cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

libfs.c (40672B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 *	fs/libfs.c
      4 *	Library for filesystems writers.
      5 */
      6
      7#include <linux/blkdev.h>
      8#include <linux/export.h>
      9#include <linux/pagemap.h>
     10#include <linux/slab.h>
     11#include <linux/cred.h>
     12#include <linux/mount.h>
     13#include <linux/vfs.h>
     14#include <linux/quotaops.h>
     15#include <linux/mutex.h>
     16#include <linux/namei.h>
     17#include <linux/exportfs.h>
     18#include <linux/writeback.h>
     19#include <linux/buffer_head.h> /* sync_mapping_buffers */
     20#include <linux/fs_context.h>
     21#include <linux/pseudo_fs.h>
     22#include <linux/fsnotify.h>
     23#include <linux/unicode.h>
     24#include <linux/fscrypt.h>
     25
     26#include <linux/uaccess.h>
     27
     28#include "internal.h"
     29
     30int simple_getattr(struct user_namespace *mnt_userns, const struct path *path,
     31		   struct kstat *stat, u32 request_mask,
     32		   unsigned int query_flags)
     33{
     34	struct inode *inode = d_inode(path->dentry);
     35	generic_fillattr(&init_user_ns, inode, stat);
     36	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
     37	return 0;
     38}
     39EXPORT_SYMBOL(simple_getattr);
     40
     41int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
     42{
     43	buf->f_type = dentry->d_sb->s_magic;
     44	buf->f_bsize = PAGE_SIZE;
     45	buf->f_namelen = NAME_MAX;
     46	return 0;
     47}
     48EXPORT_SYMBOL(simple_statfs);
     49
     50/*
     51 * Retaining negative dentries for an in-memory filesystem just wastes
     52 * memory and lookup time: arrange for them to be deleted immediately.
     53 */
     54int always_delete_dentry(const struct dentry *dentry)
     55{
     56	return 1;
     57}
     58EXPORT_SYMBOL(always_delete_dentry);
     59
     60const struct dentry_operations simple_dentry_operations = {
     61	.d_delete = always_delete_dentry,
     62};
     63EXPORT_SYMBOL(simple_dentry_operations);
     64
     65/*
     66 * Lookup the data. This is trivial - if the dentry didn't already
     67 * exist, we know it is negative.  Set d_op to delete negative dentries.
     68 */
     69struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
     70{
     71	if (dentry->d_name.len > NAME_MAX)
     72		return ERR_PTR(-ENAMETOOLONG);
     73	if (!dentry->d_sb->s_d_op)
     74		d_set_d_op(dentry, &simple_dentry_operations);
     75	d_add(dentry, NULL);
     76	return NULL;
     77}
     78EXPORT_SYMBOL(simple_lookup);
     79
     80int dcache_dir_open(struct inode *inode, struct file *file)
     81{
     82	file->private_data = d_alloc_cursor(file->f_path.dentry);
     83
     84	return file->private_data ? 0 : -ENOMEM;
     85}
     86EXPORT_SYMBOL(dcache_dir_open);
     87
     88int dcache_dir_close(struct inode *inode, struct file *file)
     89{
     90	dput(file->private_data);
     91	return 0;
     92}
     93EXPORT_SYMBOL(dcache_dir_close);
     94
     95/* parent is locked at least shared */
     96/*
     97 * Returns an element of siblings' list.
     98 * We are looking for <count>th positive after <p>; if
     99 * found, dentry is grabbed and returned to caller.
    100 * If no such element exists, NULL is returned.
    101 */
    102static struct dentry *scan_positives(struct dentry *cursor,
    103					struct list_head *p,
    104					loff_t count,
    105					struct dentry *last)
    106{
    107	struct dentry *dentry = cursor->d_parent, *found = NULL;
    108
    109	spin_lock(&dentry->d_lock);
    110	while ((p = p->next) != &dentry->d_subdirs) {
    111		struct dentry *d = list_entry(p, struct dentry, d_child);
    112		// we must at least skip cursors, to avoid livelocks
    113		if (d->d_flags & DCACHE_DENTRY_CURSOR)
    114			continue;
    115		if (simple_positive(d) && !--count) {
    116			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
    117			if (simple_positive(d))
    118				found = dget_dlock(d);
    119			spin_unlock(&d->d_lock);
    120			if (likely(found))
    121				break;
    122			count = 1;
    123		}
    124		if (need_resched()) {
    125			list_move(&cursor->d_child, p);
    126			p = &cursor->d_child;
    127			spin_unlock(&dentry->d_lock);
    128			cond_resched();
    129			spin_lock(&dentry->d_lock);
    130		}
    131	}
    132	spin_unlock(&dentry->d_lock);
    133	dput(last);
    134	return found;
    135}
    136
    137loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
    138{
    139	struct dentry *dentry = file->f_path.dentry;
    140	switch (whence) {
    141		case 1:
    142			offset += file->f_pos;
    143			fallthrough;
    144		case 0:
    145			if (offset >= 0)
    146				break;
    147			fallthrough;
    148		default:
    149			return -EINVAL;
    150	}
    151	if (offset != file->f_pos) {
    152		struct dentry *cursor = file->private_data;
    153		struct dentry *to = NULL;
    154
    155		inode_lock_shared(dentry->d_inode);
    156
    157		if (offset > 2)
    158			to = scan_positives(cursor, &dentry->d_subdirs,
    159					    offset - 2, NULL);
    160		spin_lock(&dentry->d_lock);
    161		if (to)
    162			list_move(&cursor->d_child, &to->d_child);
    163		else
    164			list_del_init(&cursor->d_child);
    165		spin_unlock(&dentry->d_lock);
    166		dput(to);
    167
    168		file->f_pos = offset;
    169
    170		inode_unlock_shared(dentry->d_inode);
    171	}
    172	return offset;
    173}
    174EXPORT_SYMBOL(dcache_dir_lseek);
    175
    176/* Relationship between i_mode and the DT_xxx types */
    177static inline unsigned char dt_type(struct inode *inode)
    178{
    179	return (inode->i_mode >> 12) & 15;
    180}
    181
    182/*
    183 * Directory is locked and all positive dentries in it are safe, since
    184 * for ramfs-type trees they can't go away without unlink() or rmdir(),
    185 * both impossible due to the lock on directory.
    186 */
    187
    188int dcache_readdir(struct file *file, struct dir_context *ctx)
    189{
    190	struct dentry *dentry = file->f_path.dentry;
    191	struct dentry *cursor = file->private_data;
    192	struct list_head *anchor = &dentry->d_subdirs;
    193	struct dentry *next = NULL;
    194	struct list_head *p;
    195
    196	if (!dir_emit_dots(file, ctx))
    197		return 0;
    198
    199	if (ctx->pos == 2)
    200		p = anchor;
    201	else if (!list_empty(&cursor->d_child))
    202		p = &cursor->d_child;
    203	else
    204		return 0;
    205
    206	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
    207		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
    208			      d_inode(next)->i_ino, dt_type(d_inode(next))))
    209			break;
    210		ctx->pos++;
    211		p = &next->d_child;
    212	}
    213	spin_lock(&dentry->d_lock);
    214	if (next)
    215		list_move_tail(&cursor->d_child, &next->d_child);
    216	else
    217		list_del_init(&cursor->d_child);
    218	spin_unlock(&dentry->d_lock);
    219	dput(next);
    220
    221	return 0;
    222}
    223EXPORT_SYMBOL(dcache_readdir);
    224
    225ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
    226{
    227	return -EISDIR;
    228}
    229EXPORT_SYMBOL(generic_read_dir);
    230
    231const struct file_operations simple_dir_operations = {
    232	.open		= dcache_dir_open,
    233	.release	= dcache_dir_close,
    234	.llseek		= dcache_dir_lseek,
    235	.read		= generic_read_dir,
    236	.iterate_shared	= dcache_readdir,
    237	.fsync		= noop_fsync,
    238};
    239EXPORT_SYMBOL(simple_dir_operations);
    240
    241const struct inode_operations simple_dir_inode_operations = {
    242	.lookup		= simple_lookup,
    243};
    244EXPORT_SYMBOL(simple_dir_inode_operations);
    245
    246static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
    247{
    248	struct dentry *child = NULL;
    249	struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
    250
    251	spin_lock(&parent->d_lock);
    252	while ((p = p->next) != &parent->d_subdirs) {
    253		struct dentry *d = container_of(p, struct dentry, d_child);
    254		if (simple_positive(d)) {
    255			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
    256			if (simple_positive(d))
    257				child = dget_dlock(d);
    258			spin_unlock(&d->d_lock);
    259			if (likely(child))
    260				break;
    261		}
    262	}
    263	spin_unlock(&parent->d_lock);
    264	dput(prev);
    265	return child;
    266}
    267
    268void simple_recursive_removal(struct dentry *dentry,
    269                              void (*callback)(struct dentry *))
    270{
    271	struct dentry *this = dget(dentry);
    272	while (true) {
    273		struct dentry *victim = NULL, *child;
    274		struct inode *inode = this->d_inode;
    275
    276		inode_lock(inode);
    277		if (d_is_dir(this))
    278			inode->i_flags |= S_DEAD;
    279		while ((child = find_next_child(this, victim)) == NULL) {
    280			// kill and ascend
    281			// update metadata while it's still locked
    282			inode->i_ctime = current_time(inode);
    283			clear_nlink(inode);
    284			inode_unlock(inode);
    285			victim = this;
    286			this = this->d_parent;
    287			inode = this->d_inode;
    288			inode_lock(inode);
    289			if (simple_positive(victim)) {
    290				d_invalidate(victim);	// avoid lost mounts
    291				if (d_is_dir(victim))
    292					fsnotify_rmdir(inode, victim);
    293				else
    294					fsnotify_unlink(inode, victim);
    295				if (callback)
    296					callback(victim);
    297				dput(victim);		// unpin it
    298			}
    299			if (victim == dentry) {
    300				inode->i_ctime = inode->i_mtime =
    301					current_time(inode);
    302				if (d_is_dir(dentry))
    303					drop_nlink(inode);
    304				inode_unlock(inode);
    305				dput(dentry);
    306				return;
    307			}
    308		}
    309		inode_unlock(inode);
    310		this = child;
    311	}
    312}
    313EXPORT_SYMBOL(simple_recursive_removal);
    314
    315static const struct super_operations simple_super_operations = {
    316	.statfs		= simple_statfs,
    317};
    318
    319static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
    320{
    321	struct pseudo_fs_context *ctx = fc->fs_private;
    322	struct inode *root;
    323
    324	s->s_maxbytes = MAX_LFS_FILESIZE;
    325	s->s_blocksize = PAGE_SIZE;
    326	s->s_blocksize_bits = PAGE_SHIFT;
    327	s->s_magic = ctx->magic;
    328	s->s_op = ctx->ops ?: &simple_super_operations;
    329	s->s_xattr = ctx->xattr;
    330	s->s_time_gran = 1;
    331	root = new_inode(s);
    332	if (!root)
    333		return -ENOMEM;
    334
    335	/*
    336	 * since this is the first inode, make it number 1. New inodes created
    337	 * after this must take care not to collide with it (by passing
    338	 * max_reserved of 1 to iunique).
    339	 */
    340	root->i_ino = 1;
    341	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
    342	root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
    343	s->s_root = d_make_root(root);
    344	if (!s->s_root)
    345		return -ENOMEM;
    346	s->s_d_op = ctx->dops;
    347	return 0;
    348}
    349
    350static int pseudo_fs_get_tree(struct fs_context *fc)
    351{
    352	return get_tree_nodev(fc, pseudo_fs_fill_super);
    353}
    354
    355static void pseudo_fs_free(struct fs_context *fc)
    356{
    357	kfree(fc->fs_private);
    358}
    359
    360static const struct fs_context_operations pseudo_fs_context_ops = {
    361	.free		= pseudo_fs_free,
    362	.get_tree	= pseudo_fs_get_tree,
    363};
    364
    365/*
    366 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
    367 * will never be mountable)
    368 */
    369struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
    370					unsigned long magic)
    371{
    372	struct pseudo_fs_context *ctx;
    373
    374	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
    375	if (likely(ctx)) {
    376		ctx->magic = magic;
    377		fc->fs_private = ctx;
    378		fc->ops = &pseudo_fs_context_ops;
    379		fc->sb_flags |= SB_NOUSER;
    380		fc->global = true;
    381	}
    382	return ctx;
    383}
    384EXPORT_SYMBOL(init_pseudo);
    385
    386int simple_open(struct inode *inode, struct file *file)
    387{
    388	if (inode->i_private)
    389		file->private_data = inode->i_private;
    390	return 0;
    391}
    392EXPORT_SYMBOL(simple_open);
    393
    394int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
    395{
    396	struct inode *inode = d_inode(old_dentry);
    397
    398	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
    399	inc_nlink(inode);
    400	ihold(inode);
    401	dget(dentry);
    402	d_instantiate(dentry, inode);
    403	return 0;
    404}
    405EXPORT_SYMBOL(simple_link);
    406
    407int simple_empty(struct dentry *dentry)
    408{
    409	struct dentry *child;
    410	int ret = 0;
    411
    412	spin_lock(&dentry->d_lock);
    413	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
    414		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
    415		if (simple_positive(child)) {
    416			spin_unlock(&child->d_lock);
    417			goto out;
    418		}
    419		spin_unlock(&child->d_lock);
    420	}
    421	ret = 1;
    422out:
    423	spin_unlock(&dentry->d_lock);
    424	return ret;
    425}
    426EXPORT_SYMBOL(simple_empty);
    427
    428int simple_unlink(struct inode *dir, struct dentry *dentry)
    429{
    430	struct inode *inode = d_inode(dentry);
    431
    432	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
    433	drop_nlink(inode);
    434	dput(dentry);
    435	return 0;
    436}
    437EXPORT_SYMBOL(simple_unlink);
    438
    439int simple_rmdir(struct inode *dir, struct dentry *dentry)
    440{
    441	if (!simple_empty(dentry))
    442		return -ENOTEMPTY;
    443
    444	drop_nlink(d_inode(dentry));
    445	simple_unlink(dir, dentry);
    446	drop_nlink(dir);
    447	return 0;
    448}
    449EXPORT_SYMBOL(simple_rmdir);
    450
    451int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
    452			   struct inode *new_dir, struct dentry *new_dentry)
    453{
    454	bool old_is_dir = d_is_dir(old_dentry);
    455	bool new_is_dir = d_is_dir(new_dentry);
    456
    457	if (old_dir != new_dir && old_is_dir != new_is_dir) {
    458		if (old_is_dir) {
    459			drop_nlink(old_dir);
    460			inc_nlink(new_dir);
    461		} else {
    462			drop_nlink(new_dir);
    463			inc_nlink(old_dir);
    464		}
    465	}
    466	old_dir->i_ctime = old_dir->i_mtime =
    467	new_dir->i_ctime = new_dir->i_mtime =
    468	d_inode(old_dentry)->i_ctime =
    469	d_inode(new_dentry)->i_ctime = current_time(old_dir);
    470
    471	return 0;
    472}
    473EXPORT_SYMBOL_GPL(simple_rename_exchange);
    474
    475int simple_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
    476		  struct dentry *old_dentry, struct inode *new_dir,
    477		  struct dentry *new_dentry, unsigned int flags)
    478{
    479	struct inode *inode = d_inode(old_dentry);
    480	int they_are_dirs = d_is_dir(old_dentry);
    481
    482	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
    483		return -EINVAL;
    484
    485	if (flags & RENAME_EXCHANGE)
    486		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
    487
    488	if (!simple_empty(new_dentry))
    489		return -ENOTEMPTY;
    490
    491	if (d_really_is_positive(new_dentry)) {
    492		simple_unlink(new_dir, new_dentry);
    493		if (they_are_dirs) {
    494			drop_nlink(d_inode(new_dentry));
    495			drop_nlink(old_dir);
    496		}
    497	} else if (they_are_dirs) {
    498		drop_nlink(old_dir);
    499		inc_nlink(new_dir);
    500	}
    501
    502	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
    503		new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
    504
    505	return 0;
    506}
    507EXPORT_SYMBOL(simple_rename);
    508
    509/**
    510 * simple_setattr - setattr for simple filesystem
    511 * @mnt_userns: user namespace of the target mount
    512 * @dentry: dentry
    513 * @iattr: iattr structure
    514 *
    515 * Returns 0 on success, -error on failure.
    516 *
    517 * simple_setattr is a simple ->setattr implementation without a proper
    518 * implementation of size changes.
    519 *
    520 * It can either be used for in-memory filesystems or special files
    521 * on simple regular filesystems.  Anything that needs to change on-disk
    522 * or wire state on size changes needs its own setattr method.
    523 */
    524int simple_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
    525		   struct iattr *iattr)
    526{
    527	struct inode *inode = d_inode(dentry);
    528	int error;
    529
    530	error = setattr_prepare(mnt_userns, dentry, iattr);
    531	if (error)
    532		return error;
    533
    534	if (iattr->ia_valid & ATTR_SIZE)
    535		truncate_setsize(inode, iattr->ia_size);
    536	setattr_copy(mnt_userns, inode, iattr);
    537	mark_inode_dirty(inode);
    538	return 0;
    539}
    540EXPORT_SYMBOL(simple_setattr);
    541
    542static int simple_read_folio(struct file *file, struct folio *folio)
    543{
    544	folio_zero_range(folio, 0, folio_size(folio));
    545	flush_dcache_folio(folio);
    546	folio_mark_uptodate(folio);
    547	folio_unlock(folio);
    548	return 0;
    549}
    550
    551int simple_write_begin(struct file *file, struct address_space *mapping,
    552			loff_t pos, unsigned len,
    553			struct page **pagep, void **fsdata)
    554{
    555	struct page *page;
    556	pgoff_t index;
    557
    558	index = pos >> PAGE_SHIFT;
    559
    560	page = grab_cache_page_write_begin(mapping, index);
    561	if (!page)
    562		return -ENOMEM;
    563
    564	*pagep = page;
    565
    566	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
    567		unsigned from = pos & (PAGE_SIZE - 1);
    568
    569		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
    570	}
    571	return 0;
    572}
    573EXPORT_SYMBOL(simple_write_begin);
    574
    575/**
    576 * simple_write_end - .write_end helper for non-block-device FSes
    577 * @file: See .write_end of address_space_operations
    578 * @mapping: 		"
    579 * @pos: 		"
    580 * @len: 		"
    581 * @copied: 		"
    582 * @page: 		"
    583 * @fsdata: 		"
    584 *
    585 * simple_write_end does the minimum needed for updating a page after writing is
    586 * done. It has the same API signature as the .write_end of
    587 * address_space_operations vector. So it can just be set onto .write_end for
    588 * FSes that don't need any other processing. i_mutex is assumed to be held.
    589 * Block based filesystems should use generic_write_end().
    590 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
    591 * is not called, so a filesystem that actually does store data in .write_inode
    592 * should extend on what's done here with a call to mark_inode_dirty() in the
    593 * case that i_size has changed.
    594 *
    595 * Use *ONLY* with simple_read_folio()
    596 */
    597static int simple_write_end(struct file *file, struct address_space *mapping,
    598			loff_t pos, unsigned len, unsigned copied,
    599			struct page *page, void *fsdata)
    600{
    601	struct inode *inode = page->mapping->host;
    602	loff_t last_pos = pos + copied;
    603
    604	/* zero the stale part of the page if we did a short copy */
    605	if (!PageUptodate(page)) {
    606		if (copied < len) {
    607			unsigned from = pos & (PAGE_SIZE - 1);
    608
    609			zero_user(page, from + copied, len - copied);
    610		}
    611		SetPageUptodate(page);
    612	}
    613	/*
    614	 * No need to use i_size_read() here, the i_size
    615	 * cannot change under us because we hold the i_mutex.
    616	 */
    617	if (last_pos > inode->i_size)
    618		i_size_write(inode, last_pos);
    619
    620	set_page_dirty(page);
    621	unlock_page(page);
    622	put_page(page);
    623
    624	return copied;
    625}
    626
    627/*
    628 * Provides ramfs-style behavior: data in the pagecache, but no writeback.
    629 */
    630const struct address_space_operations ram_aops = {
    631	.read_folio	= simple_read_folio,
    632	.write_begin	= simple_write_begin,
    633	.write_end	= simple_write_end,
    634	.dirty_folio	= noop_dirty_folio,
    635};
    636EXPORT_SYMBOL(ram_aops);
    637
    638/*
    639 * the inodes created here are not hashed. If you use iunique to generate
    640 * unique inode values later for this filesystem, then you must take care
    641 * to pass it an appropriate max_reserved value to avoid collisions.
    642 */
    643int simple_fill_super(struct super_block *s, unsigned long magic,
    644		      const struct tree_descr *files)
    645{
    646	struct inode *inode;
    647	struct dentry *root;
    648	struct dentry *dentry;
    649	int i;
    650
    651	s->s_blocksize = PAGE_SIZE;
    652	s->s_blocksize_bits = PAGE_SHIFT;
    653	s->s_magic = magic;
    654	s->s_op = &simple_super_operations;
    655	s->s_time_gran = 1;
    656
    657	inode = new_inode(s);
    658	if (!inode)
    659		return -ENOMEM;
    660	/*
    661	 * because the root inode is 1, the files array must not contain an
    662	 * entry at index 1
    663	 */
    664	inode->i_ino = 1;
    665	inode->i_mode = S_IFDIR | 0755;
    666	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
    667	inode->i_op = &simple_dir_inode_operations;
    668	inode->i_fop = &simple_dir_operations;
    669	set_nlink(inode, 2);
    670	root = d_make_root(inode);
    671	if (!root)
    672		return -ENOMEM;
    673	for (i = 0; !files->name || files->name[0]; i++, files++) {
    674		if (!files->name)
    675			continue;
    676
    677		/* warn if it tries to conflict with the root inode */
    678		if (unlikely(i == 1))
    679			printk(KERN_WARNING "%s: %s passed in a files array"
    680				"with an index of 1!\n", __func__,
    681				s->s_type->name);
    682
    683		dentry = d_alloc_name(root, files->name);
    684		if (!dentry)
    685			goto out;
    686		inode = new_inode(s);
    687		if (!inode) {
    688			dput(dentry);
    689			goto out;
    690		}
    691		inode->i_mode = S_IFREG | files->mode;
    692		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
    693		inode->i_fop = files->ops;
    694		inode->i_ino = i;
    695		d_add(dentry, inode);
    696	}
    697	s->s_root = root;
    698	return 0;
    699out:
    700	d_genocide(root);
    701	shrink_dcache_parent(root);
    702	dput(root);
    703	return -ENOMEM;
    704}
    705EXPORT_SYMBOL(simple_fill_super);
    706
    707static DEFINE_SPINLOCK(pin_fs_lock);
    708
    709int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
    710{
    711	struct vfsmount *mnt = NULL;
    712	spin_lock(&pin_fs_lock);
    713	if (unlikely(!*mount)) {
    714		spin_unlock(&pin_fs_lock);
    715		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
    716		if (IS_ERR(mnt))
    717			return PTR_ERR(mnt);
    718		spin_lock(&pin_fs_lock);
    719		if (!*mount)
    720			*mount = mnt;
    721	}
    722	mntget(*mount);
    723	++*count;
    724	spin_unlock(&pin_fs_lock);
    725	mntput(mnt);
    726	return 0;
    727}
    728EXPORT_SYMBOL(simple_pin_fs);
    729
    730void simple_release_fs(struct vfsmount **mount, int *count)
    731{
    732	struct vfsmount *mnt;
    733	spin_lock(&pin_fs_lock);
    734	mnt = *mount;
    735	if (!--*count)
    736		*mount = NULL;
    737	spin_unlock(&pin_fs_lock);
    738	mntput(mnt);
    739}
    740EXPORT_SYMBOL(simple_release_fs);
    741
    742/**
    743 * simple_read_from_buffer - copy data from the buffer to user space
    744 * @to: the user space buffer to read to
    745 * @count: the maximum number of bytes to read
    746 * @ppos: the current position in the buffer
    747 * @from: the buffer to read from
    748 * @available: the size of the buffer
    749 *
    750 * The simple_read_from_buffer() function reads up to @count bytes from the
    751 * buffer @from at offset @ppos into the user space address starting at @to.
    752 *
    753 * On success, the number of bytes read is returned and the offset @ppos is
    754 * advanced by this number, or negative value is returned on error.
    755 **/
    756ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
    757				const void *from, size_t available)
    758{
    759	loff_t pos = *ppos;
    760	size_t ret;
    761
    762	if (pos < 0)
    763		return -EINVAL;
    764	if (pos >= available || !count)
    765		return 0;
    766	if (count > available - pos)
    767		count = available - pos;
    768	ret = copy_to_user(to, from + pos, count);
    769	if (ret == count)
    770		return -EFAULT;
    771	count -= ret;
    772	*ppos = pos + count;
    773	return count;
    774}
    775EXPORT_SYMBOL(simple_read_from_buffer);
    776
    777/**
    778 * simple_write_to_buffer - copy data from user space to the buffer
    779 * @to: the buffer to write to
    780 * @available: the size of the buffer
    781 * @ppos: the current position in the buffer
    782 * @from: the user space buffer to read from
    783 * @count: the maximum number of bytes to read
    784 *
    785 * The simple_write_to_buffer() function reads up to @count bytes from the user
    786 * space address starting at @from into the buffer @to at offset @ppos.
    787 *
    788 * On success, the number of bytes written is returned and the offset @ppos is
    789 * advanced by this number, or negative value is returned on error.
    790 **/
    791ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
    792		const void __user *from, size_t count)
    793{
    794	loff_t pos = *ppos;
    795	size_t res;
    796
    797	if (pos < 0)
    798		return -EINVAL;
    799	if (pos >= available || !count)
    800		return 0;
    801	if (count > available - pos)
    802		count = available - pos;
    803	res = copy_from_user(to + pos, from, count);
    804	if (res == count)
    805		return -EFAULT;
    806	count -= res;
    807	*ppos = pos + count;
    808	return count;
    809}
    810EXPORT_SYMBOL(simple_write_to_buffer);
    811
    812/**
    813 * memory_read_from_buffer - copy data from the buffer
    814 * @to: the kernel space buffer to read to
    815 * @count: the maximum number of bytes to read
    816 * @ppos: the current position in the buffer
    817 * @from: the buffer to read from
    818 * @available: the size of the buffer
    819 *
    820 * The memory_read_from_buffer() function reads up to @count bytes from the
    821 * buffer @from at offset @ppos into the kernel space address starting at @to.
    822 *
    823 * On success, the number of bytes read is returned and the offset @ppos is
    824 * advanced by this number, or negative value is returned on error.
    825 **/
    826ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
    827				const void *from, size_t available)
    828{
    829	loff_t pos = *ppos;
    830
    831	if (pos < 0)
    832		return -EINVAL;
    833	if (pos >= available)
    834		return 0;
    835	if (count > available - pos)
    836		count = available - pos;
    837	memcpy(to, from + pos, count);
    838	*ppos = pos + count;
    839
    840	return count;
    841}
    842EXPORT_SYMBOL(memory_read_from_buffer);
    843
    844/*
    845 * Transaction based IO.
    846 * The file expects a single write which triggers the transaction, and then
    847 * possibly a read which collects the result - which is stored in a
    848 * file-local buffer.
    849 */
    850
    851void simple_transaction_set(struct file *file, size_t n)
    852{
    853	struct simple_transaction_argresp *ar = file->private_data;
    854
    855	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
    856
    857	/*
    858	 * The barrier ensures that ar->size will really remain zero until
    859	 * ar->data is ready for reading.
    860	 */
    861	smp_mb();
    862	ar->size = n;
    863}
    864EXPORT_SYMBOL(simple_transaction_set);
    865
    866char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
    867{
    868	struct simple_transaction_argresp *ar;
    869	static DEFINE_SPINLOCK(simple_transaction_lock);
    870
    871	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
    872		return ERR_PTR(-EFBIG);
    873
    874	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
    875	if (!ar)
    876		return ERR_PTR(-ENOMEM);
    877
    878	spin_lock(&simple_transaction_lock);
    879
    880	/* only one write allowed per open */
    881	if (file->private_data) {
    882		spin_unlock(&simple_transaction_lock);
    883		free_page((unsigned long)ar);
    884		return ERR_PTR(-EBUSY);
    885	}
    886
    887	file->private_data = ar;
    888
    889	spin_unlock(&simple_transaction_lock);
    890
    891	if (copy_from_user(ar->data, buf, size))
    892		return ERR_PTR(-EFAULT);
    893
    894	return ar->data;
    895}
    896EXPORT_SYMBOL(simple_transaction_get);
    897
    898ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
    899{
    900	struct simple_transaction_argresp *ar = file->private_data;
    901
    902	if (!ar)
    903		return 0;
    904	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
    905}
    906EXPORT_SYMBOL(simple_transaction_read);
    907
    908int simple_transaction_release(struct inode *inode, struct file *file)
    909{
    910	free_page((unsigned long)file->private_data);
    911	return 0;
    912}
    913EXPORT_SYMBOL(simple_transaction_release);
    914
    915/* Simple attribute files */
    916
    917struct simple_attr {
    918	int (*get)(void *, u64 *);
    919	int (*set)(void *, u64);
    920	char get_buf[24];	/* enough to store a u64 and "\n\0" */
    921	char set_buf[24];
    922	void *data;
    923	const char *fmt;	/* format for read operation */
    924	struct mutex mutex;	/* protects access to these buffers */
    925};
    926
    927/* simple_attr_open is called by an actual attribute open file operation
    928 * to set the attribute specific access operations. */
    929int simple_attr_open(struct inode *inode, struct file *file,
    930		     int (*get)(void *, u64 *), int (*set)(void *, u64),
    931		     const char *fmt)
    932{
    933	struct simple_attr *attr;
    934
    935	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
    936	if (!attr)
    937		return -ENOMEM;
    938
    939	attr->get = get;
    940	attr->set = set;
    941	attr->data = inode->i_private;
    942	attr->fmt = fmt;
    943	mutex_init(&attr->mutex);
    944
    945	file->private_data = attr;
    946
    947	return nonseekable_open(inode, file);
    948}
    949EXPORT_SYMBOL_GPL(simple_attr_open);
    950
    951int simple_attr_release(struct inode *inode, struct file *file)
    952{
    953	kfree(file->private_data);
    954	return 0;
    955}
    956EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
    957
    958/* read from the buffer that is filled with the get function */
    959ssize_t simple_attr_read(struct file *file, char __user *buf,
    960			 size_t len, loff_t *ppos)
    961{
    962	struct simple_attr *attr;
    963	size_t size;
    964	ssize_t ret;
    965
    966	attr = file->private_data;
    967
    968	if (!attr->get)
    969		return -EACCES;
    970
    971	ret = mutex_lock_interruptible(&attr->mutex);
    972	if (ret)
    973		return ret;
    974
    975	if (*ppos && attr->get_buf[0]) {
    976		/* continued read */
    977		size = strlen(attr->get_buf);
    978	} else {
    979		/* first read */
    980		u64 val;
    981		ret = attr->get(attr->data, &val);
    982		if (ret)
    983			goto out;
    984
    985		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
    986				 attr->fmt, (unsigned long long)val);
    987	}
    988
    989	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
    990out:
    991	mutex_unlock(&attr->mutex);
    992	return ret;
    993}
    994EXPORT_SYMBOL_GPL(simple_attr_read);
    995
    996/* interpret the buffer as a number to call the set function with */
    997ssize_t simple_attr_write(struct file *file, const char __user *buf,
    998			  size_t len, loff_t *ppos)
    999{
   1000	struct simple_attr *attr;
   1001	unsigned long long val;
   1002	size_t size;
   1003	ssize_t ret;
   1004
   1005	attr = file->private_data;
   1006	if (!attr->set)
   1007		return -EACCES;
   1008
   1009	ret = mutex_lock_interruptible(&attr->mutex);
   1010	if (ret)
   1011		return ret;
   1012
   1013	ret = -EFAULT;
   1014	size = min(sizeof(attr->set_buf) - 1, len);
   1015	if (copy_from_user(attr->set_buf, buf, size))
   1016		goto out;
   1017
   1018	attr->set_buf[size] = '\0';
   1019	ret = kstrtoull(attr->set_buf, 0, &val);
   1020	if (ret)
   1021		goto out;
   1022	ret = attr->set(attr->data, val);
   1023	if (ret == 0)
   1024		ret = len; /* on success, claim we got the whole input */
   1025out:
   1026	mutex_unlock(&attr->mutex);
   1027	return ret;
   1028}
   1029EXPORT_SYMBOL_GPL(simple_attr_write);
   1030
   1031/**
   1032 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
   1033 * @sb:		filesystem to do the file handle conversion on
   1034 * @fid:	file handle to convert
   1035 * @fh_len:	length of the file handle in bytes
   1036 * @fh_type:	type of file handle
   1037 * @get_inode:	filesystem callback to retrieve inode
   1038 *
   1039 * This function decodes @fid as long as it has one of the well-known
   1040 * Linux filehandle types and calls @get_inode on it to retrieve the
   1041 * inode for the object specified in the file handle.
   1042 */
   1043struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
   1044		int fh_len, int fh_type, struct inode *(*get_inode)
   1045			(struct super_block *sb, u64 ino, u32 gen))
   1046{
   1047	struct inode *inode = NULL;
   1048
   1049	if (fh_len < 2)
   1050		return NULL;
   1051
   1052	switch (fh_type) {
   1053	case FILEID_INO32_GEN:
   1054	case FILEID_INO32_GEN_PARENT:
   1055		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
   1056		break;
   1057	}
   1058
   1059	return d_obtain_alias(inode);
   1060}
   1061EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
   1062
   1063/**
   1064 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
   1065 * @sb:		filesystem to do the file handle conversion on
   1066 * @fid:	file handle to convert
   1067 * @fh_len:	length of the file handle in bytes
   1068 * @fh_type:	type of file handle
   1069 * @get_inode:	filesystem callback to retrieve inode
   1070 *
   1071 * This function decodes @fid as long as it has one of the well-known
   1072 * Linux filehandle types and calls @get_inode on it to retrieve the
   1073 * inode for the _parent_ object specified in the file handle if it
   1074 * is specified in the file handle, or NULL otherwise.
   1075 */
   1076struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
   1077		int fh_len, int fh_type, struct inode *(*get_inode)
   1078			(struct super_block *sb, u64 ino, u32 gen))
   1079{
   1080	struct inode *inode = NULL;
   1081
   1082	if (fh_len <= 2)
   1083		return NULL;
   1084
   1085	switch (fh_type) {
   1086	case FILEID_INO32_GEN_PARENT:
   1087		inode = get_inode(sb, fid->i32.parent_ino,
   1088				  (fh_len > 3 ? fid->i32.parent_gen : 0));
   1089		break;
   1090	}
   1091
   1092	return d_obtain_alias(inode);
   1093}
   1094EXPORT_SYMBOL_GPL(generic_fh_to_parent);
   1095
   1096/**
   1097 * __generic_file_fsync - generic fsync implementation for simple filesystems
   1098 *
   1099 * @file:	file to synchronize
   1100 * @start:	start offset in bytes
   1101 * @end:	end offset in bytes (inclusive)
   1102 * @datasync:	only synchronize essential metadata if true
   1103 *
   1104 * This is a generic implementation of the fsync method for simple
   1105 * filesystems which track all non-inode metadata in the buffers list
   1106 * hanging off the address_space structure.
   1107 */
   1108int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
   1109				 int datasync)
   1110{
   1111	struct inode *inode = file->f_mapping->host;
   1112	int err;
   1113	int ret;
   1114
   1115	err = file_write_and_wait_range(file, start, end);
   1116	if (err)
   1117		return err;
   1118
   1119	inode_lock(inode);
   1120	ret = sync_mapping_buffers(inode->i_mapping);
   1121	if (!(inode->i_state & I_DIRTY_ALL))
   1122		goto out;
   1123	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
   1124		goto out;
   1125
   1126	err = sync_inode_metadata(inode, 1);
   1127	if (ret == 0)
   1128		ret = err;
   1129
   1130out:
   1131	inode_unlock(inode);
   1132	/* check and advance again to catch errors after syncing out buffers */
   1133	err = file_check_and_advance_wb_err(file);
   1134	if (ret == 0)
   1135		ret = err;
   1136	return ret;
   1137}
   1138EXPORT_SYMBOL(__generic_file_fsync);
   1139
   1140/**
   1141 * generic_file_fsync - generic fsync implementation for simple filesystems
   1142 *			with flush
   1143 * @file:	file to synchronize
   1144 * @start:	start offset in bytes
   1145 * @end:	end offset in bytes (inclusive)
   1146 * @datasync:	only synchronize essential metadata if true
   1147 *
   1148 */
   1149
   1150int generic_file_fsync(struct file *file, loff_t start, loff_t end,
   1151		       int datasync)
   1152{
   1153	struct inode *inode = file->f_mapping->host;
   1154	int err;
   1155
   1156	err = __generic_file_fsync(file, start, end, datasync);
   1157	if (err)
   1158		return err;
   1159	return blkdev_issue_flush(inode->i_sb->s_bdev);
   1160}
   1161EXPORT_SYMBOL(generic_file_fsync);
   1162
   1163/**
   1164 * generic_check_addressable - Check addressability of file system
   1165 * @blocksize_bits:	log of file system block size
   1166 * @num_blocks:		number of blocks in file system
   1167 *
   1168 * Determine whether a file system with @num_blocks blocks (and a
   1169 * block size of 2**@blocksize_bits) is addressable by the sector_t
   1170 * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
   1171 */
   1172int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
   1173{
   1174	u64 last_fs_block = num_blocks - 1;
   1175	u64 last_fs_page =
   1176		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
   1177
   1178	if (unlikely(num_blocks == 0))
   1179		return 0;
   1180
   1181	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
   1182		return -EINVAL;
   1183
   1184	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
   1185	    (last_fs_page > (pgoff_t)(~0ULL))) {
   1186		return -EFBIG;
   1187	}
   1188	return 0;
   1189}
   1190EXPORT_SYMBOL(generic_check_addressable);
   1191
   1192/*
   1193 * No-op implementation of ->fsync for in-memory filesystems.
   1194 */
   1195int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
   1196{
   1197	return 0;
   1198}
   1199EXPORT_SYMBOL(noop_fsync);
   1200
   1201ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
   1202{
   1203	/*
   1204	 * iomap based filesystems support direct I/O without need for
   1205	 * this callback. However, it still needs to be set in
   1206	 * inode->a_ops so that open/fcntl know that direct I/O is
   1207	 * generally supported.
   1208	 */
   1209	return -EINVAL;
   1210}
   1211EXPORT_SYMBOL_GPL(noop_direct_IO);
   1212
   1213/* Because kfree isn't assignment-compatible with void(void*) ;-/ */
   1214void kfree_link(void *p)
   1215{
   1216	kfree(p);
   1217}
   1218EXPORT_SYMBOL(kfree_link);
   1219
   1220struct inode *alloc_anon_inode(struct super_block *s)
   1221{
   1222	static const struct address_space_operations anon_aops = {
   1223		.dirty_folio	= noop_dirty_folio,
   1224	};
   1225	struct inode *inode = new_inode_pseudo(s);
   1226
   1227	if (!inode)
   1228		return ERR_PTR(-ENOMEM);
   1229
   1230	inode->i_ino = get_next_ino();
   1231	inode->i_mapping->a_ops = &anon_aops;
   1232
   1233	/*
   1234	 * Mark the inode dirty from the very beginning,
   1235	 * that way it will never be moved to the dirty
   1236	 * list because mark_inode_dirty() will think
   1237	 * that it already _is_ on the dirty list.
   1238	 */
   1239	inode->i_state = I_DIRTY;
   1240	inode->i_mode = S_IRUSR | S_IWUSR;
   1241	inode->i_uid = current_fsuid();
   1242	inode->i_gid = current_fsgid();
   1243	inode->i_flags |= S_PRIVATE;
   1244	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
   1245	return inode;
   1246}
   1247EXPORT_SYMBOL(alloc_anon_inode);
   1248
   1249/**
   1250 * simple_nosetlease - generic helper for prohibiting leases
   1251 * @filp: file pointer
   1252 * @arg: type of lease to obtain
   1253 * @flp: new lease supplied for insertion
   1254 * @priv: private data for lm_setup operation
   1255 *
   1256 * Generic helper for filesystems that do not wish to allow leases to be set.
   1257 * All arguments are ignored and it just returns -EINVAL.
   1258 */
   1259int
   1260simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
   1261		  void **priv)
   1262{
   1263	return -EINVAL;
   1264}
   1265EXPORT_SYMBOL(simple_nosetlease);
   1266
   1267/**
   1268 * simple_get_link - generic helper to get the target of "fast" symlinks
   1269 * @dentry: not used here
   1270 * @inode: the symlink inode
   1271 * @done: not used here
   1272 *
   1273 * Generic helper for filesystems to use for symlink inodes where a pointer to
   1274 * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
   1275 * since as an optimization the path lookup code uses any non-NULL ->i_link
   1276 * directly, without calling ->get_link().  But ->get_link() still must be set,
   1277 * to mark the inode_operations as being for a symlink.
   1278 *
   1279 * Return: the symlink target
   1280 */
   1281const char *simple_get_link(struct dentry *dentry, struct inode *inode,
   1282			    struct delayed_call *done)
   1283{
   1284	return inode->i_link;
   1285}
   1286EXPORT_SYMBOL(simple_get_link);
   1287
   1288const struct inode_operations simple_symlink_inode_operations = {
   1289	.get_link = simple_get_link,
   1290};
   1291EXPORT_SYMBOL(simple_symlink_inode_operations);
   1292
   1293/*
   1294 * Operations for a permanently empty directory.
   1295 */
   1296static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
   1297{
   1298	return ERR_PTR(-ENOENT);
   1299}
   1300
   1301static int empty_dir_getattr(struct user_namespace *mnt_userns,
   1302			     const struct path *path, struct kstat *stat,
   1303			     u32 request_mask, unsigned int query_flags)
   1304{
   1305	struct inode *inode = d_inode(path->dentry);
   1306	generic_fillattr(&init_user_ns, inode, stat);
   1307	return 0;
   1308}
   1309
   1310static int empty_dir_setattr(struct user_namespace *mnt_userns,
   1311			     struct dentry *dentry, struct iattr *attr)
   1312{
   1313	return -EPERM;
   1314}
   1315
   1316static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
   1317{
   1318	return -EOPNOTSUPP;
   1319}
   1320
   1321static const struct inode_operations empty_dir_inode_operations = {
   1322	.lookup		= empty_dir_lookup,
   1323	.permission	= generic_permission,
   1324	.setattr	= empty_dir_setattr,
   1325	.getattr	= empty_dir_getattr,
   1326	.listxattr	= empty_dir_listxattr,
   1327};
   1328
   1329static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
   1330{
   1331	/* An empty directory has two entries . and .. at offsets 0 and 1 */
   1332	return generic_file_llseek_size(file, offset, whence, 2, 2);
   1333}
   1334
   1335static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
   1336{
   1337	dir_emit_dots(file, ctx);
   1338	return 0;
   1339}
   1340
   1341static const struct file_operations empty_dir_operations = {
   1342	.llseek		= empty_dir_llseek,
   1343	.read		= generic_read_dir,
   1344	.iterate_shared	= empty_dir_readdir,
   1345	.fsync		= noop_fsync,
   1346};
   1347
   1348
   1349void make_empty_dir_inode(struct inode *inode)
   1350{
   1351	set_nlink(inode, 2);
   1352	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
   1353	inode->i_uid = GLOBAL_ROOT_UID;
   1354	inode->i_gid = GLOBAL_ROOT_GID;
   1355	inode->i_rdev = 0;
   1356	inode->i_size = 0;
   1357	inode->i_blkbits = PAGE_SHIFT;
   1358	inode->i_blocks = 0;
   1359
   1360	inode->i_op = &empty_dir_inode_operations;
   1361	inode->i_opflags &= ~IOP_XATTR;
   1362	inode->i_fop = &empty_dir_operations;
   1363}
   1364
   1365bool is_empty_dir_inode(struct inode *inode)
   1366{
   1367	return (inode->i_fop == &empty_dir_operations) &&
   1368		(inode->i_op == &empty_dir_inode_operations);
   1369}
   1370
   1371#if IS_ENABLED(CONFIG_UNICODE)
   1372/*
   1373 * Determine if the name of a dentry should be casefolded.
   1374 *
   1375 * Return: if names will need casefolding
   1376 */
   1377static bool needs_casefold(const struct inode *dir)
   1378{
   1379	return IS_CASEFOLDED(dir) && dir->i_sb->s_encoding;
   1380}
   1381
   1382/**
   1383 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
   1384 * @dentry:	dentry whose name we are checking against
   1385 * @len:	len of name of dentry
   1386 * @str:	str pointer to name of dentry
   1387 * @name:	Name to compare against
   1388 *
   1389 * Return: 0 if names match, 1 if mismatch, or -ERRNO
   1390 */
   1391static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
   1392				const char *str, const struct qstr *name)
   1393{
   1394	const struct dentry *parent = READ_ONCE(dentry->d_parent);
   1395	const struct inode *dir = READ_ONCE(parent->d_inode);
   1396	const struct super_block *sb = dentry->d_sb;
   1397	const struct unicode_map *um = sb->s_encoding;
   1398	struct qstr qstr = QSTR_INIT(str, len);
   1399	char strbuf[DNAME_INLINE_LEN];
   1400	int ret;
   1401
   1402	if (!dir || !needs_casefold(dir))
   1403		goto fallback;
   1404	/*
   1405	 * If the dentry name is stored in-line, then it may be concurrently
   1406	 * modified by a rename.  If this happens, the VFS will eventually retry
   1407	 * the lookup, so it doesn't matter what ->d_compare() returns.
   1408	 * However, it's unsafe to call utf8_strncasecmp() with an unstable
   1409	 * string.  Therefore, we have to copy the name into a temporary buffer.
   1410	 */
   1411	if (len <= DNAME_INLINE_LEN - 1) {
   1412		memcpy(strbuf, str, len);
   1413		strbuf[len] = 0;
   1414		qstr.name = strbuf;
   1415		/* prevent compiler from optimizing out the temporary buffer */
   1416		barrier();
   1417	}
   1418	ret = utf8_strncasecmp(um, name, &qstr);
   1419	if (ret >= 0)
   1420		return ret;
   1421
   1422	if (sb_has_strict_encoding(sb))
   1423		return -EINVAL;
   1424fallback:
   1425	if (len != name->len)
   1426		return 1;
   1427	return !!memcmp(str, name->name, len);
   1428}
   1429
   1430/**
   1431 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
   1432 * @dentry:	dentry of the parent directory
   1433 * @str:	qstr of name whose hash we should fill in
   1434 *
   1435 * Return: 0 if hash was successful or unchanged, and -EINVAL on error
   1436 */
   1437static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
   1438{
   1439	const struct inode *dir = READ_ONCE(dentry->d_inode);
   1440	struct super_block *sb = dentry->d_sb;
   1441	const struct unicode_map *um = sb->s_encoding;
   1442	int ret = 0;
   1443
   1444	if (!dir || !needs_casefold(dir))
   1445		return 0;
   1446
   1447	ret = utf8_casefold_hash(um, dentry, str);
   1448	if (ret < 0 && sb_has_strict_encoding(sb))
   1449		return -EINVAL;
   1450	return 0;
   1451}
   1452
   1453static const struct dentry_operations generic_ci_dentry_ops = {
   1454	.d_hash = generic_ci_d_hash,
   1455	.d_compare = generic_ci_d_compare,
   1456};
   1457#endif
   1458
   1459#ifdef CONFIG_FS_ENCRYPTION
   1460static const struct dentry_operations generic_encrypted_dentry_ops = {
   1461	.d_revalidate = fscrypt_d_revalidate,
   1462};
   1463#endif
   1464
   1465#if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
   1466static const struct dentry_operations generic_encrypted_ci_dentry_ops = {
   1467	.d_hash = generic_ci_d_hash,
   1468	.d_compare = generic_ci_d_compare,
   1469	.d_revalidate = fscrypt_d_revalidate,
   1470};
   1471#endif
   1472
   1473/**
   1474 * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry
   1475 * @dentry:	dentry to set ops on
   1476 *
   1477 * Casefolded directories need d_hash and d_compare set, so that the dentries
   1478 * contained in them are handled case-insensitively.  Note that these operations
   1479 * are needed on the parent directory rather than on the dentries in it, and
   1480 * while the casefolding flag can be toggled on and off on an empty directory,
   1481 * dentry_operations can't be changed later.  As a result, if the filesystem has
   1482 * casefolding support enabled at all, we have to give all dentries the
   1483 * casefolding operations even if their inode doesn't have the casefolding flag
   1484 * currently (and thus the casefolding ops would be no-ops for now).
   1485 *
   1486 * Encryption works differently in that the only dentry operation it needs is
   1487 * d_revalidate, which it only needs on dentries that have the no-key name flag.
   1488 * The no-key flag can't be set "later", so we don't have to worry about that.
   1489 *
   1490 * Finally, to maximize compatibility with overlayfs (which isn't compatible
   1491 * with certain dentry operations) and to avoid taking an unnecessary
   1492 * performance hit, we use custom dentry_operations for each possible
   1493 * combination rather than always installing all operations.
   1494 */
   1495void generic_set_encrypted_ci_d_ops(struct dentry *dentry)
   1496{
   1497#ifdef CONFIG_FS_ENCRYPTION
   1498	bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME;
   1499#endif
   1500#if IS_ENABLED(CONFIG_UNICODE)
   1501	bool needs_ci_ops = dentry->d_sb->s_encoding;
   1502#endif
   1503#if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
   1504	if (needs_encrypt_ops && needs_ci_ops) {
   1505		d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops);
   1506		return;
   1507	}
   1508#endif
   1509#ifdef CONFIG_FS_ENCRYPTION
   1510	if (needs_encrypt_ops) {
   1511		d_set_d_op(dentry, &generic_encrypted_dentry_ops);
   1512		return;
   1513	}
   1514#endif
   1515#if IS_ENABLED(CONFIG_UNICODE)
   1516	if (needs_ci_ops) {
   1517		d_set_d_op(dentry, &generic_ci_dentry_ops);
   1518		return;
   1519	}
   1520#endif
   1521}
   1522EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);