cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

dir.c (45976B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * fs/kernfs/dir.c - kernfs directory implementation
      4 *
      5 * Copyright (c) 2001-3 Patrick Mochel
      6 * Copyright (c) 2007 SUSE Linux Products GmbH
      7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
      8 */
      9
     10#include <linux/sched.h>
     11#include <linux/fs.h>
     12#include <linux/namei.h>
     13#include <linux/idr.h>
     14#include <linux/slab.h>
     15#include <linux/security.h>
     16#include <linux/hash.h>
     17
     18#include "kernfs-internal.h"
     19
     20static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
     21/*
     22 * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to
     23 * call pr_cont() while holding rename_lock. Because sometimes pr_cont()
     24 * will perform wakeups when releasing console_sem. Holding rename_lock
     25 * will introduce deadlock if the scheduler reads the kernfs_name in the
     26 * wakeup path.
     27 */
     28static DEFINE_SPINLOCK(kernfs_pr_cont_lock);
     29static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by pr_cont_lock */
     30static DEFINE_SPINLOCK(kernfs_idr_lock);	/* root->ino_idr */
     31
     32#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
     33
     34static bool kernfs_active(struct kernfs_node *kn)
     35{
     36	lockdep_assert_held(&kernfs_root(kn)->kernfs_rwsem);
     37	return atomic_read(&kn->active) >= 0;
     38}
     39
     40static bool kernfs_lockdep(struct kernfs_node *kn)
     41{
     42#ifdef CONFIG_DEBUG_LOCK_ALLOC
     43	return kn->flags & KERNFS_LOCKDEP;
     44#else
     45	return false;
     46#endif
     47}
     48
     49static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
     50{
     51	if (!kn)
     52		return strlcpy(buf, "(null)", buflen);
     53
     54	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
     55}
     56
     57/* kernfs_node_depth - compute depth from @from to @to */
     58static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
     59{
     60	size_t depth = 0;
     61
     62	while (to->parent && to != from) {
     63		depth++;
     64		to = to->parent;
     65	}
     66	return depth;
     67}
     68
     69static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
     70						  struct kernfs_node *b)
     71{
     72	size_t da, db;
     73	struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
     74
     75	if (ra != rb)
     76		return NULL;
     77
     78	da = kernfs_depth(ra->kn, a);
     79	db = kernfs_depth(rb->kn, b);
     80
     81	while (da > db) {
     82		a = a->parent;
     83		da--;
     84	}
     85	while (db > da) {
     86		b = b->parent;
     87		db--;
     88	}
     89
     90	/* worst case b and a will be the same at root */
     91	while (b != a) {
     92		b = b->parent;
     93		a = a->parent;
     94	}
     95
     96	return a;
     97}
     98
     99/**
    100 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
    101 * where kn_from is treated as root of the path.
    102 * @kn_from: kernfs node which should be treated as root for the path
    103 * @kn_to: kernfs node to which path is needed
    104 * @buf: buffer to copy the path into
    105 * @buflen: size of @buf
    106 *
    107 * We need to handle couple of scenarios here:
    108 * [1] when @kn_from is an ancestor of @kn_to at some level
    109 * kn_from: /n1/n2/n3
    110 * kn_to:   /n1/n2/n3/n4/n5
    111 * result:  /n4/n5
    112 *
    113 * [2] when @kn_from is on a different hierarchy and we need to find common
    114 * ancestor between @kn_from and @kn_to.
    115 * kn_from: /n1/n2/n3/n4
    116 * kn_to:   /n1/n2/n5
    117 * result:  /../../n5
    118 * OR
    119 * kn_from: /n1/n2/n3/n4/n5   [depth=5]
    120 * kn_to:   /n1/n2/n3         [depth=3]
    121 * result:  /../..
    122 *
    123 * [3] when @kn_to is NULL result will be "(null)"
    124 *
    125 * Returns the length of the full path.  If the full length is equal to or
    126 * greater than @buflen, @buf contains the truncated path with the trailing
    127 * '\0'.  On error, -errno is returned.
    128 */
    129static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
    130					struct kernfs_node *kn_from,
    131					char *buf, size_t buflen)
    132{
    133	struct kernfs_node *kn, *common;
    134	const char parent_str[] = "/..";
    135	size_t depth_from, depth_to, len = 0;
    136	int i, j;
    137
    138	if (!kn_to)
    139		return strlcpy(buf, "(null)", buflen);
    140
    141	if (!kn_from)
    142		kn_from = kernfs_root(kn_to)->kn;
    143
    144	if (kn_from == kn_to)
    145		return strlcpy(buf, "/", buflen);
    146
    147	if (!buf)
    148		return -EINVAL;
    149
    150	common = kernfs_common_ancestor(kn_from, kn_to);
    151	if (WARN_ON(!common))
    152		return -EINVAL;
    153
    154	depth_to = kernfs_depth(common, kn_to);
    155	depth_from = kernfs_depth(common, kn_from);
    156
    157	buf[0] = '\0';
    158
    159	for (i = 0; i < depth_from; i++)
    160		len += strlcpy(buf + len, parent_str,
    161			       len < buflen ? buflen - len : 0);
    162
    163	/* Calculate how many bytes we need for the rest */
    164	for (i = depth_to - 1; i >= 0; i--) {
    165		for (kn = kn_to, j = 0; j < i; j++)
    166			kn = kn->parent;
    167		len += strlcpy(buf + len, "/",
    168			       len < buflen ? buflen - len : 0);
    169		len += strlcpy(buf + len, kn->name,
    170			       len < buflen ? buflen - len : 0);
    171	}
    172
    173	return len;
    174}
    175
    176/**
    177 * kernfs_name - obtain the name of a given node
    178 * @kn: kernfs_node of interest
    179 * @buf: buffer to copy @kn's name into
    180 * @buflen: size of @buf
    181 *
    182 * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
    183 * similar to strlcpy().  It returns the length of @kn's name and if @buf
    184 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
    185 *
    186 * Fills buffer with "(null)" if @kn is NULL.
    187 *
    188 * This function can be called from any context.
    189 */
    190int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
    191{
    192	unsigned long flags;
    193	int ret;
    194
    195	spin_lock_irqsave(&kernfs_rename_lock, flags);
    196	ret = kernfs_name_locked(kn, buf, buflen);
    197	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
    198	return ret;
    199}
    200
    201/**
    202 * kernfs_path_from_node - build path of node @to relative to @from.
    203 * @from: parent kernfs_node relative to which we need to build the path
    204 * @to: kernfs_node of interest
    205 * @buf: buffer to copy @to's path into
    206 * @buflen: size of @buf
    207 *
    208 * Builds @to's path relative to @from in @buf. @from and @to must
    209 * be on the same kernfs-root. If @from is not parent of @to, then a relative
    210 * path (which includes '..'s) as needed to reach from @from to @to is
    211 * returned.
    212 *
    213 * Returns the length of the full path.  If the full length is equal to or
    214 * greater than @buflen, @buf contains the truncated path with the trailing
    215 * '\0'.  On error, -errno is returned.
    216 */
    217int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
    218			  char *buf, size_t buflen)
    219{
    220	unsigned long flags;
    221	int ret;
    222
    223	spin_lock_irqsave(&kernfs_rename_lock, flags);
    224	ret = kernfs_path_from_node_locked(to, from, buf, buflen);
    225	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
    226	return ret;
    227}
    228EXPORT_SYMBOL_GPL(kernfs_path_from_node);
    229
    230/**
    231 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
    232 * @kn: kernfs_node of interest
    233 *
    234 * This function can be called from any context.
    235 */
    236void pr_cont_kernfs_name(struct kernfs_node *kn)
    237{
    238	unsigned long flags;
    239
    240	spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
    241
    242	kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
    243	pr_cont("%s", kernfs_pr_cont_buf);
    244
    245	spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
    246}
    247
    248/**
    249 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
    250 * @kn: kernfs_node of interest
    251 *
    252 * This function can be called from any context.
    253 */
    254void pr_cont_kernfs_path(struct kernfs_node *kn)
    255{
    256	unsigned long flags;
    257	int sz;
    258
    259	spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
    260
    261	sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf,
    262				   sizeof(kernfs_pr_cont_buf));
    263	if (sz < 0) {
    264		pr_cont("(error)");
    265		goto out;
    266	}
    267
    268	if (sz >= sizeof(kernfs_pr_cont_buf)) {
    269		pr_cont("(name too long)");
    270		goto out;
    271	}
    272
    273	pr_cont("%s", kernfs_pr_cont_buf);
    274
    275out:
    276	spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
    277}
    278
    279/**
    280 * kernfs_get_parent - determine the parent node and pin it
    281 * @kn: kernfs_node of interest
    282 *
    283 * Determines @kn's parent, pins and returns it.  This function can be
    284 * called from any context.
    285 */
    286struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
    287{
    288	struct kernfs_node *parent;
    289	unsigned long flags;
    290
    291	spin_lock_irqsave(&kernfs_rename_lock, flags);
    292	parent = kn->parent;
    293	kernfs_get(parent);
    294	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
    295
    296	return parent;
    297}
    298
    299/**
    300 *	kernfs_name_hash
    301 *	@name: Null terminated string to hash
    302 *	@ns:   Namespace tag to hash
    303 *
    304 *	Returns 31 bit hash of ns + name (so it fits in an off_t )
    305 */
    306static unsigned int kernfs_name_hash(const char *name, const void *ns)
    307{
    308	unsigned long hash = init_name_hash(ns);
    309	unsigned int len = strlen(name);
    310	while (len--)
    311		hash = partial_name_hash(*name++, hash);
    312	hash = end_name_hash(hash);
    313	hash &= 0x7fffffffU;
    314	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
    315	if (hash < 2)
    316		hash += 2;
    317	if (hash >= INT_MAX)
    318		hash = INT_MAX - 1;
    319	return hash;
    320}
    321
    322static int kernfs_name_compare(unsigned int hash, const char *name,
    323			       const void *ns, const struct kernfs_node *kn)
    324{
    325	if (hash < kn->hash)
    326		return -1;
    327	if (hash > kn->hash)
    328		return 1;
    329	if (ns < kn->ns)
    330		return -1;
    331	if (ns > kn->ns)
    332		return 1;
    333	return strcmp(name, kn->name);
    334}
    335
    336static int kernfs_sd_compare(const struct kernfs_node *left,
    337			     const struct kernfs_node *right)
    338{
    339	return kernfs_name_compare(left->hash, left->name, left->ns, right);
    340}
    341
    342/**
    343 *	kernfs_link_sibling - link kernfs_node into sibling rbtree
    344 *	@kn: kernfs_node of interest
    345 *
    346 *	Link @kn into its sibling rbtree which starts from
    347 *	@kn->parent->dir.children.
    348 *
    349 *	Locking:
    350 *	kernfs_rwsem held exclusive
    351 *
    352 *	RETURNS:
    353 *	0 on susccess -EEXIST on failure.
    354 */
    355static int kernfs_link_sibling(struct kernfs_node *kn)
    356{
    357	struct rb_node **node = &kn->parent->dir.children.rb_node;
    358	struct rb_node *parent = NULL;
    359
    360	while (*node) {
    361		struct kernfs_node *pos;
    362		int result;
    363
    364		pos = rb_to_kn(*node);
    365		parent = *node;
    366		result = kernfs_sd_compare(kn, pos);
    367		if (result < 0)
    368			node = &pos->rb.rb_left;
    369		else if (result > 0)
    370			node = &pos->rb.rb_right;
    371		else
    372			return -EEXIST;
    373	}
    374
    375	/* add new node and rebalance the tree */
    376	rb_link_node(&kn->rb, parent, node);
    377	rb_insert_color(&kn->rb, &kn->parent->dir.children);
    378
    379	/* successfully added, account subdir number */
    380	if (kernfs_type(kn) == KERNFS_DIR)
    381		kn->parent->dir.subdirs++;
    382	kernfs_inc_rev(kn->parent);
    383
    384	return 0;
    385}
    386
    387/**
    388 *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
    389 *	@kn: kernfs_node of interest
    390 *
    391 *	Try to unlink @kn from its sibling rbtree which starts from
    392 *	kn->parent->dir.children.  Returns %true if @kn was actually
    393 *	removed, %false if @kn wasn't on the rbtree.
    394 *
    395 *	Locking:
    396 *	kernfs_rwsem held exclusive
    397 */
    398static bool kernfs_unlink_sibling(struct kernfs_node *kn)
    399{
    400	if (RB_EMPTY_NODE(&kn->rb))
    401		return false;
    402
    403	if (kernfs_type(kn) == KERNFS_DIR)
    404		kn->parent->dir.subdirs--;
    405	kernfs_inc_rev(kn->parent);
    406
    407	rb_erase(&kn->rb, &kn->parent->dir.children);
    408	RB_CLEAR_NODE(&kn->rb);
    409	return true;
    410}
    411
    412/**
    413 *	kernfs_get_active - get an active reference to kernfs_node
    414 *	@kn: kernfs_node to get an active reference to
    415 *
    416 *	Get an active reference of @kn.  This function is noop if @kn
    417 *	is NULL.
    418 *
    419 *	RETURNS:
    420 *	Pointer to @kn on success, NULL on failure.
    421 */
    422struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
    423{
    424	if (unlikely(!kn))
    425		return NULL;
    426
    427	if (!atomic_inc_unless_negative(&kn->active))
    428		return NULL;
    429
    430	if (kernfs_lockdep(kn))
    431		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
    432	return kn;
    433}
    434
    435/**
    436 *	kernfs_put_active - put an active reference to kernfs_node
    437 *	@kn: kernfs_node to put an active reference to
    438 *
    439 *	Put an active reference to @kn.  This function is noop if @kn
    440 *	is NULL.
    441 */
    442void kernfs_put_active(struct kernfs_node *kn)
    443{
    444	int v;
    445
    446	if (unlikely(!kn))
    447		return;
    448
    449	if (kernfs_lockdep(kn))
    450		rwsem_release(&kn->dep_map, _RET_IP_);
    451	v = atomic_dec_return(&kn->active);
    452	if (likely(v != KN_DEACTIVATED_BIAS))
    453		return;
    454
    455	wake_up_all(&kernfs_root(kn)->deactivate_waitq);
    456}
    457
    458/**
    459 * kernfs_drain - drain kernfs_node
    460 * @kn: kernfs_node to drain
    461 *
    462 * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
    463 * removers may invoke this function concurrently on @kn and all will
    464 * return after draining is complete.
    465 */
    466static void kernfs_drain(struct kernfs_node *kn)
    467	__releases(&kernfs_root(kn)->kernfs_rwsem)
    468	__acquires(&kernfs_root(kn)->kernfs_rwsem)
    469{
    470	struct kernfs_root *root = kernfs_root(kn);
    471
    472	lockdep_assert_held_write(&root->kernfs_rwsem);
    473	WARN_ON_ONCE(kernfs_active(kn));
    474
    475	up_write(&root->kernfs_rwsem);
    476
    477	if (kernfs_lockdep(kn)) {
    478		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
    479		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
    480			lock_contended(&kn->dep_map, _RET_IP_);
    481	}
    482
    483	/* but everyone should wait for draining */
    484	wait_event(root->deactivate_waitq,
    485		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
    486
    487	if (kernfs_lockdep(kn)) {
    488		lock_acquired(&kn->dep_map, _RET_IP_);
    489		rwsem_release(&kn->dep_map, _RET_IP_);
    490	}
    491
    492	kernfs_drain_open_files(kn);
    493
    494	down_write(&root->kernfs_rwsem);
    495}
    496
    497/**
    498 * kernfs_get - get a reference count on a kernfs_node
    499 * @kn: the target kernfs_node
    500 */
    501void kernfs_get(struct kernfs_node *kn)
    502{
    503	if (kn) {
    504		WARN_ON(!atomic_read(&kn->count));
    505		atomic_inc(&kn->count);
    506	}
    507}
    508EXPORT_SYMBOL_GPL(kernfs_get);
    509
    510/**
    511 * kernfs_put - put a reference count on a kernfs_node
    512 * @kn: the target kernfs_node
    513 *
    514 * Put a reference count of @kn and destroy it if it reached zero.
    515 */
    516void kernfs_put(struct kernfs_node *kn)
    517{
    518	struct kernfs_node *parent;
    519	struct kernfs_root *root;
    520
    521	if (!kn || !atomic_dec_and_test(&kn->count))
    522		return;
    523	root = kernfs_root(kn);
    524 repeat:
    525	/*
    526	 * Moving/renaming is always done while holding reference.
    527	 * kn->parent won't change beneath us.
    528	 */
    529	parent = kn->parent;
    530
    531	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
    532		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
    533		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
    534
    535	if (kernfs_type(kn) == KERNFS_LINK)
    536		kernfs_put(kn->symlink.target_kn);
    537
    538	kfree_const(kn->name);
    539
    540	if (kn->iattr) {
    541		simple_xattrs_free(&kn->iattr->xattrs);
    542		kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
    543	}
    544	spin_lock(&kernfs_idr_lock);
    545	idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
    546	spin_unlock(&kernfs_idr_lock);
    547	kmem_cache_free(kernfs_node_cache, kn);
    548
    549	kn = parent;
    550	if (kn) {
    551		if (atomic_dec_and_test(&kn->count))
    552			goto repeat;
    553	} else {
    554		/* just released the root kn, free @root too */
    555		idr_destroy(&root->ino_idr);
    556		kfree(root);
    557	}
    558}
    559EXPORT_SYMBOL_GPL(kernfs_put);
    560
    561/**
    562 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
    563 * @dentry: the dentry in question
    564 *
    565 * Return the kernfs_node associated with @dentry.  If @dentry is not a
    566 * kernfs one, %NULL is returned.
    567 *
    568 * While the returned kernfs_node will stay accessible as long as @dentry
    569 * is accessible, the returned node can be in any state and the caller is
    570 * fully responsible for determining what's accessible.
    571 */
    572struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
    573{
    574	if (dentry->d_sb->s_op == &kernfs_sops)
    575		return kernfs_dentry_node(dentry);
    576	return NULL;
    577}
    578
    579static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
    580					     struct kernfs_node *parent,
    581					     const char *name, umode_t mode,
    582					     kuid_t uid, kgid_t gid,
    583					     unsigned flags)
    584{
    585	struct kernfs_node *kn;
    586	u32 id_highbits;
    587	int ret;
    588
    589	name = kstrdup_const(name, GFP_KERNEL);
    590	if (!name)
    591		return NULL;
    592
    593	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
    594	if (!kn)
    595		goto err_out1;
    596
    597	idr_preload(GFP_KERNEL);
    598	spin_lock(&kernfs_idr_lock);
    599	ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
    600	if (ret >= 0 && ret < root->last_id_lowbits)
    601		root->id_highbits++;
    602	id_highbits = root->id_highbits;
    603	root->last_id_lowbits = ret;
    604	spin_unlock(&kernfs_idr_lock);
    605	idr_preload_end();
    606	if (ret < 0)
    607		goto err_out2;
    608
    609	kn->id = (u64)id_highbits << 32 | ret;
    610
    611	atomic_set(&kn->count, 1);
    612	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
    613	RB_CLEAR_NODE(&kn->rb);
    614
    615	kn->name = name;
    616	kn->mode = mode;
    617	kn->flags = flags;
    618
    619	if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
    620		struct iattr iattr = {
    621			.ia_valid = ATTR_UID | ATTR_GID,
    622			.ia_uid = uid,
    623			.ia_gid = gid,
    624		};
    625
    626		ret = __kernfs_setattr(kn, &iattr);
    627		if (ret < 0)
    628			goto err_out3;
    629	}
    630
    631	if (parent) {
    632		ret = security_kernfs_init_security(parent, kn);
    633		if (ret)
    634			goto err_out3;
    635	}
    636
    637	return kn;
    638
    639 err_out3:
    640	idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
    641 err_out2:
    642	kmem_cache_free(kernfs_node_cache, kn);
    643 err_out1:
    644	kfree_const(name);
    645	return NULL;
    646}
    647
    648struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
    649				    const char *name, umode_t mode,
    650				    kuid_t uid, kgid_t gid,
    651				    unsigned flags)
    652{
    653	struct kernfs_node *kn;
    654
    655	kn = __kernfs_new_node(kernfs_root(parent), parent,
    656			       name, mode, uid, gid, flags);
    657	if (kn) {
    658		kernfs_get(parent);
    659		kn->parent = parent;
    660	}
    661	return kn;
    662}
    663
    664/*
    665 * kernfs_find_and_get_node_by_id - get kernfs_node from node id
    666 * @root: the kernfs root
    667 * @id: the target node id
    668 *
    669 * @id's lower 32bits encode ino and upper gen.  If the gen portion is
    670 * zero, all generations are matched.
    671 *
    672 * RETURNS:
    673 * NULL on failure. Return a kernfs node with reference counter incremented
    674 */
    675struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
    676						   u64 id)
    677{
    678	struct kernfs_node *kn;
    679	ino_t ino = kernfs_id_ino(id);
    680	u32 gen = kernfs_id_gen(id);
    681
    682	spin_lock(&kernfs_idr_lock);
    683
    684	kn = idr_find(&root->ino_idr, (u32)ino);
    685	if (!kn)
    686		goto err_unlock;
    687
    688	if (sizeof(ino_t) >= sizeof(u64)) {
    689		/* we looked up with the low 32bits, compare the whole */
    690		if (kernfs_ino(kn) != ino)
    691			goto err_unlock;
    692	} else {
    693		/* 0 matches all generations */
    694		if (unlikely(gen && kernfs_gen(kn) != gen))
    695			goto err_unlock;
    696	}
    697
    698	/*
    699	 * ACTIVATED is protected with kernfs_mutex but it was clear when
    700	 * @kn was added to idr and we just wanna see it set.  No need to
    701	 * grab kernfs_mutex.
    702	 */
    703	if (unlikely(!(kn->flags & KERNFS_ACTIVATED) ||
    704		     !atomic_inc_not_zero(&kn->count)))
    705		goto err_unlock;
    706
    707	spin_unlock(&kernfs_idr_lock);
    708	return kn;
    709err_unlock:
    710	spin_unlock(&kernfs_idr_lock);
    711	return NULL;
    712}
    713
    714/**
    715 *	kernfs_add_one - add kernfs_node to parent without warning
    716 *	@kn: kernfs_node to be added
    717 *
    718 *	The caller must already have initialized @kn->parent.  This
    719 *	function increments nlink of the parent's inode if @kn is a
    720 *	directory and link into the children list of the parent.
    721 *
    722 *	RETURNS:
    723 *	0 on success, -EEXIST if entry with the given name already
    724 *	exists.
    725 */
    726int kernfs_add_one(struct kernfs_node *kn)
    727{
    728	struct kernfs_node *parent = kn->parent;
    729	struct kernfs_root *root = kernfs_root(parent);
    730	struct kernfs_iattrs *ps_iattr;
    731	bool has_ns;
    732	int ret;
    733
    734	down_write(&root->kernfs_rwsem);
    735
    736	ret = -EINVAL;
    737	has_ns = kernfs_ns_enabled(parent);
    738	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
    739		 has_ns ? "required" : "invalid", parent->name, kn->name))
    740		goto out_unlock;
    741
    742	if (kernfs_type(parent) != KERNFS_DIR)
    743		goto out_unlock;
    744
    745	ret = -ENOENT;
    746	if (parent->flags & KERNFS_EMPTY_DIR)
    747		goto out_unlock;
    748
    749	if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
    750		goto out_unlock;
    751
    752	kn->hash = kernfs_name_hash(kn->name, kn->ns);
    753
    754	ret = kernfs_link_sibling(kn);
    755	if (ret)
    756		goto out_unlock;
    757
    758	/* Update timestamps on the parent */
    759	ps_iattr = parent->iattr;
    760	if (ps_iattr) {
    761		ktime_get_real_ts64(&ps_iattr->ia_ctime);
    762		ps_iattr->ia_mtime = ps_iattr->ia_ctime;
    763	}
    764
    765	up_write(&root->kernfs_rwsem);
    766
    767	/*
    768	 * Activate the new node unless CREATE_DEACTIVATED is requested.
    769	 * If not activated here, the kernfs user is responsible for
    770	 * activating the node with kernfs_activate().  A node which hasn't
    771	 * been activated is not visible to userland and its removal won't
    772	 * trigger deactivation.
    773	 */
    774	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
    775		kernfs_activate(kn);
    776	return 0;
    777
    778out_unlock:
    779	up_write(&root->kernfs_rwsem);
    780	return ret;
    781}
    782
    783/**
    784 * kernfs_find_ns - find kernfs_node with the given name
    785 * @parent: kernfs_node to search under
    786 * @name: name to look for
    787 * @ns: the namespace tag to use
    788 *
    789 * Look for kernfs_node with name @name under @parent.  Returns pointer to
    790 * the found kernfs_node on success, %NULL on failure.
    791 */
    792static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
    793					  const unsigned char *name,
    794					  const void *ns)
    795{
    796	struct rb_node *node = parent->dir.children.rb_node;
    797	bool has_ns = kernfs_ns_enabled(parent);
    798	unsigned int hash;
    799
    800	lockdep_assert_held(&kernfs_root(parent)->kernfs_rwsem);
    801
    802	if (has_ns != (bool)ns) {
    803		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
    804		     has_ns ? "required" : "invalid", parent->name, name);
    805		return NULL;
    806	}
    807
    808	hash = kernfs_name_hash(name, ns);
    809	while (node) {
    810		struct kernfs_node *kn;
    811		int result;
    812
    813		kn = rb_to_kn(node);
    814		result = kernfs_name_compare(hash, name, ns, kn);
    815		if (result < 0)
    816			node = node->rb_left;
    817		else if (result > 0)
    818			node = node->rb_right;
    819		else
    820			return kn;
    821	}
    822	return NULL;
    823}
    824
    825static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
    826					  const unsigned char *path,
    827					  const void *ns)
    828{
    829	size_t len;
    830	char *p, *name;
    831
    832	lockdep_assert_held_read(&kernfs_root(parent)->kernfs_rwsem);
    833
    834	spin_lock_irq(&kernfs_pr_cont_lock);
    835
    836	len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
    837
    838	if (len >= sizeof(kernfs_pr_cont_buf)) {
    839		spin_unlock_irq(&kernfs_pr_cont_lock);
    840		return NULL;
    841	}
    842
    843	p = kernfs_pr_cont_buf;
    844
    845	while ((name = strsep(&p, "/")) && parent) {
    846		if (*name == '\0')
    847			continue;
    848		parent = kernfs_find_ns(parent, name, ns);
    849	}
    850
    851	spin_unlock_irq(&kernfs_pr_cont_lock);
    852
    853	return parent;
    854}
    855
    856/**
    857 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
    858 * @parent: kernfs_node to search under
    859 * @name: name to look for
    860 * @ns: the namespace tag to use
    861 *
    862 * Look for kernfs_node with name @name under @parent and get a reference
    863 * if found.  This function may sleep and returns pointer to the found
    864 * kernfs_node on success, %NULL on failure.
    865 */
    866struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
    867					   const char *name, const void *ns)
    868{
    869	struct kernfs_node *kn;
    870	struct kernfs_root *root = kernfs_root(parent);
    871
    872	down_read(&root->kernfs_rwsem);
    873	kn = kernfs_find_ns(parent, name, ns);
    874	kernfs_get(kn);
    875	up_read(&root->kernfs_rwsem);
    876
    877	return kn;
    878}
    879EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
    880
    881/**
    882 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
    883 * @parent: kernfs_node to search under
    884 * @path: path to look for
    885 * @ns: the namespace tag to use
    886 *
    887 * Look for kernfs_node with path @path under @parent and get a reference
    888 * if found.  This function may sleep and returns pointer to the found
    889 * kernfs_node on success, %NULL on failure.
    890 */
    891struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
    892					   const char *path, const void *ns)
    893{
    894	struct kernfs_node *kn;
    895	struct kernfs_root *root = kernfs_root(parent);
    896
    897	down_read(&root->kernfs_rwsem);
    898	kn = kernfs_walk_ns(parent, path, ns);
    899	kernfs_get(kn);
    900	up_read(&root->kernfs_rwsem);
    901
    902	return kn;
    903}
    904
    905/**
    906 * kernfs_create_root - create a new kernfs hierarchy
    907 * @scops: optional syscall operations for the hierarchy
    908 * @flags: KERNFS_ROOT_* flags
    909 * @priv: opaque data associated with the new directory
    910 *
    911 * Returns the root of the new hierarchy on success, ERR_PTR() value on
    912 * failure.
    913 */
    914struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
    915				       unsigned int flags, void *priv)
    916{
    917	struct kernfs_root *root;
    918	struct kernfs_node *kn;
    919
    920	root = kzalloc(sizeof(*root), GFP_KERNEL);
    921	if (!root)
    922		return ERR_PTR(-ENOMEM);
    923
    924	idr_init(&root->ino_idr);
    925	init_rwsem(&root->kernfs_rwsem);
    926	INIT_LIST_HEAD(&root->supers);
    927
    928	/*
    929	 * On 64bit ino setups, id is ino.  On 32bit, low 32bits are ino.
    930	 * High bits generation.  The starting value for both ino and
    931	 * genenration is 1.  Initialize upper 32bit allocation
    932	 * accordingly.
    933	 */
    934	if (sizeof(ino_t) >= sizeof(u64))
    935		root->id_highbits = 0;
    936	else
    937		root->id_highbits = 1;
    938
    939	kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
    940			       GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
    941			       KERNFS_DIR);
    942	if (!kn) {
    943		idr_destroy(&root->ino_idr);
    944		kfree(root);
    945		return ERR_PTR(-ENOMEM);
    946	}
    947
    948	kn->priv = priv;
    949	kn->dir.root = root;
    950
    951	root->syscall_ops = scops;
    952	root->flags = flags;
    953	root->kn = kn;
    954	init_waitqueue_head(&root->deactivate_waitq);
    955
    956	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
    957		kernfs_activate(kn);
    958
    959	return root;
    960}
    961
    962/**
    963 * kernfs_destroy_root - destroy a kernfs hierarchy
    964 * @root: root of the hierarchy to destroy
    965 *
    966 * Destroy the hierarchy anchored at @root by removing all existing
    967 * directories and destroying @root.
    968 */
    969void kernfs_destroy_root(struct kernfs_root *root)
    970{
    971	/*
    972	 *  kernfs_remove holds kernfs_rwsem from the root so the root
    973	 *  shouldn't be freed during the operation.
    974	 */
    975	kernfs_get(root->kn);
    976	kernfs_remove(root->kn);
    977	kernfs_put(root->kn); /* will also free @root */
    978}
    979
    980/**
    981 * kernfs_root_to_node - return the kernfs_node associated with a kernfs_root
    982 * @root: root to use to lookup
    983 */
    984struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root)
    985{
    986	return root->kn;
    987}
    988
    989/**
    990 * kernfs_create_dir_ns - create a directory
    991 * @parent: parent in which to create a new directory
    992 * @name: name of the new directory
    993 * @mode: mode of the new directory
    994 * @uid: uid of the new directory
    995 * @gid: gid of the new directory
    996 * @priv: opaque data associated with the new directory
    997 * @ns: optional namespace tag of the directory
    998 *
    999 * Returns the created node on success, ERR_PTR() value on failure.
   1000 */
   1001struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
   1002					 const char *name, umode_t mode,
   1003					 kuid_t uid, kgid_t gid,
   1004					 void *priv, const void *ns)
   1005{
   1006	struct kernfs_node *kn;
   1007	int rc;
   1008
   1009	/* allocate */
   1010	kn = kernfs_new_node(parent, name, mode | S_IFDIR,
   1011			     uid, gid, KERNFS_DIR);
   1012	if (!kn)
   1013		return ERR_PTR(-ENOMEM);
   1014
   1015	kn->dir.root = parent->dir.root;
   1016	kn->ns = ns;
   1017	kn->priv = priv;
   1018
   1019	/* link in */
   1020	rc = kernfs_add_one(kn);
   1021	if (!rc)
   1022		return kn;
   1023
   1024	kernfs_put(kn);
   1025	return ERR_PTR(rc);
   1026}
   1027
   1028/**
   1029 * kernfs_create_empty_dir - create an always empty directory
   1030 * @parent: parent in which to create a new directory
   1031 * @name: name of the new directory
   1032 *
   1033 * Returns the created node on success, ERR_PTR() value on failure.
   1034 */
   1035struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
   1036					    const char *name)
   1037{
   1038	struct kernfs_node *kn;
   1039	int rc;
   1040
   1041	/* allocate */
   1042	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
   1043			     GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
   1044	if (!kn)
   1045		return ERR_PTR(-ENOMEM);
   1046
   1047	kn->flags |= KERNFS_EMPTY_DIR;
   1048	kn->dir.root = parent->dir.root;
   1049	kn->ns = NULL;
   1050	kn->priv = NULL;
   1051
   1052	/* link in */
   1053	rc = kernfs_add_one(kn);
   1054	if (!rc)
   1055		return kn;
   1056
   1057	kernfs_put(kn);
   1058	return ERR_PTR(rc);
   1059}
   1060
   1061static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
   1062{
   1063	struct kernfs_node *kn;
   1064	struct kernfs_root *root;
   1065
   1066	if (flags & LOOKUP_RCU)
   1067		return -ECHILD;
   1068
   1069	/* Negative hashed dentry? */
   1070	if (d_really_is_negative(dentry)) {
   1071		struct kernfs_node *parent;
   1072
   1073		/* If the kernfs parent node has changed discard and
   1074		 * proceed to ->lookup.
   1075		 */
   1076		spin_lock(&dentry->d_lock);
   1077		parent = kernfs_dentry_node(dentry->d_parent);
   1078		if (parent) {
   1079			spin_unlock(&dentry->d_lock);
   1080			root = kernfs_root(parent);
   1081			down_read(&root->kernfs_rwsem);
   1082			if (kernfs_dir_changed(parent, dentry)) {
   1083				up_read(&root->kernfs_rwsem);
   1084				return 0;
   1085			}
   1086			up_read(&root->kernfs_rwsem);
   1087		} else
   1088			spin_unlock(&dentry->d_lock);
   1089
   1090		/* The kernfs parent node hasn't changed, leave the
   1091		 * dentry negative and return success.
   1092		 */
   1093		return 1;
   1094	}
   1095
   1096	kn = kernfs_dentry_node(dentry);
   1097	root = kernfs_root(kn);
   1098	down_read(&root->kernfs_rwsem);
   1099
   1100	/* The kernfs node has been deactivated */
   1101	if (!kernfs_active(kn))
   1102		goto out_bad;
   1103
   1104	/* The kernfs node has been moved? */
   1105	if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
   1106		goto out_bad;
   1107
   1108	/* The kernfs node has been renamed */
   1109	if (strcmp(dentry->d_name.name, kn->name) != 0)
   1110		goto out_bad;
   1111
   1112	/* The kernfs node has been moved to a different namespace */
   1113	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
   1114	    kernfs_info(dentry->d_sb)->ns != kn->ns)
   1115		goto out_bad;
   1116
   1117	up_read(&root->kernfs_rwsem);
   1118	return 1;
   1119out_bad:
   1120	up_read(&root->kernfs_rwsem);
   1121	return 0;
   1122}
   1123
   1124const struct dentry_operations kernfs_dops = {
   1125	.d_revalidate	= kernfs_dop_revalidate,
   1126};
   1127
   1128static struct dentry *kernfs_iop_lookup(struct inode *dir,
   1129					struct dentry *dentry,
   1130					unsigned int flags)
   1131{
   1132	struct kernfs_node *parent = dir->i_private;
   1133	struct kernfs_node *kn;
   1134	struct kernfs_root *root;
   1135	struct inode *inode = NULL;
   1136	const void *ns = NULL;
   1137
   1138	root = kernfs_root(parent);
   1139	down_read(&root->kernfs_rwsem);
   1140	if (kernfs_ns_enabled(parent))
   1141		ns = kernfs_info(dir->i_sb)->ns;
   1142
   1143	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
   1144	/* attach dentry and inode */
   1145	if (kn) {
   1146		/* Inactive nodes are invisible to the VFS so don't
   1147		 * create a negative.
   1148		 */
   1149		if (!kernfs_active(kn)) {
   1150			up_read(&root->kernfs_rwsem);
   1151			return NULL;
   1152		}
   1153		inode = kernfs_get_inode(dir->i_sb, kn);
   1154		if (!inode)
   1155			inode = ERR_PTR(-ENOMEM);
   1156	}
   1157	/*
   1158	 * Needed for negative dentry validation.
   1159	 * The negative dentry can be created in kernfs_iop_lookup()
   1160	 * or transforms from positive dentry in dentry_unlink_inode()
   1161	 * called from vfs_rmdir().
   1162	 */
   1163	if (!IS_ERR(inode))
   1164		kernfs_set_rev(parent, dentry);
   1165	up_read(&root->kernfs_rwsem);
   1166
   1167	/* instantiate and hash (possibly negative) dentry */
   1168	return d_splice_alias(inode, dentry);
   1169}
   1170
   1171static int kernfs_iop_mkdir(struct user_namespace *mnt_userns,
   1172			    struct inode *dir, struct dentry *dentry,
   1173			    umode_t mode)
   1174{
   1175	struct kernfs_node *parent = dir->i_private;
   1176	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
   1177	int ret;
   1178
   1179	if (!scops || !scops->mkdir)
   1180		return -EPERM;
   1181
   1182	if (!kernfs_get_active(parent))
   1183		return -ENODEV;
   1184
   1185	ret = scops->mkdir(parent, dentry->d_name.name, mode);
   1186
   1187	kernfs_put_active(parent);
   1188	return ret;
   1189}
   1190
   1191static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
   1192{
   1193	struct kernfs_node *kn  = kernfs_dentry_node(dentry);
   1194	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
   1195	int ret;
   1196
   1197	if (!scops || !scops->rmdir)
   1198		return -EPERM;
   1199
   1200	if (!kernfs_get_active(kn))
   1201		return -ENODEV;
   1202
   1203	ret = scops->rmdir(kn);
   1204
   1205	kernfs_put_active(kn);
   1206	return ret;
   1207}
   1208
   1209static int kernfs_iop_rename(struct user_namespace *mnt_userns,
   1210			     struct inode *old_dir, struct dentry *old_dentry,
   1211			     struct inode *new_dir, struct dentry *new_dentry,
   1212			     unsigned int flags)
   1213{
   1214	struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
   1215	struct kernfs_node *new_parent = new_dir->i_private;
   1216	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
   1217	int ret;
   1218
   1219	if (flags)
   1220		return -EINVAL;
   1221
   1222	if (!scops || !scops->rename)
   1223		return -EPERM;
   1224
   1225	if (!kernfs_get_active(kn))
   1226		return -ENODEV;
   1227
   1228	if (!kernfs_get_active(new_parent)) {
   1229		kernfs_put_active(kn);
   1230		return -ENODEV;
   1231	}
   1232
   1233	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
   1234
   1235	kernfs_put_active(new_parent);
   1236	kernfs_put_active(kn);
   1237	return ret;
   1238}
   1239
   1240const struct inode_operations kernfs_dir_iops = {
   1241	.lookup		= kernfs_iop_lookup,
   1242	.permission	= kernfs_iop_permission,
   1243	.setattr	= kernfs_iop_setattr,
   1244	.getattr	= kernfs_iop_getattr,
   1245	.listxattr	= kernfs_iop_listxattr,
   1246
   1247	.mkdir		= kernfs_iop_mkdir,
   1248	.rmdir		= kernfs_iop_rmdir,
   1249	.rename		= kernfs_iop_rename,
   1250};
   1251
   1252static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
   1253{
   1254	struct kernfs_node *last;
   1255
   1256	while (true) {
   1257		struct rb_node *rbn;
   1258
   1259		last = pos;
   1260
   1261		if (kernfs_type(pos) != KERNFS_DIR)
   1262			break;
   1263
   1264		rbn = rb_first(&pos->dir.children);
   1265		if (!rbn)
   1266			break;
   1267
   1268		pos = rb_to_kn(rbn);
   1269	}
   1270
   1271	return last;
   1272}
   1273
   1274/**
   1275 * kernfs_next_descendant_post - find the next descendant for post-order walk
   1276 * @pos: the current position (%NULL to initiate traversal)
   1277 * @root: kernfs_node whose descendants to walk
   1278 *
   1279 * Find the next descendant to visit for post-order traversal of @root's
   1280 * descendants.  @root is included in the iteration and the last node to be
   1281 * visited.
   1282 */
   1283static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
   1284						       struct kernfs_node *root)
   1285{
   1286	struct rb_node *rbn;
   1287
   1288	lockdep_assert_held_write(&kernfs_root(root)->kernfs_rwsem);
   1289
   1290	/* if first iteration, visit leftmost descendant which may be root */
   1291	if (!pos)
   1292		return kernfs_leftmost_descendant(root);
   1293
   1294	/* if we visited @root, we're done */
   1295	if (pos == root)
   1296		return NULL;
   1297
   1298	/* if there's an unvisited sibling, visit its leftmost descendant */
   1299	rbn = rb_next(&pos->rb);
   1300	if (rbn)
   1301		return kernfs_leftmost_descendant(rb_to_kn(rbn));
   1302
   1303	/* no sibling left, visit parent */
   1304	return pos->parent;
   1305}
   1306
   1307/**
   1308 * kernfs_activate - activate a node which started deactivated
   1309 * @kn: kernfs_node whose subtree is to be activated
   1310 *
   1311 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
   1312 * needs to be explicitly activated.  A node which hasn't been activated
   1313 * isn't visible to userland and deactivation is skipped during its
   1314 * removal.  This is useful to construct atomic init sequences where
   1315 * creation of multiple nodes should either succeed or fail atomically.
   1316 *
   1317 * The caller is responsible for ensuring that this function is not called
   1318 * after kernfs_remove*() is invoked on @kn.
   1319 */
   1320void kernfs_activate(struct kernfs_node *kn)
   1321{
   1322	struct kernfs_node *pos;
   1323	struct kernfs_root *root = kernfs_root(kn);
   1324
   1325	down_write(&root->kernfs_rwsem);
   1326
   1327	pos = NULL;
   1328	while ((pos = kernfs_next_descendant_post(pos, kn))) {
   1329		if (pos->flags & KERNFS_ACTIVATED)
   1330			continue;
   1331
   1332		WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
   1333		WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
   1334
   1335		atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
   1336		pos->flags |= KERNFS_ACTIVATED;
   1337	}
   1338
   1339	up_write(&root->kernfs_rwsem);
   1340}
   1341
   1342static void __kernfs_remove(struct kernfs_node *kn)
   1343{
   1344	struct kernfs_node *pos;
   1345
   1346	lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
   1347
   1348	/*
   1349	 * Short-circuit if non-root @kn has already finished removal.
   1350	 * This is for kernfs_remove_self() which plays with active ref
   1351	 * after removal.
   1352	 */
   1353	if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
   1354		return;
   1355
   1356	pr_debug("kernfs %s: removing\n", kn->name);
   1357
   1358	/* prevent any new usage under @kn by deactivating all nodes */
   1359	pos = NULL;
   1360	while ((pos = kernfs_next_descendant_post(pos, kn)))
   1361		if (kernfs_active(pos))
   1362			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
   1363
   1364	/* deactivate and unlink the subtree node-by-node */
   1365	do {
   1366		pos = kernfs_leftmost_descendant(kn);
   1367
   1368		/*
   1369		 * kernfs_drain() drops kernfs_rwsem temporarily and @pos's
   1370		 * base ref could have been put by someone else by the time
   1371		 * the function returns.  Make sure it doesn't go away
   1372		 * underneath us.
   1373		 */
   1374		kernfs_get(pos);
   1375
   1376		/*
   1377		 * Drain iff @kn was activated.  This avoids draining and
   1378		 * its lockdep annotations for nodes which have never been
   1379		 * activated and allows embedding kernfs_remove() in create
   1380		 * error paths without worrying about draining.
   1381		 */
   1382		if (kn->flags & KERNFS_ACTIVATED)
   1383			kernfs_drain(pos);
   1384		else
   1385			WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
   1386
   1387		/*
   1388		 * kernfs_unlink_sibling() succeeds once per node.  Use it
   1389		 * to decide who's responsible for cleanups.
   1390		 */
   1391		if (!pos->parent || kernfs_unlink_sibling(pos)) {
   1392			struct kernfs_iattrs *ps_iattr =
   1393				pos->parent ? pos->parent->iattr : NULL;
   1394
   1395			/* update timestamps on the parent */
   1396			if (ps_iattr) {
   1397				ktime_get_real_ts64(&ps_iattr->ia_ctime);
   1398				ps_iattr->ia_mtime = ps_iattr->ia_ctime;
   1399			}
   1400
   1401			kernfs_put(pos);
   1402		}
   1403
   1404		kernfs_put(pos);
   1405	} while (pos != kn);
   1406}
   1407
   1408/**
   1409 * kernfs_remove - remove a kernfs_node recursively
   1410 * @kn: the kernfs_node to remove
   1411 *
   1412 * Remove @kn along with all its subdirectories and files.
   1413 */
   1414void kernfs_remove(struct kernfs_node *kn)
   1415{
   1416	struct kernfs_root *root;
   1417
   1418	if (!kn)
   1419		return;
   1420
   1421	root = kernfs_root(kn);
   1422
   1423	down_write(&root->kernfs_rwsem);
   1424	__kernfs_remove(kn);
   1425	up_write(&root->kernfs_rwsem);
   1426}
   1427
   1428/**
   1429 * kernfs_break_active_protection - break out of active protection
   1430 * @kn: the self kernfs_node
   1431 *
   1432 * The caller must be running off of a kernfs operation which is invoked
   1433 * with an active reference - e.g. one of kernfs_ops.  Each invocation of
   1434 * this function must also be matched with an invocation of
   1435 * kernfs_unbreak_active_protection().
   1436 *
   1437 * This function releases the active reference of @kn the caller is
   1438 * holding.  Once this function is called, @kn may be removed at any point
   1439 * and the caller is solely responsible for ensuring that the objects it
   1440 * dereferences are accessible.
   1441 */
   1442void kernfs_break_active_protection(struct kernfs_node *kn)
   1443{
   1444	/*
   1445	 * Take out ourself out of the active ref dependency chain.  If
   1446	 * we're called without an active ref, lockdep will complain.
   1447	 */
   1448	kernfs_put_active(kn);
   1449}
   1450
   1451/**
   1452 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
   1453 * @kn: the self kernfs_node
   1454 *
   1455 * If kernfs_break_active_protection() was called, this function must be
   1456 * invoked before finishing the kernfs operation.  Note that while this
   1457 * function restores the active reference, it doesn't and can't actually
   1458 * restore the active protection - @kn may already or be in the process of
   1459 * being removed.  Once kernfs_break_active_protection() is invoked, that
   1460 * protection is irreversibly gone for the kernfs operation instance.
   1461 *
   1462 * While this function may be called at any point after
   1463 * kernfs_break_active_protection() is invoked, its most useful location
   1464 * would be right before the enclosing kernfs operation returns.
   1465 */
   1466void kernfs_unbreak_active_protection(struct kernfs_node *kn)
   1467{
   1468	/*
   1469	 * @kn->active could be in any state; however, the increment we do
   1470	 * here will be undone as soon as the enclosing kernfs operation
   1471	 * finishes and this temporary bump can't break anything.  If @kn
   1472	 * is alive, nothing changes.  If @kn is being deactivated, the
   1473	 * soon-to-follow put will either finish deactivation or restore
   1474	 * deactivated state.  If @kn is already removed, the temporary
   1475	 * bump is guaranteed to be gone before @kn is released.
   1476	 */
   1477	atomic_inc(&kn->active);
   1478	if (kernfs_lockdep(kn))
   1479		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
   1480}
   1481
   1482/**
   1483 * kernfs_remove_self - remove a kernfs_node from its own method
   1484 * @kn: the self kernfs_node to remove
   1485 *
   1486 * The caller must be running off of a kernfs operation which is invoked
   1487 * with an active reference - e.g. one of kernfs_ops.  This can be used to
   1488 * implement a file operation which deletes itself.
   1489 *
   1490 * For example, the "delete" file for a sysfs device directory can be
   1491 * implemented by invoking kernfs_remove_self() on the "delete" file
   1492 * itself.  This function breaks the circular dependency of trying to
   1493 * deactivate self while holding an active ref itself.  It isn't necessary
   1494 * to modify the usual removal path to use kernfs_remove_self().  The
   1495 * "delete" implementation can simply invoke kernfs_remove_self() on self
   1496 * before proceeding with the usual removal path.  kernfs will ignore later
   1497 * kernfs_remove() on self.
   1498 *
   1499 * kernfs_remove_self() can be called multiple times concurrently on the
   1500 * same kernfs_node.  Only the first one actually performs removal and
   1501 * returns %true.  All others will wait until the kernfs operation which
   1502 * won self-removal finishes and return %false.  Note that the losers wait
   1503 * for the completion of not only the winning kernfs_remove_self() but also
   1504 * the whole kernfs_ops which won the arbitration.  This can be used to
   1505 * guarantee, for example, all concurrent writes to a "delete" file to
   1506 * finish only after the whole operation is complete.
   1507 */
   1508bool kernfs_remove_self(struct kernfs_node *kn)
   1509{
   1510	bool ret;
   1511	struct kernfs_root *root = kernfs_root(kn);
   1512
   1513	down_write(&root->kernfs_rwsem);
   1514	kernfs_break_active_protection(kn);
   1515
   1516	/*
   1517	 * SUICIDAL is used to arbitrate among competing invocations.  Only
   1518	 * the first one will actually perform removal.  When the removal
   1519	 * is complete, SUICIDED is set and the active ref is restored
   1520	 * while kernfs_rwsem for held exclusive.  The ones which lost
   1521	 * arbitration waits for SUICIDED && drained which can happen only
   1522	 * after the enclosing kernfs operation which executed the winning
   1523	 * instance of kernfs_remove_self() finished.
   1524	 */
   1525	if (!(kn->flags & KERNFS_SUICIDAL)) {
   1526		kn->flags |= KERNFS_SUICIDAL;
   1527		__kernfs_remove(kn);
   1528		kn->flags |= KERNFS_SUICIDED;
   1529		ret = true;
   1530	} else {
   1531		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
   1532		DEFINE_WAIT(wait);
   1533
   1534		while (true) {
   1535			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
   1536
   1537			if ((kn->flags & KERNFS_SUICIDED) &&
   1538			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
   1539				break;
   1540
   1541			up_write(&root->kernfs_rwsem);
   1542			schedule();
   1543			down_write(&root->kernfs_rwsem);
   1544		}
   1545		finish_wait(waitq, &wait);
   1546		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
   1547		ret = false;
   1548	}
   1549
   1550	/*
   1551	 * This must be done while kernfs_rwsem held exclusive; otherwise,
   1552	 * waiting for SUICIDED && deactivated could finish prematurely.
   1553	 */
   1554	kernfs_unbreak_active_protection(kn);
   1555
   1556	up_write(&root->kernfs_rwsem);
   1557	return ret;
   1558}
   1559
   1560/**
   1561 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
   1562 * @parent: parent of the target
   1563 * @name: name of the kernfs_node to remove
   1564 * @ns: namespace tag of the kernfs_node to remove
   1565 *
   1566 * Look for the kernfs_node with @name and @ns under @parent and remove it.
   1567 * Returns 0 on success, -ENOENT if such entry doesn't exist.
   1568 */
   1569int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
   1570			     const void *ns)
   1571{
   1572	struct kernfs_node *kn;
   1573	struct kernfs_root *root;
   1574
   1575	if (!parent) {
   1576		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
   1577			name);
   1578		return -ENOENT;
   1579	}
   1580
   1581	root = kernfs_root(parent);
   1582	down_write(&root->kernfs_rwsem);
   1583
   1584	kn = kernfs_find_ns(parent, name, ns);
   1585	if (kn)
   1586		__kernfs_remove(kn);
   1587
   1588	up_write(&root->kernfs_rwsem);
   1589
   1590	if (kn)
   1591		return 0;
   1592	else
   1593		return -ENOENT;
   1594}
   1595
   1596/**
   1597 * kernfs_rename_ns - move and rename a kernfs_node
   1598 * @kn: target node
   1599 * @new_parent: new parent to put @sd under
   1600 * @new_name: new name
   1601 * @new_ns: new namespace tag
   1602 */
   1603int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
   1604		     const char *new_name, const void *new_ns)
   1605{
   1606	struct kernfs_node *old_parent;
   1607	struct kernfs_root *root;
   1608	const char *old_name = NULL;
   1609	int error;
   1610
   1611	/* can't move or rename root */
   1612	if (!kn->parent)
   1613		return -EINVAL;
   1614
   1615	root = kernfs_root(kn);
   1616	down_write(&root->kernfs_rwsem);
   1617
   1618	error = -ENOENT;
   1619	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
   1620	    (new_parent->flags & KERNFS_EMPTY_DIR))
   1621		goto out;
   1622
   1623	error = 0;
   1624	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
   1625	    (strcmp(kn->name, new_name) == 0))
   1626		goto out;	/* nothing to rename */
   1627
   1628	error = -EEXIST;
   1629	if (kernfs_find_ns(new_parent, new_name, new_ns))
   1630		goto out;
   1631
   1632	/* rename kernfs_node */
   1633	if (strcmp(kn->name, new_name) != 0) {
   1634		error = -ENOMEM;
   1635		new_name = kstrdup_const(new_name, GFP_KERNEL);
   1636		if (!new_name)
   1637			goto out;
   1638	} else {
   1639		new_name = NULL;
   1640	}
   1641
   1642	/*
   1643	 * Move to the appropriate place in the appropriate directories rbtree.
   1644	 */
   1645	kernfs_unlink_sibling(kn);
   1646	kernfs_get(new_parent);
   1647
   1648	/* rename_lock protects ->parent and ->name accessors */
   1649	spin_lock_irq(&kernfs_rename_lock);
   1650
   1651	old_parent = kn->parent;
   1652	kn->parent = new_parent;
   1653
   1654	kn->ns = new_ns;
   1655	if (new_name) {
   1656		old_name = kn->name;
   1657		kn->name = new_name;
   1658	}
   1659
   1660	spin_unlock_irq(&kernfs_rename_lock);
   1661
   1662	kn->hash = kernfs_name_hash(kn->name, kn->ns);
   1663	kernfs_link_sibling(kn);
   1664
   1665	kernfs_put(old_parent);
   1666	kfree_const(old_name);
   1667
   1668	error = 0;
   1669 out:
   1670	up_write(&root->kernfs_rwsem);
   1671	return error;
   1672}
   1673
   1674/* Relationship between mode and the DT_xxx types */
   1675static inline unsigned char dt_type(struct kernfs_node *kn)
   1676{
   1677	return (kn->mode >> 12) & 15;
   1678}
   1679
   1680static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
   1681{
   1682	kernfs_put(filp->private_data);
   1683	return 0;
   1684}
   1685
   1686static struct kernfs_node *kernfs_dir_pos(const void *ns,
   1687	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
   1688{
   1689	if (pos) {
   1690		int valid = kernfs_active(pos) &&
   1691			pos->parent == parent && hash == pos->hash;
   1692		kernfs_put(pos);
   1693		if (!valid)
   1694			pos = NULL;
   1695	}
   1696	if (!pos && (hash > 1) && (hash < INT_MAX)) {
   1697		struct rb_node *node = parent->dir.children.rb_node;
   1698		while (node) {
   1699			pos = rb_to_kn(node);
   1700
   1701			if (hash < pos->hash)
   1702				node = node->rb_left;
   1703			else if (hash > pos->hash)
   1704				node = node->rb_right;
   1705			else
   1706				break;
   1707		}
   1708	}
   1709	/* Skip over entries which are dying/dead or in the wrong namespace */
   1710	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
   1711		struct rb_node *node = rb_next(&pos->rb);
   1712		if (!node)
   1713			pos = NULL;
   1714		else
   1715			pos = rb_to_kn(node);
   1716	}
   1717	return pos;
   1718}
   1719
   1720static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
   1721	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
   1722{
   1723	pos = kernfs_dir_pos(ns, parent, ino, pos);
   1724	if (pos) {
   1725		do {
   1726			struct rb_node *node = rb_next(&pos->rb);
   1727			if (!node)
   1728				pos = NULL;
   1729			else
   1730				pos = rb_to_kn(node);
   1731		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
   1732	}
   1733	return pos;
   1734}
   1735
   1736static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
   1737{
   1738	struct dentry *dentry = file->f_path.dentry;
   1739	struct kernfs_node *parent = kernfs_dentry_node(dentry);
   1740	struct kernfs_node *pos = file->private_data;
   1741	struct kernfs_root *root;
   1742	const void *ns = NULL;
   1743
   1744	if (!dir_emit_dots(file, ctx))
   1745		return 0;
   1746
   1747	root = kernfs_root(parent);
   1748	down_read(&root->kernfs_rwsem);
   1749
   1750	if (kernfs_ns_enabled(parent))
   1751		ns = kernfs_info(dentry->d_sb)->ns;
   1752
   1753	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
   1754	     pos;
   1755	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
   1756		const char *name = pos->name;
   1757		unsigned int type = dt_type(pos);
   1758		int len = strlen(name);
   1759		ino_t ino = kernfs_ino(pos);
   1760
   1761		ctx->pos = pos->hash;
   1762		file->private_data = pos;
   1763		kernfs_get(pos);
   1764
   1765		up_read(&root->kernfs_rwsem);
   1766		if (!dir_emit(ctx, name, len, ino, type))
   1767			return 0;
   1768		down_read(&root->kernfs_rwsem);
   1769	}
   1770	up_read(&root->kernfs_rwsem);
   1771	file->private_data = NULL;
   1772	ctx->pos = INT_MAX;
   1773	return 0;
   1774}
   1775
   1776const struct file_operations kernfs_dir_fops = {
   1777	.read		= generic_read_dir,
   1778	.iterate_shared	= kernfs_fop_readdir,
   1779	.release	= kernfs_dir_fop_release,
   1780	.llseek		= generic_file_llseek,
   1781};