cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

buffered-io.c (44561B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Copyright (C) 2010 Red Hat, Inc.
      4 * Copyright (C) 2016-2019 Christoph Hellwig.
      5 */
      6#include <linux/module.h>
      7#include <linux/compiler.h>
      8#include <linux/fs.h>
      9#include <linux/iomap.h>
     10#include <linux/pagemap.h>
     11#include <linux/uio.h>
     12#include <linux/buffer_head.h>
     13#include <linux/dax.h>
     14#include <linux/writeback.h>
     15#include <linux/list_sort.h>
     16#include <linux/swap.h>
     17#include <linux/bio.h>
     18#include <linux/sched/signal.h>
     19#include <linux/migrate.h>
     20#include "trace.h"
     21
     22#include "../internal.h"
     23
     24#define IOEND_BATCH_SIZE	4096
     25
     26/*
     27 * Structure allocated for each folio when block size < folio size
     28 * to track sub-folio uptodate status and I/O completions.
     29 */
     30struct iomap_page {
     31	atomic_t		read_bytes_pending;
     32	atomic_t		write_bytes_pending;
     33	spinlock_t		uptodate_lock;
     34	unsigned long		uptodate[];
     35};
     36
     37static inline struct iomap_page *to_iomap_page(struct folio *folio)
     38{
     39	if (folio_test_private(folio))
     40		return folio_get_private(folio);
     41	return NULL;
     42}
     43
     44static struct bio_set iomap_ioend_bioset;
     45
     46static struct iomap_page *
     47iomap_page_create(struct inode *inode, struct folio *folio)
     48{
     49	struct iomap_page *iop = to_iomap_page(folio);
     50	unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
     51
     52	if (iop || nr_blocks <= 1)
     53		return iop;
     54
     55	iop = kzalloc(struct_size(iop, uptodate, BITS_TO_LONGS(nr_blocks)),
     56			GFP_NOFS | __GFP_NOFAIL);
     57	spin_lock_init(&iop->uptodate_lock);
     58	if (folio_test_uptodate(folio))
     59		bitmap_fill(iop->uptodate, nr_blocks);
     60	folio_attach_private(folio, iop);
     61	return iop;
     62}
     63
     64static void iomap_page_release(struct folio *folio)
     65{
     66	struct iomap_page *iop = folio_detach_private(folio);
     67	struct inode *inode = folio->mapping->host;
     68	unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
     69
     70	if (!iop)
     71		return;
     72	WARN_ON_ONCE(atomic_read(&iop->read_bytes_pending));
     73	WARN_ON_ONCE(atomic_read(&iop->write_bytes_pending));
     74	WARN_ON_ONCE(bitmap_full(iop->uptodate, nr_blocks) !=
     75			folio_test_uptodate(folio));
     76	kfree(iop);
     77}
     78
     79/*
     80 * Calculate the range inside the folio that we actually need to read.
     81 */
     82static void iomap_adjust_read_range(struct inode *inode, struct folio *folio,
     83		loff_t *pos, loff_t length, size_t *offp, size_t *lenp)
     84{
     85	struct iomap_page *iop = to_iomap_page(folio);
     86	loff_t orig_pos = *pos;
     87	loff_t isize = i_size_read(inode);
     88	unsigned block_bits = inode->i_blkbits;
     89	unsigned block_size = (1 << block_bits);
     90	size_t poff = offset_in_folio(folio, *pos);
     91	size_t plen = min_t(loff_t, folio_size(folio) - poff, length);
     92	unsigned first = poff >> block_bits;
     93	unsigned last = (poff + plen - 1) >> block_bits;
     94
     95	/*
     96	 * If the block size is smaller than the page size, we need to check the
     97	 * per-block uptodate status and adjust the offset and length if needed
     98	 * to avoid reading in already uptodate ranges.
     99	 */
    100	if (iop) {
    101		unsigned int i;
    102
    103		/* move forward for each leading block marked uptodate */
    104		for (i = first; i <= last; i++) {
    105			if (!test_bit(i, iop->uptodate))
    106				break;
    107			*pos += block_size;
    108			poff += block_size;
    109			plen -= block_size;
    110			first++;
    111		}
    112
    113		/* truncate len if we find any trailing uptodate block(s) */
    114		for ( ; i <= last; i++) {
    115			if (test_bit(i, iop->uptodate)) {
    116				plen -= (last - i + 1) * block_size;
    117				last = i - 1;
    118				break;
    119			}
    120		}
    121	}
    122
    123	/*
    124	 * If the extent spans the block that contains the i_size, we need to
    125	 * handle both halves separately so that we properly zero data in the
    126	 * page cache for blocks that are entirely outside of i_size.
    127	 */
    128	if (orig_pos <= isize && orig_pos + length > isize) {
    129		unsigned end = offset_in_folio(folio, isize - 1) >> block_bits;
    130
    131		if (first <= end && last > end)
    132			plen -= (last - end) * block_size;
    133	}
    134
    135	*offp = poff;
    136	*lenp = plen;
    137}
    138
    139static void iomap_iop_set_range_uptodate(struct folio *folio,
    140		struct iomap_page *iop, size_t off, size_t len)
    141{
    142	struct inode *inode = folio->mapping->host;
    143	unsigned first = off >> inode->i_blkbits;
    144	unsigned last = (off + len - 1) >> inode->i_blkbits;
    145	unsigned long flags;
    146
    147	spin_lock_irqsave(&iop->uptodate_lock, flags);
    148	bitmap_set(iop->uptodate, first, last - first + 1);
    149	if (bitmap_full(iop->uptodate, i_blocks_per_folio(inode, folio)))
    150		folio_mark_uptodate(folio);
    151	spin_unlock_irqrestore(&iop->uptodate_lock, flags);
    152}
    153
    154static void iomap_set_range_uptodate(struct folio *folio,
    155		struct iomap_page *iop, size_t off, size_t len)
    156{
    157	if (folio_test_error(folio))
    158		return;
    159
    160	if (iop)
    161		iomap_iop_set_range_uptodate(folio, iop, off, len);
    162	else
    163		folio_mark_uptodate(folio);
    164}
    165
    166static void iomap_finish_folio_read(struct folio *folio, size_t offset,
    167		size_t len, int error)
    168{
    169	struct iomap_page *iop = to_iomap_page(folio);
    170
    171	if (unlikely(error)) {
    172		folio_clear_uptodate(folio);
    173		folio_set_error(folio);
    174	} else {
    175		iomap_set_range_uptodate(folio, iop, offset, len);
    176	}
    177
    178	if (!iop || atomic_sub_and_test(len, &iop->read_bytes_pending))
    179		folio_unlock(folio);
    180}
    181
    182static void iomap_read_end_io(struct bio *bio)
    183{
    184	int error = blk_status_to_errno(bio->bi_status);
    185	struct folio_iter fi;
    186
    187	bio_for_each_folio_all(fi, bio)
    188		iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error);
    189	bio_put(bio);
    190}
    191
    192struct iomap_readpage_ctx {
    193	struct folio		*cur_folio;
    194	bool			cur_folio_in_bio;
    195	struct bio		*bio;
    196	struct readahead_control *rac;
    197};
    198
    199/**
    200 * iomap_read_inline_data - copy inline data into the page cache
    201 * @iter: iteration structure
    202 * @folio: folio to copy to
    203 *
    204 * Copy the inline data in @iter into @folio and zero out the rest of the folio.
    205 * Only a single IOMAP_INLINE extent is allowed at the end of each file.
    206 * Returns zero for success to complete the read, or the usual negative errno.
    207 */
    208static int iomap_read_inline_data(const struct iomap_iter *iter,
    209		struct folio *folio)
    210{
    211	struct iomap_page *iop;
    212	const struct iomap *iomap = iomap_iter_srcmap(iter);
    213	size_t size = i_size_read(iter->inode) - iomap->offset;
    214	size_t poff = offset_in_page(iomap->offset);
    215	size_t offset = offset_in_folio(folio, iomap->offset);
    216	void *addr;
    217
    218	if (folio_test_uptodate(folio))
    219		return 0;
    220
    221	if (WARN_ON_ONCE(size > PAGE_SIZE - poff))
    222		return -EIO;
    223	if (WARN_ON_ONCE(size > PAGE_SIZE -
    224			 offset_in_page(iomap->inline_data)))
    225		return -EIO;
    226	if (WARN_ON_ONCE(size > iomap->length))
    227		return -EIO;
    228	if (offset > 0)
    229		iop = iomap_page_create(iter->inode, folio);
    230	else
    231		iop = to_iomap_page(folio);
    232
    233	addr = kmap_local_folio(folio, offset);
    234	memcpy(addr, iomap->inline_data, size);
    235	memset(addr + size, 0, PAGE_SIZE - poff - size);
    236	kunmap_local(addr);
    237	iomap_set_range_uptodate(folio, iop, offset, PAGE_SIZE - poff);
    238	return 0;
    239}
    240
    241static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter,
    242		loff_t pos)
    243{
    244	const struct iomap *srcmap = iomap_iter_srcmap(iter);
    245
    246	return srcmap->type != IOMAP_MAPPED ||
    247		(srcmap->flags & IOMAP_F_NEW) ||
    248		pos >= i_size_read(iter->inode);
    249}
    250
    251static loff_t iomap_readpage_iter(const struct iomap_iter *iter,
    252		struct iomap_readpage_ctx *ctx, loff_t offset)
    253{
    254	const struct iomap *iomap = &iter->iomap;
    255	loff_t pos = iter->pos + offset;
    256	loff_t length = iomap_length(iter) - offset;
    257	struct folio *folio = ctx->cur_folio;
    258	struct iomap_page *iop;
    259	loff_t orig_pos = pos;
    260	size_t poff, plen;
    261	sector_t sector;
    262
    263	if (iomap->type == IOMAP_INLINE)
    264		return iomap_read_inline_data(iter, folio);
    265
    266	/* zero post-eof blocks as the page may be mapped */
    267	iop = iomap_page_create(iter->inode, folio);
    268	iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen);
    269	if (plen == 0)
    270		goto done;
    271
    272	if (iomap_block_needs_zeroing(iter, pos)) {
    273		folio_zero_range(folio, poff, plen);
    274		iomap_set_range_uptodate(folio, iop, poff, plen);
    275		goto done;
    276	}
    277
    278	ctx->cur_folio_in_bio = true;
    279	if (iop)
    280		atomic_add(plen, &iop->read_bytes_pending);
    281
    282	sector = iomap_sector(iomap, pos);
    283	if (!ctx->bio ||
    284	    bio_end_sector(ctx->bio) != sector ||
    285	    !bio_add_folio(ctx->bio, folio, plen, poff)) {
    286		gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
    287		gfp_t orig_gfp = gfp;
    288		unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE);
    289
    290		if (ctx->bio)
    291			submit_bio(ctx->bio);
    292
    293		if (ctx->rac) /* same as readahead_gfp_mask */
    294			gfp |= __GFP_NORETRY | __GFP_NOWARN;
    295		ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs),
    296				     REQ_OP_READ, gfp);
    297		/*
    298		 * If the bio_alloc fails, try it again for a single page to
    299		 * avoid having to deal with partial page reads.  This emulates
    300		 * what do_mpage_read_folio does.
    301		 */
    302		if (!ctx->bio) {
    303			ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ,
    304					     orig_gfp);
    305		}
    306		if (ctx->rac)
    307			ctx->bio->bi_opf |= REQ_RAHEAD;
    308		ctx->bio->bi_iter.bi_sector = sector;
    309		ctx->bio->bi_end_io = iomap_read_end_io;
    310		bio_add_folio(ctx->bio, folio, plen, poff);
    311	}
    312
    313done:
    314	/*
    315	 * Move the caller beyond our range so that it keeps making progress.
    316	 * For that, we have to include any leading non-uptodate ranges, but
    317	 * we can skip trailing ones as they will be handled in the next
    318	 * iteration.
    319	 */
    320	return pos - orig_pos + plen;
    321}
    322
    323int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops)
    324{
    325	struct iomap_iter iter = {
    326		.inode		= folio->mapping->host,
    327		.pos		= folio_pos(folio),
    328		.len		= folio_size(folio),
    329	};
    330	struct iomap_readpage_ctx ctx = {
    331		.cur_folio	= folio,
    332	};
    333	int ret;
    334
    335	trace_iomap_readpage(iter.inode, 1);
    336
    337	while ((ret = iomap_iter(&iter, ops)) > 0)
    338		iter.processed = iomap_readpage_iter(&iter, &ctx, 0);
    339
    340	if (ret < 0)
    341		folio_set_error(folio);
    342
    343	if (ctx.bio) {
    344		submit_bio(ctx.bio);
    345		WARN_ON_ONCE(!ctx.cur_folio_in_bio);
    346	} else {
    347		WARN_ON_ONCE(ctx.cur_folio_in_bio);
    348		folio_unlock(folio);
    349	}
    350
    351	/*
    352	 * Just like mpage_readahead and block_read_full_folio, we always
    353	 * return 0 and just set the folio error flag on errors.  This
    354	 * should be cleaned up throughout the stack eventually.
    355	 */
    356	return 0;
    357}
    358EXPORT_SYMBOL_GPL(iomap_read_folio);
    359
    360static loff_t iomap_readahead_iter(const struct iomap_iter *iter,
    361		struct iomap_readpage_ctx *ctx)
    362{
    363	loff_t length = iomap_length(iter);
    364	loff_t done, ret;
    365
    366	for (done = 0; done < length; done += ret) {
    367		if (ctx->cur_folio &&
    368		    offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) {
    369			if (!ctx->cur_folio_in_bio)
    370				folio_unlock(ctx->cur_folio);
    371			ctx->cur_folio = NULL;
    372		}
    373		if (!ctx->cur_folio) {
    374			ctx->cur_folio = readahead_folio(ctx->rac);
    375			ctx->cur_folio_in_bio = false;
    376		}
    377		ret = iomap_readpage_iter(iter, ctx, done);
    378		if (ret <= 0)
    379			return ret;
    380	}
    381
    382	return done;
    383}
    384
    385/**
    386 * iomap_readahead - Attempt to read pages from a file.
    387 * @rac: Describes the pages to be read.
    388 * @ops: The operations vector for the filesystem.
    389 *
    390 * This function is for filesystems to call to implement their readahead
    391 * address_space operation.
    392 *
    393 * Context: The @ops callbacks may submit I/O (eg to read the addresses of
    394 * blocks from disc), and may wait for it.  The caller may be trying to
    395 * access a different page, and so sleeping excessively should be avoided.
    396 * It may allocate memory, but should avoid costly allocations.  This
    397 * function is called with memalloc_nofs set, so allocations will not cause
    398 * the filesystem to be reentered.
    399 */
    400void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
    401{
    402	struct iomap_iter iter = {
    403		.inode	= rac->mapping->host,
    404		.pos	= readahead_pos(rac),
    405		.len	= readahead_length(rac),
    406	};
    407	struct iomap_readpage_ctx ctx = {
    408		.rac	= rac,
    409	};
    410
    411	trace_iomap_readahead(rac->mapping->host, readahead_count(rac));
    412
    413	while (iomap_iter(&iter, ops) > 0)
    414		iter.processed = iomap_readahead_iter(&iter, &ctx);
    415
    416	if (ctx.bio)
    417		submit_bio(ctx.bio);
    418	if (ctx.cur_folio) {
    419		if (!ctx.cur_folio_in_bio)
    420			folio_unlock(ctx.cur_folio);
    421	}
    422}
    423EXPORT_SYMBOL_GPL(iomap_readahead);
    424
    425/*
    426 * iomap_is_partially_uptodate checks whether blocks within a folio are
    427 * uptodate or not.
    428 *
    429 * Returns true if all blocks which correspond to the specified part
    430 * of the folio are uptodate.
    431 */
    432bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
    433{
    434	struct iomap_page *iop = to_iomap_page(folio);
    435	struct inode *inode = folio->mapping->host;
    436	unsigned first, last, i;
    437
    438	if (!iop)
    439		return false;
    440
    441	/* Caller's range may extend past the end of this folio */
    442	count = min(folio_size(folio) - from, count);
    443
    444	/* First and last blocks in range within folio */
    445	first = from >> inode->i_blkbits;
    446	last = (from + count - 1) >> inode->i_blkbits;
    447
    448	for (i = first; i <= last; i++)
    449		if (!test_bit(i, iop->uptodate))
    450			return false;
    451	return true;
    452}
    453EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
    454
    455bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags)
    456{
    457	trace_iomap_release_folio(folio->mapping->host, folio_pos(folio),
    458			folio_size(folio));
    459
    460	/*
    461	 * mm accommodates an old ext3 case where clean folios might
    462	 * not have had the dirty bit cleared.  Thus, it can send actual
    463	 * dirty folios to ->release_folio() via shrink_active_list();
    464	 * skip those here.
    465	 */
    466	if (folio_test_dirty(folio) || folio_test_writeback(folio))
    467		return false;
    468	iomap_page_release(folio);
    469	return true;
    470}
    471EXPORT_SYMBOL_GPL(iomap_release_folio);
    472
    473void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len)
    474{
    475	trace_iomap_invalidate_folio(folio->mapping->host,
    476					folio_pos(folio) + offset, len);
    477
    478	/*
    479	 * If we're invalidating the entire folio, clear the dirty state
    480	 * from it and release it to avoid unnecessary buildup of the LRU.
    481	 */
    482	if (offset == 0 && len == folio_size(folio)) {
    483		WARN_ON_ONCE(folio_test_writeback(folio));
    484		folio_cancel_dirty(folio);
    485		iomap_page_release(folio);
    486	} else if (folio_test_large(folio)) {
    487		/* Must release the iop so the page can be split */
    488		WARN_ON_ONCE(!folio_test_uptodate(folio) &&
    489			     folio_test_dirty(folio));
    490		iomap_page_release(folio);
    491	}
    492}
    493EXPORT_SYMBOL_GPL(iomap_invalidate_folio);
    494
    495#ifdef CONFIG_MIGRATION
    496int
    497iomap_migrate_page(struct address_space *mapping, struct page *newpage,
    498		struct page *page, enum migrate_mode mode)
    499{
    500	struct folio *folio = page_folio(page);
    501	struct folio *newfolio = page_folio(newpage);
    502	int ret;
    503
    504	ret = folio_migrate_mapping(mapping, newfolio, folio, 0);
    505	if (ret != MIGRATEPAGE_SUCCESS)
    506		return ret;
    507
    508	if (folio_test_private(folio))
    509		folio_attach_private(newfolio, folio_detach_private(folio));
    510
    511	if (mode != MIGRATE_SYNC_NO_COPY)
    512		folio_migrate_copy(newfolio, folio);
    513	else
    514		folio_migrate_flags(newfolio, folio);
    515	return MIGRATEPAGE_SUCCESS;
    516}
    517EXPORT_SYMBOL_GPL(iomap_migrate_page);
    518#endif /* CONFIG_MIGRATION */
    519
    520static void
    521iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
    522{
    523	loff_t i_size = i_size_read(inode);
    524
    525	/*
    526	 * Only truncate newly allocated pages beyoned EOF, even if the
    527	 * write started inside the existing inode size.
    528	 */
    529	if (pos + len > i_size)
    530		truncate_pagecache_range(inode, max(pos, i_size),
    531					 pos + len - 1);
    532}
    533
    534static int iomap_read_folio_sync(loff_t block_start, struct folio *folio,
    535		size_t poff, size_t plen, const struct iomap *iomap)
    536{
    537	struct bio_vec bvec;
    538	struct bio bio;
    539
    540	bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ);
    541	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
    542	bio_add_folio(&bio, folio, plen, poff);
    543	return submit_bio_wait(&bio);
    544}
    545
    546static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
    547		size_t len, struct folio *folio)
    548{
    549	const struct iomap *srcmap = iomap_iter_srcmap(iter);
    550	struct iomap_page *iop = iomap_page_create(iter->inode, folio);
    551	loff_t block_size = i_blocksize(iter->inode);
    552	loff_t block_start = round_down(pos, block_size);
    553	loff_t block_end = round_up(pos + len, block_size);
    554	size_t from = offset_in_folio(folio, pos), to = from + len;
    555	size_t poff, plen;
    556
    557	if (folio_test_uptodate(folio))
    558		return 0;
    559	folio_clear_error(folio);
    560
    561	do {
    562		iomap_adjust_read_range(iter->inode, folio, &block_start,
    563				block_end - block_start, &poff, &plen);
    564		if (plen == 0)
    565			break;
    566
    567		if (!(iter->flags & IOMAP_UNSHARE) &&
    568		    (from <= poff || from >= poff + plen) &&
    569		    (to <= poff || to >= poff + plen))
    570			continue;
    571
    572		if (iomap_block_needs_zeroing(iter, block_start)) {
    573			if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE))
    574				return -EIO;
    575			folio_zero_segments(folio, poff, from, to, poff + plen);
    576		} else {
    577			int status = iomap_read_folio_sync(block_start, folio,
    578					poff, plen, srcmap);
    579			if (status)
    580				return status;
    581		}
    582		iomap_set_range_uptodate(folio, iop, poff, plen);
    583	} while ((block_start += plen) < block_end);
    584
    585	return 0;
    586}
    587
    588static int iomap_write_begin_inline(const struct iomap_iter *iter,
    589		struct folio *folio)
    590{
    591	/* needs more work for the tailpacking case; disable for now */
    592	if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0))
    593		return -EIO;
    594	return iomap_read_inline_data(iter, folio);
    595}
    596
    597static int iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
    598		size_t len, struct folio **foliop)
    599{
    600	const struct iomap_page_ops *page_ops = iter->iomap.page_ops;
    601	const struct iomap *srcmap = iomap_iter_srcmap(iter);
    602	struct folio *folio;
    603	unsigned fgp = FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE | FGP_NOFS;
    604	int status = 0;
    605
    606	BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length);
    607	if (srcmap != &iter->iomap)
    608		BUG_ON(pos + len > srcmap->offset + srcmap->length);
    609
    610	if (fatal_signal_pending(current))
    611		return -EINTR;
    612
    613	if (!mapping_large_folio_support(iter->inode->i_mapping))
    614		len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos));
    615
    616	if (page_ops && page_ops->page_prepare) {
    617		status = page_ops->page_prepare(iter->inode, pos, len);
    618		if (status)
    619			return status;
    620	}
    621
    622	folio = __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT,
    623			fgp, mapping_gfp_mask(iter->inode->i_mapping));
    624	if (!folio) {
    625		status = -ENOMEM;
    626		goto out_no_page;
    627	}
    628	if (pos + len > folio_pos(folio) + folio_size(folio))
    629		len = folio_pos(folio) + folio_size(folio) - pos;
    630
    631	if (srcmap->type == IOMAP_INLINE)
    632		status = iomap_write_begin_inline(iter, folio);
    633	else if (srcmap->flags & IOMAP_F_BUFFER_HEAD)
    634		status = __block_write_begin_int(folio, pos, len, NULL, srcmap);
    635	else
    636		status = __iomap_write_begin(iter, pos, len, folio);
    637
    638	if (unlikely(status))
    639		goto out_unlock;
    640
    641	*foliop = folio;
    642	return 0;
    643
    644out_unlock:
    645	folio_unlock(folio);
    646	folio_put(folio);
    647	iomap_write_failed(iter->inode, pos, len);
    648
    649out_no_page:
    650	if (page_ops && page_ops->page_done)
    651		page_ops->page_done(iter->inode, pos, 0, NULL);
    652	return status;
    653}
    654
    655static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
    656		size_t copied, struct folio *folio)
    657{
    658	struct iomap_page *iop = to_iomap_page(folio);
    659	flush_dcache_folio(folio);
    660
    661	/*
    662	 * The blocks that were entirely written will now be uptodate, so we
    663	 * don't have to worry about a read_folio reading them and overwriting a
    664	 * partial write.  However, if we've encountered a short write and only
    665	 * partially written into a block, it will not be marked uptodate, so a
    666	 * read_folio might come in and destroy our partial write.
    667	 *
    668	 * Do the simplest thing and just treat any short write to a
    669	 * non-uptodate page as a zero-length write, and force the caller to
    670	 * redo the whole thing.
    671	 */
    672	if (unlikely(copied < len && !folio_test_uptodate(folio)))
    673		return 0;
    674	iomap_set_range_uptodate(folio, iop, offset_in_folio(folio, pos), len);
    675	filemap_dirty_folio(inode->i_mapping, folio);
    676	return copied;
    677}
    678
    679static size_t iomap_write_end_inline(const struct iomap_iter *iter,
    680		struct folio *folio, loff_t pos, size_t copied)
    681{
    682	const struct iomap *iomap = &iter->iomap;
    683	void *addr;
    684
    685	WARN_ON_ONCE(!folio_test_uptodate(folio));
    686	BUG_ON(!iomap_inline_data_valid(iomap));
    687
    688	flush_dcache_folio(folio);
    689	addr = kmap_local_folio(folio, pos);
    690	memcpy(iomap_inline_data(iomap, pos), addr, copied);
    691	kunmap_local(addr);
    692
    693	mark_inode_dirty(iter->inode);
    694	return copied;
    695}
    696
    697/* Returns the number of bytes copied.  May be 0.  Cannot be an errno. */
    698static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len,
    699		size_t copied, struct folio *folio)
    700{
    701	const struct iomap_page_ops *page_ops = iter->iomap.page_ops;
    702	const struct iomap *srcmap = iomap_iter_srcmap(iter);
    703	loff_t old_size = iter->inode->i_size;
    704	size_t ret;
    705
    706	if (srcmap->type == IOMAP_INLINE) {
    707		ret = iomap_write_end_inline(iter, folio, pos, copied);
    708	} else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
    709		ret = block_write_end(NULL, iter->inode->i_mapping, pos, len,
    710				copied, &folio->page, NULL);
    711	} else {
    712		ret = __iomap_write_end(iter->inode, pos, len, copied, folio);
    713	}
    714
    715	/*
    716	 * Update the in-memory inode size after copying the data into the page
    717	 * cache.  It's up to the file system to write the updated size to disk,
    718	 * preferably after I/O completion so that no stale data is exposed.
    719	 */
    720	if (pos + ret > old_size) {
    721		i_size_write(iter->inode, pos + ret);
    722		iter->iomap.flags |= IOMAP_F_SIZE_CHANGED;
    723	}
    724	folio_unlock(folio);
    725
    726	if (old_size < pos)
    727		pagecache_isize_extended(iter->inode, old_size, pos);
    728	if (page_ops && page_ops->page_done)
    729		page_ops->page_done(iter->inode, pos, ret, &folio->page);
    730	folio_put(folio);
    731
    732	if (ret < len)
    733		iomap_write_failed(iter->inode, pos + ret, len - ret);
    734	return ret;
    735}
    736
    737static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i)
    738{
    739	loff_t length = iomap_length(iter);
    740	loff_t pos = iter->pos;
    741	ssize_t written = 0;
    742	long status = 0;
    743
    744	do {
    745		struct folio *folio;
    746		struct page *page;
    747		unsigned long offset;	/* Offset into pagecache page */
    748		unsigned long bytes;	/* Bytes to write to page */
    749		size_t copied;		/* Bytes copied from user */
    750
    751		offset = offset_in_page(pos);
    752		bytes = min_t(unsigned long, PAGE_SIZE - offset,
    753						iov_iter_count(i));
    754again:
    755		if (bytes > length)
    756			bytes = length;
    757
    758		/*
    759		 * Bring in the user page that we'll copy from _first_.
    760		 * Otherwise there's a nasty deadlock on copying from the
    761		 * same page as we're writing to, without it being marked
    762		 * up-to-date.
    763		 */
    764		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
    765			status = -EFAULT;
    766			break;
    767		}
    768
    769		status = iomap_write_begin(iter, pos, bytes, &folio);
    770		if (unlikely(status))
    771			break;
    772
    773		page = folio_file_page(folio, pos >> PAGE_SHIFT);
    774		if (mapping_writably_mapped(iter->inode->i_mapping))
    775			flush_dcache_page(page);
    776
    777		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
    778
    779		status = iomap_write_end(iter, pos, bytes, copied, folio);
    780
    781		if (unlikely(copied != status))
    782			iov_iter_revert(i, copied - status);
    783
    784		cond_resched();
    785		if (unlikely(status == 0)) {
    786			/*
    787			 * A short copy made iomap_write_end() reject the
    788			 * thing entirely.  Might be memory poisoning
    789			 * halfway through, might be a race with munmap,
    790			 * might be severe memory pressure.
    791			 */
    792			if (copied)
    793				bytes = copied;
    794			goto again;
    795		}
    796		pos += status;
    797		written += status;
    798		length -= status;
    799
    800		balance_dirty_pages_ratelimited(iter->inode->i_mapping);
    801	} while (iov_iter_count(i) && length);
    802
    803	return written ? written : status;
    804}
    805
    806ssize_t
    807iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i,
    808		const struct iomap_ops *ops)
    809{
    810	struct iomap_iter iter = {
    811		.inode		= iocb->ki_filp->f_mapping->host,
    812		.pos		= iocb->ki_pos,
    813		.len		= iov_iter_count(i),
    814		.flags		= IOMAP_WRITE,
    815	};
    816	int ret;
    817
    818	while ((ret = iomap_iter(&iter, ops)) > 0)
    819		iter.processed = iomap_write_iter(&iter, i);
    820	if (iter.pos == iocb->ki_pos)
    821		return ret;
    822	return iter.pos - iocb->ki_pos;
    823}
    824EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
    825
    826static loff_t iomap_unshare_iter(struct iomap_iter *iter)
    827{
    828	struct iomap *iomap = &iter->iomap;
    829	const struct iomap *srcmap = iomap_iter_srcmap(iter);
    830	loff_t pos = iter->pos;
    831	loff_t length = iomap_length(iter);
    832	long status = 0;
    833	loff_t written = 0;
    834
    835	/* don't bother with blocks that are not shared to start with */
    836	if (!(iomap->flags & IOMAP_F_SHARED))
    837		return length;
    838	/* don't bother with holes or unwritten extents */
    839	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
    840		return length;
    841
    842	do {
    843		unsigned long offset = offset_in_page(pos);
    844		unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length);
    845		struct folio *folio;
    846
    847		status = iomap_write_begin(iter, pos, bytes, &folio);
    848		if (unlikely(status))
    849			return status;
    850
    851		status = iomap_write_end(iter, pos, bytes, bytes, folio);
    852		if (WARN_ON_ONCE(status == 0))
    853			return -EIO;
    854
    855		cond_resched();
    856
    857		pos += status;
    858		written += status;
    859		length -= status;
    860
    861		balance_dirty_pages_ratelimited(iter->inode->i_mapping);
    862	} while (length);
    863
    864	return written;
    865}
    866
    867int
    868iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
    869		const struct iomap_ops *ops)
    870{
    871	struct iomap_iter iter = {
    872		.inode		= inode,
    873		.pos		= pos,
    874		.len		= len,
    875		.flags		= IOMAP_WRITE | IOMAP_UNSHARE,
    876	};
    877	int ret;
    878
    879	while ((ret = iomap_iter(&iter, ops)) > 0)
    880		iter.processed = iomap_unshare_iter(&iter);
    881	return ret;
    882}
    883EXPORT_SYMBOL_GPL(iomap_file_unshare);
    884
    885static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero)
    886{
    887	const struct iomap *srcmap = iomap_iter_srcmap(iter);
    888	loff_t pos = iter->pos;
    889	loff_t length = iomap_length(iter);
    890	loff_t written = 0;
    891
    892	/* already zeroed?  we're done. */
    893	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
    894		return length;
    895
    896	do {
    897		struct folio *folio;
    898		int status;
    899		size_t offset;
    900		size_t bytes = min_t(u64, SIZE_MAX, length);
    901
    902		status = iomap_write_begin(iter, pos, bytes, &folio);
    903		if (status)
    904			return status;
    905
    906		offset = offset_in_folio(folio, pos);
    907		if (bytes > folio_size(folio) - offset)
    908			bytes = folio_size(folio) - offset;
    909
    910		folio_zero_range(folio, offset, bytes);
    911		folio_mark_accessed(folio);
    912
    913		bytes = iomap_write_end(iter, pos, bytes, bytes, folio);
    914		if (WARN_ON_ONCE(bytes == 0))
    915			return -EIO;
    916
    917		pos += bytes;
    918		length -= bytes;
    919		written += bytes;
    920		if (did_zero)
    921			*did_zero = true;
    922	} while (length > 0);
    923
    924	return written;
    925}
    926
    927int
    928iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
    929		const struct iomap_ops *ops)
    930{
    931	struct iomap_iter iter = {
    932		.inode		= inode,
    933		.pos		= pos,
    934		.len		= len,
    935		.flags		= IOMAP_ZERO,
    936	};
    937	int ret;
    938
    939	while ((ret = iomap_iter(&iter, ops)) > 0)
    940		iter.processed = iomap_zero_iter(&iter, did_zero);
    941	return ret;
    942}
    943EXPORT_SYMBOL_GPL(iomap_zero_range);
    944
    945int
    946iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
    947		const struct iomap_ops *ops)
    948{
    949	unsigned int blocksize = i_blocksize(inode);
    950	unsigned int off = pos & (blocksize - 1);
    951
    952	/* Block boundary? Nothing to do */
    953	if (!off)
    954		return 0;
    955	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
    956}
    957EXPORT_SYMBOL_GPL(iomap_truncate_page);
    958
    959static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter,
    960		struct folio *folio)
    961{
    962	loff_t length = iomap_length(iter);
    963	int ret;
    964
    965	if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) {
    966		ret = __block_write_begin_int(folio, iter->pos, length, NULL,
    967					      &iter->iomap);
    968		if (ret)
    969			return ret;
    970		block_commit_write(&folio->page, 0, length);
    971	} else {
    972		WARN_ON_ONCE(!folio_test_uptodate(folio));
    973		folio_mark_dirty(folio);
    974	}
    975
    976	return length;
    977}
    978
    979vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
    980{
    981	struct iomap_iter iter = {
    982		.inode		= file_inode(vmf->vma->vm_file),
    983		.flags		= IOMAP_WRITE | IOMAP_FAULT,
    984	};
    985	struct folio *folio = page_folio(vmf->page);
    986	ssize_t ret;
    987
    988	folio_lock(folio);
    989	ret = folio_mkwrite_check_truncate(folio, iter.inode);
    990	if (ret < 0)
    991		goto out_unlock;
    992	iter.pos = folio_pos(folio);
    993	iter.len = ret;
    994	while ((ret = iomap_iter(&iter, ops)) > 0)
    995		iter.processed = iomap_folio_mkwrite_iter(&iter, folio);
    996
    997	if (ret < 0)
    998		goto out_unlock;
    999	folio_wait_stable(folio);
   1000	return VM_FAULT_LOCKED;
   1001out_unlock:
   1002	folio_unlock(folio);
   1003	return block_page_mkwrite_return(ret);
   1004}
   1005EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
   1006
   1007static void iomap_finish_folio_write(struct inode *inode, struct folio *folio,
   1008		size_t len, int error)
   1009{
   1010	struct iomap_page *iop = to_iomap_page(folio);
   1011
   1012	if (error) {
   1013		folio_set_error(folio);
   1014		mapping_set_error(inode->i_mapping, error);
   1015	}
   1016
   1017	WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !iop);
   1018	WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) <= 0);
   1019
   1020	if (!iop || atomic_sub_and_test(len, &iop->write_bytes_pending))
   1021		folio_end_writeback(folio);
   1022}
   1023
   1024/*
   1025 * We're now finished for good with this ioend structure.  Update the page
   1026 * state, release holds on bios, and finally free up memory.  Do not use the
   1027 * ioend after this.
   1028 */
   1029static u32
   1030iomap_finish_ioend(struct iomap_ioend *ioend, int error)
   1031{
   1032	struct inode *inode = ioend->io_inode;
   1033	struct bio *bio = &ioend->io_inline_bio;
   1034	struct bio *last = ioend->io_bio, *next;
   1035	u64 start = bio->bi_iter.bi_sector;
   1036	loff_t offset = ioend->io_offset;
   1037	bool quiet = bio_flagged(bio, BIO_QUIET);
   1038	u32 folio_count = 0;
   1039
   1040	for (bio = &ioend->io_inline_bio; bio; bio = next) {
   1041		struct folio_iter fi;
   1042
   1043		/*
   1044		 * For the last bio, bi_private points to the ioend, so we
   1045		 * need to explicitly end the iteration here.
   1046		 */
   1047		if (bio == last)
   1048			next = NULL;
   1049		else
   1050			next = bio->bi_private;
   1051
   1052		/* walk all folios in bio, ending page IO on them */
   1053		bio_for_each_folio_all(fi, bio) {
   1054			iomap_finish_folio_write(inode, fi.folio, fi.length,
   1055					error);
   1056			folio_count++;
   1057		}
   1058		bio_put(bio);
   1059	}
   1060	/* The ioend has been freed by bio_put() */
   1061
   1062	if (unlikely(error && !quiet)) {
   1063		printk_ratelimited(KERN_ERR
   1064"%s: writeback error on inode %lu, offset %lld, sector %llu",
   1065			inode->i_sb->s_id, inode->i_ino, offset, start);
   1066	}
   1067	return folio_count;
   1068}
   1069
   1070/*
   1071 * Ioend completion routine for merged bios. This can only be called from task
   1072 * contexts as merged ioends can be of unbound length. Hence we have to break up
   1073 * the writeback completions into manageable chunks to avoid long scheduler
   1074 * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get
   1075 * good batch processing throughput without creating adverse scheduler latency
   1076 * conditions.
   1077 */
   1078void
   1079iomap_finish_ioends(struct iomap_ioend *ioend, int error)
   1080{
   1081	struct list_head tmp;
   1082	u32 completions;
   1083
   1084	might_sleep();
   1085
   1086	list_replace_init(&ioend->io_list, &tmp);
   1087	completions = iomap_finish_ioend(ioend, error);
   1088
   1089	while (!list_empty(&tmp)) {
   1090		if (completions > IOEND_BATCH_SIZE * 8) {
   1091			cond_resched();
   1092			completions = 0;
   1093		}
   1094		ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
   1095		list_del_init(&ioend->io_list);
   1096		completions += iomap_finish_ioend(ioend, error);
   1097	}
   1098}
   1099EXPORT_SYMBOL_GPL(iomap_finish_ioends);
   1100
   1101/*
   1102 * We can merge two adjacent ioends if they have the same set of work to do.
   1103 */
   1104static bool
   1105iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
   1106{
   1107	if (ioend->io_bio->bi_status != next->io_bio->bi_status)
   1108		return false;
   1109	if ((ioend->io_flags & IOMAP_F_SHARED) ^
   1110	    (next->io_flags & IOMAP_F_SHARED))
   1111		return false;
   1112	if ((ioend->io_type == IOMAP_UNWRITTEN) ^
   1113	    (next->io_type == IOMAP_UNWRITTEN))
   1114		return false;
   1115	if (ioend->io_offset + ioend->io_size != next->io_offset)
   1116		return false;
   1117	/*
   1118	 * Do not merge physically discontiguous ioends. The filesystem
   1119	 * completion functions will have to iterate the physical
   1120	 * discontiguities even if we merge the ioends at a logical level, so
   1121	 * we don't gain anything by merging physical discontiguities here.
   1122	 *
   1123	 * We cannot use bio->bi_iter.bi_sector here as it is modified during
   1124	 * submission so does not point to the start sector of the bio at
   1125	 * completion.
   1126	 */
   1127	if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector)
   1128		return false;
   1129	return true;
   1130}
   1131
   1132void
   1133iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends)
   1134{
   1135	struct iomap_ioend *next;
   1136
   1137	INIT_LIST_HEAD(&ioend->io_list);
   1138
   1139	while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
   1140			io_list))) {
   1141		if (!iomap_ioend_can_merge(ioend, next))
   1142			break;
   1143		list_move_tail(&next->io_list, &ioend->io_list);
   1144		ioend->io_size += next->io_size;
   1145	}
   1146}
   1147EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
   1148
   1149static int
   1150iomap_ioend_compare(void *priv, const struct list_head *a,
   1151		const struct list_head *b)
   1152{
   1153	struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
   1154	struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
   1155
   1156	if (ia->io_offset < ib->io_offset)
   1157		return -1;
   1158	if (ia->io_offset > ib->io_offset)
   1159		return 1;
   1160	return 0;
   1161}
   1162
   1163void
   1164iomap_sort_ioends(struct list_head *ioend_list)
   1165{
   1166	list_sort(NULL, ioend_list, iomap_ioend_compare);
   1167}
   1168EXPORT_SYMBOL_GPL(iomap_sort_ioends);
   1169
   1170static void iomap_writepage_end_bio(struct bio *bio)
   1171{
   1172	struct iomap_ioend *ioend = bio->bi_private;
   1173
   1174	iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
   1175}
   1176
   1177/*
   1178 * Submit the final bio for an ioend.
   1179 *
   1180 * If @error is non-zero, it means that we have a situation where some part of
   1181 * the submission process has failed after we've marked pages for writeback
   1182 * and unlocked them.  In this situation, we need to fail the bio instead of
   1183 * submitting it.  This typically only happens on a filesystem shutdown.
   1184 */
   1185static int
   1186iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
   1187		int error)
   1188{
   1189	ioend->io_bio->bi_private = ioend;
   1190	ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
   1191
   1192	if (wpc->ops->prepare_ioend)
   1193		error = wpc->ops->prepare_ioend(ioend, error);
   1194	if (error) {
   1195		/*
   1196		 * If we're failing the IO now, just mark the ioend with an
   1197		 * error and finish it.  This will run IO completion immediately
   1198		 * as there is only one reference to the ioend at this point in
   1199		 * time.
   1200		 */
   1201		ioend->io_bio->bi_status = errno_to_blk_status(error);
   1202		bio_endio(ioend->io_bio);
   1203		return error;
   1204	}
   1205
   1206	submit_bio(ioend->io_bio);
   1207	return 0;
   1208}
   1209
   1210static struct iomap_ioend *
   1211iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
   1212		loff_t offset, sector_t sector, struct writeback_control *wbc)
   1213{
   1214	struct iomap_ioend *ioend;
   1215	struct bio *bio;
   1216
   1217	bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS,
   1218			       REQ_OP_WRITE | wbc_to_write_flags(wbc),
   1219			       GFP_NOFS, &iomap_ioend_bioset);
   1220	bio->bi_iter.bi_sector = sector;
   1221	wbc_init_bio(wbc, bio);
   1222
   1223	ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
   1224	INIT_LIST_HEAD(&ioend->io_list);
   1225	ioend->io_type = wpc->iomap.type;
   1226	ioend->io_flags = wpc->iomap.flags;
   1227	ioend->io_inode = inode;
   1228	ioend->io_size = 0;
   1229	ioend->io_folios = 0;
   1230	ioend->io_offset = offset;
   1231	ioend->io_bio = bio;
   1232	ioend->io_sector = sector;
   1233	return ioend;
   1234}
   1235
   1236/*
   1237 * Allocate a new bio, and chain the old bio to the new one.
   1238 *
   1239 * Note that we have to perform the chaining in this unintuitive order
   1240 * so that the bi_private linkage is set up in the right direction for the
   1241 * traversal in iomap_finish_ioend().
   1242 */
   1243static struct bio *
   1244iomap_chain_bio(struct bio *prev)
   1245{
   1246	struct bio *new;
   1247
   1248	new = bio_alloc(prev->bi_bdev, BIO_MAX_VECS, prev->bi_opf, GFP_NOFS);
   1249	bio_clone_blkg_association(new, prev);
   1250	new->bi_iter.bi_sector = bio_end_sector(prev);
   1251
   1252	bio_chain(prev, new);
   1253	bio_get(prev);		/* for iomap_finish_ioend */
   1254	submit_bio(prev);
   1255	return new;
   1256}
   1257
   1258static bool
   1259iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
   1260		sector_t sector)
   1261{
   1262	if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
   1263	    (wpc->ioend->io_flags & IOMAP_F_SHARED))
   1264		return false;
   1265	if (wpc->iomap.type != wpc->ioend->io_type)
   1266		return false;
   1267	if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
   1268		return false;
   1269	if (sector != bio_end_sector(wpc->ioend->io_bio))
   1270		return false;
   1271	/*
   1272	 * Limit ioend bio chain lengths to minimise IO completion latency. This
   1273	 * also prevents long tight loops ending page writeback on all the
   1274	 * folios in the ioend.
   1275	 */
   1276	if (wpc->ioend->io_folios >= IOEND_BATCH_SIZE)
   1277		return false;
   1278	return true;
   1279}
   1280
   1281/*
   1282 * Test to see if we have an existing ioend structure that we could append to
   1283 * first; otherwise finish off the current ioend and start another.
   1284 */
   1285static void
   1286iomap_add_to_ioend(struct inode *inode, loff_t pos, struct folio *folio,
   1287		struct iomap_page *iop, struct iomap_writepage_ctx *wpc,
   1288		struct writeback_control *wbc, struct list_head *iolist)
   1289{
   1290	sector_t sector = iomap_sector(&wpc->iomap, pos);
   1291	unsigned len = i_blocksize(inode);
   1292	size_t poff = offset_in_folio(folio, pos);
   1293
   1294	if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, sector)) {
   1295		if (wpc->ioend)
   1296			list_add(&wpc->ioend->io_list, iolist);
   1297		wpc->ioend = iomap_alloc_ioend(inode, wpc, pos, sector, wbc);
   1298	}
   1299
   1300	if (!bio_add_folio(wpc->ioend->io_bio, folio, len, poff)) {
   1301		wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio);
   1302		bio_add_folio(wpc->ioend->io_bio, folio, len, poff);
   1303	}
   1304
   1305	if (iop)
   1306		atomic_add(len, &iop->write_bytes_pending);
   1307	wpc->ioend->io_size += len;
   1308	wbc_account_cgroup_owner(wbc, &folio->page, len);
   1309}
   1310
   1311/*
   1312 * We implement an immediate ioend submission policy here to avoid needing to
   1313 * chain multiple ioends and hence nest mempool allocations which can violate
   1314 * the forward progress guarantees we need to provide. The current ioend we're
   1315 * adding blocks to is cached in the writepage context, and if the new block
   1316 * doesn't append to the cached ioend, it will create a new ioend and cache that
   1317 * instead.
   1318 *
   1319 * If a new ioend is created and cached, the old ioend is returned and queued
   1320 * locally for submission once the entire page is processed or an error has been
   1321 * detected.  While ioends are submitted immediately after they are completed,
   1322 * batching optimisations are provided by higher level block plugging.
   1323 *
   1324 * At the end of a writeback pass, there will be a cached ioend remaining on the
   1325 * writepage context that the caller will need to submit.
   1326 */
   1327static int
   1328iomap_writepage_map(struct iomap_writepage_ctx *wpc,
   1329		struct writeback_control *wbc, struct inode *inode,
   1330		struct folio *folio, u64 end_pos)
   1331{
   1332	struct iomap_page *iop = iomap_page_create(inode, folio);
   1333	struct iomap_ioend *ioend, *next;
   1334	unsigned len = i_blocksize(inode);
   1335	unsigned nblocks = i_blocks_per_folio(inode, folio);
   1336	u64 pos = folio_pos(folio);
   1337	int error = 0, count = 0, i;
   1338	LIST_HEAD(submit_list);
   1339
   1340	WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) != 0);
   1341
   1342	/*
   1343	 * Walk through the folio to find areas to write back. If we
   1344	 * run off the end of the current map or find the current map
   1345	 * invalid, grab a new one.
   1346	 */
   1347	for (i = 0; i < nblocks && pos < end_pos; i++, pos += len) {
   1348		if (iop && !test_bit(i, iop->uptodate))
   1349			continue;
   1350
   1351		error = wpc->ops->map_blocks(wpc, inode, pos);
   1352		if (error)
   1353			break;
   1354		if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
   1355			continue;
   1356		if (wpc->iomap.type == IOMAP_HOLE)
   1357			continue;
   1358		iomap_add_to_ioend(inode, pos, folio, iop, wpc, wbc,
   1359				 &submit_list);
   1360		count++;
   1361	}
   1362	if (count)
   1363		wpc->ioend->io_folios++;
   1364
   1365	WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
   1366	WARN_ON_ONCE(!folio_test_locked(folio));
   1367	WARN_ON_ONCE(folio_test_writeback(folio));
   1368	WARN_ON_ONCE(folio_test_dirty(folio));
   1369
   1370	/*
   1371	 * We cannot cancel the ioend directly here on error.  We may have
   1372	 * already set other pages under writeback and hence we have to run I/O
   1373	 * completion to mark the error state of the pages under writeback
   1374	 * appropriately.
   1375	 */
   1376	if (unlikely(error)) {
   1377		/*
   1378		 * Let the filesystem know what portion of the current page
   1379		 * failed to map. If the page hasn't been added to ioend, it
   1380		 * won't be affected by I/O completion and we must unlock it
   1381		 * now.
   1382		 */
   1383		if (wpc->ops->discard_folio)
   1384			wpc->ops->discard_folio(folio, pos);
   1385		if (!count) {
   1386			folio_unlock(folio);
   1387			goto done;
   1388		}
   1389	}
   1390
   1391	folio_start_writeback(folio);
   1392	folio_unlock(folio);
   1393
   1394	/*
   1395	 * Preserve the original error if there was one; catch
   1396	 * submission errors here and propagate into subsequent ioend
   1397	 * submissions.
   1398	 */
   1399	list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
   1400		int error2;
   1401
   1402		list_del_init(&ioend->io_list);
   1403		error2 = iomap_submit_ioend(wpc, ioend, error);
   1404		if (error2 && !error)
   1405			error = error2;
   1406	}
   1407
   1408	/*
   1409	 * We can end up here with no error and nothing to write only if we race
   1410	 * with a partial page truncate on a sub-page block sized filesystem.
   1411	 */
   1412	if (!count)
   1413		folio_end_writeback(folio);
   1414done:
   1415	mapping_set_error(folio->mapping, error);
   1416	return error;
   1417}
   1418
   1419/*
   1420 * Write out a dirty page.
   1421 *
   1422 * For delalloc space on the page, we need to allocate space and flush it.
   1423 * For unwritten space on the page, we need to start the conversion to
   1424 * regular allocated space.
   1425 */
   1426static int
   1427iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data)
   1428{
   1429	struct folio *folio = page_folio(page);
   1430	struct iomap_writepage_ctx *wpc = data;
   1431	struct inode *inode = folio->mapping->host;
   1432	u64 end_pos, isize;
   1433
   1434	trace_iomap_writepage(inode, folio_pos(folio), folio_size(folio));
   1435
   1436	/*
   1437	 * Refuse to write the folio out if we're called from reclaim context.
   1438	 *
   1439	 * This avoids stack overflows when called from deeply used stacks in
   1440	 * random callers for direct reclaim or memcg reclaim.  We explicitly
   1441	 * allow reclaim from kswapd as the stack usage there is relatively low.
   1442	 *
   1443	 * This should never happen except in the case of a VM regression so
   1444	 * warn about it.
   1445	 */
   1446	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
   1447			PF_MEMALLOC))
   1448		goto redirty;
   1449
   1450	/*
   1451	 * Is this folio beyond the end of the file?
   1452	 *
   1453	 * The folio index is less than the end_index, adjust the end_pos
   1454	 * to the highest offset that this folio should represent.
   1455	 * -----------------------------------------------------
   1456	 * |			file mapping	       | <EOF> |
   1457	 * -----------------------------------------------------
   1458	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
   1459	 * ^--------------------------------^----------|--------
   1460	 * |     desired writeback range    |      see else    |
   1461	 * ---------------------------------^------------------|
   1462	 */
   1463	isize = i_size_read(inode);
   1464	end_pos = folio_pos(folio) + folio_size(folio);
   1465	if (end_pos > isize) {
   1466		/*
   1467		 * Check whether the page to write out is beyond or straddles
   1468		 * i_size or not.
   1469		 * -------------------------------------------------------
   1470		 * |		file mapping		        | <EOF>  |
   1471		 * -------------------------------------------------------
   1472		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
   1473		 * ^--------------------------------^-----------|---------
   1474		 * |				    |      Straddles     |
   1475		 * ---------------------------------^-----------|--------|
   1476		 */
   1477		size_t poff = offset_in_folio(folio, isize);
   1478		pgoff_t end_index = isize >> PAGE_SHIFT;
   1479
   1480		/*
   1481		 * Skip the page if it's fully outside i_size, e.g. due to a
   1482		 * truncate operation that's in progress. We must redirty the
   1483		 * page so that reclaim stops reclaiming it. Otherwise
   1484		 * iomap_release_folio() is called on it and gets confused.
   1485		 *
   1486		 * Note that the end_index is unsigned long.  If the given
   1487		 * offset is greater than 16TB on a 32-bit system then if we
   1488		 * checked if the page is fully outside i_size with
   1489		 * "if (page->index >= end_index + 1)", "end_index + 1" would
   1490		 * overflow and evaluate to 0.  Hence this page would be
   1491		 * redirtied and written out repeatedly, which would result in
   1492		 * an infinite loop; the user program performing this operation
   1493		 * would hang.  Instead, we can detect this situation by
   1494		 * checking if the page is totally beyond i_size or if its
   1495		 * offset is just equal to the EOF.
   1496		 */
   1497		if (folio->index > end_index ||
   1498		    (folio->index == end_index && poff == 0))
   1499			goto redirty;
   1500
   1501		/*
   1502		 * The page straddles i_size.  It must be zeroed out on each
   1503		 * and every writepage invocation because it may be mmapped.
   1504		 * "A file is mapped in multiples of the page size.  For a file
   1505		 * that is not a multiple of the page size, the remaining
   1506		 * memory is zeroed when mapped, and writes to that region are
   1507		 * not written out to the file."
   1508		 */
   1509		folio_zero_segment(folio, poff, folio_size(folio));
   1510		end_pos = isize;
   1511	}
   1512
   1513	return iomap_writepage_map(wpc, wbc, inode, folio, end_pos);
   1514
   1515redirty:
   1516	folio_redirty_for_writepage(wbc, folio);
   1517	folio_unlock(folio);
   1518	return 0;
   1519}
   1520
   1521int
   1522iomap_writepage(struct page *page, struct writeback_control *wbc,
   1523		struct iomap_writepage_ctx *wpc,
   1524		const struct iomap_writeback_ops *ops)
   1525{
   1526	int ret;
   1527
   1528	wpc->ops = ops;
   1529	ret = iomap_do_writepage(page, wbc, wpc);
   1530	if (!wpc->ioend)
   1531		return ret;
   1532	return iomap_submit_ioend(wpc, wpc->ioend, ret);
   1533}
   1534EXPORT_SYMBOL_GPL(iomap_writepage);
   1535
   1536int
   1537iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
   1538		struct iomap_writepage_ctx *wpc,
   1539		const struct iomap_writeback_ops *ops)
   1540{
   1541	int			ret;
   1542
   1543	wpc->ops = ops;
   1544	ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
   1545	if (!wpc->ioend)
   1546		return ret;
   1547	return iomap_submit_ioend(wpc, wpc->ioend, ret);
   1548}
   1549EXPORT_SYMBOL_GPL(iomap_writepages);
   1550
   1551static int __init iomap_init(void)
   1552{
   1553	return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
   1554			   offsetof(struct iomap_ioend, io_inline_bio),
   1555			   BIOSET_NEED_BVECS);
   1556}
   1557fs_initcall(iomap_init);