inode.c (65779B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * (C) 1997 Linus Torvalds 4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 5 */ 6#include <linux/export.h> 7#include <linux/fs.h> 8#include <linux/mm.h> 9#include <linux/backing-dev.h> 10#include <linux/hash.h> 11#include <linux/swap.h> 12#include <linux/security.h> 13#include <linux/cdev.h> 14#include <linux/memblock.h> 15#include <linux/fsnotify.h> 16#include <linux/mount.h> 17#include <linux/posix_acl.h> 18#include <linux/prefetch.h> 19#include <linux/buffer_head.h> /* for inode_has_buffers */ 20#include <linux/ratelimit.h> 21#include <linux/list_lru.h> 22#include <linux/iversion.h> 23#include <trace/events/writeback.h> 24#include "internal.h" 25 26/* 27 * Inode locking rules: 28 * 29 * inode->i_lock protects: 30 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list 31 * Inode LRU list locks protect: 32 * inode->i_sb->s_inode_lru, inode->i_lru 33 * inode->i_sb->s_inode_list_lock protects: 34 * inode->i_sb->s_inodes, inode->i_sb_list 35 * bdi->wb.list_lock protects: 36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 37 * inode_hash_lock protects: 38 * inode_hashtable, inode->i_hash 39 * 40 * Lock ordering: 41 * 42 * inode->i_sb->s_inode_list_lock 43 * inode->i_lock 44 * Inode LRU list locks 45 * 46 * bdi->wb.list_lock 47 * inode->i_lock 48 * 49 * inode_hash_lock 50 * inode->i_sb->s_inode_list_lock 51 * inode->i_lock 52 * 53 * iunique_lock 54 * inode_hash_lock 55 */ 56 57static unsigned int i_hash_mask __read_mostly; 58static unsigned int i_hash_shift __read_mostly; 59static struct hlist_head *inode_hashtable __read_mostly; 60static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 61 62/* 63 * Empty aops. Can be used for the cases where the user does not 64 * define any of the address_space operations. 65 */ 66const struct address_space_operations empty_aops = { 67}; 68EXPORT_SYMBOL(empty_aops); 69 70static DEFINE_PER_CPU(unsigned long, nr_inodes); 71static DEFINE_PER_CPU(unsigned long, nr_unused); 72 73static struct kmem_cache *inode_cachep __read_mostly; 74 75static long get_nr_inodes(void) 76{ 77 int i; 78 long sum = 0; 79 for_each_possible_cpu(i) 80 sum += per_cpu(nr_inodes, i); 81 return sum < 0 ? 0 : sum; 82} 83 84static inline long get_nr_inodes_unused(void) 85{ 86 int i; 87 long sum = 0; 88 for_each_possible_cpu(i) 89 sum += per_cpu(nr_unused, i); 90 return sum < 0 ? 0 : sum; 91} 92 93long get_nr_dirty_inodes(void) 94{ 95 /* not actually dirty inodes, but a wild approximation */ 96 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 97 return nr_dirty > 0 ? nr_dirty : 0; 98} 99 100/* 101 * Handle nr_inode sysctl 102 */ 103#ifdef CONFIG_SYSCTL 104/* 105 * Statistics gathering.. 106 */ 107static struct inodes_stat_t inodes_stat; 108 109static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer, 110 size_t *lenp, loff_t *ppos) 111{ 112 inodes_stat.nr_inodes = get_nr_inodes(); 113 inodes_stat.nr_unused = get_nr_inodes_unused(); 114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 115} 116 117static struct ctl_table inodes_sysctls[] = { 118 { 119 .procname = "inode-nr", 120 .data = &inodes_stat, 121 .maxlen = 2*sizeof(long), 122 .mode = 0444, 123 .proc_handler = proc_nr_inodes, 124 }, 125 { 126 .procname = "inode-state", 127 .data = &inodes_stat, 128 .maxlen = 7*sizeof(long), 129 .mode = 0444, 130 .proc_handler = proc_nr_inodes, 131 }, 132 { } 133}; 134 135static int __init init_fs_inode_sysctls(void) 136{ 137 register_sysctl_init("fs", inodes_sysctls); 138 return 0; 139} 140early_initcall(init_fs_inode_sysctls); 141#endif 142 143static int no_open(struct inode *inode, struct file *file) 144{ 145 return -ENXIO; 146} 147 148/** 149 * inode_init_always - perform inode structure initialisation 150 * @sb: superblock inode belongs to 151 * @inode: inode to initialise 152 * 153 * These are initializations that need to be done on every inode 154 * allocation as the fields are not initialised by slab allocation. 155 */ 156int inode_init_always(struct super_block *sb, struct inode *inode) 157{ 158 static const struct inode_operations empty_iops; 159 static const struct file_operations no_open_fops = {.open = no_open}; 160 struct address_space *const mapping = &inode->i_data; 161 162 inode->i_sb = sb; 163 inode->i_blkbits = sb->s_blocksize_bits; 164 inode->i_flags = 0; 165 atomic64_set(&inode->i_sequence, 0); 166 atomic_set(&inode->i_count, 1); 167 inode->i_op = &empty_iops; 168 inode->i_fop = &no_open_fops; 169 inode->i_ino = 0; 170 inode->__i_nlink = 1; 171 inode->i_opflags = 0; 172 if (sb->s_xattr) 173 inode->i_opflags |= IOP_XATTR; 174 i_uid_write(inode, 0); 175 i_gid_write(inode, 0); 176 atomic_set(&inode->i_writecount, 0); 177 inode->i_size = 0; 178 inode->i_write_hint = WRITE_LIFE_NOT_SET; 179 inode->i_blocks = 0; 180 inode->i_bytes = 0; 181 inode->i_generation = 0; 182 inode->i_pipe = NULL; 183 inode->i_cdev = NULL; 184 inode->i_link = NULL; 185 inode->i_dir_seq = 0; 186 inode->i_rdev = 0; 187 inode->dirtied_when = 0; 188 189#ifdef CONFIG_CGROUP_WRITEBACK 190 inode->i_wb_frn_winner = 0; 191 inode->i_wb_frn_avg_time = 0; 192 inode->i_wb_frn_history = 0; 193#endif 194 195 if (security_inode_alloc(inode)) 196 goto out; 197 spin_lock_init(&inode->i_lock); 198 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 199 200 init_rwsem(&inode->i_rwsem); 201 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 202 203 atomic_set(&inode->i_dio_count, 0); 204 205 mapping->a_ops = &empty_aops; 206 mapping->host = inode; 207 mapping->flags = 0; 208 mapping->wb_err = 0; 209 atomic_set(&mapping->i_mmap_writable, 0); 210#ifdef CONFIG_READ_ONLY_THP_FOR_FS 211 atomic_set(&mapping->nr_thps, 0); 212#endif 213 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 214 mapping->private_data = NULL; 215 mapping->writeback_index = 0; 216 init_rwsem(&mapping->invalidate_lock); 217 lockdep_set_class_and_name(&mapping->invalidate_lock, 218 &sb->s_type->invalidate_lock_key, 219 "mapping.invalidate_lock"); 220 inode->i_private = NULL; 221 inode->i_mapping = mapping; 222 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 223#ifdef CONFIG_FS_POSIX_ACL 224 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 225#endif 226 227#ifdef CONFIG_FSNOTIFY 228 inode->i_fsnotify_mask = 0; 229#endif 230 inode->i_flctx = NULL; 231 this_cpu_inc(nr_inodes); 232 233 return 0; 234out: 235 return -ENOMEM; 236} 237EXPORT_SYMBOL(inode_init_always); 238 239void free_inode_nonrcu(struct inode *inode) 240{ 241 kmem_cache_free(inode_cachep, inode); 242} 243EXPORT_SYMBOL(free_inode_nonrcu); 244 245static void i_callback(struct rcu_head *head) 246{ 247 struct inode *inode = container_of(head, struct inode, i_rcu); 248 if (inode->free_inode) 249 inode->free_inode(inode); 250 else 251 free_inode_nonrcu(inode); 252} 253 254static struct inode *alloc_inode(struct super_block *sb) 255{ 256 const struct super_operations *ops = sb->s_op; 257 struct inode *inode; 258 259 if (ops->alloc_inode) 260 inode = ops->alloc_inode(sb); 261 else 262 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL); 263 264 if (!inode) 265 return NULL; 266 267 if (unlikely(inode_init_always(sb, inode))) { 268 if (ops->destroy_inode) { 269 ops->destroy_inode(inode); 270 if (!ops->free_inode) 271 return NULL; 272 } 273 inode->free_inode = ops->free_inode; 274 i_callback(&inode->i_rcu); 275 return NULL; 276 } 277 278 return inode; 279} 280 281void __destroy_inode(struct inode *inode) 282{ 283 BUG_ON(inode_has_buffers(inode)); 284 inode_detach_wb(inode); 285 security_inode_free(inode); 286 fsnotify_inode_delete(inode); 287 locks_free_lock_context(inode); 288 if (!inode->i_nlink) { 289 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 290 atomic_long_dec(&inode->i_sb->s_remove_count); 291 } 292 293#ifdef CONFIG_FS_POSIX_ACL 294 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 295 posix_acl_release(inode->i_acl); 296 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 297 posix_acl_release(inode->i_default_acl); 298#endif 299 this_cpu_dec(nr_inodes); 300} 301EXPORT_SYMBOL(__destroy_inode); 302 303static void destroy_inode(struct inode *inode) 304{ 305 const struct super_operations *ops = inode->i_sb->s_op; 306 307 BUG_ON(!list_empty(&inode->i_lru)); 308 __destroy_inode(inode); 309 if (ops->destroy_inode) { 310 ops->destroy_inode(inode); 311 if (!ops->free_inode) 312 return; 313 } 314 inode->free_inode = ops->free_inode; 315 call_rcu(&inode->i_rcu, i_callback); 316} 317 318/** 319 * drop_nlink - directly drop an inode's link count 320 * @inode: inode 321 * 322 * This is a low-level filesystem helper to replace any 323 * direct filesystem manipulation of i_nlink. In cases 324 * where we are attempting to track writes to the 325 * filesystem, a decrement to zero means an imminent 326 * write when the file is truncated and actually unlinked 327 * on the filesystem. 328 */ 329void drop_nlink(struct inode *inode) 330{ 331 WARN_ON(inode->i_nlink == 0); 332 inode->__i_nlink--; 333 if (!inode->i_nlink) 334 atomic_long_inc(&inode->i_sb->s_remove_count); 335} 336EXPORT_SYMBOL(drop_nlink); 337 338/** 339 * clear_nlink - directly zero an inode's link count 340 * @inode: inode 341 * 342 * This is a low-level filesystem helper to replace any 343 * direct filesystem manipulation of i_nlink. See 344 * drop_nlink() for why we care about i_nlink hitting zero. 345 */ 346void clear_nlink(struct inode *inode) 347{ 348 if (inode->i_nlink) { 349 inode->__i_nlink = 0; 350 atomic_long_inc(&inode->i_sb->s_remove_count); 351 } 352} 353EXPORT_SYMBOL(clear_nlink); 354 355/** 356 * set_nlink - directly set an inode's link count 357 * @inode: inode 358 * @nlink: new nlink (should be non-zero) 359 * 360 * This is a low-level filesystem helper to replace any 361 * direct filesystem manipulation of i_nlink. 362 */ 363void set_nlink(struct inode *inode, unsigned int nlink) 364{ 365 if (!nlink) { 366 clear_nlink(inode); 367 } else { 368 /* Yes, some filesystems do change nlink from zero to one */ 369 if (inode->i_nlink == 0) 370 atomic_long_dec(&inode->i_sb->s_remove_count); 371 372 inode->__i_nlink = nlink; 373 } 374} 375EXPORT_SYMBOL(set_nlink); 376 377/** 378 * inc_nlink - directly increment an inode's link count 379 * @inode: inode 380 * 381 * This is a low-level filesystem helper to replace any 382 * direct filesystem manipulation of i_nlink. Currently, 383 * it is only here for parity with dec_nlink(). 384 */ 385void inc_nlink(struct inode *inode) 386{ 387 if (unlikely(inode->i_nlink == 0)) { 388 WARN_ON(!(inode->i_state & I_LINKABLE)); 389 atomic_long_dec(&inode->i_sb->s_remove_count); 390 } 391 392 inode->__i_nlink++; 393} 394EXPORT_SYMBOL(inc_nlink); 395 396static void __address_space_init_once(struct address_space *mapping) 397{ 398 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 399 init_rwsem(&mapping->i_mmap_rwsem); 400 INIT_LIST_HEAD(&mapping->private_list); 401 spin_lock_init(&mapping->private_lock); 402 mapping->i_mmap = RB_ROOT_CACHED; 403} 404 405void address_space_init_once(struct address_space *mapping) 406{ 407 memset(mapping, 0, sizeof(*mapping)); 408 __address_space_init_once(mapping); 409} 410EXPORT_SYMBOL(address_space_init_once); 411 412/* 413 * These are initializations that only need to be done 414 * once, because the fields are idempotent across use 415 * of the inode, so let the slab aware of that. 416 */ 417void inode_init_once(struct inode *inode) 418{ 419 memset(inode, 0, sizeof(*inode)); 420 INIT_HLIST_NODE(&inode->i_hash); 421 INIT_LIST_HEAD(&inode->i_devices); 422 INIT_LIST_HEAD(&inode->i_io_list); 423 INIT_LIST_HEAD(&inode->i_wb_list); 424 INIT_LIST_HEAD(&inode->i_lru); 425 __address_space_init_once(&inode->i_data); 426 i_size_ordered_init(inode); 427} 428EXPORT_SYMBOL(inode_init_once); 429 430static void init_once(void *foo) 431{ 432 struct inode *inode = (struct inode *) foo; 433 434 inode_init_once(inode); 435} 436 437/* 438 * inode->i_lock must be held 439 */ 440void __iget(struct inode *inode) 441{ 442 atomic_inc(&inode->i_count); 443} 444 445/* 446 * get additional reference to inode; caller must already hold one. 447 */ 448void ihold(struct inode *inode) 449{ 450 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 451} 452EXPORT_SYMBOL(ihold); 453 454static void __inode_add_lru(struct inode *inode, bool rotate) 455{ 456 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE)) 457 return; 458 if (atomic_read(&inode->i_count)) 459 return; 460 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 461 return; 462 if (!mapping_shrinkable(&inode->i_data)) 463 return; 464 465 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru)) 466 this_cpu_inc(nr_unused); 467 else if (rotate) 468 inode->i_state |= I_REFERENCED; 469} 470 471/* 472 * Add inode to LRU if needed (inode is unused and clean). 473 * 474 * Needs inode->i_lock held. 475 */ 476void inode_add_lru(struct inode *inode) 477{ 478 __inode_add_lru(inode, false); 479} 480 481static void inode_lru_list_del(struct inode *inode) 482{ 483 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru)) 484 this_cpu_dec(nr_unused); 485} 486 487/** 488 * inode_sb_list_add - add inode to the superblock list of inodes 489 * @inode: inode to add 490 */ 491void inode_sb_list_add(struct inode *inode) 492{ 493 spin_lock(&inode->i_sb->s_inode_list_lock); 494 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 495 spin_unlock(&inode->i_sb->s_inode_list_lock); 496} 497EXPORT_SYMBOL_GPL(inode_sb_list_add); 498 499static inline void inode_sb_list_del(struct inode *inode) 500{ 501 if (!list_empty(&inode->i_sb_list)) { 502 spin_lock(&inode->i_sb->s_inode_list_lock); 503 list_del_init(&inode->i_sb_list); 504 spin_unlock(&inode->i_sb->s_inode_list_lock); 505 } 506} 507 508static unsigned long hash(struct super_block *sb, unsigned long hashval) 509{ 510 unsigned long tmp; 511 512 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 513 L1_CACHE_BYTES; 514 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 515 return tmp & i_hash_mask; 516} 517 518/** 519 * __insert_inode_hash - hash an inode 520 * @inode: unhashed inode 521 * @hashval: unsigned long value used to locate this object in the 522 * inode_hashtable. 523 * 524 * Add an inode to the inode hash for this superblock. 525 */ 526void __insert_inode_hash(struct inode *inode, unsigned long hashval) 527{ 528 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 529 530 spin_lock(&inode_hash_lock); 531 spin_lock(&inode->i_lock); 532 hlist_add_head_rcu(&inode->i_hash, b); 533 spin_unlock(&inode->i_lock); 534 spin_unlock(&inode_hash_lock); 535} 536EXPORT_SYMBOL(__insert_inode_hash); 537 538/** 539 * __remove_inode_hash - remove an inode from the hash 540 * @inode: inode to unhash 541 * 542 * Remove an inode from the superblock. 543 */ 544void __remove_inode_hash(struct inode *inode) 545{ 546 spin_lock(&inode_hash_lock); 547 spin_lock(&inode->i_lock); 548 hlist_del_init_rcu(&inode->i_hash); 549 spin_unlock(&inode->i_lock); 550 spin_unlock(&inode_hash_lock); 551} 552EXPORT_SYMBOL(__remove_inode_hash); 553 554void dump_mapping(const struct address_space *mapping) 555{ 556 struct inode *host; 557 const struct address_space_operations *a_ops; 558 struct hlist_node *dentry_first; 559 struct dentry *dentry_ptr; 560 struct dentry dentry; 561 unsigned long ino; 562 563 /* 564 * If mapping is an invalid pointer, we don't want to crash 565 * accessing it, so probe everything depending on it carefully. 566 */ 567 if (get_kernel_nofault(host, &mapping->host) || 568 get_kernel_nofault(a_ops, &mapping->a_ops)) { 569 pr_warn("invalid mapping:%px\n", mapping); 570 return; 571 } 572 573 if (!host) { 574 pr_warn("aops:%ps\n", a_ops); 575 return; 576 } 577 578 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) || 579 get_kernel_nofault(ino, &host->i_ino)) { 580 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host); 581 return; 582 } 583 584 if (!dentry_first) { 585 pr_warn("aops:%ps ino:%lx\n", a_ops, ino); 586 return; 587 } 588 589 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias); 590 if (get_kernel_nofault(dentry, dentry_ptr)) { 591 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n", 592 a_ops, ino, dentry_ptr); 593 return; 594 } 595 596 /* 597 * if dentry is corrupted, the %pd handler may still crash, 598 * but it's unlikely that we reach here with a corrupt mapping 599 */ 600 pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry); 601} 602 603void clear_inode(struct inode *inode) 604{ 605 /* 606 * We have to cycle the i_pages lock here because reclaim can be in the 607 * process of removing the last page (in __delete_from_page_cache()) 608 * and we must not free the mapping under it. 609 */ 610 xa_lock_irq(&inode->i_data.i_pages); 611 BUG_ON(inode->i_data.nrpages); 612 /* 613 * Almost always, mapping_empty(&inode->i_data) here; but there are 614 * two known and long-standing ways in which nodes may get left behind 615 * (when deep radix-tree node allocation failed partway; or when THP 616 * collapse_file() failed). Until those two known cases are cleaned up, 617 * or a cleanup function is called here, do not BUG_ON(!mapping_empty), 618 * nor even WARN_ON(!mapping_empty). 619 */ 620 xa_unlock_irq(&inode->i_data.i_pages); 621 BUG_ON(!list_empty(&inode->i_data.private_list)); 622 BUG_ON(!(inode->i_state & I_FREEING)); 623 BUG_ON(inode->i_state & I_CLEAR); 624 BUG_ON(!list_empty(&inode->i_wb_list)); 625 /* don't need i_lock here, no concurrent mods to i_state */ 626 inode->i_state = I_FREEING | I_CLEAR; 627} 628EXPORT_SYMBOL(clear_inode); 629 630/* 631 * Free the inode passed in, removing it from the lists it is still connected 632 * to. We remove any pages still attached to the inode and wait for any IO that 633 * is still in progress before finally destroying the inode. 634 * 635 * An inode must already be marked I_FREEING so that we avoid the inode being 636 * moved back onto lists if we race with other code that manipulates the lists 637 * (e.g. writeback_single_inode). The caller is responsible for setting this. 638 * 639 * An inode must already be removed from the LRU list before being evicted from 640 * the cache. This should occur atomically with setting the I_FREEING state 641 * flag, so no inodes here should ever be on the LRU when being evicted. 642 */ 643static void evict(struct inode *inode) 644{ 645 const struct super_operations *op = inode->i_sb->s_op; 646 647 BUG_ON(!(inode->i_state & I_FREEING)); 648 BUG_ON(!list_empty(&inode->i_lru)); 649 650 if (!list_empty(&inode->i_io_list)) 651 inode_io_list_del(inode); 652 653 inode_sb_list_del(inode); 654 655 /* 656 * Wait for flusher thread to be done with the inode so that filesystem 657 * does not start destroying it while writeback is still running. Since 658 * the inode has I_FREEING set, flusher thread won't start new work on 659 * the inode. We just have to wait for running writeback to finish. 660 */ 661 inode_wait_for_writeback(inode); 662 663 if (op->evict_inode) { 664 op->evict_inode(inode); 665 } else { 666 truncate_inode_pages_final(&inode->i_data); 667 clear_inode(inode); 668 } 669 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 670 cd_forget(inode); 671 672 remove_inode_hash(inode); 673 674 spin_lock(&inode->i_lock); 675 wake_up_bit(&inode->i_state, __I_NEW); 676 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 677 spin_unlock(&inode->i_lock); 678 679 destroy_inode(inode); 680} 681 682/* 683 * dispose_list - dispose of the contents of a local list 684 * @head: the head of the list to free 685 * 686 * Dispose-list gets a local list with local inodes in it, so it doesn't 687 * need to worry about list corruption and SMP locks. 688 */ 689static void dispose_list(struct list_head *head) 690{ 691 while (!list_empty(head)) { 692 struct inode *inode; 693 694 inode = list_first_entry(head, struct inode, i_lru); 695 list_del_init(&inode->i_lru); 696 697 evict(inode); 698 cond_resched(); 699 } 700} 701 702/** 703 * evict_inodes - evict all evictable inodes for a superblock 704 * @sb: superblock to operate on 705 * 706 * Make sure that no inodes with zero refcount are retained. This is 707 * called by superblock shutdown after having SB_ACTIVE flag removed, 708 * so any inode reaching zero refcount during or after that call will 709 * be immediately evicted. 710 */ 711void evict_inodes(struct super_block *sb) 712{ 713 struct inode *inode, *next; 714 LIST_HEAD(dispose); 715 716again: 717 spin_lock(&sb->s_inode_list_lock); 718 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 719 if (atomic_read(&inode->i_count)) 720 continue; 721 722 spin_lock(&inode->i_lock); 723 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 724 spin_unlock(&inode->i_lock); 725 continue; 726 } 727 728 inode->i_state |= I_FREEING; 729 inode_lru_list_del(inode); 730 spin_unlock(&inode->i_lock); 731 list_add(&inode->i_lru, &dispose); 732 733 /* 734 * We can have a ton of inodes to evict at unmount time given 735 * enough memory, check to see if we need to go to sleep for a 736 * bit so we don't livelock. 737 */ 738 if (need_resched()) { 739 spin_unlock(&sb->s_inode_list_lock); 740 cond_resched(); 741 dispose_list(&dispose); 742 goto again; 743 } 744 } 745 spin_unlock(&sb->s_inode_list_lock); 746 747 dispose_list(&dispose); 748} 749EXPORT_SYMBOL_GPL(evict_inodes); 750 751/** 752 * invalidate_inodes - attempt to free all inodes on a superblock 753 * @sb: superblock to operate on 754 * @kill_dirty: flag to guide handling of dirty inodes 755 * 756 * Attempts to free all inodes for a given superblock. If there were any 757 * busy inodes return a non-zero value, else zero. 758 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 759 * them as busy. 760 */ 761int invalidate_inodes(struct super_block *sb, bool kill_dirty) 762{ 763 int busy = 0; 764 struct inode *inode, *next; 765 LIST_HEAD(dispose); 766 767again: 768 spin_lock(&sb->s_inode_list_lock); 769 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 770 spin_lock(&inode->i_lock); 771 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 772 spin_unlock(&inode->i_lock); 773 continue; 774 } 775 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) { 776 spin_unlock(&inode->i_lock); 777 busy = 1; 778 continue; 779 } 780 if (atomic_read(&inode->i_count)) { 781 spin_unlock(&inode->i_lock); 782 busy = 1; 783 continue; 784 } 785 786 inode->i_state |= I_FREEING; 787 inode_lru_list_del(inode); 788 spin_unlock(&inode->i_lock); 789 list_add(&inode->i_lru, &dispose); 790 if (need_resched()) { 791 spin_unlock(&sb->s_inode_list_lock); 792 cond_resched(); 793 dispose_list(&dispose); 794 goto again; 795 } 796 } 797 spin_unlock(&sb->s_inode_list_lock); 798 799 dispose_list(&dispose); 800 801 return busy; 802} 803 804/* 805 * Isolate the inode from the LRU in preparation for freeing it. 806 * 807 * If the inode has the I_REFERENCED flag set, then it means that it has been 808 * used recently - the flag is set in iput_final(). When we encounter such an 809 * inode, clear the flag and move it to the back of the LRU so it gets another 810 * pass through the LRU before it gets reclaimed. This is necessary because of 811 * the fact we are doing lazy LRU updates to minimise lock contention so the 812 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 813 * with this flag set because they are the inodes that are out of order. 814 */ 815static enum lru_status inode_lru_isolate(struct list_head *item, 816 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 817{ 818 struct list_head *freeable = arg; 819 struct inode *inode = container_of(item, struct inode, i_lru); 820 821 /* 822 * We are inverting the lru lock/inode->i_lock here, so use a 823 * trylock. If we fail to get the lock, just skip it. 824 */ 825 if (!spin_trylock(&inode->i_lock)) 826 return LRU_SKIP; 827 828 /* 829 * Inodes can get referenced, redirtied, or repopulated while 830 * they're already on the LRU, and this can make them 831 * unreclaimable for a while. Remove them lazily here; iput, 832 * sync, or the last page cache deletion will requeue them. 833 */ 834 if (atomic_read(&inode->i_count) || 835 (inode->i_state & ~I_REFERENCED) || 836 !mapping_shrinkable(&inode->i_data)) { 837 list_lru_isolate(lru, &inode->i_lru); 838 spin_unlock(&inode->i_lock); 839 this_cpu_dec(nr_unused); 840 return LRU_REMOVED; 841 } 842 843 /* Recently referenced inodes get one more pass */ 844 if (inode->i_state & I_REFERENCED) { 845 inode->i_state &= ~I_REFERENCED; 846 spin_unlock(&inode->i_lock); 847 return LRU_ROTATE; 848 } 849 850 /* 851 * On highmem systems, mapping_shrinkable() permits dropping 852 * page cache in order to free up struct inodes: lowmem might 853 * be under pressure before the cache inside the highmem zone. 854 */ 855 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) { 856 __iget(inode); 857 spin_unlock(&inode->i_lock); 858 spin_unlock(lru_lock); 859 if (remove_inode_buffers(inode)) { 860 unsigned long reap; 861 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 862 if (current_is_kswapd()) 863 __count_vm_events(KSWAPD_INODESTEAL, reap); 864 else 865 __count_vm_events(PGINODESTEAL, reap); 866 if (current->reclaim_state) 867 current->reclaim_state->reclaimed_slab += reap; 868 } 869 iput(inode); 870 spin_lock(lru_lock); 871 return LRU_RETRY; 872 } 873 874 WARN_ON(inode->i_state & I_NEW); 875 inode->i_state |= I_FREEING; 876 list_lru_isolate_move(lru, &inode->i_lru, freeable); 877 spin_unlock(&inode->i_lock); 878 879 this_cpu_dec(nr_unused); 880 return LRU_REMOVED; 881} 882 883/* 884 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 885 * This is called from the superblock shrinker function with a number of inodes 886 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 887 * then are freed outside inode_lock by dispose_list(). 888 */ 889long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 890{ 891 LIST_HEAD(freeable); 892 long freed; 893 894 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 895 inode_lru_isolate, &freeable); 896 dispose_list(&freeable); 897 return freed; 898} 899 900static void __wait_on_freeing_inode(struct inode *inode); 901/* 902 * Called with the inode lock held. 903 */ 904static struct inode *find_inode(struct super_block *sb, 905 struct hlist_head *head, 906 int (*test)(struct inode *, void *), 907 void *data) 908{ 909 struct inode *inode = NULL; 910 911repeat: 912 hlist_for_each_entry(inode, head, i_hash) { 913 if (inode->i_sb != sb) 914 continue; 915 if (!test(inode, data)) 916 continue; 917 spin_lock(&inode->i_lock); 918 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 919 __wait_on_freeing_inode(inode); 920 goto repeat; 921 } 922 if (unlikely(inode->i_state & I_CREATING)) { 923 spin_unlock(&inode->i_lock); 924 return ERR_PTR(-ESTALE); 925 } 926 __iget(inode); 927 spin_unlock(&inode->i_lock); 928 return inode; 929 } 930 return NULL; 931} 932 933/* 934 * find_inode_fast is the fast path version of find_inode, see the comment at 935 * iget_locked for details. 936 */ 937static struct inode *find_inode_fast(struct super_block *sb, 938 struct hlist_head *head, unsigned long ino) 939{ 940 struct inode *inode = NULL; 941 942repeat: 943 hlist_for_each_entry(inode, head, i_hash) { 944 if (inode->i_ino != ino) 945 continue; 946 if (inode->i_sb != sb) 947 continue; 948 spin_lock(&inode->i_lock); 949 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 950 __wait_on_freeing_inode(inode); 951 goto repeat; 952 } 953 if (unlikely(inode->i_state & I_CREATING)) { 954 spin_unlock(&inode->i_lock); 955 return ERR_PTR(-ESTALE); 956 } 957 __iget(inode); 958 spin_unlock(&inode->i_lock); 959 return inode; 960 } 961 return NULL; 962} 963 964/* 965 * Each cpu owns a range of LAST_INO_BATCH numbers. 966 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 967 * to renew the exhausted range. 968 * 969 * This does not significantly increase overflow rate because every CPU can 970 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 971 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 972 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 973 * overflow rate by 2x, which does not seem too significant. 974 * 975 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 976 * error if st_ino won't fit in target struct field. Use 32bit counter 977 * here to attempt to avoid that. 978 */ 979#define LAST_INO_BATCH 1024 980static DEFINE_PER_CPU(unsigned int, last_ino); 981 982unsigned int get_next_ino(void) 983{ 984 unsigned int *p = &get_cpu_var(last_ino); 985 unsigned int res = *p; 986 987#ifdef CONFIG_SMP 988 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 989 static atomic_t shared_last_ino; 990 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 991 992 res = next - LAST_INO_BATCH; 993 } 994#endif 995 996 res++; 997 /* get_next_ino should not provide a 0 inode number */ 998 if (unlikely(!res)) 999 res++; 1000 *p = res; 1001 put_cpu_var(last_ino); 1002 return res; 1003} 1004EXPORT_SYMBOL(get_next_ino); 1005 1006/** 1007 * new_inode_pseudo - obtain an inode 1008 * @sb: superblock 1009 * 1010 * Allocates a new inode for given superblock. 1011 * Inode wont be chained in superblock s_inodes list 1012 * This means : 1013 * - fs can't be unmount 1014 * - quotas, fsnotify, writeback can't work 1015 */ 1016struct inode *new_inode_pseudo(struct super_block *sb) 1017{ 1018 struct inode *inode = alloc_inode(sb); 1019 1020 if (inode) { 1021 spin_lock(&inode->i_lock); 1022 inode->i_state = 0; 1023 spin_unlock(&inode->i_lock); 1024 INIT_LIST_HEAD(&inode->i_sb_list); 1025 } 1026 return inode; 1027} 1028 1029/** 1030 * new_inode - obtain an inode 1031 * @sb: superblock 1032 * 1033 * Allocates a new inode for given superblock. The default gfp_mask 1034 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 1035 * If HIGHMEM pages are unsuitable or it is known that pages allocated 1036 * for the page cache are not reclaimable or migratable, 1037 * mapping_set_gfp_mask() must be called with suitable flags on the 1038 * newly created inode's mapping 1039 * 1040 */ 1041struct inode *new_inode(struct super_block *sb) 1042{ 1043 struct inode *inode; 1044 1045 spin_lock_prefetch(&sb->s_inode_list_lock); 1046 1047 inode = new_inode_pseudo(sb); 1048 if (inode) 1049 inode_sb_list_add(inode); 1050 return inode; 1051} 1052EXPORT_SYMBOL(new_inode); 1053 1054#ifdef CONFIG_DEBUG_LOCK_ALLOC 1055void lockdep_annotate_inode_mutex_key(struct inode *inode) 1056{ 1057 if (S_ISDIR(inode->i_mode)) { 1058 struct file_system_type *type = inode->i_sb->s_type; 1059 1060 /* Set new key only if filesystem hasn't already changed it */ 1061 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 1062 /* 1063 * ensure nobody is actually holding i_mutex 1064 */ 1065 // mutex_destroy(&inode->i_mutex); 1066 init_rwsem(&inode->i_rwsem); 1067 lockdep_set_class(&inode->i_rwsem, 1068 &type->i_mutex_dir_key); 1069 } 1070 } 1071} 1072EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 1073#endif 1074 1075/** 1076 * unlock_new_inode - clear the I_NEW state and wake up any waiters 1077 * @inode: new inode to unlock 1078 * 1079 * Called when the inode is fully initialised to clear the new state of the 1080 * inode and wake up anyone waiting for the inode to finish initialisation. 1081 */ 1082void unlock_new_inode(struct inode *inode) 1083{ 1084 lockdep_annotate_inode_mutex_key(inode); 1085 spin_lock(&inode->i_lock); 1086 WARN_ON(!(inode->i_state & I_NEW)); 1087 inode->i_state &= ~I_NEW & ~I_CREATING; 1088 smp_mb(); 1089 wake_up_bit(&inode->i_state, __I_NEW); 1090 spin_unlock(&inode->i_lock); 1091} 1092EXPORT_SYMBOL(unlock_new_inode); 1093 1094void discard_new_inode(struct inode *inode) 1095{ 1096 lockdep_annotate_inode_mutex_key(inode); 1097 spin_lock(&inode->i_lock); 1098 WARN_ON(!(inode->i_state & I_NEW)); 1099 inode->i_state &= ~I_NEW; 1100 smp_mb(); 1101 wake_up_bit(&inode->i_state, __I_NEW); 1102 spin_unlock(&inode->i_lock); 1103 iput(inode); 1104} 1105EXPORT_SYMBOL(discard_new_inode); 1106 1107/** 1108 * lock_two_nondirectories - take two i_mutexes on non-directory objects 1109 * 1110 * Lock any non-NULL argument that is not a directory. 1111 * Zero, one or two objects may be locked by this function. 1112 * 1113 * @inode1: first inode to lock 1114 * @inode2: second inode to lock 1115 */ 1116void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1117{ 1118 if (inode1 > inode2) 1119 swap(inode1, inode2); 1120 1121 if (inode1 && !S_ISDIR(inode1->i_mode)) 1122 inode_lock(inode1); 1123 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 1124 inode_lock_nested(inode2, I_MUTEX_NONDIR2); 1125} 1126EXPORT_SYMBOL(lock_two_nondirectories); 1127 1128/** 1129 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 1130 * @inode1: first inode to unlock 1131 * @inode2: second inode to unlock 1132 */ 1133void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1134{ 1135 if (inode1 && !S_ISDIR(inode1->i_mode)) 1136 inode_unlock(inode1); 1137 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 1138 inode_unlock(inode2); 1139} 1140EXPORT_SYMBOL(unlock_two_nondirectories); 1141 1142/** 1143 * inode_insert5 - obtain an inode from a mounted file system 1144 * @inode: pre-allocated inode to use for insert to cache 1145 * @hashval: hash value (usually inode number) to get 1146 * @test: callback used for comparisons between inodes 1147 * @set: callback used to initialize a new struct inode 1148 * @data: opaque data pointer to pass to @test and @set 1149 * 1150 * Search for the inode specified by @hashval and @data in the inode cache, 1151 * and if present it is return it with an increased reference count. This is 1152 * a variant of iget5_locked() for callers that don't want to fail on memory 1153 * allocation of inode. 1154 * 1155 * If the inode is not in cache, insert the pre-allocated inode to cache and 1156 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1157 * to fill it in before unlocking it via unlock_new_inode(). 1158 * 1159 * Note both @test and @set are called with the inode_hash_lock held, so can't 1160 * sleep. 1161 */ 1162struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1163 int (*test)(struct inode *, void *), 1164 int (*set)(struct inode *, void *), void *data) 1165{ 1166 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1167 struct inode *old; 1168 bool creating = inode->i_state & I_CREATING; 1169 1170again: 1171 spin_lock(&inode_hash_lock); 1172 old = find_inode(inode->i_sb, head, test, data); 1173 if (unlikely(old)) { 1174 /* 1175 * Uhhuh, somebody else created the same inode under us. 1176 * Use the old inode instead of the preallocated one. 1177 */ 1178 spin_unlock(&inode_hash_lock); 1179 if (IS_ERR(old)) 1180 return NULL; 1181 wait_on_inode(old); 1182 if (unlikely(inode_unhashed(old))) { 1183 iput(old); 1184 goto again; 1185 } 1186 return old; 1187 } 1188 1189 if (set && unlikely(set(inode, data))) { 1190 inode = NULL; 1191 goto unlock; 1192 } 1193 1194 /* 1195 * Return the locked inode with I_NEW set, the 1196 * caller is responsible for filling in the contents 1197 */ 1198 spin_lock(&inode->i_lock); 1199 inode->i_state |= I_NEW; 1200 hlist_add_head_rcu(&inode->i_hash, head); 1201 spin_unlock(&inode->i_lock); 1202 if (!creating) 1203 inode_sb_list_add(inode); 1204unlock: 1205 spin_unlock(&inode_hash_lock); 1206 1207 return inode; 1208} 1209EXPORT_SYMBOL(inode_insert5); 1210 1211/** 1212 * iget5_locked - obtain an inode from a mounted file system 1213 * @sb: super block of file system 1214 * @hashval: hash value (usually inode number) to get 1215 * @test: callback used for comparisons between inodes 1216 * @set: callback used to initialize a new struct inode 1217 * @data: opaque data pointer to pass to @test and @set 1218 * 1219 * Search for the inode specified by @hashval and @data in the inode cache, 1220 * and if present it is return it with an increased reference count. This is 1221 * a generalized version of iget_locked() for file systems where the inode 1222 * number is not sufficient for unique identification of an inode. 1223 * 1224 * If the inode is not in cache, allocate a new inode and return it locked, 1225 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1226 * before unlocking it via unlock_new_inode(). 1227 * 1228 * Note both @test and @set are called with the inode_hash_lock held, so can't 1229 * sleep. 1230 */ 1231struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1232 int (*test)(struct inode *, void *), 1233 int (*set)(struct inode *, void *), void *data) 1234{ 1235 struct inode *inode = ilookup5(sb, hashval, test, data); 1236 1237 if (!inode) { 1238 struct inode *new = alloc_inode(sb); 1239 1240 if (new) { 1241 new->i_state = 0; 1242 inode = inode_insert5(new, hashval, test, set, data); 1243 if (unlikely(inode != new)) 1244 destroy_inode(new); 1245 } 1246 } 1247 return inode; 1248} 1249EXPORT_SYMBOL(iget5_locked); 1250 1251/** 1252 * iget_locked - obtain an inode from a mounted file system 1253 * @sb: super block of file system 1254 * @ino: inode number to get 1255 * 1256 * Search for the inode specified by @ino in the inode cache and if present 1257 * return it with an increased reference count. This is for file systems 1258 * where the inode number is sufficient for unique identification of an inode. 1259 * 1260 * If the inode is not in cache, allocate a new inode and return it locked, 1261 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1262 * before unlocking it via unlock_new_inode(). 1263 */ 1264struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1265{ 1266 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1267 struct inode *inode; 1268again: 1269 spin_lock(&inode_hash_lock); 1270 inode = find_inode_fast(sb, head, ino); 1271 spin_unlock(&inode_hash_lock); 1272 if (inode) { 1273 if (IS_ERR(inode)) 1274 return NULL; 1275 wait_on_inode(inode); 1276 if (unlikely(inode_unhashed(inode))) { 1277 iput(inode); 1278 goto again; 1279 } 1280 return inode; 1281 } 1282 1283 inode = alloc_inode(sb); 1284 if (inode) { 1285 struct inode *old; 1286 1287 spin_lock(&inode_hash_lock); 1288 /* We released the lock, so.. */ 1289 old = find_inode_fast(sb, head, ino); 1290 if (!old) { 1291 inode->i_ino = ino; 1292 spin_lock(&inode->i_lock); 1293 inode->i_state = I_NEW; 1294 hlist_add_head_rcu(&inode->i_hash, head); 1295 spin_unlock(&inode->i_lock); 1296 inode_sb_list_add(inode); 1297 spin_unlock(&inode_hash_lock); 1298 1299 /* Return the locked inode with I_NEW set, the 1300 * caller is responsible for filling in the contents 1301 */ 1302 return inode; 1303 } 1304 1305 /* 1306 * Uhhuh, somebody else created the same inode under 1307 * us. Use the old inode instead of the one we just 1308 * allocated. 1309 */ 1310 spin_unlock(&inode_hash_lock); 1311 destroy_inode(inode); 1312 if (IS_ERR(old)) 1313 return NULL; 1314 inode = old; 1315 wait_on_inode(inode); 1316 if (unlikely(inode_unhashed(inode))) { 1317 iput(inode); 1318 goto again; 1319 } 1320 } 1321 return inode; 1322} 1323EXPORT_SYMBOL(iget_locked); 1324 1325/* 1326 * search the inode cache for a matching inode number. 1327 * If we find one, then the inode number we are trying to 1328 * allocate is not unique and so we should not use it. 1329 * 1330 * Returns 1 if the inode number is unique, 0 if it is not. 1331 */ 1332static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1333{ 1334 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1335 struct inode *inode; 1336 1337 hlist_for_each_entry_rcu(inode, b, i_hash) { 1338 if (inode->i_ino == ino && inode->i_sb == sb) 1339 return 0; 1340 } 1341 return 1; 1342} 1343 1344/** 1345 * iunique - get a unique inode number 1346 * @sb: superblock 1347 * @max_reserved: highest reserved inode number 1348 * 1349 * Obtain an inode number that is unique on the system for a given 1350 * superblock. This is used by file systems that have no natural 1351 * permanent inode numbering system. An inode number is returned that 1352 * is higher than the reserved limit but unique. 1353 * 1354 * BUGS: 1355 * With a large number of inodes live on the file system this function 1356 * currently becomes quite slow. 1357 */ 1358ino_t iunique(struct super_block *sb, ino_t max_reserved) 1359{ 1360 /* 1361 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1362 * error if st_ino won't fit in target struct field. Use 32bit counter 1363 * here to attempt to avoid that. 1364 */ 1365 static DEFINE_SPINLOCK(iunique_lock); 1366 static unsigned int counter; 1367 ino_t res; 1368 1369 rcu_read_lock(); 1370 spin_lock(&iunique_lock); 1371 do { 1372 if (counter <= max_reserved) 1373 counter = max_reserved + 1; 1374 res = counter++; 1375 } while (!test_inode_iunique(sb, res)); 1376 spin_unlock(&iunique_lock); 1377 rcu_read_unlock(); 1378 1379 return res; 1380} 1381EXPORT_SYMBOL(iunique); 1382 1383struct inode *igrab(struct inode *inode) 1384{ 1385 spin_lock(&inode->i_lock); 1386 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1387 __iget(inode); 1388 spin_unlock(&inode->i_lock); 1389 } else { 1390 spin_unlock(&inode->i_lock); 1391 /* 1392 * Handle the case where s_op->clear_inode is not been 1393 * called yet, and somebody is calling igrab 1394 * while the inode is getting freed. 1395 */ 1396 inode = NULL; 1397 } 1398 return inode; 1399} 1400EXPORT_SYMBOL(igrab); 1401 1402/** 1403 * ilookup5_nowait - search for an inode in the inode cache 1404 * @sb: super block of file system to search 1405 * @hashval: hash value (usually inode number) to search for 1406 * @test: callback used for comparisons between inodes 1407 * @data: opaque data pointer to pass to @test 1408 * 1409 * Search for the inode specified by @hashval and @data in the inode cache. 1410 * If the inode is in the cache, the inode is returned with an incremented 1411 * reference count. 1412 * 1413 * Note: I_NEW is not waited upon so you have to be very careful what you do 1414 * with the returned inode. You probably should be using ilookup5() instead. 1415 * 1416 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1417 */ 1418struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1419 int (*test)(struct inode *, void *), void *data) 1420{ 1421 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1422 struct inode *inode; 1423 1424 spin_lock(&inode_hash_lock); 1425 inode = find_inode(sb, head, test, data); 1426 spin_unlock(&inode_hash_lock); 1427 1428 return IS_ERR(inode) ? NULL : inode; 1429} 1430EXPORT_SYMBOL(ilookup5_nowait); 1431 1432/** 1433 * ilookup5 - search for an inode in the inode cache 1434 * @sb: super block of file system to search 1435 * @hashval: hash value (usually inode number) to search for 1436 * @test: callback used for comparisons between inodes 1437 * @data: opaque data pointer to pass to @test 1438 * 1439 * Search for the inode specified by @hashval and @data in the inode cache, 1440 * and if the inode is in the cache, return the inode with an incremented 1441 * reference count. Waits on I_NEW before returning the inode. 1442 * returned with an incremented reference count. 1443 * 1444 * This is a generalized version of ilookup() for file systems where the 1445 * inode number is not sufficient for unique identification of an inode. 1446 * 1447 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1448 */ 1449struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1450 int (*test)(struct inode *, void *), void *data) 1451{ 1452 struct inode *inode; 1453again: 1454 inode = ilookup5_nowait(sb, hashval, test, data); 1455 if (inode) { 1456 wait_on_inode(inode); 1457 if (unlikely(inode_unhashed(inode))) { 1458 iput(inode); 1459 goto again; 1460 } 1461 } 1462 return inode; 1463} 1464EXPORT_SYMBOL(ilookup5); 1465 1466/** 1467 * ilookup - search for an inode in the inode cache 1468 * @sb: super block of file system to search 1469 * @ino: inode number to search for 1470 * 1471 * Search for the inode @ino in the inode cache, and if the inode is in the 1472 * cache, the inode is returned with an incremented reference count. 1473 */ 1474struct inode *ilookup(struct super_block *sb, unsigned long ino) 1475{ 1476 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1477 struct inode *inode; 1478again: 1479 spin_lock(&inode_hash_lock); 1480 inode = find_inode_fast(sb, head, ino); 1481 spin_unlock(&inode_hash_lock); 1482 1483 if (inode) { 1484 if (IS_ERR(inode)) 1485 return NULL; 1486 wait_on_inode(inode); 1487 if (unlikely(inode_unhashed(inode))) { 1488 iput(inode); 1489 goto again; 1490 } 1491 } 1492 return inode; 1493} 1494EXPORT_SYMBOL(ilookup); 1495 1496/** 1497 * find_inode_nowait - find an inode in the inode cache 1498 * @sb: super block of file system to search 1499 * @hashval: hash value (usually inode number) to search for 1500 * @match: callback used for comparisons between inodes 1501 * @data: opaque data pointer to pass to @match 1502 * 1503 * Search for the inode specified by @hashval and @data in the inode 1504 * cache, where the helper function @match will return 0 if the inode 1505 * does not match, 1 if the inode does match, and -1 if the search 1506 * should be stopped. The @match function must be responsible for 1507 * taking the i_lock spin_lock and checking i_state for an inode being 1508 * freed or being initialized, and incrementing the reference count 1509 * before returning 1. It also must not sleep, since it is called with 1510 * the inode_hash_lock spinlock held. 1511 * 1512 * This is a even more generalized version of ilookup5() when the 1513 * function must never block --- find_inode() can block in 1514 * __wait_on_freeing_inode() --- or when the caller can not increment 1515 * the reference count because the resulting iput() might cause an 1516 * inode eviction. The tradeoff is that the @match funtion must be 1517 * very carefully implemented. 1518 */ 1519struct inode *find_inode_nowait(struct super_block *sb, 1520 unsigned long hashval, 1521 int (*match)(struct inode *, unsigned long, 1522 void *), 1523 void *data) 1524{ 1525 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1526 struct inode *inode, *ret_inode = NULL; 1527 int mval; 1528 1529 spin_lock(&inode_hash_lock); 1530 hlist_for_each_entry(inode, head, i_hash) { 1531 if (inode->i_sb != sb) 1532 continue; 1533 mval = match(inode, hashval, data); 1534 if (mval == 0) 1535 continue; 1536 if (mval == 1) 1537 ret_inode = inode; 1538 goto out; 1539 } 1540out: 1541 spin_unlock(&inode_hash_lock); 1542 return ret_inode; 1543} 1544EXPORT_SYMBOL(find_inode_nowait); 1545 1546/** 1547 * find_inode_rcu - find an inode in the inode cache 1548 * @sb: Super block of file system to search 1549 * @hashval: Key to hash 1550 * @test: Function to test match on an inode 1551 * @data: Data for test function 1552 * 1553 * Search for the inode specified by @hashval and @data in the inode cache, 1554 * where the helper function @test will return 0 if the inode does not match 1555 * and 1 if it does. The @test function must be responsible for taking the 1556 * i_lock spin_lock and checking i_state for an inode being freed or being 1557 * initialized. 1558 * 1559 * If successful, this will return the inode for which the @test function 1560 * returned 1 and NULL otherwise. 1561 * 1562 * The @test function is not permitted to take a ref on any inode presented. 1563 * It is also not permitted to sleep. 1564 * 1565 * The caller must hold the RCU read lock. 1566 */ 1567struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval, 1568 int (*test)(struct inode *, void *), void *data) 1569{ 1570 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1571 struct inode *inode; 1572 1573 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1574 "suspicious find_inode_rcu() usage"); 1575 1576 hlist_for_each_entry_rcu(inode, head, i_hash) { 1577 if (inode->i_sb == sb && 1578 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) && 1579 test(inode, data)) 1580 return inode; 1581 } 1582 return NULL; 1583} 1584EXPORT_SYMBOL(find_inode_rcu); 1585 1586/** 1587 * find_inode_by_ino_rcu - Find an inode in the inode cache 1588 * @sb: Super block of file system to search 1589 * @ino: The inode number to match 1590 * 1591 * Search for the inode specified by @hashval and @data in the inode cache, 1592 * where the helper function @test will return 0 if the inode does not match 1593 * and 1 if it does. The @test function must be responsible for taking the 1594 * i_lock spin_lock and checking i_state for an inode being freed or being 1595 * initialized. 1596 * 1597 * If successful, this will return the inode for which the @test function 1598 * returned 1 and NULL otherwise. 1599 * 1600 * The @test function is not permitted to take a ref on any inode presented. 1601 * It is also not permitted to sleep. 1602 * 1603 * The caller must hold the RCU read lock. 1604 */ 1605struct inode *find_inode_by_ino_rcu(struct super_block *sb, 1606 unsigned long ino) 1607{ 1608 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1609 struct inode *inode; 1610 1611 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1612 "suspicious find_inode_by_ino_rcu() usage"); 1613 1614 hlist_for_each_entry_rcu(inode, head, i_hash) { 1615 if (inode->i_ino == ino && 1616 inode->i_sb == sb && 1617 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE))) 1618 return inode; 1619 } 1620 return NULL; 1621} 1622EXPORT_SYMBOL(find_inode_by_ino_rcu); 1623 1624int insert_inode_locked(struct inode *inode) 1625{ 1626 struct super_block *sb = inode->i_sb; 1627 ino_t ino = inode->i_ino; 1628 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1629 1630 while (1) { 1631 struct inode *old = NULL; 1632 spin_lock(&inode_hash_lock); 1633 hlist_for_each_entry(old, head, i_hash) { 1634 if (old->i_ino != ino) 1635 continue; 1636 if (old->i_sb != sb) 1637 continue; 1638 spin_lock(&old->i_lock); 1639 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1640 spin_unlock(&old->i_lock); 1641 continue; 1642 } 1643 break; 1644 } 1645 if (likely(!old)) { 1646 spin_lock(&inode->i_lock); 1647 inode->i_state |= I_NEW | I_CREATING; 1648 hlist_add_head_rcu(&inode->i_hash, head); 1649 spin_unlock(&inode->i_lock); 1650 spin_unlock(&inode_hash_lock); 1651 return 0; 1652 } 1653 if (unlikely(old->i_state & I_CREATING)) { 1654 spin_unlock(&old->i_lock); 1655 spin_unlock(&inode_hash_lock); 1656 return -EBUSY; 1657 } 1658 __iget(old); 1659 spin_unlock(&old->i_lock); 1660 spin_unlock(&inode_hash_lock); 1661 wait_on_inode(old); 1662 if (unlikely(!inode_unhashed(old))) { 1663 iput(old); 1664 return -EBUSY; 1665 } 1666 iput(old); 1667 } 1668} 1669EXPORT_SYMBOL(insert_inode_locked); 1670 1671int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1672 int (*test)(struct inode *, void *), void *data) 1673{ 1674 struct inode *old; 1675 1676 inode->i_state |= I_CREATING; 1677 old = inode_insert5(inode, hashval, test, NULL, data); 1678 1679 if (old != inode) { 1680 iput(old); 1681 return -EBUSY; 1682 } 1683 return 0; 1684} 1685EXPORT_SYMBOL(insert_inode_locked4); 1686 1687 1688int generic_delete_inode(struct inode *inode) 1689{ 1690 return 1; 1691} 1692EXPORT_SYMBOL(generic_delete_inode); 1693 1694/* 1695 * Called when we're dropping the last reference 1696 * to an inode. 1697 * 1698 * Call the FS "drop_inode()" function, defaulting to 1699 * the legacy UNIX filesystem behaviour. If it tells 1700 * us to evict inode, do so. Otherwise, retain inode 1701 * in cache if fs is alive, sync and evict if fs is 1702 * shutting down. 1703 */ 1704static void iput_final(struct inode *inode) 1705{ 1706 struct super_block *sb = inode->i_sb; 1707 const struct super_operations *op = inode->i_sb->s_op; 1708 unsigned long state; 1709 int drop; 1710 1711 WARN_ON(inode->i_state & I_NEW); 1712 1713 if (op->drop_inode) 1714 drop = op->drop_inode(inode); 1715 else 1716 drop = generic_drop_inode(inode); 1717 1718 if (!drop && 1719 !(inode->i_state & I_DONTCACHE) && 1720 (sb->s_flags & SB_ACTIVE)) { 1721 __inode_add_lru(inode, true); 1722 spin_unlock(&inode->i_lock); 1723 return; 1724 } 1725 1726 state = inode->i_state; 1727 if (!drop) { 1728 WRITE_ONCE(inode->i_state, state | I_WILL_FREE); 1729 spin_unlock(&inode->i_lock); 1730 1731 write_inode_now(inode, 1); 1732 1733 spin_lock(&inode->i_lock); 1734 state = inode->i_state; 1735 WARN_ON(state & I_NEW); 1736 state &= ~I_WILL_FREE; 1737 } 1738 1739 WRITE_ONCE(inode->i_state, state | I_FREEING); 1740 if (!list_empty(&inode->i_lru)) 1741 inode_lru_list_del(inode); 1742 spin_unlock(&inode->i_lock); 1743 1744 evict(inode); 1745} 1746 1747/** 1748 * iput - put an inode 1749 * @inode: inode to put 1750 * 1751 * Puts an inode, dropping its usage count. If the inode use count hits 1752 * zero, the inode is then freed and may also be destroyed. 1753 * 1754 * Consequently, iput() can sleep. 1755 */ 1756void iput(struct inode *inode) 1757{ 1758 if (!inode) 1759 return; 1760 BUG_ON(inode->i_state & I_CLEAR); 1761retry: 1762 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1763 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1764 atomic_inc(&inode->i_count); 1765 spin_unlock(&inode->i_lock); 1766 trace_writeback_lazytime_iput(inode); 1767 mark_inode_dirty_sync(inode); 1768 goto retry; 1769 } 1770 iput_final(inode); 1771 } 1772} 1773EXPORT_SYMBOL(iput); 1774 1775#ifdef CONFIG_BLOCK 1776/** 1777 * bmap - find a block number in a file 1778 * @inode: inode owning the block number being requested 1779 * @block: pointer containing the block to find 1780 * 1781 * Replaces the value in ``*block`` with the block number on the device holding 1782 * corresponding to the requested block number in the file. 1783 * That is, asked for block 4 of inode 1 the function will replace the 1784 * 4 in ``*block``, with disk block relative to the disk start that holds that 1785 * block of the file. 1786 * 1787 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a 1788 * hole, returns 0 and ``*block`` is also set to 0. 1789 */ 1790int bmap(struct inode *inode, sector_t *block) 1791{ 1792 if (!inode->i_mapping->a_ops->bmap) 1793 return -EINVAL; 1794 1795 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); 1796 return 0; 1797} 1798EXPORT_SYMBOL(bmap); 1799#endif 1800 1801/* 1802 * With relative atime, only update atime if the previous atime is 1803 * earlier than either the ctime or mtime or if at least a day has 1804 * passed since the last atime update. 1805 */ 1806static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1807 struct timespec64 now) 1808{ 1809 1810 if (!(mnt->mnt_flags & MNT_RELATIME)) 1811 return 1; 1812 /* 1813 * Is mtime younger than atime? If yes, update atime: 1814 */ 1815 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1816 return 1; 1817 /* 1818 * Is ctime younger than atime? If yes, update atime: 1819 */ 1820 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1821 return 1; 1822 1823 /* 1824 * Is the previous atime value older than a day? If yes, 1825 * update atime: 1826 */ 1827 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1828 return 1; 1829 /* 1830 * Good, we can skip the atime update: 1831 */ 1832 return 0; 1833} 1834 1835int generic_update_time(struct inode *inode, struct timespec64 *time, int flags) 1836{ 1837 int dirty_flags = 0; 1838 1839 if (flags & (S_ATIME | S_CTIME | S_MTIME)) { 1840 if (flags & S_ATIME) 1841 inode->i_atime = *time; 1842 if (flags & S_CTIME) 1843 inode->i_ctime = *time; 1844 if (flags & S_MTIME) 1845 inode->i_mtime = *time; 1846 1847 if (inode->i_sb->s_flags & SB_LAZYTIME) 1848 dirty_flags |= I_DIRTY_TIME; 1849 else 1850 dirty_flags |= I_DIRTY_SYNC; 1851 } 1852 1853 if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false)) 1854 dirty_flags |= I_DIRTY_SYNC; 1855 1856 __mark_inode_dirty(inode, dirty_flags); 1857 return 0; 1858} 1859EXPORT_SYMBOL(generic_update_time); 1860 1861/* 1862 * This does the actual work of updating an inodes time or version. Must have 1863 * had called mnt_want_write() before calling this. 1864 */ 1865int inode_update_time(struct inode *inode, struct timespec64 *time, int flags) 1866{ 1867 if (inode->i_op->update_time) 1868 return inode->i_op->update_time(inode, time, flags); 1869 return generic_update_time(inode, time, flags); 1870} 1871EXPORT_SYMBOL(inode_update_time); 1872 1873/** 1874 * atime_needs_update - update the access time 1875 * @path: the &struct path to update 1876 * @inode: inode to update 1877 * 1878 * Update the accessed time on an inode and mark it for writeback. 1879 * This function automatically handles read only file systems and media, 1880 * as well as the "noatime" flag and inode specific "noatime" markers. 1881 */ 1882bool atime_needs_update(const struct path *path, struct inode *inode) 1883{ 1884 struct vfsmount *mnt = path->mnt; 1885 struct timespec64 now; 1886 1887 if (inode->i_flags & S_NOATIME) 1888 return false; 1889 1890 /* Atime updates will likely cause i_uid and i_gid to be written 1891 * back improprely if their true value is unknown to the vfs. 1892 */ 1893 if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode)) 1894 return false; 1895 1896 if (IS_NOATIME(inode)) 1897 return false; 1898 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 1899 return false; 1900 1901 if (mnt->mnt_flags & MNT_NOATIME) 1902 return false; 1903 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1904 return false; 1905 1906 now = current_time(inode); 1907 1908 if (!relatime_need_update(mnt, inode, now)) 1909 return false; 1910 1911 if (timespec64_equal(&inode->i_atime, &now)) 1912 return false; 1913 1914 return true; 1915} 1916 1917void touch_atime(const struct path *path) 1918{ 1919 struct vfsmount *mnt = path->mnt; 1920 struct inode *inode = d_inode(path->dentry); 1921 struct timespec64 now; 1922 1923 if (!atime_needs_update(path, inode)) 1924 return; 1925 1926 if (!sb_start_write_trylock(inode->i_sb)) 1927 return; 1928 1929 if (__mnt_want_write(mnt) != 0) 1930 goto skip_update; 1931 /* 1932 * File systems can error out when updating inodes if they need to 1933 * allocate new space to modify an inode (such is the case for 1934 * Btrfs), but since we touch atime while walking down the path we 1935 * really don't care if we failed to update the atime of the file, 1936 * so just ignore the return value. 1937 * We may also fail on filesystems that have the ability to make parts 1938 * of the fs read only, e.g. subvolumes in Btrfs. 1939 */ 1940 now = current_time(inode); 1941 inode_update_time(inode, &now, S_ATIME); 1942 __mnt_drop_write(mnt); 1943skip_update: 1944 sb_end_write(inode->i_sb); 1945} 1946EXPORT_SYMBOL(touch_atime); 1947 1948/* 1949 * The logic we want is 1950 * 1951 * if suid or (sgid and xgrp) 1952 * remove privs 1953 */ 1954int should_remove_suid(struct dentry *dentry) 1955{ 1956 umode_t mode = d_inode(dentry)->i_mode; 1957 int kill = 0; 1958 1959 /* suid always must be killed */ 1960 if (unlikely(mode & S_ISUID)) 1961 kill = ATTR_KILL_SUID; 1962 1963 /* 1964 * sgid without any exec bits is just a mandatory locking mark; leave 1965 * it alone. If some exec bits are set, it's a real sgid; kill it. 1966 */ 1967 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1968 kill |= ATTR_KILL_SGID; 1969 1970 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1971 return kill; 1972 1973 return 0; 1974} 1975EXPORT_SYMBOL(should_remove_suid); 1976 1977/* 1978 * Return mask of changes for notify_change() that need to be done as a 1979 * response to write or truncate. Return 0 if nothing has to be changed. 1980 * Negative value on error (change should be denied). 1981 */ 1982int dentry_needs_remove_privs(struct dentry *dentry) 1983{ 1984 struct inode *inode = d_inode(dentry); 1985 int mask = 0; 1986 int ret; 1987 1988 if (IS_NOSEC(inode)) 1989 return 0; 1990 1991 mask = should_remove_suid(dentry); 1992 ret = security_inode_need_killpriv(dentry); 1993 if (ret < 0) 1994 return ret; 1995 if (ret) 1996 mask |= ATTR_KILL_PRIV; 1997 return mask; 1998} 1999 2000static int __remove_privs(struct user_namespace *mnt_userns, 2001 struct dentry *dentry, int kill) 2002{ 2003 struct iattr newattrs; 2004 2005 newattrs.ia_valid = ATTR_FORCE | kill; 2006 /* 2007 * Note we call this on write, so notify_change will not 2008 * encounter any conflicting delegations: 2009 */ 2010 return notify_change(mnt_userns, dentry, &newattrs, NULL); 2011} 2012 2013/* 2014 * Remove special file priviledges (suid, capabilities) when file is written 2015 * to or truncated. 2016 */ 2017int file_remove_privs(struct file *file) 2018{ 2019 struct dentry *dentry = file_dentry(file); 2020 struct inode *inode = file_inode(file); 2021 int kill; 2022 int error = 0; 2023 2024 /* 2025 * Fast path for nothing security related. 2026 * As well for non-regular files, e.g. blkdev inodes. 2027 * For example, blkdev_write_iter() might get here 2028 * trying to remove privs which it is not allowed to. 2029 */ 2030 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) 2031 return 0; 2032 2033 kill = dentry_needs_remove_privs(dentry); 2034 if (kill < 0) 2035 return kill; 2036 if (kill) 2037 error = __remove_privs(file_mnt_user_ns(file), dentry, kill); 2038 if (!error) 2039 inode_has_no_xattr(inode); 2040 2041 return error; 2042} 2043EXPORT_SYMBOL(file_remove_privs); 2044 2045/** 2046 * file_update_time - update mtime and ctime time 2047 * @file: file accessed 2048 * 2049 * Update the mtime and ctime members of an inode and mark the inode 2050 * for writeback. Note that this function is meant exclusively for 2051 * usage in the file write path of filesystems, and filesystems may 2052 * choose to explicitly ignore update via this function with the 2053 * S_NOCMTIME inode flag, e.g. for network filesystem where these 2054 * timestamps are handled by the server. This can return an error for 2055 * file systems who need to allocate space in order to update an inode. 2056 */ 2057 2058int file_update_time(struct file *file) 2059{ 2060 struct inode *inode = file_inode(file); 2061 struct timespec64 now; 2062 int sync_it = 0; 2063 int ret; 2064 2065 /* First try to exhaust all avenues to not sync */ 2066 if (IS_NOCMTIME(inode)) 2067 return 0; 2068 2069 now = current_time(inode); 2070 if (!timespec64_equal(&inode->i_mtime, &now)) 2071 sync_it = S_MTIME; 2072 2073 if (!timespec64_equal(&inode->i_ctime, &now)) 2074 sync_it |= S_CTIME; 2075 2076 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 2077 sync_it |= S_VERSION; 2078 2079 if (!sync_it) 2080 return 0; 2081 2082 /* Finally allowed to write? Takes lock. */ 2083 if (__mnt_want_write_file(file)) 2084 return 0; 2085 2086 ret = inode_update_time(inode, &now, sync_it); 2087 __mnt_drop_write_file(file); 2088 2089 return ret; 2090} 2091EXPORT_SYMBOL(file_update_time); 2092 2093/* Caller must hold the file's inode lock */ 2094int file_modified(struct file *file) 2095{ 2096 int err; 2097 2098 /* 2099 * Clear the security bits if the process is not being run by root. 2100 * This keeps people from modifying setuid and setgid binaries. 2101 */ 2102 err = file_remove_privs(file); 2103 if (err) 2104 return err; 2105 2106 if (unlikely(file->f_mode & FMODE_NOCMTIME)) 2107 return 0; 2108 2109 return file_update_time(file); 2110} 2111EXPORT_SYMBOL(file_modified); 2112 2113int inode_needs_sync(struct inode *inode) 2114{ 2115 if (IS_SYNC(inode)) 2116 return 1; 2117 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 2118 return 1; 2119 return 0; 2120} 2121EXPORT_SYMBOL(inode_needs_sync); 2122 2123/* 2124 * If we try to find an inode in the inode hash while it is being 2125 * deleted, we have to wait until the filesystem completes its 2126 * deletion before reporting that it isn't found. This function waits 2127 * until the deletion _might_ have completed. Callers are responsible 2128 * to recheck inode state. 2129 * 2130 * It doesn't matter if I_NEW is not set initially, a call to 2131 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 2132 * will DTRT. 2133 */ 2134static void __wait_on_freeing_inode(struct inode *inode) 2135{ 2136 wait_queue_head_t *wq; 2137 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 2138 wq = bit_waitqueue(&inode->i_state, __I_NEW); 2139 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2140 spin_unlock(&inode->i_lock); 2141 spin_unlock(&inode_hash_lock); 2142 schedule(); 2143 finish_wait(wq, &wait.wq_entry); 2144 spin_lock(&inode_hash_lock); 2145} 2146 2147static __initdata unsigned long ihash_entries; 2148static int __init set_ihash_entries(char *str) 2149{ 2150 if (!str) 2151 return 0; 2152 ihash_entries = simple_strtoul(str, &str, 0); 2153 return 1; 2154} 2155__setup("ihash_entries=", set_ihash_entries); 2156 2157/* 2158 * Initialize the waitqueues and inode hash table. 2159 */ 2160void __init inode_init_early(void) 2161{ 2162 /* If hashes are distributed across NUMA nodes, defer 2163 * hash allocation until vmalloc space is available. 2164 */ 2165 if (hashdist) 2166 return; 2167 2168 inode_hashtable = 2169 alloc_large_system_hash("Inode-cache", 2170 sizeof(struct hlist_head), 2171 ihash_entries, 2172 14, 2173 HASH_EARLY | HASH_ZERO, 2174 &i_hash_shift, 2175 &i_hash_mask, 2176 0, 2177 0); 2178} 2179 2180void __init inode_init(void) 2181{ 2182 /* inode slab cache */ 2183 inode_cachep = kmem_cache_create("inode_cache", 2184 sizeof(struct inode), 2185 0, 2186 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2187 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 2188 init_once); 2189 2190 /* Hash may have been set up in inode_init_early */ 2191 if (!hashdist) 2192 return; 2193 2194 inode_hashtable = 2195 alloc_large_system_hash("Inode-cache", 2196 sizeof(struct hlist_head), 2197 ihash_entries, 2198 14, 2199 HASH_ZERO, 2200 &i_hash_shift, 2201 &i_hash_mask, 2202 0, 2203 0); 2204} 2205 2206void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 2207{ 2208 inode->i_mode = mode; 2209 if (S_ISCHR(mode)) { 2210 inode->i_fop = &def_chr_fops; 2211 inode->i_rdev = rdev; 2212 } else if (S_ISBLK(mode)) { 2213 inode->i_fop = &def_blk_fops; 2214 inode->i_rdev = rdev; 2215 } else if (S_ISFIFO(mode)) 2216 inode->i_fop = &pipefifo_fops; 2217 else if (S_ISSOCK(mode)) 2218 ; /* leave it no_open_fops */ 2219 else 2220 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 2221 " inode %s:%lu\n", mode, inode->i_sb->s_id, 2222 inode->i_ino); 2223} 2224EXPORT_SYMBOL(init_special_inode); 2225 2226/** 2227 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2228 * @mnt_userns: User namespace of the mount the inode was created from 2229 * @inode: New inode 2230 * @dir: Directory inode 2231 * @mode: mode of the new inode 2232 * 2233 * If the inode has been created through an idmapped mount the user namespace of 2234 * the vfsmount must be passed through @mnt_userns. This function will then take 2235 * care to map the inode according to @mnt_userns before checking permissions 2236 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission 2237 * checking is to be performed on the raw inode simply passs init_user_ns. 2238 */ 2239void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode, 2240 const struct inode *dir, umode_t mode) 2241{ 2242 inode_fsuid_set(inode, mnt_userns); 2243 if (dir && dir->i_mode & S_ISGID) { 2244 inode->i_gid = dir->i_gid; 2245 2246 /* Directories are special, and always inherit S_ISGID */ 2247 if (S_ISDIR(mode)) 2248 mode |= S_ISGID; 2249 else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) && 2250 !in_group_p(i_gid_into_mnt(mnt_userns, dir)) && 2251 !capable_wrt_inode_uidgid(mnt_userns, dir, CAP_FSETID)) 2252 mode &= ~S_ISGID; 2253 } else 2254 inode_fsgid_set(inode, mnt_userns); 2255 inode->i_mode = mode; 2256} 2257EXPORT_SYMBOL(inode_init_owner); 2258 2259/** 2260 * inode_owner_or_capable - check current task permissions to inode 2261 * @mnt_userns: user namespace of the mount the inode was found from 2262 * @inode: inode being checked 2263 * 2264 * Return true if current either has CAP_FOWNER in a namespace with the 2265 * inode owner uid mapped, or owns the file. 2266 * 2267 * If the inode has been found through an idmapped mount the user namespace of 2268 * the vfsmount must be passed through @mnt_userns. This function will then take 2269 * care to map the inode according to @mnt_userns before checking permissions. 2270 * On non-idmapped mounts or if permission checking is to be performed on the 2271 * raw inode simply passs init_user_ns. 2272 */ 2273bool inode_owner_or_capable(struct user_namespace *mnt_userns, 2274 const struct inode *inode) 2275{ 2276 kuid_t i_uid; 2277 struct user_namespace *ns; 2278 2279 i_uid = i_uid_into_mnt(mnt_userns, inode); 2280 if (uid_eq(current_fsuid(), i_uid)) 2281 return true; 2282 2283 ns = current_user_ns(); 2284 if (kuid_has_mapping(ns, i_uid) && ns_capable(ns, CAP_FOWNER)) 2285 return true; 2286 return false; 2287} 2288EXPORT_SYMBOL(inode_owner_or_capable); 2289 2290/* 2291 * Direct i/o helper functions 2292 */ 2293static void __inode_dio_wait(struct inode *inode) 2294{ 2295 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 2296 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 2297 2298 do { 2299 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE); 2300 if (atomic_read(&inode->i_dio_count)) 2301 schedule(); 2302 } while (atomic_read(&inode->i_dio_count)); 2303 finish_wait(wq, &q.wq_entry); 2304} 2305 2306/** 2307 * inode_dio_wait - wait for outstanding DIO requests to finish 2308 * @inode: inode to wait for 2309 * 2310 * Waits for all pending direct I/O requests to finish so that we can 2311 * proceed with a truncate or equivalent operation. 2312 * 2313 * Must be called under a lock that serializes taking new references 2314 * to i_dio_count, usually by inode->i_mutex. 2315 */ 2316void inode_dio_wait(struct inode *inode) 2317{ 2318 if (atomic_read(&inode->i_dio_count)) 2319 __inode_dio_wait(inode); 2320} 2321EXPORT_SYMBOL(inode_dio_wait); 2322 2323/* 2324 * inode_set_flags - atomically set some inode flags 2325 * 2326 * Note: the caller should be holding i_mutex, or else be sure that 2327 * they have exclusive access to the inode structure (i.e., while the 2328 * inode is being instantiated). The reason for the cmpxchg() loop 2329 * --- which wouldn't be necessary if all code paths which modify 2330 * i_flags actually followed this rule, is that there is at least one 2331 * code path which doesn't today so we use cmpxchg() out of an abundance 2332 * of caution. 2333 * 2334 * In the long run, i_mutex is overkill, and we should probably look 2335 * at using the i_lock spinlock to protect i_flags, and then make sure 2336 * it is so documented in include/linux/fs.h and that all code follows 2337 * the locking convention!! 2338 */ 2339void inode_set_flags(struct inode *inode, unsigned int flags, 2340 unsigned int mask) 2341{ 2342 WARN_ON_ONCE(flags & ~mask); 2343 set_mask_bits(&inode->i_flags, mask, flags); 2344} 2345EXPORT_SYMBOL(inode_set_flags); 2346 2347void inode_nohighmem(struct inode *inode) 2348{ 2349 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2350} 2351EXPORT_SYMBOL(inode_nohighmem); 2352 2353/** 2354 * timestamp_truncate - Truncate timespec to a granularity 2355 * @t: Timespec 2356 * @inode: inode being updated 2357 * 2358 * Truncate a timespec to the granularity supported by the fs 2359 * containing the inode. Always rounds down. gran must 2360 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2361 */ 2362struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) 2363{ 2364 struct super_block *sb = inode->i_sb; 2365 unsigned int gran = sb->s_time_gran; 2366 2367 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); 2368 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) 2369 t.tv_nsec = 0; 2370 2371 /* Avoid division in the common cases 1 ns and 1 s. */ 2372 if (gran == 1) 2373 ; /* nothing */ 2374 else if (gran == NSEC_PER_SEC) 2375 t.tv_nsec = 0; 2376 else if (gran > 1 && gran < NSEC_PER_SEC) 2377 t.tv_nsec -= t.tv_nsec % gran; 2378 else 2379 WARN(1, "invalid file time granularity: %u", gran); 2380 return t; 2381} 2382EXPORT_SYMBOL(timestamp_truncate); 2383 2384/** 2385 * current_time - Return FS time 2386 * @inode: inode. 2387 * 2388 * Return the current time truncated to the time granularity supported by 2389 * the fs. 2390 * 2391 * Note that inode and inode->sb cannot be NULL. 2392 * Otherwise, the function warns and returns time without truncation. 2393 */ 2394struct timespec64 current_time(struct inode *inode) 2395{ 2396 struct timespec64 now; 2397 2398 ktime_get_coarse_real_ts64(&now); 2399 2400 if (unlikely(!inode->i_sb)) { 2401 WARN(1, "current_time() called with uninitialized super_block in the inode"); 2402 return now; 2403 } 2404 2405 return timestamp_truncate(now, inode); 2406} 2407EXPORT_SYMBOL(current_time);