)
   2241{
   2242	inode_fsuid_set(inode, mnt_userns);
   2243	if (dir && dir->i_mode & S_ISGID) {
   2244		inode->i_gid = dir->i_gid;
   2245
   2246		/* Directories are special, and always inherit S_ISGID */
   2247		if (S_ISDIR(mode))
   2248			mode |= S_ISGID;
   2249		else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
   2250			 !in_group_p(i_gid_into_mnt(mnt_userns, dir)) &&
   2251			 !capable_wrt_inode_uidgid(mnt_userns, dir, CAP_FSETID))
   2252			mode &= ~S_ISGID;
   2253	} else
   2254		inode_fsgid_set(inode, mnt_userns);
   2255	inode->i_mode = mode;
   2256}
   2257EXPORT_SYMBOL(inode_init_owner);
   2258
   2259/**
   2260 * inode_owner_or_capable - check current task permissions to inode
   2261 * @mnt_userns:	user namespace of the mount the inode was found from
   2262 * @inode: inode being checked
   2263 *
   2264 * Return true if current either has CAP_FOWNER in a namespace with the
   2265 * inode owner uid mapped, or owns the file.
   2266 *
   2267 * If the inode has been found through an idmapped mount the user namespace of
   2268 * the vfsmount must be passed through @mnt_userns. This function will then take
   2269 * care to map the inode according to @mnt_userns before checking permissions.
   2270 * On non-idmapped mounts or if permission checking is to be performed on the
   2271 * raw inode simply passs init_user_ns.
   2272 */
   2273bool inode_owner_or_capable(struct user_namespace *mnt_userns,
   2274			    const struct inode *inode)
   2275{
   2276	kuid_t i_uid;
   2277	struct user_namespace *ns;
   2278
   2279	i_uid = i_uid_into_mnt(mnt_userns, inode);
   2280	if (uid_eq(current_fsuid(), i_uid))
   2281		return true;
   2282
   2283	ns = current_user_ns();
   2284	if (kuid_has_mapping(ns, i_uid) && ns_capable(ns, CAP_FOWNER))
   2285		return true;
   2286	return false;
   2287}
   2288EXPORT_SYMBOL(inode_owner_or_capable);
   2289
   2290/*
   2291 * Direct i/o helper functions
   2292 */
   2293static void __inode_dio_wait(struct inode *inode)
   2294{
   2295	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
   2296	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
   2297
   2298	do {
   2299		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
   2300		if (atomic_read(&inode->i_dio_count))
   2301			schedule();
   2302	} while (atomic_read(&inode->i_dio_count));
   2303	finish_wait(wq, &q.wq_entry);
   2304}
   2305
   2306/**
   2307 * inode_dio_wait - wait for outstanding DIO requests to finish
   2308 * @inode: inode to wait for
   2309 *
   2310 * Waits for all pending direct I/O requests to finish so that we can
   2311 * proceed with a truncate or equivalent operation.
   2312 *
   2313 * Must be called under a lock that serializes taking new references
   2314 * to i_dio_count, usually by inode->i_mutex.
   2315 */
   2316void inode_dio_wait(struct inode *inode)
   2317{
   2318	if (atomic_read(&inode->i_dio_count))
   2319		__inode_dio_wait(inode);
   2320}
   2321EXPORT_SYMBOL(inode_dio_wait);
   2322
   2323/*
   2324 * inode_set_flags - atomically set some inode flags
   2325 *
   2326 * Note: the caller should be holding i_mutex, or else be sure that
   2327 * they have exclusive access to the inode structure (i.e., while the
   2328 * inode is being instantiated).  The reason for the cmpxchg() loop
   2329 * --- which wouldn't be necessary if all code paths which modify
   2330 * i_flags actually followed this rule, is that there is at least one
   2331 * code path which doesn't today so we use cmpxchg() out of an abundance
   2332 * of caution.
   2333 *
   2334 * In the long run, i_mutex is overkill, and we should probably look
   2335 * at using the i_lock spinlock to protect i_flags, and then make sure
   2336 * it is so documented in include/linux/fs.h and that all code follows
   2337 * the locking convention!!
   2338 */
   2339void inode_set_flags(struct inode *inode, unsigned int flags,
   2340		     unsigned int mask)
   2341{
   2342	WARN_ON_ONCE(flags & ~mask);
   2343	set_mask_bits(&inode->i_flags, mask, flags);
   2344}
   2345EXPORT_SYMBOL(inode_set_flags);
   2346
   2347void inode_nohighmem(struct inode *inode)
   2348{
   2349	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
   2350}
   2351EXPORT_SYMBOL(inode_nohighmem);
   2352
   2353/**
   2354 * timestamp_truncate - Truncate timespec to a granularity
   2355 * @t: Timespec
   2356 * @inode: inode being updated
   2357 *
   2358 * Truncate a timespec to the granularity supported by the fs
   2359 * containing the inode. Always rounds down. gran must
   2360 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
   2361 */
   2362struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
   2363{
   2364	struct super_block *sb = inode->i_sb;
   2365	unsigned int gran = sb->s_time_gran;
   2366
   2367	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
   2368	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
   2369		t.tv_nsec = 0;
   2370
   2371	/* Avoid division in the common cases 1 ns and 1 s. */
   2372	if (gran == 1)
   2373		; /* nothing */
   2374	else if (gran == NSEC_PER_SEC)
   2375		t.tv_nsec = 0;
   2376	else if (gran > 1 && gran < NSEC_PER_SEC)
   2377		t.tv_nsec -= t.tv_nsec % gran;
   2378	else
   2379		WARN(1, "invalid file time granularity: %u", gran);
   2380	return t;
   2381}
   2382EXPORT_SYMBOL(timestamp_truncate);
   2383
   2384/**
   2385 * current_time - Return FS time
   2386 * @inode: inode.
   2387 *
   2388 * Return the current time truncated to the time granularity supported by
   2389 * the fs.
   2390 *
   2391 * Note that inode and inode->sb cannot be NULL.
   2392 * Otherwise, the function warns and returns time without truncation.
   2393 */
   2394struct timespec64 current_time(struct inode *inode)
   2395{
   2396	struct timespec64 now;
   2397
   2398	ktime_get_coarse_real_ts64(&now);
   2399
   2400	if (unlikely(!inode->i_sb)) {
   2401		WARN(1, "current_time() called with uninitialized super_block in the inode");
   2402		return now;
   2403	}
   2404
   2405	return timestamp_truncate(now, inode);
   2406}
   2407EXPORT_SYMBOL(current_time);