cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

revoke.c (21996B)


      1// SPDX-License-Identifier: GPL-2.0+
      2/*
      3 * linux/fs/jbd2/revoke.c
      4 *
      5 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
      6 *
      7 * Copyright 2000 Red Hat corp --- All Rights Reserved
      8 *
      9 * Journal revoke routines for the generic filesystem journaling code;
     10 * part of the ext2fs journaling system.
     11 *
     12 * Revoke is the mechanism used to prevent old log records for deleted
     13 * metadata from being replayed on top of newer data using the same
     14 * blocks.  The revoke mechanism is used in two separate places:
     15 *
     16 * + Commit: during commit we write the entire list of the current
     17 *   transaction's revoked blocks to the journal
     18 *
     19 * + Recovery: during recovery we record the transaction ID of all
     20 *   revoked blocks.  If there are multiple revoke records in the log
     21 *   for a single block, only the last one counts, and if there is a log
     22 *   entry for a block beyond the last revoke, then that log entry still
     23 *   gets replayed.
     24 *
     25 * We can get interactions between revokes and new log data within a
     26 * single transaction:
     27 *
     28 * Block is revoked and then journaled:
     29 *   The desired end result is the journaling of the new block, so we
     30 *   cancel the revoke before the transaction commits.
     31 *
     32 * Block is journaled and then revoked:
     33 *   The revoke must take precedence over the write of the block, so we
     34 *   need either to cancel the journal entry or to write the revoke
     35 *   later in the log than the log block.  In this case, we choose the
     36 *   latter: journaling a block cancels any revoke record for that block
     37 *   in the current transaction, so any revoke for that block in the
     38 *   transaction must have happened after the block was journaled and so
     39 *   the revoke must take precedence.
     40 *
     41 * Block is revoked and then written as data:
     42 *   The data write is allowed to succeed, but the revoke is _not_
     43 *   cancelled.  We still need to prevent old log records from
     44 *   overwriting the new data.  We don't even need to clear the revoke
     45 *   bit here.
     46 *
     47 * We cache revoke status of a buffer in the current transaction in b_states
     48 * bits.  As the name says, revokevalid flag indicates that the cached revoke
     49 * status of a buffer is valid and we can rely on the cached status.
     50 *
     51 * Revoke information on buffers is a tri-state value:
     52 *
     53 * RevokeValid clear:	no cached revoke status, need to look it up
     54 * RevokeValid set, Revoked clear:
     55 *			buffer has not been revoked, and cancel_revoke
     56 *			need do nothing.
     57 * RevokeValid set, Revoked set:
     58 *			buffer has been revoked.
     59 *
     60 * Locking rules:
     61 * We keep two hash tables of revoke records. One hashtable belongs to the
     62 * running transaction (is pointed to by journal->j_revoke), the other one
     63 * belongs to the committing transaction. Accesses to the second hash table
     64 * happen only from the kjournald and no other thread touches this table.  Also
     65 * journal_switch_revoke_table() which switches which hashtable belongs to the
     66 * running and which to the committing transaction is called only from
     67 * kjournald. Therefore we need no locks when accessing the hashtable belonging
     68 * to the committing transaction.
     69 *
     70 * All users operating on the hash table belonging to the running transaction
     71 * have a handle to the transaction. Therefore they are safe from kjournald
     72 * switching hash tables under them. For operations on the lists of entries in
     73 * the hash table j_revoke_lock is used.
     74 *
     75 * Finally, also replay code uses the hash tables but at this moment no one else
     76 * can touch them (filesystem isn't mounted yet) and hence no locking is
     77 * needed.
     78 */
     79
     80#ifndef __KERNEL__
     81#include "jfs_user.h"
     82#else
     83#include <linux/time.h>
     84#include <linux/fs.h>
     85#include <linux/jbd2.h>
     86#include <linux/errno.h>
     87#include <linux/slab.h>
     88#include <linux/list.h>
     89#include <linux/init.h>
     90#include <linux/bio.h>
     91#include <linux/log2.h>
     92#include <linux/hash.h>
     93#endif
     94
     95static struct kmem_cache *jbd2_revoke_record_cache;
     96static struct kmem_cache *jbd2_revoke_table_cache;
     97
     98/* Each revoke record represents one single revoked block.  During
     99   journal replay, this involves recording the transaction ID of the
    100   last transaction to revoke this block. */
    101
    102struct jbd2_revoke_record_s
    103{
    104	struct list_head  hash;
    105	tid_t		  sequence;	/* Used for recovery only */
    106	unsigned long long	  blocknr;
    107};
    108
    109
    110/* The revoke table is just a simple hash table of revoke records. */
    111struct jbd2_revoke_table_s
    112{
    113	/* It is conceivable that we might want a larger hash table
    114	 * for recovery.  Must be a power of two. */
    115	int		  hash_size;
    116	int		  hash_shift;
    117	struct list_head *hash_table;
    118};
    119
    120
    121#ifdef __KERNEL__
    122static void write_one_revoke_record(transaction_t *,
    123				    struct list_head *,
    124				    struct buffer_head **, int *,
    125				    struct jbd2_revoke_record_s *);
    126static void flush_descriptor(journal_t *, struct buffer_head *, int);
    127#endif
    128
    129/* Utility functions to maintain the revoke table */
    130
    131static inline int hash(journal_t *journal, unsigned long long block)
    132{
    133	return hash_64(block, journal->j_revoke->hash_shift);
    134}
    135
    136static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
    137			      tid_t seq)
    138{
    139	struct list_head *hash_list;
    140	struct jbd2_revoke_record_s *record;
    141	gfp_t gfp_mask = GFP_NOFS;
    142
    143	if (journal_oom_retry)
    144		gfp_mask |= __GFP_NOFAIL;
    145	record = kmem_cache_alloc(jbd2_revoke_record_cache, gfp_mask);
    146	if (!record)
    147		return -ENOMEM;
    148
    149	record->sequence = seq;
    150	record->blocknr = blocknr;
    151	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
    152	spin_lock(&journal->j_revoke_lock);
    153	list_add(&record->hash, hash_list);
    154	spin_unlock(&journal->j_revoke_lock);
    155	return 0;
    156}
    157
    158/* Find a revoke record in the journal's hash table. */
    159
    160static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
    161						      unsigned long long blocknr)
    162{
    163	struct list_head *hash_list;
    164	struct jbd2_revoke_record_s *record;
    165
    166	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
    167
    168	spin_lock(&journal->j_revoke_lock);
    169	record = (struct jbd2_revoke_record_s *) hash_list->next;
    170	while (&(record->hash) != hash_list) {
    171		if (record->blocknr == blocknr) {
    172			spin_unlock(&journal->j_revoke_lock);
    173			return record;
    174		}
    175		record = (struct jbd2_revoke_record_s *) record->hash.next;
    176	}
    177	spin_unlock(&journal->j_revoke_lock);
    178	return NULL;
    179}
    180
    181void jbd2_journal_destroy_revoke_record_cache(void)
    182{
    183	kmem_cache_destroy(jbd2_revoke_record_cache);
    184	jbd2_revoke_record_cache = NULL;
    185}
    186
    187void jbd2_journal_destroy_revoke_table_cache(void)
    188{
    189	kmem_cache_destroy(jbd2_revoke_table_cache);
    190	jbd2_revoke_table_cache = NULL;
    191}
    192
    193int __init jbd2_journal_init_revoke_record_cache(void)
    194{
    195	J_ASSERT(!jbd2_revoke_record_cache);
    196	jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s,
    197					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY);
    198
    199	if (!jbd2_revoke_record_cache) {
    200		pr_emerg("JBD2: failed to create revoke_record cache\n");
    201		return -ENOMEM;
    202	}
    203	return 0;
    204}
    205
    206int __init jbd2_journal_init_revoke_table_cache(void)
    207{
    208	J_ASSERT(!jbd2_revoke_table_cache);
    209	jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s,
    210					     SLAB_TEMPORARY);
    211	if (!jbd2_revoke_table_cache) {
    212		pr_emerg("JBD2: failed to create revoke_table cache\n");
    213		return -ENOMEM;
    214	}
    215	return 0;
    216}
    217
    218static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size)
    219{
    220	int shift = 0;
    221	int tmp = hash_size;
    222	struct jbd2_revoke_table_s *table;
    223
    224	table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
    225	if (!table)
    226		goto out;
    227
    228	while((tmp >>= 1UL) != 0UL)
    229		shift++;
    230
    231	table->hash_size = hash_size;
    232	table->hash_shift = shift;
    233	table->hash_table =
    234		kmalloc_array(hash_size, sizeof(struct list_head), GFP_KERNEL);
    235	if (!table->hash_table) {
    236		kmem_cache_free(jbd2_revoke_table_cache, table);
    237		table = NULL;
    238		goto out;
    239	}
    240
    241	for (tmp = 0; tmp < hash_size; tmp++)
    242		INIT_LIST_HEAD(&table->hash_table[tmp]);
    243
    244out:
    245	return table;
    246}
    247
    248static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
    249{
    250	int i;
    251	struct list_head *hash_list;
    252
    253	for (i = 0; i < table->hash_size; i++) {
    254		hash_list = &table->hash_table[i];
    255		J_ASSERT(list_empty(hash_list));
    256	}
    257
    258	kfree(table->hash_table);
    259	kmem_cache_free(jbd2_revoke_table_cache, table);
    260}
    261
    262/* Initialise the revoke table for a given journal to a given size. */
    263int jbd2_journal_init_revoke(journal_t *journal, int hash_size)
    264{
    265	J_ASSERT(journal->j_revoke_table[0] == NULL);
    266	J_ASSERT(is_power_of_2(hash_size));
    267
    268	journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size);
    269	if (!journal->j_revoke_table[0])
    270		goto fail0;
    271
    272	journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size);
    273	if (!journal->j_revoke_table[1])
    274		goto fail1;
    275
    276	journal->j_revoke = journal->j_revoke_table[1];
    277
    278	spin_lock_init(&journal->j_revoke_lock);
    279
    280	return 0;
    281
    282fail1:
    283	jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
    284	journal->j_revoke_table[0] = NULL;
    285fail0:
    286	return -ENOMEM;
    287}
    288
    289/* Destroy a journal's revoke table.  The table must already be empty! */
    290void jbd2_journal_destroy_revoke(journal_t *journal)
    291{
    292	journal->j_revoke = NULL;
    293	if (journal->j_revoke_table[0])
    294		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
    295	if (journal->j_revoke_table[1])
    296		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]);
    297}
    298
    299
    300#ifdef __KERNEL__
    301
    302/*
    303 * jbd2_journal_revoke: revoke a given buffer_head from the journal.  This
    304 * prevents the block from being replayed during recovery if we take a
    305 * crash after this current transaction commits.  Any subsequent
    306 * metadata writes of the buffer in this transaction cancel the
    307 * revoke.
    308 *
    309 * Note that this call may block --- it is up to the caller to make
    310 * sure that there are no further calls to journal_write_metadata
    311 * before the revoke is complete.  In ext3, this implies calling the
    312 * revoke before clearing the block bitmap when we are deleting
    313 * metadata.
    314 *
    315 * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a
    316 * parameter, but does _not_ forget the buffer_head if the bh was only
    317 * found implicitly.
    318 *
    319 * bh_in may not be a journalled buffer - it may have come off
    320 * the hash tables without an attached journal_head.
    321 *
    322 * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count
    323 * by one.
    324 */
    325
    326int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr,
    327		   struct buffer_head *bh_in)
    328{
    329	struct buffer_head *bh = NULL;
    330	journal_t *journal;
    331	struct block_device *bdev;
    332	int err;
    333
    334	might_sleep();
    335	if (bh_in)
    336		BUFFER_TRACE(bh_in, "enter");
    337
    338	journal = handle->h_transaction->t_journal;
    339	if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){
    340		J_ASSERT (!"Cannot set revoke feature!");
    341		return -EINVAL;
    342	}
    343
    344	bdev = journal->j_fs_dev;
    345	bh = bh_in;
    346
    347	if (!bh) {
    348		bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
    349		if (bh)
    350			BUFFER_TRACE(bh, "found on hash");
    351	}
    352#ifdef JBD2_EXPENSIVE_CHECKING
    353	else {
    354		struct buffer_head *bh2;
    355
    356		/* If there is a different buffer_head lying around in
    357		 * memory anywhere... */
    358		bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
    359		if (bh2) {
    360			/* ... and it has RevokeValid status... */
    361			if (bh2 != bh && buffer_revokevalid(bh2))
    362				/* ...then it better be revoked too,
    363				 * since it's illegal to create a revoke
    364				 * record against a buffer_head which is
    365				 * not marked revoked --- that would
    366				 * risk missing a subsequent revoke
    367				 * cancel. */
    368				J_ASSERT_BH(bh2, buffer_revoked(bh2));
    369			put_bh(bh2);
    370		}
    371	}
    372#endif
    373
    374	if (WARN_ON_ONCE(handle->h_revoke_credits <= 0)) {
    375		if (!bh_in)
    376			brelse(bh);
    377		return -EIO;
    378	}
    379	/* We really ought not ever to revoke twice in a row without
    380           first having the revoke cancelled: it's illegal to free a
    381           block twice without allocating it in between! */
    382	if (bh) {
    383		if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
    384				 "inconsistent data on disk")) {
    385			if (!bh_in)
    386				brelse(bh);
    387			return -EIO;
    388		}
    389		set_buffer_revoked(bh);
    390		set_buffer_revokevalid(bh);
    391		if (bh_in) {
    392			BUFFER_TRACE(bh_in, "call jbd2_journal_forget");
    393			jbd2_journal_forget(handle, bh_in);
    394		} else {
    395			BUFFER_TRACE(bh, "call brelse");
    396			__brelse(bh);
    397		}
    398	}
    399	handle->h_revoke_credits--;
    400
    401	jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
    402	err = insert_revoke_hash(journal, blocknr,
    403				handle->h_transaction->t_tid);
    404	BUFFER_TRACE(bh_in, "exit");
    405	return err;
    406}
    407
    408/*
    409 * Cancel an outstanding revoke.  For use only internally by the
    410 * journaling code (called from jbd2_journal_get_write_access).
    411 *
    412 * We trust buffer_revoked() on the buffer if the buffer is already
    413 * being journaled: if there is no revoke pending on the buffer, then we
    414 * don't do anything here.
    415 *
    416 * This would break if it were possible for a buffer to be revoked and
    417 * discarded, and then reallocated within the same transaction.  In such
    418 * a case we would have lost the revoked bit, but when we arrived here
    419 * the second time we would still have a pending revoke to cancel.  So,
    420 * do not trust the Revoked bit on buffers unless RevokeValid is also
    421 * set.
    422 */
    423int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
    424{
    425	struct jbd2_revoke_record_s *record;
    426	journal_t *journal = handle->h_transaction->t_journal;
    427	int need_cancel;
    428	int did_revoke = 0;	/* akpm: debug */
    429	struct buffer_head *bh = jh2bh(jh);
    430
    431	jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
    432
    433	/* Is the existing Revoke bit valid?  If so, we trust it, and
    434	 * only perform the full cancel if the revoke bit is set.  If
    435	 * not, we can't trust the revoke bit, and we need to do the
    436	 * full search for a revoke record. */
    437	if (test_set_buffer_revokevalid(bh)) {
    438		need_cancel = test_clear_buffer_revoked(bh);
    439	} else {
    440		need_cancel = 1;
    441		clear_buffer_revoked(bh);
    442	}
    443
    444	if (need_cancel) {
    445		record = find_revoke_record(journal, bh->b_blocknr);
    446		if (record) {
    447			jbd_debug(4, "cancelled existing revoke on "
    448				  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
    449			spin_lock(&journal->j_revoke_lock);
    450			list_del(&record->hash);
    451			spin_unlock(&journal->j_revoke_lock);
    452			kmem_cache_free(jbd2_revoke_record_cache, record);
    453			did_revoke = 1;
    454		}
    455	}
    456
    457#ifdef JBD2_EXPENSIVE_CHECKING
    458	/* There better not be one left behind by now! */
    459	record = find_revoke_record(journal, bh->b_blocknr);
    460	J_ASSERT_JH(jh, record == NULL);
    461#endif
    462
    463	/* Finally, have we just cleared revoke on an unhashed
    464	 * buffer_head?  If so, we'd better make sure we clear the
    465	 * revoked status on any hashed alias too, otherwise the revoke
    466	 * state machine will get very upset later on. */
    467	if (need_cancel) {
    468		struct buffer_head *bh2;
    469		bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
    470		if (bh2) {
    471			if (bh2 != bh)
    472				clear_buffer_revoked(bh2);
    473			__brelse(bh2);
    474		}
    475	}
    476	return did_revoke;
    477}
    478
    479/*
    480 * journal_clear_revoked_flag clears revoked flag of buffers in
    481 * revoke table to reflect there is no revoked buffers in the next
    482 * transaction which is going to be started.
    483 */
    484void jbd2_clear_buffer_revoked_flags(journal_t *journal)
    485{
    486	struct jbd2_revoke_table_s *revoke = journal->j_revoke;
    487	int i = 0;
    488
    489	for (i = 0; i < revoke->hash_size; i++) {
    490		struct list_head *hash_list;
    491		struct list_head *list_entry;
    492		hash_list = &revoke->hash_table[i];
    493
    494		list_for_each(list_entry, hash_list) {
    495			struct jbd2_revoke_record_s *record;
    496			struct buffer_head *bh;
    497			record = (struct jbd2_revoke_record_s *)list_entry;
    498			bh = __find_get_block(journal->j_fs_dev,
    499					      record->blocknr,
    500					      journal->j_blocksize);
    501			if (bh) {
    502				clear_buffer_revoked(bh);
    503				__brelse(bh);
    504			}
    505		}
    506	}
    507}
    508
    509/* journal_switch_revoke table select j_revoke for next transaction
    510 * we do not want to suspend any processing until all revokes are
    511 * written -bzzz
    512 */
    513void jbd2_journal_switch_revoke_table(journal_t *journal)
    514{
    515	int i;
    516
    517	if (journal->j_revoke == journal->j_revoke_table[0])
    518		journal->j_revoke = journal->j_revoke_table[1];
    519	else
    520		journal->j_revoke = journal->j_revoke_table[0];
    521
    522	for (i = 0; i < journal->j_revoke->hash_size; i++)
    523		INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
    524}
    525
    526/*
    527 * Write revoke records to the journal for all entries in the current
    528 * revoke hash, deleting the entries as we go.
    529 */
    530void jbd2_journal_write_revoke_records(transaction_t *transaction,
    531				       struct list_head *log_bufs)
    532{
    533	journal_t *journal = transaction->t_journal;
    534	struct buffer_head *descriptor;
    535	struct jbd2_revoke_record_s *record;
    536	struct jbd2_revoke_table_s *revoke;
    537	struct list_head *hash_list;
    538	int i, offset, count;
    539
    540	descriptor = NULL;
    541	offset = 0;
    542	count = 0;
    543
    544	/* select revoke table for committing transaction */
    545	revoke = journal->j_revoke == journal->j_revoke_table[0] ?
    546		journal->j_revoke_table[1] : journal->j_revoke_table[0];
    547
    548	for (i = 0; i < revoke->hash_size; i++) {
    549		hash_list = &revoke->hash_table[i];
    550
    551		while (!list_empty(hash_list)) {
    552			record = (struct jbd2_revoke_record_s *)
    553				hash_list->next;
    554			write_one_revoke_record(transaction, log_bufs,
    555						&descriptor, &offset, record);
    556			count++;
    557			list_del(&record->hash);
    558			kmem_cache_free(jbd2_revoke_record_cache, record);
    559		}
    560	}
    561	if (descriptor)
    562		flush_descriptor(journal, descriptor, offset);
    563	jbd_debug(1, "Wrote %d revoke records\n", count);
    564}
    565
    566/*
    567 * Write out one revoke record.  We need to create a new descriptor
    568 * block if the old one is full or if we have not already created one.
    569 */
    570
    571static void write_one_revoke_record(transaction_t *transaction,
    572				    struct list_head *log_bufs,
    573				    struct buffer_head **descriptorp,
    574				    int *offsetp,
    575				    struct jbd2_revoke_record_s *record)
    576{
    577	journal_t *journal = transaction->t_journal;
    578	int csum_size = 0;
    579	struct buffer_head *descriptor;
    580	int sz, offset;
    581
    582	/* If we are already aborting, this all becomes a noop.  We
    583           still need to go round the loop in
    584           jbd2_journal_write_revoke_records in order to free all of the
    585           revoke records: only the IO to the journal is omitted. */
    586	if (is_journal_aborted(journal))
    587		return;
    588
    589	descriptor = *descriptorp;
    590	offset = *offsetp;
    591
    592	/* Do we need to leave space at the end for a checksum? */
    593	if (jbd2_journal_has_csum_v2or3(journal))
    594		csum_size = sizeof(struct jbd2_journal_block_tail);
    595
    596	if (jbd2_has_feature_64bit(journal))
    597		sz = 8;
    598	else
    599		sz = 4;
    600
    601	/* Make sure we have a descriptor with space left for the record */
    602	if (descriptor) {
    603		if (offset + sz > journal->j_blocksize - csum_size) {
    604			flush_descriptor(journal, descriptor, offset);
    605			descriptor = NULL;
    606		}
    607	}
    608
    609	if (!descriptor) {
    610		descriptor = jbd2_journal_get_descriptor_buffer(transaction,
    611							JBD2_REVOKE_BLOCK);
    612		if (!descriptor)
    613			return;
    614
    615		/* Record it so that we can wait for IO completion later */
    616		BUFFER_TRACE(descriptor, "file in log_bufs");
    617		jbd2_file_log_bh(log_bufs, descriptor);
    618
    619		offset = sizeof(jbd2_journal_revoke_header_t);
    620		*descriptorp = descriptor;
    621	}
    622
    623	if (jbd2_has_feature_64bit(journal))
    624		* ((__be64 *)(&descriptor->b_data[offset])) =
    625			cpu_to_be64(record->blocknr);
    626	else
    627		* ((__be32 *)(&descriptor->b_data[offset])) =
    628			cpu_to_be32(record->blocknr);
    629	offset += sz;
    630
    631	*offsetp = offset;
    632}
    633
    634/*
    635 * Flush a revoke descriptor out to the journal.  If we are aborting,
    636 * this is a noop; otherwise we are generating a buffer which needs to
    637 * be waited for during commit, so it has to go onto the appropriate
    638 * journal buffer list.
    639 */
    640
    641static void flush_descriptor(journal_t *journal,
    642			     struct buffer_head *descriptor,
    643			     int offset)
    644{
    645	jbd2_journal_revoke_header_t *header;
    646
    647	if (is_journal_aborted(journal))
    648		return;
    649
    650	header = (jbd2_journal_revoke_header_t *)descriptor->b_data;
    651	header->r_count = cpu_to_be32(offset);
    652	jbd2_descriptor_block_csum_set(journal, descriptor);
    653
    654	set_buffer_jwrite(descriptor);
    655	BUFFER_TRACE(descriptor, "write");
    656	set_buffer_dirty(descriptor);
    657	write_dirty_buffer(descriptor, REQ_SYNC);
    658}
    659#endif
    660
    661/*
    662 * Revoke support for recovery.
    663 *
    664 * Recovery needs to be able to:
    665 *
    666 *  record all revoke records, including the tid of the latest instance
    667 *  of each revoke in the journal
    668 *
    669 *  check whether a given block in a given transaction should be replayed
    670 *  (ie. has not been revoked by a revoke record in that or a subsequent
    671 *  transaction)
    672 *
    673 *  empty the revoke table after recovery.
    674 */
    675
    676/*
    677 * First, setting revoke records.  We create a new revoke record for
    678 * every block ever revoked in the log as we scan it for recovery, and
    679 * we update the existing records if we find multiple revokes for a
    680 * single block.
    681 */
    682
    683int jbd2_journal_set_revoke(journal_t *journal,
    684		       unsigned long long blocknr,
    685		       tid_t sequence)
    686{
    687	struct jbd2_revoke_record_s *record;
    688
    689	record = find_revoke_record(journal, blocknr);
    690	if (record) {
    691		/* If we have multiple occurrences, only record the
    692		 * latest sequence number in the hashed record */
    693		if (tid_gt(sequence, record->sequence))
    694			record->sequence = sequence;
    695		return 0;
    696	}
    697	return insert_revoke_hash(journal, blocknr, sequence);
    698}
    699
    700/*
    701 * Test revoke records.  For a given block referenced in the log, has
    702 * that block been revoked?  A revoke record with a given transaction
    703 * sequence number revokes all blocks in that transaction and earlier
    704 * ones, but later transactions still need replayed.
    705 */
    706
    707int jbd2_journal_test_revoke(journal_t *journal,
    708			unsigned long long blocknr,
    709			tid_t sequence)
    710{
    711	struct jbd2_revoke_record_s *record;
    712
    713	record = find_revoke_record(journal, blocknr);
    714	if (!record)
    715		return 0;
    716	if (tid_gt(sequence, record->sequence))
    717		return 0;
    718	return 1;
    719}
    720
    721/*
    722 * Finally, once recovery is over, we need to clear the revoke table so
    723 * that it can be reused by the running filesystem.
    724 */
    725
    726void jbd2_journal_clear_revoke(journal_t *journal)
    727{
    728	int i;
    729	struct list_head *hash_list;
    730	struct jbd2_revoke_record_s *record;
    731	struct jbd2_revoke_table_s *revoke;
    732
    733	revoke = journal->j_revoke;
    734
    735	for (i = 0; i < revoke->hash_size; i++) {
    736		hash_list = &revoke->hash_table[i];
    737		while (!list_empty(hash_list)) {
    738			record = (struct jbd2_revoke_record_s*) hash_list->next;
    739			list_del(&record->hash);
    740			kmem_cache_free(jbd2_revoke_record_cache, record);
    741		}
    742	}
    743}