cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

transaction.c (87509B)


      1// SPDX-License-Identifier: GPL-2.0+
      2/*
      3 * linux/fs/jbd2/transaction.c
      4 *
      5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
      6 *
      7 * Copyright 1998 Red Hat corp --- All Rights Reserved
      8 *
      9 * Generic filesystem transaction handling code; part of the ext2fs
     10 * journaling system.
     11 *
     12 * This file manages transactions (compound commits managed by the
     13 * journaling code) and handles (individual atomic operations by the
     14 * filesystem).
     15 */
     16
     17#include <linux/time.h>
     18#include <linux/fs.h>
     19#include <linux/jbd2.h>
     20#include <linux/errno.h>
     21#include <linux/slab.h>
     22#include <linux/timer.h>
     23#include <linux/mm.h>
     24#include <linux/highmem.h>
     25#include <linux/hrtimer.h>
     26#include <linux/backing-dev.h>
     27#include <linux/bug.h>
     28#include <linux/module.h>
     29#include <linux/sched/mm.h>
     30
     31#include <trace/events/jbd2.h>
     32
     33static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
     34static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
     35
     36static struct kmem_cache *transaction_cache;
     37int __init jbd2_journal_init_transaction_cache(void)
     38{
     39	J_ASSERT(!transaction_cache);
     40	transaction_cache = kmem_cache_create("jbd2_transaction_s",
     41					sizeof(transaction_t),
     42					0,
     43					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
     44					NULL);
     45	if (!transaction_cache) {
     46		pr_emerg("JBD2: failed to create transaction cache\n");
     47		return -ENOMEM;
     48	}
     49	return 0;
     50}
     51
     52void jbd2_journal_destroy_transaction_cache(void)
     53{
     54	kmem_cache_destroy(transaction_cache);
     55	transaction_cache = NULL;
     56}
     57
     58void jbd2_journal_free_transaction(transaction_t *transaction)
     59{
     60	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
     61		return;
     62	kmem_cache_free(transaction_cache, transaction);
     63}
     64
     65/*
     66 * Base amount of descriptor blocks we reserve for each transaction.
     67 */
     68static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
     69{
     70	int tag_space = journal->j_blocksize - sizeof(journal_header_t);
     71	int tags_per_block;
     72
     73	/* Subtract UUID */
     74	tag_space -= 16;
     75	if (jbd2_journal_has_csum_v2or3(journal))
     76		tag_space -= sizeof(struct jbd2_journal_block_tail);
     77	/* Commit code leaves a slack space of 16 bytes at the end of block */
     78	tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
     79	/*
     80	 * Revoke descriptors are accounted separately so we need to reserve
     81	 * space for commit block and normal transaction descriptor blocks.
     82	 */
     83	return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers,
     84				tags_per_block);
     85}
     86
     87/*
     88 * jbd2_get_transaction: obtain a new transaction_t object.
     89 *
     90 * Simply initialise a new transaction. Initialize it in
     91 * RUNNING state and add it to the current journal (which should not
     92 * have an existing running transaction: we only make a new transaction
     93 * once we have started to commit the old one).
     94 *
     95 * Preconditions:
     96 *	The journal MUST be locked.  We don't perform atomic mallocs on the
     97 *	new transaction	and we can't block without protecting against other
     98 *	processes trying to touch the journal while it is in transition.
     99 *
    100 */
    101
    102static void jbd2_get_transaction(journal_t *journal,
    103				transaction_t *transaction)
    104{
    105	transaction->t_journal = journal;
    106	transaction->t_state = T_RUNNING;
    107	transaction->t_start_time = ktime_get();
    108	transaction->t_tid = journal->j_transaction_sequence++;
    109	transaction->t_expires = jiffies + journal->j_commit_interval;
    110	atomic_set(&transaction->t_updates, 0);
    111	atomic_set(&transaction->t_outstanding_credits,
    112		   jbd2_descriptor_blocks_per_trans(journal) +
    113		   atomic_read(&journal->j_reserved_credits));
    114	atomic_set(&transaction->t_outstanding_revokes, 0);
    115	atomic_set(&transaction->t_handle_count, 0);
    116	INIT_LIST_HEAD(&transaction->t_inode_list);
    117	INIT_LIST_HEAD(&transaction->t_private_list);
    118
    119	/* Set up the commit timer for the new transaction. */
    120	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
    121	add_timer(&journal->j_commit_timer);
    122
    123	J_ASSERT(journal->j_running_transaction == NULL);
    124	journal->j_running_transaction = transaction;
    125	transaction->t_max_wait = 0;
    126	transaction->t_start = jiffies;
    127	transaction->t_requested = 0;
    128}
    129
    130/*
    131 * Handle management.
    132 *
    133 * A handle_t is an object which represents a single atomic update to a
    134 * filesystem, and which tracks all of the modifications which form part
    135 * of that one update.
    136 */
    137
    138/*
    139 * Update transaction's maximum wait time, if debugging is enabled.
    140 *
    141 * t_max_wait is carefully updated here with use of atomic compare exchange.
    142 * Note that there could be multiplre threads trying to do this simultaneously
    143 * hence using cmpxchg to avoid any use of locks in this case.
    144 * With this t_max_wait can be updated w/o enabling jbd2_journal_enable_debug.
    145 */
    146static inline void update_t_max_wait(transaction_t *transaction,
    147				     unsigned long ts)
    148{
    149	unsigned long oldts, newts;
    150
    151	if (time_after(transaction->t_start, ts)) {
    152		newts = jbd2_time_diff(ts, transaction->t_start);
    153		oldts = READ_ONCE(transaction->t_max_wait);
    154		while (oldts < newts)
    155			oldts = cmpxchg(&transaction->t_max_wait, oldts, newts);
    156	}
    157}
    158
    159/*
    160 * Wait until running transaction passes to T_FLUSH state and new transaction
    161 * can thus be started. Also starts the commit if needed. The function expects
    162 * running transaction to exist and releases j_state_lock.
    163 */
    164static void wait_transaction_locked(journal_t *journal)
    165	__releases(journal->j_state_lock)
    166{
    167	DEFINE_WAIT(wait);
    168	int need_to_start;
    169	tid_t tid = journal->j_running_transaction->t_tid;
    170
    171	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
    172			TASK_UNINTERRUPTIBLE);
    173	need_to_start = !tid_geq(journal->j_commit_request, tid);
    174	read_unlock(&journal->j_state_lock);
    175	if (need_to_start)
    176		jbd2_log_start_commit(journal, tid);
    177	jbd2_might_wait_for_commit(journal);
    178	schedule();
    179	finish_wait(&journal->j_wait_transaction_locked, &wait);
    180}
    181
    182/*
    183 * Wait until running transaction transitions from T_SWITCH to T_FLUSH
    184 * state and new transaction can thus be started. The function releases
    185 * j_state_lock.
    186 */
    187static void wait_transaction_switching(journal_t *journal)
    188	__releases(journal->j_state_lock)
    189{
    190	DEFINE_WAIT(wait);
    191
    192	if (WARN_ON(!journal->j_running_transaction ||
    193		    journal->j_running_transaction->t_state != T_SWITCH)) {
    194		read_unlock(&journal->j_state_lock);
    195		return;
    196	}
    197	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
    198			TASK_UNINTERRUPTIBLE);
    199	read_unlock(&journal->j_state_lock);
    200	/*
    201	 * We don't call jbd2_might_wait_for_commit() here as there's no
    202	 * waiting for outstanding handles happening anymore in T_SWITCH state
    203	 * and handling of reserved handles actually relies on that for
    204	 * correctness.
    205	 */
    206	schedule();
    207	finish_wait(&journal->j_wait_transaction_locked, &wait);
    208}
    209
    210static void sub_reserved_credits(journal_t *journal, int blocks)
    211{
    212	atomic_sub(blocks, &journal->j_reserved_credits);
    213	wake_up(&journal->j_wait_reserved);
    214}
    215
    216/*
    217 * Wait until we can add credits for handle to the running transaction.  Called
    218 * with j_state_lock held for reading. Returns 0 if handle joined the running
    219 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
    220 * caller must retry.
    221 *
    222 * Note: because j_state_lock may be dropped depending on the return
    223 * value, we need to fake out sparse so ti doesn't complain about a
    224 * locking imbalance.  Callers of add_transaction_credits will need to
    225 * make a similar accomodation.
    226 */
    227static int add_transaction_credits(journal_t *journal, int blocks,
    228				   int rsv_blocks)
    229__must_hold(&journal->j_state_lock)
    230{
    231	transaction_t *t = journal->j_running_transaction;
    232	int needed;
    233	int total = blocks + rsv_blocks;
    234
    235	/*
    236	 * If the current transaction is locked down for commit, wait
    237	 * for the lock to be released.
    238	 */
    239	if (t->t_state != T_RUNNING) {
    240		WARN_ON_ONCE(t->t_state >= T_FLUSH);
    241		wait_transaction_locked(journal);
    242		__acquire(&journal->j_state_lock); /* fake out sparse */
    243		return 1;
    244	}
    245
    246	/*
    247	 * If there is not enough space left in the log to write all
    248	 * potential buffers requested by this operation, we need to
    249	 * stall pending a log checkpoint to free some more log space.
    250	 */
    251	needed = atomic_add_return(total, &t->t_outstanding_credits);
    252	if (needed > journal->j_max_transaction_buffers) {
    253		/*
    254		 * If the current transaction is already too large,
    255		 * then start to commit it: we can then go back and
    256		 * attach this handle to a new transaction.
    257		 */
    258		atomic_sub(total, &t->t_outstanding_credits);
    259
    260		/*
    261		 * Is the number of reserved credits in the current transaction too
    262		 * big to fit this handle? Wait until reserved credits are freed.
    263		 */
    264		if (atomic_read(&journal->j_reserved_credits) + total >
    265		    journal->j_max_transaction_buffers) {
    266			read_unlock(&journal->j_state_lock);
    267			jbd2_might_wait_for_commit(journal);
    268			wait_event(journal->j_wait_reserved,
    269				   atomic_read(&journal->j_reserved_credits) + total <=
    270				   journal->j_max_transaction_buffers);
    271			__acquire(&journal->j_state_lock); /* fake out sparse */
    272			return 1;
    273		}
    274
    275		wait_transaction_locked(journal);
    276		__acquire(&journal->j_state_lock); /* fake out sparse */
    277		return 1;
    278	}
    279
    280	/*
    281	 * The commit code assumes that it can get enough log space
    282	 * without forcing a checkpoint.  This is *critical* for
    283	 * correctness: a checkpoint of a buffer which is also
    284	 * associated with a committing transaction creates a deadlock,
    285	 * so commit simply cannot force through checkpoints.
    286	 *
    287	 * We must therefore ensure the necessary space in the journal
    288	 * *before* starting to dirty potentially checkpointed buffers
    289	 * in the new transaction.
    290	 */
    291	if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) {
    292		atomic_sub(total, &t->t_outstanding_credits);
    293		read_unlock(&journal->j_state_lock);
    294		jbd2_might_wait_for_commit(journal);
    295		write_lock(&journal->j_state_lock);
    296		if (jbd2_log_space_left(journal) <
    297					journal->j_max_transaction_buffers)
    298			__jbd2_log_wait_for_space(journal);
    299		write_unlock(&journal->j_state_lock);
    300		__acquire(&journal->j_state_lock); /* fake out sparse */
    301		return 1;
    302	}
    303
    304	/* No reservation? We are done... */
    305	if (!rsv_blocks)
    306		return 0;
    307
    308	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
    309	/* We allow at most half of a transaction to be reserved */
    310	if (needed > journal->j_max_transaction_buffers / 2) {
    311		sub_reserved_credits(journal, rsv_blocks);
    312		atomic_sub(total, &t->t_outstanding_credits);
    313		read_unlock(&journal->j_state_lock);
    314		jbd2_might_wait_for_commit(journal);
    315		wait_event(journal->j_wait_reserved,
    316			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
    317			 <= journal->j_max_transaction_buffers / 2);
    318		__acquire(&journal->j_state_lock); /* fake out sparse */
    319		return 1;
    320	}
    321	return 0;
    322}
    323
    324/*
    325 * start_this_handle: Given a handle, deal with any locking or stalling
    326 * needed to make sure that there is enough journal space for the handle
    327 * to begin.  Attach the handle to a transaction and set up the
    328 * transaction's buffer credits.
    329 */
    330
    331static int start_this_handle(journal_t *journal, handle_t *handle,
    332			     gfp_t gfp_mask)
    333{
    334	transaction_t	*transaction, *new_transaction = NULL;
    335	int		blocks = handle->h_total_credits;
    336	int		rsv_blocks = 0;
    337	unsigned long ts = jiffies;
    338
    339	if (handle->h_rsv_handle)
    340		rsv_blocks = handle->h_rsv_handle->h_total_credits;
    341
    342	/*
    343	 * Limit the number of reserved credits to 1/2 of maximum transaction
    344	 * size and limit the number of total credits to not exceed maximum
    345	 * transaction size per operation.
    346	 */
    347	if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
    348	    (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
    349		printk(KERN_ERR "JBD2: %s wants too many credits "
    350		       "credits:%d rsv_credits:%d max:%d\n",
    351		       current->comm, blocks, rsv_blocks,
    352		       journal->j_max_transaction_buffers);
    353		WARN_ON(1);
    354		return -ENOSPC;
    355	}
    356
    357alloc_transaction:
    358	/*
    359	 * This check is racy but it is just an optimization of allocating new
    360	 * transaction early if there are high chances we'll need it. If we
    361	 * guess wrong, we'll retry or free unused transaction.
    362	 */
    363	if (!data_race(journal->j_running_transaction)) {
    364		/*
    365		 * If __GFP_FS is not present, then we may be being called from
    366		 * inside the fs writeback layer, so we MUST NOT fail.
    367		 */
    368		if ((gfp_mask & __GFP_FS) == 0)
    369			gfp_mask |= __GFP_NOFAIL;
    370		new_transaction = kmem_cache_zalloc(transaction_cache,
    371						    gfp_mask);
    372		if (!new_transaction)
    373			return -ENOMEM;
    374	}
    375
    376	jbd_debug(3, "New handle %p going live.\n", handle);
    377
    378	/*
    379	 * We need to hold j_state_lock until t_updates has been incremented,
    380	 * for proper journal barrier handling
    381	 */
    382repeat:
    383	read_lock(&journal->j_state_lock);
    384	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
    385	if (is_journal_aborted(journal) ||
    386	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
    387		read_unlock(&journal->j_state_lock);
    388		jbd2_journal_free_transaction(new_transaction);
    389		return -EROFS;
    390	}
    391
    392	/*
    393	 * Wait on the journal's transaction barrier if necessary. Specifically
    394	 * we allow reserved handles to proceed because otherwise commit could
    395	 * deadlock on page writeback not being able to complete.
    396	 */
    397	if (!handle->h_reserved && journal->j_barrier_count) {
    398		read_unlock(&journal->j_state_lock);
    399		wait_event(journal->j_wait_transaction_locked,
    400				journal->j_barrier_count == 0);
    401		goto repeat;
    402	}
    403
    404	if (!journal->j_running_transaction) {
    405		read_unlock(&journal->j_state_lock);
    406		if (!new_transaction)
    407			goto alloc_transaction;
    408		write_lock(&journal->j_state_lock);
    409		if (!journal->j_running_transaction &&
    410		    (handle->h_reserved || !journal->j_barrier_count)) {
    411			jbd2_get_transaction(journal, new_transaction);
    412			new_transaction = NULL;
    413		}
    414		write_unlock(&journal->j_state_lock);
    415		goto repeat;
    416	}
    417
    418	transaction = journal->j_running_transaction;
    419
    420	if (!handle->h_reserved) {
    421		/* We may have dropped j_state_lock - restart in that case */
    422		if (add_transaction_credits(journal, blocks, rsv_blocks)) {
    423			/*
    424			 * add_transaction_credits releases
    425			 * j_state_lock on a non-zero return
    426			 */
    427			__release(&journal->j_state_lock);
    428			goto repeat;
    429		}
    430	} else {
    431		/*
    432		 * We have handle reserved so we are allowed to join T_LOCKED
    433		 * transaction and we don't have to check for transaction size
    434		 * and journal space. But we still have to wait while running
    435		 * transaction is being switched to a committing one as it
    436		 * won't wait for any handles anymore.
    437		 */
    438		if (transaction->t_state == T_SWITCH) {
    439			wait_transaction_switching(journal);
    440			goto repeat;
    441		}
    442		sub_reserved_credits(journal, blocks);
    443		handle->h_reserved = 0;
    444	}
    445
    446	/* OK, account for the buffers that this operation expects to
    447	 * use and add the handle to the running transaction.
    448	 */
    449	update_t_max_wait(transaction, ts);
    450	handle->h_transaction = transaction;
    451	handle->h_requested_credits = blocks;
    452	handle->h_revoke_credits_requested = handle->h_revoke_credits;
    453	handle->h_start_jiffies = jiffies;
    454	atomic_inc(&transaction->t_updates);
    455	atomic_inc(&transaction->t_handle_count);
    456	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
    457		  handle, blocks,
    458		  atomic_read(&transaction->t_outstanding_credits),
    459		  jbd2_log_space_left(journal));
    460	read_unlock(&journal->j_state_lock);
    461	current->journal_info = handle;
    462
    463	rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
    464	jbd2_journal_free_transaction(new_transaction);
    465	/*
    466	 * Ensure that no allocations done while the transaction is open are
    467	 * going to recurse back to the fs layer.
    468	 */
    469	handle->saved_alloc_context = memalloc_nofs_save();
    470	return 0;
    471}
    472
    473/* Allocate a new handle.  This should probably be in a slab... */
    474static handle_t *new_handle(int nblocks)
    475{
    476	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
    477	if (!handle)
    478		return NULL;
    479	handle->h_total_credits = nblocks;
    480	handle->h_ref = 1;
    481
    482	return handle;
    483}
    484
    485handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
    486			      int revoke_records, gfp_t gfp_mask,
    487			      unsigned int type, unsigned int line_no)
    488{
    489	handle_t *handle = journal_current_handle();
    490	int err;
    491
    492	if (!journal)
    493		return ERR_PTR(-EROFS);
    494
    495	if (handle) {
    496		J_ASSERT(handle->h_transaction->t_journal == journal);
    497		handle->h_ref++;
    498		return handle;
    499	}
    500
    501	nblocks += DIV_ROUND_UP(revoke_records,
    502				journal->j_revoke_records_per_block);
    503	handle = new_handle(nblocks);
    504	if (!handle)
    505		return ERR_PTR(-ENOMEM);
    506	if (rsv_blocks) {
    507		handle_t *rsv_handle;
    508
    509		rsv_handle = new_handle(rsv_blocks);
    510		if (!rsv_handle) {
    511			jbd2_free_handle(handle);
    512			return ERR_PTR(-ENOMEM);
    513		}
    514		rsv_handle->h_reserved = 1;
    515		rsv_handle->h_journal = journal;
    516		handle->h_rsv_handle = rsv_handle;
    517	}
    518	handle->h_revoke_credits = revoke_records;
    519
    520	err = start_this_handle(journal, handle, gfp_mask);
    521	if (err < 0) {
    522		if (handle->h_rsv_handle)
    523			jbd2_free_handle(handle->h_rsv_handle);
    524		jbd2_free_handle(handle);
    525		return ERR_PTR(err);
    526	}
    527	handle->h_type = type;
    528	handle->h_line_no = line_no;
    529	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
    530				handle->h_transaction->t_tid, type,
    531				line_no, nblocks);
    532
    533	return handle;
    534}
    535EXPORT_SYMBOL(jbd2__journal_start);
    536
    537
    538/**
    539 * jbd2_journal_start() - Obtain a new handle.
    540 * @journal: Journal to start transaction on.
    541 * @nblocks: number of block buffer we might modify
    542 *
    543 * We make sure that the transaction can guarantee at least nblocks of
    544 * modified buffers in the log.  We block until the log can guarantee
    545 * that much space. Additionally, if rsv_blocks > 0, we also create another
    546 * handle with rsv_blocks reserved blocks in the journal. This handle is
    547 * stored in h_rsv_handle. It is not attached to any particular transaction
    548 * and thus doesn't block transaction commit. If the caller uses this reserved
    549 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
    550 * on the parent handle will dispose the reserved one. Reserved handle has to
    551 * be converted to a normal handle using jbd2_journal_start_reserved() before
    552 * it can be used.
    553 *
    554 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
    555 * on failure.
    556 */
    557handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
    558{
    559	return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0);
    560}
    561EXPORT_SYMBOL(jbd2_journal_start);
    562
    563static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t)
    564{
    565	journal_t *journal = handle->h_journal;
    566
    567	WARN_ON(!handle->h_reserved);
    568	sub_reserved_credits(journal, handle->h_total_credits);
    569	if (t)
    570		atomic_sub(handle->h_total_credits, &t->t_outstanding_credits);
    571}
    572
    573void jbd2_journal_free_reserved(handle_t *handle)
    574{
    575	journal_t *journal = handle->h_journal;
    576
    577	/* Get j_state_lock to pin running transaction if it exists */
    578	read_lock(&journal->j_state_lock);
    579	__jbd2_journal_unreserve_handle(handle, journal->j_running_transaction);
    580	read_unlock(&journal->j_state_lock);
    581	jbd2_free_handle(handle);
    582}
    583EXPORT_SYMBOL(jbd2_journal_free_reserved);
    584
    585/**
    586 * jbd2_journal_start_reserved() - start reserved handle
    587 * @handle: handle to start
    588 * @type: for handle statistics
    589 * @line_no: for handle statistics
    590 *
    591 * Start handle that has been previously reserved with jbd2_journal_reserve().
    592 * This attaches @handle to the running transaction (or creates one if there's
    593 * not transaction running). Unlike jbd2_journal_start() this function cannot
    594 * block on journal commit, checkpointing, or similar stuff. It can block on
    595 * memory allocation or frozen journal though.
    596 *
    597 * Return 0 on success, non-zero on error - handle is freed in that case.
    598 */
    599int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
    600				unsigned int line_no)
    601{
    602	journal_t *journal = handle->h_journal;
    603	int ret = -EIO;
    604
    605	if (WARN_ON(!handle->h_reserved)) {
    606		/* Someone passed in normal handle? Just stop it. */
    607		jbd2_journal_stop(handle);
    608		return ret;
    609	}
    610	/*
    611	 * Usefulness of mixing of reserved and unreserved handles is
    612	 * questionable. So far nobody seems to need it so just error out.
    613	 */
    614	if (WARN_ON(current->journal_info)) {
    615		jbd2_journal_free_reserved(handle);
    616		return ret;
    617	}
    618
    619	handle->h_journal = NULL;
    620	/*
    621	 * GFP_NOFS is here because callers are likely from writeback or
    622	 * similarly constrained call sites
    623	 */
    624	ret = start_this_handle(journal, handle, GFP_NOFS);
    625	if (ret < 0) {
    626		handle->h_journal = journal;
    627		jbd2_journal_free_reserved(handle);
    628		return ret;
    629	}
    630	handle->h_type = type;
    631	handle->h_line_no = line_no;
    632	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
    633				handle->h_transaction->t_tid, type,
    634				line_no, handle->h_total_credits);
    635	return 0;
    636}
    637EXPORT_SYMBOL(jbd2_journal_start_reserved);
    638
    639/**
    640 * jbd2_journal_extend() - extend buffer credits.
    641 * @handle:  handle to 'extend'
    642 * @nblocks: nr blocks to try to extend by.
    643 * @revoke_records: number of revoke records to try to extend by.
    644 *
    645 * Some transactions, such as large extends and truncates, can be done
    646 * atomically all at once or in several stages.  The operation requests
    647 * a credit for a number of buffer modifications in advance, but can
    648 * extend its credit if it needs more.
    649 *
    650 * jbd2_journal_extend tries to give the running handle more buffer credits.
    651 * It does not guarantee that allocation - this is a best-effort only.
    652 * The calling process MUST be able to deal cleanly with a failure to
    653 * extend here.
    654 *
    655 * Return 0 on success, non-zero on failure.
    656 *
    657 * return code < 0 implies an error
    658 * return code > 0 implies normal transaction-full status.
    659 */
    660int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records)
    661{
    662	transaction_t *transaction = handle->h_transaction;
    663	journal_t *journal;
    664	int result;
    665	int wanted;
    666
    667	if (is_handle_aborted(handle))
    668		return -EROFS;
    669	journal = transaction->t_journal;
    670
    671	result = 1;
    672
    673	read_lock(&journal->j_state_lock);
    674
    675	/* Don't extend a locked-down transaction! */
    676	if (transaction->t_state != T_RUNNING) {
    677		jbd_debug(3, "denied handle %p %d blocks: "
    678			  "transaction not running\n", handle, nblocks);
    679		goto error_out;
    680	}
    681
    682	nblocks += DIV_ROUND_UP(
    683			handle->h_revoke_credits_requested + revoke_records,
    684			journal->j_revoke_records_per_block) -
    685		DIV_ROUND_UP(
    686			handle->h_revoke_credits_requested,
    687			journal->j_revoke_records_per_block);
    688	wanted = atomic_add_return(nblocks,
    689				   &transaction->t_outstanding_credits);
    690
    691	if (wanted > journal->j_max_transaction_buffers) {
    692		jbd_debug(3, "denied handle %p %d blocks: "
    693			  "transaction too large\n", handle, nblocks);
    694		atomic_sub(nblocks, &transaction->t_outstanding_credits);
    695		goto error_out;
    696	}
    697
    698	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
    699				 transaction->t_tid,
    700				 handle->h_type, handle->h_line_no,
    701				 handle->h_total_credits,
    702				 nblocks);
    703
    704	handle->h_total_credits += nblocks;
    705	handle->h_requested_credits += nblocks;
    706	handle->h_revoke_credits += revoke_records;
    707	handle->h_revoke_credits_requested += revoke_records;
    708	result = 0;
    709
    710	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
    711error_out:
    712	read_unlock(&journal->j_state_lock);
    713	return result;
    714}
    715
    716static void stop_this_handle(handle_t *handle)
    717{
    718	transaction_t *transaction = handle->h_transaction;
    719	journal_t *journal = transaction->t_journal;
    720	int revokes;
    721
    722	J_ASSERT(journal_current_handle() == handle);
    723	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
    724	current->journal_info = NULL;
    725	/*
    726	 * Subtract necessary revoke descriptor blocks from handle credits. We
    727	 * take care to account only for revoke descriptor blocks the
    728	 * transaction will really need as large sequences of transactions with
    729	 * small numbers of revokes are relatively common.
    730	 */
    731	revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits;
    732	if (revokes) {
    733		int t_revokes, revoke_descriptors;
    734		int rr_per_blk = journal->j_revoke_records_per_block;
    735
    736		WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk)
    737				> handle->h_total_credits);
    738		t_revokes = atomic_add_return(revokes,
    739				&transaction->t_outstanding_revokes);
    740		revoke_descriptors =
    741			DIV_ROUND_UP(t_revokes, rr_per_blk) -
    742			DIV_ROUND_UP(t_revokes - revokes, rr_per_blk);
    743		handle->h_total_credits -= revoke_descriptors;
    744	}
    745	atomic_sub(handle->h_total_credits,
    746		   &transaction->t_outstanding_credits);
    747	if (handle->h_rsv_handle)
    748		__jbd2_journal_unreserve_handle(handle->h_rsv_handle,
    749						transaction);
    750	if (atomic_dec_and_test(&transaction->t_updates))
    751		wake_up(&journal->j_wait_updates);
    752
    753	rwsem_release(&journal->j_trans_commit_map, _THIS_IP_);
    754	/*
    755	 * Scope of the GFP_NOFS context is over here and so we can restore the
    756	 * original alloc context.
    757	 */
    758	memalloc_nofs_restore(handle->saved_alloc_context);
    759}
    760
    761/**
    762 * jbd2__journal_restart() - restart a handle .
    763 * @handle:  handle to restart
    764 * @nblocks: nr credits requested
    765 * @revoke_records: number of revoke record credits requested
    766 * @gfp_mask: memory allocation flags (for start_this_handle)
    767 *
    768 * Restart a handle for a multi-transaction filesystem
    769 * operation.
    770 *
    771 * If the jbd2_journal_extend() call above fails to grant new buffer credits
    772 * to a running handle, a call to jbd2_journal_restart will commit the
    773 * handle's transaction so far and reattach the handle to a new
    774 * transaction capable of guaranteeing the requested number of
    775 * credits. We preserve reserved handle if there's any attached to the
    776 * passed in handle.
    777 */
    778int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records,
    779			  gfp_t gfp_mask)
    780{
    781	transaction_t *transaction = handle->h_transaction;
    782	journal_t *journal;
    783	tid_t		tid;
    784	int		need_to_start;
    785	int		ret;
    786
    787	/* If we've had an abort of any type, don't even think about
    788	 * actually doing the restart! */
    789	if (is_handle_aborted(handle))
    790		return 0;
    791	journal = transaction->t_journal;
    792	tid = transaction->t_tid;
    793
    794	/*
    795	 * First unlink the handle from its current transaction, and start the
    796	 * commit on that.
    797	 */
    798	jbd_debug(2, "restarting handle %p\n", handle);
    799	stop_this_handle(handle);
    800	handle->h_transaction = NULL;
    801
    802	/*
    803	 * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can
    804 	 * get rid of pointless j_state_lock traffic like this.
    805	 */
    806	read_lock(&journal->j_state_lock);
    807	need_to_start = !tid_geq(journal->j_commit_request, tid);
    808	read_unlock(&journal->j_state_lock);
    809	if (need_to_start)
    810		jbd2_log_start_commit(journal, tid);
    811	handle->h_total_credits = nblocks +
    812		DIV_ROUND_UP(revoke_records,
    813			     journal->j_revoke_records_per_block);
    814	handle->h_revoke_credits = revoke_records;
    815	ret = start_this_handle(journal, handle, gfp_mask);
    816	trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev,
    817				 ret ? 0 : handle->h_transaction->t_tid,
    818				 handle->h_type, handle->h_line_no,
    819				 handle->h_total_credits);
    820	return ret;
    821}
    822EXPORT_SYMBOL(jbd2__journal_restart);
    823
    824
    825int jbd2_journal_restart(handle_t *handle, int nblocks)
    826{
    827	return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS);
    828}
    829EXPORT_SYMBOL(jbd2_journal_restart);
    830
    831/*
    832 * Waits for any outstanding t_updates to finish.
    833 * This is called with write j_state_lock held.
    834 */
    835void jbd2_journal_wait_updates(journal_t *journal)
    836{
    837	DEFINE_WAIT(wait);
    838
    839	while (1) {
    840		/*
    841		 * Note that the running transaction can get freed under us if
    842		 * this transaction is getting committed in
    843		 * jbd2_journal_commit_transaction() ->
    844		 * jbd2_journal_free_transaction(). This can only happen when we
    845		 * release j_state_lock -> schedule() -> acquire j_state_lock.
    846		 * Hence we should everytime retrieve new j_running_transaction
    847		 * value (after j_state_lock release acquire cycle), else it may
    848		 * lead to use-after-free of old freed transaction.
    849		 */
    850		transaction_t *transaction = journal->j_running_transaction;
    851
    852		if (!transaction)
    853			break;
    854
    855		prepare_to_wait(&journal->j_wait_updates, &wait,
    856				TASK_UNINTERRUPTIBLE);
    857		if (!atomic_read(&transaction->t_updates)) {
    858			finish_wait(&journal->j_wait_updates, &wait);
    859			break;
    860		}
    861		write_unlock(&journal->j_state_lock);
    862		schedule();
    863		finish_wait(&journal->j_wait_updates, &wait);
    864		write_lock(&journal->j_state_lock);
    865	}
    866}
    867
    868/**
    869 * jbd2_journal_lock_updates () - establish a transaction barrier.
    870 * @journal:  Journal to establish a barrier on.
    871 *
    872 * This locks out any further updates from being started, and blocks
    873 * until all existing updates have completed, returning only once the
    874 * journal is in a quiescent state with no updates running.
    875 *
    876 * The journal lock should not be held on entry.
    877 */
    878void jbd2_journal_lock_updates(journal_t *journal)
    879{
    880	jbd2_might_wait_for_commit(journal);
    881
    882	write_lock(&journal->j_state_lock);
    883	++journal->j_barrier_count;
    884
    885	/* Wait until there are no reserved handles */
    886	if (atomic_read(&journal->j_reserved_credits)) {
    887		write_unlock(&journal->j_state_lock);
    888		wait_event(journal->j_wait_reserved,
    889			   atomic_read(&journal->j_reserved_credits) == 0);
    890		write_lock(&journal->j_state_lock);
    891	}
    892
    893	/* Wait until there are no running t_updates */
    894	jbd2_journal_wait_updates(journal);
    895
    896	write_unlock(&journal->j_state_lock);
    897
    898	/*
    899	 * We have now established a barrier against other normal updates, but
    900	 * we also need to barrier against other jbd2_journal_lock_updates() calls
    901	 * to make sure that we serialise special journal-locked operations
    902	 * too.
    903	 */
    904	mutex_lock(&journal->j_barrier);
    905}
    906
    907/**
    908 * jbd2_journal_unlock_updates () - release barrier
    909 * @journal:  Journal to release the barrier on.
    910 *
    911 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
    912 *
    913 * Should be called without the journal lock held.
    914 */
    915void jbd2_journal_unlock_updates (journal_t *journal)
    916{
    917	J_ASSERT(journal->j_barrier_count != 0);
    918
    919	mutex_unlock(&journal->j_barrier);
    920	write_lock(&journal->j_state_lock);
    921	--journal->j_barrier_count;
    922	write_unlock(&journal->j_state_lock);
    923	wake_up(&journal->j_wait_transaction_locked);
    924}
    925
    926static void warn_dirty_buffer(struct buffer_head *bh)
    927{
    928	printk(KERN_WARNING
    929	       "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
    930	       "There's a risk of filesystem corruption in case of system "
    931	       "crash.\n",
    932	       bh->b_bdev, (unsigned long long)bh->b_blocknr);
    933}
    934
    935/* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
    936static void jbd2_freeze_jh_data(struct journal_head *jh)
    937{
    938	struct page *page;
    939	int offset;
    940	char *source;
    941	struct buffer_head *bh = jh2bh(jh);
    942
    943	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
    944	page = bh->b_page;
    945	offset = offset_in_page(bh->b_data);
    946	source = kmap_atomic(page);
    947	/* Fire data frozen trigger just before we copy the data */
    948	jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
    949	memcpy(jh->b_frozen_data, source + offset, bh->b_size);
    950	kunmap_atomic(source);
    951
    952	/*
    953	 * Now that the frozen data is saved off, we need to store any matching
    954	 * triggers.
    955	 */
    956	jh->b_frozen_triggers = jh->b_triggers;
    957}
    958
    959/*
    960 * If the buffer is already part of the current transaction, then there
    961 * is nothing we need to do.  If it is already part of a prior
    962 * transaction which we are still committing to disk, then we need to
    963 * make sure that we do not overwrite the old copy: we do copy-out to
    964 * preserve the copy going to disk.  We also account the buffer against
    965 * the handle's metadata buffer credits (unless the buffer is already
    966 * part of the transaction, that is).
    967 *
    968 */
    969static int
    970do_get_write_access(handle_t *handle, struct journal_head *jh,
    971			int force_copy)
    972{
    973	struct buffer_head *bh;
    974	transaction_t *transaction = handle->h_transaction;
    975	journal_t *journal;
    976	int error;
    977	char *frozen_buffer = NULL;
    978	unsigned long start_lock, time_lock;
    979
    980	journal = transaction->t_journal;
    981
    982	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
    983
    984	JBUFFER_TRACE(jh, "entry");
    985repeat:
    986	bh = jh2bh(jh);
    987
    988	/* @@@ Need to check for errors here at some point. */
    989
    990 	start_lock = jiffies;
    991	lock_buffer(bh);
    992	spin_lock(&jh->b_state_lock);
    993
    994	/* If it takes too long to lock the buffer, trace it */
    995	time_lock = jbd2_time_diff(start_lock, jiffies);
    996	if (time_lock > HZ/10)
    997		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
    998			jiffies_to_msecs(time_lock));
    999
   1000	/* We now hold the buffer lock so it is safe to query the buffer
   1001	 * state.  Is the buffer dirty?
   1002	 *
   1003	 * If so, there are two possibilities.  The buffer may be
   1004	 * non-journaled, and undergoing a quite legitimate writeback.
   1005	 * Otherwise, it is journaled, and we don't expect dirty buffers
   1006	 * in that state (the buffers should be marked JBD_Dirty
   1007	 * instead.)  So either the IO is being done under our own
   1008	 * control and this is a bug, or it's a third party IO such as
   1009	 * dump(8) (which may leave the buffer scheduled for read ---
   1010	 * ie. locked but not dirty) or tune2fs (which may actually have
   1011	 * the buffer dirtied, ugh.)  */
   1012
   1013	if (buffer_dirty(bh)) {
   1014		/*
   1015		 * First question: is this buffer already part of the current
   1016		 * transaction or the existing committing transaction?
   1017		 */
   1018		if (jh->b_transaction) {
   1019			J_ASSERT_JH(jh,
   1020				jh->b_transaction == transaction ||
   1021				jh->b_transaction ==
   1022					journal->j_committing_transaction);
   1023			if (jh->b_next_transaction)
   1024				J_ASSERT_JH(jh, jh->b_next_transaction ==
   1025							transaction);
   1026			warn_dirty_buffer(bh);
   1027		}
   1028		/*
   1029		 * In any case we need to clean the dirty flag and we must
   1030		 * do it under the buffer lock to be sure we don't race
   1031		 * with running write-out.
   1032		 */
   1033		JBUFFER_TRACE(jh, "Journalling dirty buffer");
   1034		clear_buffer_dirty(bh);
   1035		set_buffer_jbddirty(bh);
   1036	}
   1037
   1038	unlock_buffer(bh);
   1039
   1040	error = -EROFS;
   1041	if (is_handle_aborted(handle)) {
   1042		spin_unlock(&jh->b_state_lock);
   1043		goto out;
   1044	}
   1045	error = 0;
   1046
   1047	/*
   1048	 * The buffer is already part of this transaction if b_transaction or
   1049	 * b_next_transaction points to it
   1050	 */
   1051	if (jh->b_transaction == transaction ||
   1052	    jh->b_next_transaction == transaction)
   1053		goto done;
   1054
   1055	/*
   1056	 * this is the first time this transaction is touching this buffer,
   1057	 * reset the modified flag
   1058	 */
   1059	jh->b_modified = 0;
   1060
   1061	/*
   1062	 * If the buffer is not journaled right now, we need to make sure it
   1063	 * doesn't get written to disk before the caller actually commits the
   1064	 * new data
   1065	 */
   1066	if (!jh->b_transaction) {
   1067		JBUFFER_TRACE(jh, "no transaction");
   1068		J_ASSERT_JH(jh, !jh->b_next_transaction);
   1069		JBUFFER_TRACE(jh, "file as BJ_Reserved");
   1070		/*
   1071		 * Make sure all stores to jh (b_modified, b_frozen_data) are
   1072		 * visible before attaching it to the running transaction.
   1073		 * Paired with barrier in jbd2_write_access_granted()
   1074		 */
   1075		smp_wmb();
   1076		spin_lock(&journal->j_list_lock);
   1077		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
   1078		spin_unlock(&journal->j_list_lock);
   1079		goto done;
   1080	}
   1081	/*
   1082	 * If there is already a copy-out version of this buffer, then we don't
   1083	 * need to make another one
   1084	 */
   1085	if (jh->b_frozen_data) {
   1086		JBUFFER_TRACE(jh, "has frozen data");
   1087		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
   1088		goto attach_next;
   1089	}
   1090
   1091	JBUFFER_TRACE(jh, "owned by older transaction");
   1092	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
   1093	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
   1094
   1095	/*
   1096	 * There is one case we have to be very careful about.  If the
   1097	 * committing transaction is currently writing this buffer out to disk
   1098	 * and has NOT made a copy-out, then we cannot modify the buffer
   1099	 * contents at all right now.  The essence of copy-out is that it is
   1100	 * the extra copy, not the primary copy, which gets journaled.  If the
   1101	 * primary copy is already going to disk then we cannot do copy-out
   1102	 * here.
   1103	 */
   1104	if (buffer_shadow(bh)) {
   1105		JBUFFER_TRACE(jh, "on shadow: sleep");
   1106		spin_unlock(&jh->b_state_lock);
   1107		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
   1108		goto repeat;
   1109	}
   1110
   1111	/*
   1112	 * Only do the copy if the currently-owning transaction still needs it.
   1113	 * If buffer isn't on BJ_Metadata list, the committing transaction is
   1114	 * past that stage (here we use the fact that BH_Shadow is set under
   1115	 * bh_state lock together with refiling to BJ_Shadow list and at this
   1116	 * point we know the buffer doesn't have BH_Shadow set).
   1117	 *
   1118	 * Subtle point, though: if this is a get_undo_access, then we will be
   1119	 * relying on the frozen_data to contain the new value of the
   1120	 * committed_data record after the transaction, so we HAVE to force the
   1121	 * frozen_data copy in that case.
   1122	 */
   1123	if (jh->b_jlist == BJ_Metadata || force_copy) {
   1124		JBUFFER_TRACE(jh, "generate frozen data");
   1125		if (!frozen_buffer) {
   1126			JBUFFER_TRACE(jh, "allocate memory for buffer");
   1127			spin_unlock(&jh->b_state_lock);
   1128			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
   1129						   GFP_NOFS | __GFP_NOFAIL);
   1130			goto repeat;
   1131		}
   1132		jh->b_frozen_data = frozen_buffer;
   1133		frozen_buffer = NULL;
   1134		jbd2_freeze_jh_data(jh);
   1135	}
   1136attach_next:
   1137	/*
   1138	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
   1139	 * before attaching it to the running transaction. Paired with barrier
   1140	 * in jbd2_write_access_granted()
   1141	 */
   1142	smp_wmb();
   1143	jh->b_next_transaction = transaction;
   1144
   1145done:
   1146	spin_unlock(&jh->b_state_lock);
   1147
   1148	/*
   1149	 * If we are about to journal a buffer, then any revoke pending on it is
   1150	 * no longer valid
   1151	 */
   1152	jbd2_journal_cancel_revoke(handle, jh);
   1153
   1154out:
   1155	if (unlikely(frozen_buffer))	/* It's usually NULL */
   1156		jbd2_free(frozen_buffer, bh->b_size);
   1157
   1158	JBUFFER_TRACE(jh, "exit");
   1159	return error;
   1160}
   1161
   1162/* Fast check whether buffer is already attached to the required transaction */
   1163static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
   1164							bool undo)
   1165{
   1166	struct journal_head *jh;
   1167	bool ret = false;
   1168
   1169	/* Dirty buffers require special handling... */
   1170	if (buffer_dirty(bh))
   1171		return false;
   1172
   1173	/*
   1174	 * RCU protects us from dereferencing freed pages. So the checks we do
   1175	 * are guaranteed not to oops. However the jh slab object can get freed
   1176	 * & reallocated while we work with it. So we have to be careful. When
   1177	 * we see jh attached to the running transaction, we know it must stay
   1178	 * so until the transaction is committed. Thus jh won't be freed and
   1179	 * will be attached to the same bh while we run.  However it can
   1180	 * happen jh gets freed, reallocated, and attached to the transaction
   1181	 * just after we get pointer to it from bh. So we have to be careful
   1182	 * and recheck jh still belongs to our bh before we return success.
   1183	 */
   1184	rcu_read_lock();
   1185	if (!buffer_jbd(bh))
   1186		goto out;
   1187	/* This should be bh2jh() but that doesn't work with inline functions */
   1188	jh = READ_ONCE(bh->b_private);
   1189	if (!jh)
   1190		goto out;
   1191	/* For undo access buffer must have data copied */
   1192	if (undo && !jh->b_committed_data)
   1193		goto out;
   1194	if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
   1195	    READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
   1196		goto out;
   1197	/*
   1198	 * There are two reasons for the barrier here:
   1199	 * 1) Make sure to fetch b_bh after we did previous checks so that we
   1200	 * detect when jh went through free, realloc, attach to transaction
   1201	 * while we were checking. Paired with implicit barrier in that path.
   1202	 * 2) So that access to bh done after jbd2_write_access_granted()
   1203	 * doesn't get reordered and see inconsistent state of concurrent
   1204	 * do_get_write_access().
   1205	 */
   1206	smp_mb();
   1207	if (unlikely(jh->b_bh != bh))
   1208		goto out;
   1209	ret = true;
   1210out:
   1211	rcu_read_unlock();
   1212	return ret;
   1213}
   1214
   1215/**
   1216 * jbd2_journal_get_write_access() - notify intent to modify a buffer
   1217 *				     for metadata (not data) update.
   1218 * @handle: transaction to add buffer modifications to
   1219 * @bh:     bh to be used for metadata writes
   1220 *
   1221 * Returns: error code or 0 on success.
   1222 *
   1223 * In full data journalling mode the buffer may be of type BJ_AsyncData,
   1224 * because we're ``write()ing`` a buffer which is also part of a shared mapping.
   1225 */
   1226
   1227int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
   1228{
   1229	struct journal_head *jh;
   1230	int rc;
   1231
   1232	if (is_handle_aborted(handle))
   1233		return -EROFS;
   1234
   1235	if (jbd2_write_access_granted(handle, bh, false))
   1236		return 0;
   1237
   1238	jh = jbd2_journal_add_journal_head(bh);
   1239	/* We do not want to get caught playing with fields which the
   1240	 * log thread also manipulates.  Make sure that the buffer
   1241	 * completes any outstanding IO before proceeding. */
   1242	rc = do_get_write_access(handle, jh, 0);
   1243	jbd2_journal_put_journal_head(jh);
   1244	return rc;
   1245}
   1246
   1247
   1248/*
   1249 * When the user wants to journal a newly created buffer_head
   1250 * (ie. getblk() returned a new buffer and we are going to populate it
   1251 * manually rather than reading off disk), then we need to keep the
   1252 * buffer_head locked until it has been completely filled with new
   1253 * data.  In this case, we should be able to make the assertion that
   1254 * the bh is not already part of an existing transaction.
   1255 *
   1256 * The buffer should already be locked by the caller by this point.
   1257 * There is no lock ranking violation: it was a newly created,
   1258 * unlocked buffer beforehand. */
   1259
   1260/**
   1261 * jbd2_journal_get_create_access () - notify intent to use newly created bh
   1262 * @handle: transaction to new buffer to
   1263 * @bh: new buffer.
   1264 *
   1265 * Call this if you create a new bh.
   1266 */
   1267int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
   1268{
   1269	transaction_t *transaction = handle->h_transaction;
   1270	journal_t *journal;
   1271	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
   1272	int err;
   1273
   1274	jbd_debug(5, "journal_head %p\n", jh);
   1275	err = -EROFS;
   1276	if (is_handle_aborted(handle))
   1277		goto out;
   1278	journal = transaction->t_journal;
   1279	err = 0;
   1280
   1281	JBUFFER_TRACE(jh, "entry");
   1282	/*
   1283	 * The buffer may already belong to this transaction due to pre-zeroing
   1284	 * in the filesystem's new_block code.  It may also be on the previous,
   1285	 * committing transaction's lists, but it HAS to be in Forget state in
   1286	 * that case: the transaction must have deleted the buffer for it to be
   1287	 * reused here.
   1288	 */
   1289	spin_lock(&jh->b_state_lock);
   1290	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
   1291		jh->b_transaction == NULL ||
   1292		(jh->b_transaction == journal->j_committing_transaction &&
   1293			  jh->b_jlist == BJ_Forget)));
   1294
   1295	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
   1296	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
   1297
   1298	if (jh->b_transaction == NULL) {
   1299		/*
   1300		 * Previous jbd2_journal_forget() could have left the buffer
   1301		 * with jbddirty bit set because it was being committed. When
   1302		 * the commit finished, we've filed the buffer for
   1303		 * checkpointing and marked it dirty. Now we are reallocating
   1304		 * the buffer so the transaction freeing it must have
   1305		 * committed and so it's safe to clear the dirty bit.
   1306		 */
   1307		clear_buffer_dirty(jh2bh(jh));
   1308		/* first access by this transaction */
   1309		jh->b_modified = 0;
   1310
   1311		JBUFFER_TRACE(jh, "file as BJ_Reserved");
   1312		spin_lock(&journal->j_list_lock);
   1313		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
   1314		spin_unlock(&journal->j_list_lock);
   1315	} else if (jh->b_transaction == journal->j_committing_transaction) {
   1316		/* first access by this transaction */
   1317		jh->b_modified = 0;
   1318
   1319		JBUFFER_TRACE(jh, "set next transaction");
   1320		spin_lock(&journal->j_list_lock);
   1321		jh->b_next_transaction = transaction;
   1322		spin_unlock(&journal->j_list_lock);
   1323	}
   1324	spin_unlock(&jh->b_state_lock);
   1325
   1326	/*
   1327	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
   1328	 * blocks which contain freed but then revoked metadata.  We need
   1329	 * to cancel the revoke in case we end up freeing it yet again
   1330	 * and the reallocating as data - this would cause a second revoke,
   1331	 * which hits an assertion error.
   1332	 */
   1333	JBUFFER_TRACE(jh, "cancelling revoke");
   1334	jbd2_journal_cancel_revoke(handle, jh);
   1335out:
   1336	jbd2_journal_put_journal_head(jh);
   1337	return err;
   1338}
   1339
   1340/**
   1341 * jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
   1342 *     non-rewindable consequences
   1343 * @handle: transaction
   1344 * @bh: buffer to undo
   1345 *
   1346 * Sometimes there is a need to distinguish between metadata which has
   1347 * been committed to disk and that which has not.  The ext3fs code uses
   1348 * this for freeing and allocating space, we have to make sure that we
   1349 * do not reuse freed space until the deallocation has been committed,
   1350 * since if we overwrote that space we would make the delete
   1351 * un-rewindable in case of a crash.
   1352 *
   1353 * To deal with that, jbd2_journal_get_undo_access requests write access to a
   1354 * buffer for parts of non-rewindable operations such as delete
   1355 * operations on the bitmaps.  The journaling code must keep a copy of
   1356 * the buffer's contents prior to the undo_access call until such time
   1357 * as we know that the buffer has definitely been committed to disk.
   1358 *
   1359 * We never need to know which transaction the committed data is part
   1360 * of, buffers touched here are guaranteed to be dirtied later and so
   1361 * will be committed to a new transaction in due course, at which point
   1362 * we can discard the old committed data pointer.
   1363 *
   1364 * Returns error number or 0 on success.
   1365 */
   1366int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
   1367{
   1368	int err;
   1369	struct journal_head *jh;
   1370	char *committed_data = NULL;
   1371
   1372	if (is_handle_aborted(handle))
   1373		return -EROFS;
   1374
   1375	if (jbd2_write_access_granted(handle, bh, true))
   1376		return 0;
   1377
   1378	jh = jbd2_journal_add_journal_head(bh);
   1379	JBUFFER_TRACE(jh, "entry");
   1380
   1381	/*
   1382	 * Do this first --- it can drop the journal lock, so we want to
   1383	 * make sure that obtaining the committed_data is done
   1384	 * atomically wrt. completion of any outstanding commits.
   1385	 */
   1386	err = do_get_write_access(handle, jh, 1);
   1387	if (err)
   1388		goto out;
   1389
   1390repeat:
   1391	if (!jh->b_committed_data)
   1392		committed_data = jbd2_alloc(jh2bh(jh)->b_size,
   1393					    GFP_NOFS|__GFP_NOFAIL);
   1394
   1395	spin_lock(&jh->b_state_lock);
   1396	if (!jh->b_committed_data) {
   1397		/* Copy out the current buffer contents into the
   1398		 * preserved, committed copy. */
   1399		JBUFFER_TRACE(jh, "generate b_committed data");
   1400		if (!committed_data) {
   1401			spin_unlock(&jh->b_state_lock);
   1402			goto repeat;
   1403		}
   1404
   1405		jh->b_committed_data = committed_data;
   1406		committed_data = NULL;
   1407		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
   1408	}
   1409	spin_unlock(&jh->b_state_lock);
   1410out:
   1411	jbd2_journal_put_journal_head(jh);
   1412	if (unlikely(committed_data))
   1413		jbd2_free(committed_data, bh->b_size);
   1414	return err;
   1415}
   1416
   1417/**
   1418 * jbd2_journal_set_triggers() - Add triggers for commit writeout
   1419 * @bh: buffer to trigger on
   1420 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
   1421 *
   1422 * Set any triggers on this journal_head.  This is always safe, because
   1423 * triggers for a committing buffer will be saved off, and triggers for
   1424 * a running transaction will match the buffer in that transaction.
   1425 *
   1426 * Call with NULL to clear the triggers.
   1427 */
   1428void jbd2_journal_set_triggers(struct buffer_head *bh,
   1429			       struct jbd2_buffer_trigger_type *type)
   1430{
   1431	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
   1432
   1433	if (WARN_ON_ONCE(!jh))
   1434		return;
   1435	jh->b_triggers = type;
   1436	jbd2_journal_put_journal_head(jh);
   1437}
   1438
   1439void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
   1440				struct jbd2_buffer_trigger_type *triggers)
   1441{
   1442	struct buffer_head *bh = jh2bh(jh);
   1443
   1444	if (!triggers || !triggers->t_frozen)
   1445		return;
   1446
   1447	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
   1448}
   1449
   1450void jbd2_buffer_abort_trigger(struct journal_head *jh,
   1451			       struct jbd2_buffer_trigger_type *triggers)
   1452{
   1453	if (!triggers || !triggers->t_abort)
   1454		return;
   1455
   1456	triggers->t_abort(triggers, jh2bh(jh));
   1457}
   1458
   1459/**
   1460 * jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
   1461 * @handle: transaction to add buffer to.
   1462 * @bh: buffer to mark
   1463 *
   1464 * mark dirty metadata which needs to be journaled as part of the current
   1465 * transaction.
   1466 *
   1467 * The buffer must have previously had jbd2_journal_get_write_access()
   1468 * called so that it has a valid journal_head attached to the buffer
   1469 * head.
   1470 *
   1471 * The buffer is placed on the transaction's metadata list and is marked
   1472 * as belonging to the transaction.
   1473 *
   1474 * Returns error number or 0 on success.
   1475 *
   1476 * Special care needs to be taken if the buffer already belongs to the
   1477 * current committing transaction (in which case we should have frozen
   1478 * data present for that commit).  In that case, we don't relink the
   1479 * buffer: that only gets done when the old transaction finally
   1480 * completes its commit.
   1481 */
   1482int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
   1483{
   1484	transaction_t *transaction = handle->h_transaction;
   1485	journal_t *journal;
   1486	struct journal_head *jh;
   1487	int ret = 0;
   1488
   1489	if (is_handle_aborted(handle))
   1490		return -EROFS;
   1491	if (!buffer_jbd(bh))
   1492		return -EUCLEAN;
   1493
   1494	/*
   1495	 * We don't grab jh reference here since the buffer must be part
   1496	 * of the running transaction.
   1497	 */
   1498	jh = bh2jh(bh);
   1499	jbd_debug(5, "journal_head %p\n", jh);
   1500	JBUFFER_TRACE(jh, "entry");
   1501
   1502	/*
   1503	 * This and the following assertions are unreliable since we may see jh
   1504	 * in inconsistent state unless we grab bh_state lock. But this is
   1505	 * crucial to catch bugs so let's do a reliable check until the
   1506	 * lockless handling is fully proven.
   1507	 */
   1508	if (data_race(jh->b_transaction != transaction &&
   1509	    jh->b_next_transaction != transaction)) {
   1510		spin_lock(&jh->b_state_lock);
   1511		J_ASSERT_JH(jh, jh->b_transaction == transaction ||
   1512				jh->b_next_transaction == transaction);
   1513		spin_unlock(&jh->b_state_lock);
   1514	}
   1515	if (jh->b_modified == 1) {
   1516		/* If it's in our transaction it must be in BJ_Metadata list. */
   1517		if (data_race(jh->b_transaction == transaction &&
   1518		    jh->b_jlist != BJ_Metadata)) {
   1519			spin_lock(&jh->b_state_lock);
   1520			if (jh->b_transaction == transaction &&
   1521			    jh->b_jlist != BJ_Metadata)
   1522				pr_err("JBD2: assertion failure: h_type=%u "
   1523				       "h_line_no=%u block_no=%llu jlist=%u\n",
   1524				       handle->h_type, handle->h_line_no,
   1525				       (unsigned long long) bh->b_blocknr,
   1526				       jh->b_jlist);
   1527			J_ASSERT_JH(jh, jh->b_transaction != transaction ||
   1528					jh->b_jlist == BJ_Metadata);
   1529			spin_unlock(&jh->b_state_lock);
   1530		}
   1531		goto out;
   1532	}
   1533
   1534	journal = transaction->t_journal;
   1535	spin_lock(&jh->b_state_lock);
   1536
   1537	if (jh->b_modified == 0) {
   1538		/*
   1539		 * This buffer's got modified and becoming part
   1540		 * of the transaction. This needs to be done
   1541		 * once a transaction -bzzz
   1542		 */
   1543		if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) {
   1544			ret = -ENOSPC;
   1545			goto out_unlock_bh;
   1546		}
   1547		jh->b_modified = 1;
   1548		handle->h_total_credits--;
   1549	}
   1550
   1551	/*
   1552	 * fastpath, to avoid expensive locking.  If this buffer is already
   1553	 * on the running transaction's metadata list there is nothing to do.
   1554	 * Nobody can take it off again because there is a handle open.
   1555	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
   1556	 * result in this test being false, so we go in and take the locks.
   1557	 */
   1558	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
   1559		JBUFFER_TRACE(jh, "fastpath");
   1560		if (unlikely(jh->b_transaction !=
   1561			     journal->j_running_transaction)) {
   1562			printk(KERN_ERR "JBD2: %s: "
   1563			       "jh->b_transaction (%llu, %p, %u) != "
   1564			       "journal->j_running_transaction (%p, %u)\n",
   1565			       journal->j_devname,
   1566			       (unsigned long long) bh->b_blocknr,
   1567			       jh->b_transaction,
   1568			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
   1569			       journal->j_running_transaction,
   1570			       journal->j_running_transaction ?
   1571			       journal->j_running_transaction->t_tid : 0);
   1572			ret = -EINVAL;
   1573		}
   1574		goto out_unlock_bh;
   1575	}
   1576
   1577	set_buffer_jbddirty(bh);
   1578
   1579	/*
   1580	 * Metadata already on the current transaction list doesn't
   1581	 * need to be filed.  Metadata on another transaction's list must
   1582	 * be committing, and will be refiled once the commit completes:
   1583	 * leave it alone for now.
   1584	 */
   1585	if (jh->b_transaction != transaction) {
   1586		JBUFFER_TRACE(jh, "already on other transaction");
   1587		if (unlikely(((jh->b_transaction !=
   1588			       journal->j_committing_transaction)) ||
   1589			     (jh->b_next_transaction != transaction))) {
   1590			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
   1591			       "bad jh for block %llu: "
   1592			       "transaction (%p, %u), "
   1593			       "jh->b_transaction (%p, %u), "
   1594			       "jh->b_next_transaction (%p, %u), jlist %u\n",
   1595			       journal->j_devname,
   1596			       (unsigned long long) bh->b_blocknr,
   1597			       transaction, transaction->t_tid,
   1598			       jh->b_transaction,
   1599			       jh->b_transaction ?
   1600			       jh->b_transaction->t_tid : 0,
   1601			       jh->b_next_transaction,
   1602			       jh->b_next_transaction ?
   1603			       jh->b_next_transaction->t_tid : 0,
   1604			       jh->b_jlist);
   1605			WARN_ON(1);
   1606			ret = -EINVAL;
   1607		}
   1608		/* And this case is illegal: we can't reuse another
   1609		 * transaction's data buffer, ever. */
   1610		goto out_unlock_bh;
   1611	}
   1612
   1613	/* That test should have eliminated the following case: */
   1614	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
   1615
   1616	JBUFFER_TRACE(jh, "file as BJ_Metadata");
   1617	spin_lock(&journal->j_list_lock);
   1618	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
   1619	spin_unlock(&journal->j_list_lock);
   1620out_unlock_bh:
   1621	spin_unlock(&jh->b_state_lock);
   1622out:
   1623	JBUFFER_TRACE(jh, "exit");
   1624	return ret;
   1625}
   1626
   1627/**
   1628 * jbd2_journal_forget() - bforget() for potentially-journaled buffers.
   1629 * @handle: transaction handle
   1630 * @bh:     bh to 'forget'
   1631 *
   1632 * We can only do the bforget if there are no commits pending against the
   1633 * buffer.  If the buffer is dirty in the current running transaction we
   1634 * can safely unlink it.
   1635 *
   1636 * bh may not be a journalled buffer at all - it may be a non-JBD
   1637 * buffer which came off the hashtable.  Check for this.
   1638 *
   1639 * Decrements bh->b_count by one.
   1640 *
   1641 * Allow this call even if the handle has aborted --- it may be part of
   1642 * the caller's cleanup after an abort.
   1643 */
   1644int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh)
   1645{
   1646	transaction_t *transaction = handle->h_transaction;
   1647	journal_t *journal;
   1648	struct journal_head *jh;
   1649	int drop_reserve = 0;
   1650	int err = 0;
   1651	int was_modified = 0;
   1652
   1653	if (is_handle_aborted(handle))
   1654		return -EROFS;
   1655	journal = transaction->t_journal;
   1656
   1657	BUFFER_TRACE(bh, "entry");
   1658
   1659	jh = jbd2_journal_grab_journal_head(bh);
   1660	if (!jh) {
   1661		__bforget(bh);
   1662		return 0;
   1663	}
   1664
   1665	spin_lock(&jh->b_state_lock);
   1666
   1667	/* Critical error: attempting to delete a bitmap buffer, maybe?
   1668	 * Don't do any jbd operations, and return an error. */
   1669	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
   1670			 "inconsistent data on disk")) {
   1671		err = -EIO;
   1672		goto drop;
   1673	}
   1674
   1675	/* keep track of whether or not this transaction modified us */
   1676	was_modified = jh->b_modified;
   1677
   1678	/*
   1679	 * The buffer's going from the transaction, we must drop
   1680	 * all references -bzzz
   1681	 */
   1682	jh->b_modified = 0;
   1683
   1684	if (jh->b_transaction == transaction) {
   1685		J_ASSERT_JH(jh, !jh->b_frozen_data);
   1686
   1687		/* If we are forgetting a buffer which is already part
   1688		 * of this transaction, then we can just drop it from
   1689		 * the transaction immediately. */
   1690		clear_buffer_dirty(bh);
   1691		clear_buffer_jbddirty(bh);
   1692
   1693		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
   1694
   1695		/*
   1696		 * we only want to drop a reference if this transaction
   1697		 * modified the buffer
   1698		 */
   1699		if (was_modified)
   1700			drop_reserve = 1;
   1701
   1702		/*
   1703		 * We are no longer going to journal this buffer.
   1704		 * However, the commit of this transaction is still
   1705		 * important to the buffer: the delete that we are now
   1706		 * processing might obsolete an old log entry, so by
   1707		 * committing, we can satisfy the buffer's checkpoint.
   1708		 *
   1709		 * So, if we have a checkpoint on the buffer, we should
   1710		 * now refile the buffer on our BJ_Forget list so that
   1711		 * we know to remove the checkpoint after we commit.
   1712		 */
   1713
   1714		spin_lock(&journal->j_list_lock);
   1715		if (jh->b_cp_transaction) {
   1716			__jbd2_journal_temp_unlink_buffer(jh);
   1717			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
   1718		} else {
   1719			__jbd2_journal_unfile_buffer(jh);
   1720			jbd2_journal_put_journal_head(jh);
   1721		}
   1722		spin_unlock(&journal->j_list_lock);
   1723	} else if (jh->b_transaction) {
   1724		J_ASSERT_JH(jh, (jh->b_transaction ==
   1725				 journal->j_committing_transaction));
   1726		/* However, if the buffer is still owned by a prior
   1727		 * (committing) transaction, we can't drop it yet... */
   1728		JBUFFER_TRACE(jh, "belongs to older transaction");
   1729		/* ... but we CAN drop it from the new transaction through
   1730		 * marking the buffer as freed and set j_next_transaction to
   1731		 * the new transaction, so that not only the commit code
   1732		 * knows it should clear dirty bits when it is done with the
   1733		 * buffer, but also the buffer can be checkpointed only
   1734		 * after the new transaction commits. */
   1735
   1736		set_buffer_freed(bh);
   1737
   1738		if (!jh->b_next_transaction) {
   1739			spin_lock(&journal->j_list_lock);
   1740			jh->b_next_transaction = transaction;
   1741			spin_unlock(&journal->j_list_lock);
   1742		} else {
   1743			J_ASSERT(jh->b_next_transaction == transaction);
   1744
   1745			/*
   1746			 * only drop a reference if this transaction modified
   1747			 * the buffer
   1748			 */
   1749			if (was_modified)
   1750				drop_reserve = 1;
   1751		}
   1752	} else {
   1753		/*
   1754		 * Finally, if the buffer is not belongs to any
   1755		 * transaction, we can just drop it now if it has no
   1756		 * checkpoint.
   1757		 */
   1758		spin_lock(&journal->j_list_lock);
   1759		if (!jh->b_cp_transaction) {
   1760			JBUFFER_TRACE(jh, "belongs to none transaction");
   1761			spin_unlock(&journal->j_list_lock);
   1762			goto drop;
   1763		}
   1764
   1765		/*
   1766		 * Otherwise, if the buffer has been written to disk,
   1767		 * it is safe to remove the checkpoint and drop it.
   1768		 */
   1769		if (!buffer_dirty(bh)) {
   1770			__jbd2_journal_remove_checkpoint(jh);
   1771			spin_unlock(&journal->j_list_lock);
   1772			goto drop;
   1773		}
   1774
   1775		/*
   1776		 * The buffer is still not written to disk, we should
   1777		 * attach this buffer to current transaction so that the
   1778		 * buffer can be checkpointed only after the current
   1779		 * transaction commits.
   1780		 */
   1781		clear_buffer_dirty(bh);
   1782		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
   1783		spin_unlock(&journal->j_list_lock);
   1784	}
   1785drop:
   1786	__brelse(bh);
   1787	spin_unlock(&jh->b_state_lock);
   1788	jbd2_journal_put_journal_head(jh);
   1789	if (drop_reserve) {
   1790		/* no need to reserve log space for this block -bzzz */
   1791		handle->h_total_credits++;
   1792	}
   1793	return err;
   1794}
   1795
   1796/**
   1797 * jbd2_journal_stop() - complete a transaction
   1798 * @handle: transaction to complete.
   1799 *
   1800 * All done for a particular handle.
   1801 *
   1802 * There is not much action needed here.  We just return any remaining
   1803 * buffer credits to the transaction and remove the handle.  The only
   1804 * complication is that we need to start a commit operation if the
   1805 * filesystem is marked for synchronous update.
   1806 *
   1807 * jbd2_journal_stop itself will not usually return an error, but it may
   1808 * do so in unusual circumstances.  In particular, expect it to
   1809 * return -EIO if a jbd2_journal_abort has been executed since the
   1810 * transaction began.
   1811 */
   1812int jbd2_journal_stop(handle_t *handle)
   1813{
   1814	transaction_t *transaction = handle->h_transaction;
   1815	journal_t *journal;
   1816	int err = 0, wait_for_commit = 0;
   1817	tid_t tid;
   1818	pid_t pid;
   1819
   1820	if (--handle->h_ref > 0) {
   1821		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
   1822						 handle->h_ref);
   1823		if (is_handle_aborted(handle))
   1824			return -EIO;
   1825		return 0;
   1826	}
   1827	if (!transaction) {
   1828		/*
   1829		 * Handle is already detached from the transaction so there is
   1830		 * nothing to do other than free the handle.
   1831		 */
   1832		memalloc_nofs_restore(handle->saved_alloc_context);
   1833		goto free_and_exit;
   1834	}
   1835	journal = transaction->t_journal;
   1836	tid = transaction->t_tid;
   1837
   1838	if (is_handle_aborted(handle))
   1839		err = -EIO;
   1840
   1841	jbd_debug(4, "Handle %p going down\n", handle);
   1842	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
   1843				tid, handle->h_type, handle->h_line_no,
   1844				jiffies - handle->h_start_jiffies,
   1845				handle->h_sync, handle->h_requested_credits,
   1846				(handle->h_requested_credits -
   1847				 handle->h_total_credits));
   1848
   1849	/*
   1850	 * Implement synchronous transaction batching.  If the handle
   1851	 * was synchronous, don't force a commit immediately.  Let's
   1852	 * yield and let another thread piggyback onto this
   1853	 * transaction.  Keep doing that while new threads continue to
   1854	 * arrive.  It doesn't cost much - we're about to run a commit
   1855	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
   1856	 * operations by 30x or more...
   1857	 *
   1858	 * We try and optimize the sleep time against what the
   1859	 * underlying disk can do, instead of having a static sleep
   1860	 * time.  This is useful for the case where our storage is so
   1861	 * fast that it is more optimal to go ahead and force a flush
   1862	 * and wait for the transaction to be committed than it is to
   1863	 * wait for an arbitrary amount of time for new writers to
   1864	 * join the transaction.  We achieve this by measuring how
   1865	 * long it takes to commit a transaction, and compare it with
   1866	 * how long this transaction has been running, and if run time
   1867	 * < commit time then we sleep for the delta and commit.  This
   1868	 * greatly helps super fast disks that would see slowdowns as
   1869	 * more threads started doing fsyncs.
   1870	 *
   1871	 * But don't do this if this process was the most recent one
   1872	 * to perform a synchronous write.  We do this to detect the
   1873	 * case where a single process is doing a stream of sync
   1874	 * writes.  No point in waiting for joiners in that case.
   1875	 *
   1876	 * Setting max_batch_time to 0 disables this completely.
   1877	 */
   1878	pid = current->pid;
   1879	if (handle->h_sync && journal->j_last_sync_writer != pid &&
   1880	    journal->j_max_batch_time) {
   1881		u64 commit_time, trans_time;
   1882
   1883		journal->j_last_sync_writer = pid;
   1884
   1885		read_lock(&journal->j_state_lock);
   1886		commit_time = journal->j_average_commit_time;
   1887		read_unlock(&journal->j_state_lock);
   1888
   1889		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
   1890						   transaction->t_start_time));
   1891
   1892		commit_time = max_t(u64, commit_time,
   1893				    1000*journal->j_min_batch_time);
   1894		commit_time = min_t(u64, commit_time,
   1895				    1000*journal->j_max_batch_time);
   1896
   1897		if (trans_time < commit_time) {
   1898			ktime_t expires = ktime_add_ns(ktime_get(),
   1899						       commit_time);
   1900			set_current_state(TASK_UNINTERRUPTIBLE);
   1901			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
   1902		}
   1903	}
   1904
   1905	if (handle->h_sync)
   1906		transaction->t_synchronous_commit = 1;
   1907
   1908	/*
   1909	 * If the handle is marked SYNC, we need to set another commit
   1910	 * going!  We also want to force a commit if the transaction is too
   1911	 * old now.
   1912	 */
   1913	if (handle->h_sync ||
   1914	    time_after_eq(jiffies, transaction->t_expires)) {
   1915		/* Do this even for aborted journals: an abort still
   1916		 * completes the commit thread, it just doesn't write
   1917		 * anything to disk. */
   1918
   1919		jbd_debug(2, "transaction too old, requesting commit for "
   1920					"handle %p\n", handle);
   1921		/* This is non-blocking */
   1922		jbd2_log_start_commit(journal, tid);
   1923
   1924		/*
   1925		 * Special case: JBD2_SYNC synchronous updates require us
   1926		 * to wait for the commit to complete.
   1927		 */
   1928		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
   1929			wait_for_commit = 1;
   1930	}
   1931
   1932	/*
   1933	 * Once stop_this_handle() drops t_updates, the transaction could start
   1934	 * committing on us and eventually disappear.  So we must not
   1935	 * dereference transaction pointer again after calling
   1936	 * stop_this_handle().
   1937	 */
   1938	stop_this_handle(handle);
   1939
   1940	if (wait_for_commit)
   1941		err = jbd2_log_wait_commit(journal, tid);
   1942
   1943free_and_exit:
   1944	if (handle->h_rsv_handle)
   1945		jbd2_free_handle(handle->h_rsv_handle);
   1946	jbd2_free_handle(handle);
   1947	return err;
   1948}
   1949
   1950/*
   1951 *
   1952 * List management code snippets: various functions for manipulating the
   1953 * transaction buffer lists.
   1954 *
   1955 */
   1956
   1957/*
   1958 * Append a buffer to a transaction list, given the transaction's list head
   1959 * pointer.
   1960 *
   1961 * j_list_lock is held.
   1962 *
   1963 * jh->b_state_lock is held.
   1964 */
   1965
   1966static inline void
   1967__blist_add_buffer(struct journal_head **list, struct journal_head *jh)
   1968{
   1969	if (!*list) {
   1970		jh->b_tnext = jh->b_tprev = jh;
   1971		*list = jh;
   1972	} else {
   1973		/* Insert at the tail of the list to preserve order */
   1974		struct journal_head *first = *list, *last = first->b_tprev;
   1975		jh->b_tprev = last;
   1976		jh->b_tnext = first;
   1977		last->b_tnext = first->b_tprev = jh;
   1978	}
   1979}
   1980
   1981/*
   1982 * Remove a buffer from a transaction list, given the transaction's list
   1983 * head pointer.
   1984 *
   1985 * Called with j_list_lock held, and the journal may not be locked.
   1986 *
   1987 * jh->b_state_lock is held.
   1988 */
   1989
   1990static inline void
   1991__blist_del_buffer(struct journal_head **list, struct journal_head *jh)
   1992{
   1993	if (*list == jh) {
   1994		*list = jh->b_tnext;
   1995		if (*list == jh)
   1996			*list = NULL;
   1997	}
   1998	jh->b_tprev->b_tnext = jh->b_tnext;
   1999	jh->b_tnext->b_tprev = jh->b_tprev;
   2000}
   2001
   2002/*
   2003 * Remove a buffer from the appropriate transaction list.
   2004 *
   2005 * Note that this function can *change* the value of
   2006 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
   2007 * t_reserved_list.  If the caller is holding onto a copy of one of these
   2008 * pointers, it could go bad.  Generally the caller needs to re-read the
   2009 * pointer from the transaction_t.
   2010 *
   2011 * Called under j_list_lock.
   2012 */
   2013static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
   2014{
   2015	struct journal_head **list = NULL;
   2016	transaction_t *transaction;
   2017	struct buffer_head *bh = jh2bh(jh);
   2018
   2019	lockdep_assert_held(&jh->b_state_lock);
   2020	transaction = jh->b_transaction;
   2021	if (transaction)
   2022		assert_spin_locked(&transaction->t_journal->j_list_lock);
   2023
   2024	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
   2025	if (jh->b_jlist != BJ_None)
   2026		J_ASSERT_JH(jh, transaction != NULL);
   2027
   2028	switch (jh->b_jlist) {
   2029	case BJ_None:
   2030		return;
   2031	case BJ_Metadata:
   2032		transaction->t_nr_buffers--;
   2033		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
   2034		list = &transaction->t_buffers;
   2035		break;
   2036	case BJ_Forget:
   2037		list = &transaction->t_forget;
   2038		break;
   2039	case BJ_Shadow:
   2040		list = &transaction->t_shadow_list;
   2041		break;
   2042	case BJ_Reserved:
   2043		list = &transaction->t_reserved_list;
   2044		break;
   2045	}
   2046
   2047	__blist_del_buffer(list, jh);
   2048	jh->b_jlist = BJ_None;
   2049	if (transaction && is_journal_aborted(transaction->t_journal))
   2050		clear_buffer_jbddirty(bh);
   2051	else if (test_clear_buffer_jbddirty(bh))
   2052		mark_buffer_dirty(bh);	/* Expose it to the VM */
   2053}
   2054
   2055/*
   2056 * Remove buffer from all transactions. The caller is responsible for dropping
   2057 * the jh reference that belonged to the transaction.
   2058 *
   2059 * Called with bh_state lock and j_list_lock
   2060 */
   2061static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
   2062{
   2063	J_ASSERT_JH(jh, jh->b_transaction != NULL);
   2064	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
   2065
   2066	__jbd2_journal_temp_unlink_buffer(jh);
   2067	jh->b_transaction = NULL;
   2068}
   2069
   2070void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
   2071{
   2072	struct buffer_head *bh = jh2bh(jh);
   2073
   2074	/* Get reference so that buffer cannot be freed before we unlock it */
   2075	get_bh(bh);
   2076	spin_lock(&jh->b_state_lock);
   2077	spin_lock(&journal->j_list_lock);
   2078	__jbd2_journal_unfile_buffer(jh);
   2079	spin_unlock(&journal->j_list_lock);
   2080	spin_unlock(&jh->b_state_lock);
   2081	jbd2_journal_put_journal_head(jh);
   2082	__brelse(bh);
   2083}
   2084
   2085/*
   2086 * Called from jbd2_journal_try_to_free_buffers().
   2087 *
   2088 * Called under jh->b_state_lock
   2089 */
   2090static void
   2091__journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
   2092{
   2093	struct journal_head *jh;
   2094
   2095	jh = bh2jh(bh);
   2096
   2097	if (buffer_locked(bh) || buffer_dirty(bh))
   2098		goto out;
   2099
   2100	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
   2101		goto out;
   2102
   2103	spin_lock(&journal->j_list_lock);
   2104	if (jh->b_cp_transaction != NULL) {
   2105		/* written-back checkpointed metadata buffer */
   2106		JBUFFER_TRACE(jh, "remove from checkpoint list");
   2107		__jbd2_journal_remove_checkpoint(jh);
   2108	}
   2109	spin_unlock(&journal->j_list_lock);
   2110out:
   2111	return;
   2112}
   2113
   2114/**
   2115 * jbd2_journal_try_to_free_buffers() - try to free page buffers.
   2116 * @journal: journal for operation
   2117 * @folio: Folio to detach data from.
   2118 *
   2119 * For all the buffers on this page,
   2120 * if they are fully written out ordered data, move them onto BUF_CLEAN
   2121 * so try_to_free_buffers() can reap them.
   2122 *
   2123 * This function returns non-zero if we wish try_to_free_buffers()
   2124 * to be called. We do this if the page is releasable by try_to_free_buffers().
   2125 * We also do it if the page has locked or dirty buffers and the caller wants
   2126 * us to perform sync or async writeout.
   2127 *
   2128 * This complicates JBD locking somewhat.  We aren't protected by the
   2129 * BKL here.  We wish to remove the buffer from its committing or
   2130 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
   2131 *
   2132 * This may *change* the value of transaction_t->t_datalist, so anyone
   2133 * who looks at t_datalist needs to lock against this function.
   2134 *
   2135 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
   2136 * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
   2137 * will come out of the lock with the buffer dirty, which makes it
   2138 * ineligible for release here.
   2139 *
   2140 * Who else is affected by this?  hmm...  Really the only contender
   2141 * is do_get_write_access() - it could be looking at the buffer while
   2142 * journal_try_to_free_buffer() is changing its state.  But that
   2143 * cannot happen because we never reallocate freed data as metadata
   2144 * while the data is part of a transaction.  Yes?
   2145 *
   2146 * Return false on failure, true on success
   2147 */
   2148bool jbd2_journal_try_to_free_buffers(journal_t *journal, struct folio *folio)
   2149{
   2150	struct buffer_head *head;
   2151	struct buffer_head *bh;
   2152	bool ret = false;
   2153
   2154	J_ASSERT(folio_test_locked(folio));
   2155
   2156	head = folio_buffers(folio);
   2157	bh = head;
   2158	do {
   2159		struct journal_head *jh;
   2160
   2161		/*
   2162		 * We take our own ref against the journal_head here to avoid
   2163		 * having to add tons of locking around each instance of
   2164		 * jbd2_journal_put_journal_head().
   2165		 */
   2166		jh = jbd2_journal_grab_journal_head(bh);
   2167		if (!jh)
   2168			continue;
   2169
   2170		spin_lock(&jh->b_state_lock);
   2171		__journal_try_to_free_buffer(journal, bh);
   2172		spin_unlock(&jh->b_state_lock);
   2173		jbd2_journal_put_journal_head(jh);
   2174		if (buffer_jbd(bh))
   2175			goto busy;
   2176	} while ((bh = bh->b_this_page) != head);
   2177
   2178	ret = try_to_free_buffers(folio);
   2179busy:
   2180	return ret;
   2181}
   2182
   2183/*
   2184 * This buffer is no longer needed.  If it is on an older transaction's
   2185 * checkpoint list we need to record it on this transaction's forget list
   2186 * to pin this buffer (and hence its checkpointing transaction) down until
   2187 * this transaction commits.  If the buffer isn't on a checkpoint list, we
   2188 * release it.
   2189 * Returns non-zero if JBD no longer has an interest in the buffer.
   2190 *
   2191 * Called under j_list_lock.
   2192 *
   2193 * Called under jh->b_state_lock.
   2194 */
   2195static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
   2196{
   2197	int may_free = 1;
   2198	struct buffer_head *bh = jh2bh(jh);
   2199
   2200	if (jh->b_cp_transaction) {
   2201		JBUFFER_TRACE(jh, "on running+cp transaction");
   2202		__jbd2_journal_temp_unlink_buffer(jh);
   2203		/*
   2204		 * We don't want to write the buffer anymore, clear the
   2205		 * bit so that we don't confuse checks in
   2206		 * __journal_file_buffer
   2207		 */
   2208		clear_buffer_dirty(bh);
   2209		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
   2210		may_free = 0;
   2211	} else {
   2212		JBUFFER_TRACE(jh, "on running transaction");
   2213		__jbd2_journal_unfile_buffer(jh);
   2214		jbd2_journal_put_journal_head(jh);
   2215	}
   2216	return may_free;
   2217}
   2218
   2219/*
   2220 * jbd2_journal_invalidate_folio
   2221 *
   2222 * This code is tricky.  It has a number of cases to deal with.
   2223 *
   2224 * There are two invariants which this code relies on:
   2225 *
   2226 * i_size must be updated on disk before we start calling invalidate_folio
   2227 * on the data.
   2228 *
   2229 *  This is done in ext3 by defining an ext3_setattr method which
   2230 *  updates i_size before truncate gets going.  By maintaining this
   2231 *  invariant, we can be sure that it is safe to throw away any buffers
   2232 *  attached to the current transaction: once the transaction commits,
   2233 *  we know that the data will not be needed.
   2234 *
   2235 *  Note however that we can *not* throw away data belonging to the
   2236 *  previous, committing transaction!
   2237 *
   2238 * Any disk blocks which *are* part of the previous, committing
   2239 * transaction (and which therefore cannot be discarded immediately) are
   2240 * not going to be reused in the new running transaction
   2241 *
   2242 *  The bitmap committed_data images guarantee this: any block which is
   2243 *  allocated in one transaction and removed in the next will be marked
   2244 *  as in-use in the committed_data bitmap, so cannot be reused until
   2245 *  the next transaction to delete the block commits.  This means that
   2246 *  leaving committing buffers dirty is quite safe: the disk blocks
   2247 *  cannot be reallocated to a different file and so buffer aliasing is
   2248 *  not possible.
   2249 *
   2250 *
   2251 * The above applies mainly to ordered data mode.  In writeback mode we
   2252 * don't make guarantees about the order in which data hits disk --- in
   2253 * particular we don't guarantee that new dirty data is flushed before
   2254 * transaction commit --- so it is always safe just to discard data
   2255 * immediately in that mode.  --sct
   2256 */
   2257
   2258/*
   2259 * The journal_unmap_buffer helper function returns zero if the buffer
   2260 * concerned remains pinned as an anonymous buffer belonging to an older
   2261 * transaction.
   2262 *
   2263 * We're outside-transaction here.  Either or both of j_running_transaction
   2264 * and j_committing_transaction may be NULL.
   2265 */
   2266static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
   2267				int partial_page)
   2268{
   2269	transaction_t *transaction;
   2270	struct journal_head *jh;
   2271	int may_free = 1;
   2272
   2273	BUFFER_TRACE(bh, "entry");
   2274
   2275	/*
   2276	 * It is safe to proceed here without the j_list_lock because the
   2277	 * buffers cannot be stolen by try_to_free_buffers as long as we are
   2278	 * holding the page lock. --sct
   2279	 */
   2280
   2281	jh = jbd2_journal_grab_journal_head(bh);
   2282	if (!jh)
   2283		goto zap_buffer_unlocked;
   2284
   2285	/* OK, we have data buffer in journaled mode */
   2286	write_lock(&journal->j_state_lock);
   2287	spin_lock(&jh->b_state_lock);
   2288	spin_lock(&journal->j_list_lock);
   2289
   2290	/*
   2291	 * We cannot remove the buffer from checkpoint lists until the
   2292	 * transaction adding inode to orphan list (let's call it T)
   2293	 * is committed.  Otherwise if the transaction changing the
   2294	 * buffer would be cleaned from the journal before T is
   2295	 * committed, a crash will cause that the correct contents of
   2296	 * the buffer will be lost.  On the other hand we have to
   2297	 * clear the buffer dirty bit at latest at the moment when the
   2298	 * transaction marking the buffer as freed in the filesystem
   2299	 * structures is committed because from that moment on the
   2300	 * block can be reallocated and used by a different page.
   2301	 * Since the block hasn't been freed yet but the inode has
   2302	 * already been added to orphan list, it is safe for us to add
   2303	 * the buffer to BJ_Forget list of the newest transaction.
   2304	 *
   2305	 * Also we have to clear buffer_mapped flag of a truncated buffer
   2306	 * because the buffer_head may be attached to the page straddling
   2307	 * i_size (can happen only when blocksize < pagesize) and thus the
   2308	 * buffer_head can be reused when the file is extended again. So we end
   2309	 * up keeping around invalidated buffers attached to transactions'
   2310	 * BJ_Forget list just to stop checkpointing code from cleaning up
   2311	 * the transaction this buffer was modified in.
   2312	 */
   2313	transaction = jh->b_transaction;
   2314	if (transaction == NULL) {
   2315		/* First case: not on any transaction.  If it
   2316		 * has no checkpoint link, then we can zap it:
   2317		 * it's a writeback-mode buffer so we don't care
   2318		 * if it hits disk safely. */
   2319		if (!jh->b_cp_transaction) {
   2320			JBUFFER_TRACE(jh, "not on any transaction: zap");
   2321			goto zap_buffer;
   2322		}
   2323
   2324		if (!buffer_dirty(bh)) {
   2325			/* bdflush has written it.  We can drop it now */
   2326			__jbd2_journal_remove_checkpoint(jh);
   2327			goto zap_buffer;
   2328		}
   2329
   2330		/* OK, it must be in the journal but still not
   2331		 * written fully to disk: it's metadata or
   2332		 * journaled data... */
   2333
   2334		if (journal->j_running_transaction) {
   2335			/* ... and once the current transaction has
   2336			 * committed, the buffer won't be needed any
   2337			 * longer. */
   2338			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
   2339			may_free = __dispose_buffer(jh,
   2340					journal->j_running_transaction);
   2341			goto zap_buffer;
   2342		} else {
   2343			/* There is no currently-running transaction. So the
   2344			 * orphan record which we wrote for this file must have
   2345			 * passed into commit.  We must attach this buffer to
   2346			 * the committing transaction, if it exists. */
   2347			if (journal->j_committing_transaction) {
   2348				JBUFFER_TRACE(jh, "give to committing trans");
   2349				may_free = __dispose_buffer(jh,
   2350					journal->j_committing_transaction);
   2351				goto zap_buffer;
   2352			} else {
   2353				/* The orphan record's transaction has
   2354				 * committed.  We can cleanse this buffer */
   2355				clear_buffer_jbddirty(bh);
   2356				__jbd2_journal_remove_checkpoint(jh);
   2357				goto zap_buffer;
   2358			}
   2359		}
   2360	} else if (transaction == journal->j_committing_transaction) {
   2361		JBUFFER_TRACE(jh, "on committing transaction");
   2362		/*
   2363		 * The buffer is committing, we simply cannot touch
   2364		 * it. If the page is straddling i_size we have to wait
   2365		 * for commit and try again.
   2366		 */
   2367		if (partial_page) {
   2368			spin_unlock(&journal->j_list_lock);
   2369			spin_unlock(&jh->b_state_lock);
   2370			write_unlock(&journal->j_state_lock);
   2371			jbd2_journal_put_journal_head(jh);
   2372			return -EBUSY;
   2373		}
   2374		/*
   2375		 * OK, buffer won't be reachable after truncate. We just clear
   2376		 * b_modified to not confuse transaction credit accounting, and
   2377		 * set j_next_transaction to the running transaction (if there
   2378		 * is one) and mark buffer as freed so that commit code knows
   2379		 * it should clear dirty bits when it is done with the buffer.
   2380		 */
   2381		set_buffer_freed(bh);
   2382		if (journal->j_running_transaction && buffer_jbddirty(bh))
   2383			jh->b_next_transaction = journal->j_running_transaction;
   2384		jh->b_modified = 0;
   2385		spin_unlock(&journal->j_list_lock);
   2386		spin_unlock(&jh->b_state_lock);
   2387		write_unlock(&journal->j_state_lock);
   2388		jbd2_journal_put_journal_head(jh);
   2389		return 0;
   2390	} else {
   2391		/* Good, the buffer belongs to the running transaction.
   2392		 * We are writing our own transaction's data, not any
   2393		 * previous one's, so it is safe to throw it away
   2394		 * (remember that we expect the filesystem to have set
   2395		 * i_size already for this truncate so recovery will not
   2396		 * expose the disk blocks we are discarding here.) */
   2397		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
   2398		JBUFFER_TRACE(jh, "on running transaction");
   2399		may_free = __dispose_buffer(jh, transaction);
   2400	}
   2401
   2402zap_buffer:
   2403	/*
   2404	 * This is tricky. Although the buffer is truncated, it may be reused
   2405	 * if blocksize < pagesize and it is attached to the page straddling
   2406	 * EOF. Since the buffer might have been added to BJ_Forget list of the
   2407	 * running transaction, journal_get_write_access() won't clear
   2408	 * b_modified and credit accounting gets confused. So clear b_modified
   2409	 * here.
   2410	 */
   2411	jh->b_modified = 0;
   2412	spin_unlock(&journal->j_list_lock);
   2413	spin_unlock(&jh->b_state_lock);
   2414	write_unlock(&journal->j_state_lock);
   2415	jbd2_journal_put_journal_head(jh);
   2416zap_buffer_unlocked:
   2417	clear_buffer_dirty(bh);
   2418	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
   2419	clear_buffer_mapped(bh);
   2420	clear_buffer_req(bh);
   2421	clear_buffer_new(bh);
   2422	clear_buffer_delay(bh);
   2423	clear_buffer_unwritten(bh);
   2424	bh->b_bdev = NULL;
   2425	return may_free;
   2426}
   2427
   2428/**
   2429 * jbd2_journal_invalidate_folio()
   2430 * @journal: journal to use for flush...
   2431 * @folio:    folio to flush
   2432 * @offset:  start of the range to invalidate
   2433 * @length:  length of the range to invalidate
   2434 *
   2435 * Reap page buffers containing data after in the specified range in page.
   2436 * Can return -EBUSY if buffers are part of the committing transaction and
   2437 * the page is straddling i_size. Caller then has to wait for current commit
   2438 * and try again.
   2439 */
   2440int jbd2_journal_invalidate_folio(journal_t *journal, struct folio *folio,
   2441				size_t offset, size_t length)
   2442{
   2443	struct buffer_head *head, *bh, *next;
   2444	unsigned int stop = offset + length;
   2445	unsigned int curr_off = 0;
   2446	int partial_page = (offset || length < folio_size(folio));
   2447	int may_free = 1;
   2448	int ret = 0;
   2449
   2450	if (!folio_test_locked(folio))
   2451		BUG();
   2452	head = folio_buffers(folio);
   2453	if (!head)
   2454		return 0;
   2455
   2456	BUG_ON(stop > folio_size(folio) || stop < length);
   2457
   2458	/* We will potentially be playing with lists other than just the
   2459	 * data lists (especially for journaled data mode), so be
   2460	 * cautious in our locking. */
   2461
   2462	bh = head;
   2463	do {
   2464		unsigned int next_off = curr_off + bh->b_size;
   2465		next = bh->b_this_page;
   2466
   2467		if (next_off > stop)
   2468			return 0;
   2469
   2470		if (offset <= curr_off) {
   2471			/* This block is wholly outside the truncation point */
   2472			lock_buffer(bh);
   2473			ret = journal_unmap_buffer(journal, bh, partial_page);
   2474			unlock_buffer(bh);
   2475			if (ret < 0)
   2476				return ret;
   2477			may_free &= ret;
   2478		}
   2479		curr_off = next_off;
   2480		bh = next;
   2481
   2482	} while (bh != head);
   2483
   2484	if (!partial_page) {
   2485		if (may_free && try_to_free_buffers(folio))
   2486			J_ASSERT(!folio_buffers(folio));
   2487	}
   2488	return 0;
   2489}
   2490
   2491/*
   2492 * File a buffer on the given transaction list.
   2493 */
   2494void __jbd2_journal_file_buffer(struct journal_head *jh,
   2495			transaction_t *transaction, int jlist)
   2496{
   2497	struct journal_head **list = NULL;
   2498	int was_dirty = 0;
   2499	struct buffer_head *bh = jh2bh(jh);
   2500
   2501	lockdep_assert_held(&jh->b_state_lock);
   2502	assert_spin_locked(&transaction->t_journal->j_list_lock);
   2503
   2504	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
   2505	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
   2506				jh->b_transaction == NULL);
   2507
   2508	if (jh->b_transaction && jh->b_jlist == jlist)
   2509		return;
   2510
   2511	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
   2512	    jlist == BJ_Shadow || jlist == BJ_Forget) {
   2513		/*
   2514		 * For metadata buffers, we track dirty bit in buffer_jbddirty
   2515		 * instead of buffer_dirty. We should not see a dirty bit set
   2516		 * here because we clear it in do_get_write_access but e.g.
   2517		 * tune2fs can modify the sb and set the dirty bit at any time
   2518		 * so we try to gracefully handle that.
   2519		 */
   2520		if (buffer_dirty(bh))
   2521			warn_dirty_buffer(bh);
   2522		if (test_clear_buffer_dirty(bh) ||
   2523		    test_clear_buffer_jbddirty(bh))
   2524			was_dirty = 1;
   2525	}
   2526
   2527	if (jh->b_transaction)
   2528		__jbd2_journal_temp_unlink_buffer(jh);
   2529	else
   2530		jbd2_journal_grab_journal_head(bh);
   2531	jh->b_transaction = transaction;
   2532
   2533	switch (jlist) {
   2534	case BJ_None:
   2535		J_ASSERT_JH(jh, !jh->b_committed_data);
   2536		J_ASSERT_JH(jh, !jh->b_frozen_data);
   2537		return;
   2538	case BJ_Metadata:
   2539		transaction->t_nr_buffers++;
   2540		list = &transaction->t_buffers;
   2541		break;
   2542	case BJ_Forget:
   2543		list = &transaction->t_forget;
   2544		break;
   2545	case BJ_Shadow:
   2546		list = &transaction->t_shadow_list;
   2547		break;
   2548	case BJ_Reserved:
   2549		list = &transaction->t_reserved_list;
   2550		break;
   2551	}
   2552
   2553	__blist_add_buffer(list, jh);
   2554	jh->b_jlist = jlist;
   2555
   2556	if (was_dirty)
   2557		set_buffer_jbddirty(bh);
   2558}
   2559
   2560void jbd2_journal_file_buffer(struct journal_head *jh,
   2561				transaction_t *transaction, int jlist)
   2562{
   2563	spin_lock(&jh->b_state_lock);
   2564	spin_lock(&transaction->t_journal->j_list_lock);
   2565	__jbd2_journal_file_buffer(jh, transaction, jlist);
   2566	spin_unlock(&transaction->t_journal->j_list_lock);
   2567	spin_unlock(&jh->b_state_lock);
   2568}
   2569
   2570/*
   2571 * Remove a buffer from its current buffer list in preparation for
   2572 * dropping it from its current transaction entirely.  If the buffer has
   2573 * already started to be used by a subsequent transaction, refile the
   2574 * buffer on that transaction's metadata list.
   2575 *
   2576 * Called under j_list_lock
   2577 * Called under jh->b_state_lock
   2578 *
   2579 * When this function returns true, there's no next transaction to refile to
   2580 * and the caller has to drop jh reference through
   2581 * jbd2_journal_put_journal_head().
   2582 */
   2583bool __jbd2_journal_refile_buffer(struct journal_head *jh)
   2584{
   2585	int was_dirty, jlist;
   2586	struct buffer_head *bh = jh2bh(jh);
   2587
   2588	lockdep_assert_held(&jh->b_state_lock);
   2589	if (jh->b_transaction)
   2590		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
   2591
   2592	/* If the buffer is now unused, just drop it. */
   2593	if (jh->b_next_transaction == NULL) {
   2594		__jbd2_journal_unfile_buffer(jh);
   2595		return true;
   2596	}
   2597
   2598	/*
   2599	 * It has been modified by a later transaction: add it to the new
   2600	 * transaction's metadata list.
   2601	 */
   2602
   2603	was_dirty = test_clear_buffer_jbddirty(bh);
   2604	__jbd2_journal_temp_unlink_buffer(jh);
   2605
   2606	/*
   2607	 * b_transaction must be set, otherwise the new b_transaction won't
   2608	 * be holding jh reference
   2609	 */
   2610	J_ASSERT_JH(jh, jh->b_transaction != NULL);
   2611
   2612	/*
   2613	 * We set b_transaction here because b_next_transaction will inherit
   2614	 * our jh reference and thus __jbd2_journal_file_buffer() must not
   2615	 * take a new one.
   2616	 */
   2617	WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
   2618	WRITE_ONCE(jh->b_next_transaction, NULL);
   2619	if (buffer_freed(bh))
   2620		jlist = BJ_Forget;
   2621	else if (jh->b_modified)
   2622		jlist = BJ_Metadata;
   2623	else
   2624		jlist = BJ_Reserved;
   2625	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
   2626	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
   2627
   2628	if (was_dirty)
   2629		set_buffer_jbddirty(bh);
   2630	return false;
   2631}
   2632
   2633/*
   2634 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
   2635 * bh reference so that we can safely unlock bh.
   2636 *
   2637 * The jh and bh may be freed by this call.
   2638 */
   2639void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
   2640{
   2641	bool drop;
   2642
   2643	spin_lock(&jh->b_state_lock);
   2644	spin_lock(&journal->j_list_lock);
   2645	drop = __jbd2_journal_refile_buffer(jh);
   2646	spin_unlock(&jh->b_state_lock);
   2647	spin_unlock(&journal->j_list_lock);
   2648	if (drop)
   2649		jbd2_journal_put_journal_head(jh);
   2650}
   2651
   2652/*
   2653 * File inode in the inode list of the handle's transaction
   2654 */
   2655static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
   2656		unsigned long flags, loff_t start_byte, loff_t end_byte)
   2657{
   2658	transaction_t *transaction = handle->h_transaction;
   2659	journal_t *journal;
   2660
   2661	if (is_handle_aborted(handle))
   2662		return -EROFS;
   2663	journal = transaction->t_journal;
   2664
   2665	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
   2666			transaction->t_tid);
   2667
   2668	spin_lock(&journal->j_list_lock);
   2669	jinode->i_flags |= flags;
   2670
   2671	if (jinode->i_dirty_end) {
   2672		jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
   2673		jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
   2674	} else {
   2675		jinode->i_dirty_start = start_byte;
   2676		jinode->i_dirty_end = end_byte;
   2677	}
   2678
   2679	/* Is inode already attached where we need it? */
   2680	if (jinode->i_transaction == transaction ||
   2681	    jinode->i_next_transaction == transaction)
   2682		goto done;
   2683
   2684	/*
   2685	 * We only ever set this variable to 1 so the test is safe. Since
   2686	 * t_need_data_flush is likely to be set, we do the test to save some
   2687	 * cacheline bouncing
   2688	 */
   2689	if (!transaction->t_need_data_flush)
   2690		transaction->t_need_data_flush = 1;
   2691	/* On some different transaction's list - should be
   2692	 * the committing one */
   2693	if (jinode->i_transaction) {
   2694		J_ASSERT(jinode->i_next_transaction == NULL);
   2695		J_ASSERT(jinode->i_transaction ==
   2696					journal->j_committing_transaction);
   2697		jinode->i_next_transaction = transaction;
   2698		goto done;
   2699	}
   2700	/* Not on any transaction list... */
   2701	J_ASSERT(!jinode->i_next_transaction);
   2702	jinode->i_transaction = transaction;
   2703	list_add(&jinode->i_list, &transaction->t_inode_list);
   2704done:
   2705	spin_unlock(&journal->j_list_lock);
   2706
   2707	return 0;
   2708}
   2709
   2710int jbd2_journal_inode_ranged_write(handle_t *handle,
   2711		struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
   2712{
   2713	return jbd2_journal_file_inode(handle, jinode,
   2714			JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
   2715			start_byte + length - 1);
   2716}
   2717
   2718int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
   2719		loff_t start_byte, loff_t length)
   2720{
   2721	return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
   2722			start_byte, start_byte + length - 1);
   2723}
   2724
   2725/*
   2726 * File truncate and transaction commit interact with each other in a
   2727 * non-trivial way.  If a transaction writing data block A is
   2728 * committing, we cannot discard the data by truncate until we have
   2729 * written them.  Otherwise if we crashed after the transaction with
   2730 * write has committed but before the transaction with truncate has
   2731 * committed, we could see stale data in block A.  This function is a
   2732 * helper to solve this problem.  It starts writeout of the truncated
   2733 * part in case it is in the committing transaction.
   2734 *
   2735 * Filesystem code must call this function when inode is journaled in
   2736 * ordered mode before truncation happens and after the inode has been
   2737 * placed on orphan list with the new inode size. The second condition
   2738 * avoids the race that someone writes new data and we start
   2739 * committing the transaction after this function has been called but
   2740 * before a transaction for truncate is started (and furthermore it
   2741 * allows us to optimize the case where the addition to orphan list
   2742 * happens in the same transaction as write --- we don't have to write
   2743 * any data in such case).
   2744 */
   2745int jbd2_journal_begin_ordered_truncate(journal_t *journal,
   2746					struct jbd2_inode *jinode,
   2747					loff_t new_size)
   2748{
   2749	transaction_t *inode_trans, *commit_trans;
   2750	int ret = 0;
   2751
   2752	/* This is a quick check to avoid locking if not necessary */
   2753	if (!jinode->i_transaction)
   2754		goto out;
   2755	/* Locks are here just to force reading of recent values, it is
   2756	 * enough that the transaction was not committing before we started
   2757	 * a transaction adding the inode to orphan list */
   2758	read_lock(&journal->j_state_lock);
   2759	commit_trans = journal->j_committing_transaction;
   2760	read_unlock(&journal->j_state_lock);
   2761	spin_lock(&journal->j_list_lock);
   2762	inode_trans = jinode->i_transaction;
   2763	spin_unlock(&journal->j_list_lock);
   2764	if (inode_trans == commit_trans) {
   2765		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
   2766			new_size, LLONG_MAX);
   2767		if (ret)
   2768			jbd2_journal_abort(journal, ret);
   2769	}
   2770out:
   2771	return ret;
   2772}