locks.c (77224B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * linux/fs/locks.c 4 * 5 * We implement four types of file locks: BSD locks, posix locks, open 6 * file description locks, and leases. For details about BSD locks, 7 * see the flock(2) man page; for details about the other three, see 8 * fcntl(2). 9 * 10 * 11 * Locking conflicts and dependencies: 12 * If multiple threads attempt to lock the same byte (or flock the same file) 13 * only one can be granted the lock, and other must wait their turn. 14 * The first lock has been "applied" or "granted", the others are "waiting" 15 * and are "blocked" by the "applied" lock.. 16 * 17 * Waiting and applied locks are all kept in trees whose properties are: 18 * 19 * - the root of a tree may be an applied or waiting lock. 20 * - every other node in the tree is a waiting lock that 21 * conflicts with every ancestor of that node. 22 * 23 * Every such tree begins life as a waiting singleton which obviously 24 * satisfies the above properties. 25 * 26 * The only ways we modify trees preserve these properties: 27 * 28 * 1. We may add a new leaf node, but only after first verifying that it 29 * conflicts with all of its ancestors. 30 * 2. We may remove the root of a tree, creating a new singleton 31 * tree from the root and N new trees rooted in the immediate 32 * children. 33 * 3. If the root of a tree is not currently an applied lock, we may 34 * apply it (if possible). 35 * 4. We may upgrade the root of the tree (either extend its range, 36 * or upgrade its entire range from read to write). 37 * 38 * When an applied lock is modified in a way that reduces or downgrades any 39 * part of its range, we remove all its children (2 above). This particularly 40 * happens when a lock is unlocked. 41 * 42 * For each of those child trees we "wake up" the thread which is 43 * waiting for the lock so it can continue handling as follows: if the 44 * root of the tree applies, we do so (3). If it doesn't, it must 45 * conflict with some applied lock. We remove (wake up) all of its children 46 * (2), and add it is a new leaf to the tree rooted in the applied 47 * lock (1). We then repeat the process recursively with those 48 * children. 49 * 50 */ 51 52#include <linux/capability.h> 53#include <linux/file.h> 54#include <linux/fdtable.h> 55#include <linux/fs.h> 56#include <linux/init.h> 57#include <linux/security.h> 58#include <linux/slab.h> 59#include <linux/syscalls.h> 60#include <linux/time.h> 61#include <linux/rcupdate.h> 62#include <linux/pid_namespace.h> 63#include <linux/hashtable.h> 64#include <linux/percpu.h> 65#include <linux/sysctl.h> 66 67#define CREATE_TRACE_POINTS 68#include <trace/events/filelock.h> 69 70#include <linux/uaccess.h> 71 72#define IS_POSIX(fl) (fl->fl_flags & FL_POSIX) 73#define IS_FLOCK(fl) (fl->fl_flags & FL_FLOCK) 74#define IS_LEASE(fl) (fl->fl_flags & (FL_LEASE|FL_DELEG|FL_LAYOUT)) 75#define IS_OFDLCK(fl) (fl->fl_flags & FL_OFDLCK) 76#define IS_REMOTELCK(fl) (fl->fl_pid <= 0) 77 78static bool lease_breaking(struct file_lock *fl) 79{ 80 return fl->fl_flags & (FL_UNLOCK_PENDING | FL_DOWNGRADE_PENDING); 81} 82 83static int target_leasetype(struct file_lock *fl) 84{ 85 if (fl->fl_flags & FL_UNLOCK_PENDING) 86 return F_UNLCK; 87 if (fl->fl_flags & FL_DOWNGRADE_PENDING) 88 return F_RDLCK; 89 return fl->fl_type; 90} 91 92static int leases_enable = 1; 93static int lease_break_time = 45; 94 95#ifdef CONFIG_SYSCTL 96static struct ctl_table locks_sysctls[] = { 97 { 98 .procname = "leases-enable", 99 .data = &leases_enable, 100 .maxlen = sizeof(int), 101 .mode = 0644, 102 .proc_handler = proc_dointvec, 103 }, 104#ifdef CONFIG_MMU 105 { 106 .procname = "lease-break-time", 107 .data = &lease_break_time, 108 .maxlen = sizeof(int), 109 .mode = 0644, 110 .proc_handler = proc_dointvec, 111 }, 112#endif /* CONFIG_MMU */ 113 {} 114}; 115 116static int __init init_fs_locks_sysctls(void) 117{ 118 register_sysctl_init("fs", locks_sysctls); 119 return 0; 120} 121early_initcall(init_fs_locks_sysctls); 122#endif /* CONFIG_SYSCTL */ 123 124/* 125 * The global file_lock_list is only used for displaying /proc/locks, so we 126 * keep a list on each CPU, with each list protected by its own spinlock. 127 * Global serialization is done using file_rwsem. 128 * 129 * Note that alterations to the list also require that the relevant flc_lock is 130 * held. 131 */ 132struct file_lock_list_struct { 133 spinlock_t lock; 134 struct hlist_head hlist; 135}; 136static DEFINE_PER_CPU(struct file_lock_list_struct, file_lock_list); 137DEFINE_STATIC_PERCPU_RWSEM(file_rwsem); 138 139 140/* 141 * The blocked_hash is used to find POSIX lock loops for deadlock detection. 142 * It is protected by blocked_lock_lock. 143 * 144 * We hash locks by lockowner in order to optimize searching for the lock a 145 * particular lockowner is waiting on. 146 * 147 * FIXME: make this value scale via some heuristic? We generally will want more 148 * buckets when we have more lockowners holding locks, but that's a little 149 * difficult to determine without knowing what the workload will look like. 150 */ 151#define BLOCKED_HASH_BITS 7 152static DEFINE_HASHTABLE(blocked_hash, BLOCKED_HASH_BITS); 153 154/* 155 * This lock protects the blocked_hash. Generally, if you're accessing it, you 156 * want to be holding this lock. 157 * 158 * In addition, it also protects the fl->fl_blocked_requests list, and the 159 * fl->fl_blocker pointer for file_lock structures that are acting as lock 160 * requests (in contrast to those that are acting as records of acquired locks). 161 * 162 * Note that when we acquire this lock in order to change the above fields, 163 * we often hold the flc_lock as well. In certain cases, when reading the fields 164 * protected by this lock, we can skip acquiring it iff we already hold the 165 * flc_lock. 166 */ 167static DEFINE_SPINLOCK(blocked_lock_lock); 168 169static struct kmem_cache *flctx_cache __read_mostly; 170static struct kmem_cache *filelock_cache __read_mostly; 171 172static struct file_lock_context * 173locks_get_lock_context(struct inode *inode, int type) 174{ 175 struct file_lock_context *ctx; 176 177 /* paired with cmpxchg() below */ 178 ctx = smp_load_acquire(&inode->i_flctx); 179 if (likely(ctx) || type == F_UNLCK) 180 goto out; 181 182 ctx = kmem_cache_alloc(flctx_cache, GFP_KERNEL); 183 if (!ctx) 184 goto out; 185 186 spin_lock_init(&ctx->flc_lock); 187 INIT_LIST_HEAD(&ctx->flc_flock); 188 INIT_LIST_HEAD(&ctx->flc_posix); 189 INIT_LIST_HEAD(&ctx->flc_lease); 190 191 /* 192 * Assign the pointer if it's not already assigned. If it is, then 193 * free the context we just allocated. 194 */ 195 if (cmpxchg(&inode->i_flctx, NULL, ctx)) { 196 kmem_cache_free(flctx_cache, ctx); 197 ctx = smp_load_acquire(&inode->i_flctx); 198 } 199out: 200 trace_locks_get_lock_context(inode, type, ctx); 201 return ctx; 202} 203 204static void 205locks_dump_ctx_list(struct list_head *list, char *list_type) 206{ 207 struct file_lock *fl; 208 209 list_for_each_entry(fl, list, fl_list) { 210 pr_warn("%s: fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n", list_type, fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid); 211 } 212} 213 214static void 215locks_check_ctx_lists(struct inode *inode) 216{ 217 struct file_lock_context *ctx = inode->i_flctx; 218 219 if (unlikely(!list_empty(&ctx->flc_flock) || 220 !list_empty(&ctx->flc_posix) || 221 !list_empty(&ctx->flc_lease))) { 222 pr_warn("Leaked locks on dev=0x%x:0x%x ino=0x%lx:\n", 223 MAJOR(inode->i_sb->s_dev), MINOR(inode->i_sb->s_dev), 224 inode->i_ino); 225 locks_dump_ctx_list(&ctx->flc_flock, "FLOCK"); 226 locks_dump_ctx_list(&ctx->flc_posix, "POSIX"); 227 locks_dump_ctx_list(&ctx->flc_lease, "LEASE"); 228 } 229} 230 231static void 232locks_check_ctx_file_list(struct file *filp, struct list_head *list, 233 char *list_type) 234{ 235 struct file_lock *fl; 236 struct inode *inode = locks_inode(filp); 237 238 list_for_each_entry(fl, list, fl_list) 239 if (fl->fl_file == filp) 240 pr_warn("Leaked %s lock on dev=0x%x:0x%x ino=0x%lx " 241 " fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n", 242 list_type, MAJOR(inode->i_sb->s_dev), 243 MINOR(inode->i_sb->s_dev), inode->i_ino, 244 fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid); 245} 246 247void 248locks_free_lock_context(struct inode *inode) 249{ 250 struct file_lock_context *ctx = inode->i_flctx; 251 252 if (unlikely(ctx)) { 253 locks_check_ctx_lists(inode); 254 kmem_cache_free(flctx_cache, ctx); 255 } 256} 257 258static void locks_init_lock_heads(struct file_lock *fl) 259{ 260 INIT_HLIST_NODE(&fl->fl_link); 261 INIT_LIST_HEAD(&fl->fl_list); 262 INIT_LIST_HEAD(&fl->fl_blocked_requests); 263 INIT_LIST_HEAD(&fl->fl_blocked_member); 264 init_waitqueue_head(&fl->fl_wait); 265} 266 267/* Allocate an empty lock structure. */ 268struct file_lock *locks_alloc_lock(void) 269{ 270 struct file_lock *fl = kmem_cache_zalloc(filelock_cache, GFP_KERNEL); 271 272 if (fl) 273 locks_init_lock_heads(fl); 274 275 return fl; 276} 277EXPORT_SYMBOL_GPL(locks_alloc_lock); 278 279void locks_release_private(struct file_lock *fl) 280{ 281 BUG_ON(waitqueue_active(&fl->fl_wait)); 282 BUG_ON(!list_empty(&fl->fl_list)); 283 BUG_ON(!list_empty(&fl->fl_blocked_requests)); 284 BUG_ON(!list_empty(&fl->fl_blocked_member)); 285 BUG_ON(!hlist_unhashed(&fl->fl_link)); 286 287 if (fl->fl_ops) { 288 if (fl->fl_ops->fl_release_private) 289 fl->fl_ops->fl_release_private(fl); 290 fl->fl_ops = NULL; 291 } 292 293 if (fl->fl_lmops) { 294 if (fl->fl_lmops->lm_put_owner) { 295 fl->fl_lmops->lm_put_owner(fl->fl_owner); 296 fl->fl_owner = NULL; 297 } 298 fl->fl_lmops = NULL; 299 } 300} 301EXPORT_SYMBOL_GPL(locks_release_private); 302 303/** 304 * locks_owner_has_blockers - Check for blocking lock requests 305 * @flctx: file lock context 306 * @owner: lock owner 307 * 308 * Return values: 309 * %true: @owner has at least one blocker 310 * %false: @owner has no blockers 311 */ 312bool locks_owner_has_blockers(struct file_lock_context *flctx, 313 fl_owner_t owner) 314{ 315 struct file_lock *fl; 316 317 spin_lock(&flctx->flc_lock); 318 list_for_each_entry(fl, &flctx->flc_posix, fl_list) { 319 if (fl->fl_owner != owner) 320 continue; 321 if (!list_empty(&fl->fl_blocked_requests)) { 322 spin_unlock(&flctx->flc_lock); 323 return true; 324 } 325 } 326 spin_unlock(&flctx->flc_lock); 327 return false; 328} 329EXPORT_SYMBOL_GPL(locks_owner_has_blockers); 330 331/* Free a lock which is not in use. */ 332void locks_free_lock(struct file_lock *fl) 333{ 334 locks_release_private(fl); 335 kmem_cache_free(filelock_cache, fl); 336} 337EXPORT_SYMBOL(locks_free_lock); 338 339static void 340locks_dispose_list(struct list_head *dispose) 341{ 342 struct file_lock *fl; 343 344 while (!list_empty(dispose)) { 345 fl = list_first_entry(dispose, struct file_lock, fl_list); 346 list_del_init(&fl->fl_list); 347 locks_free_lock(fl); 348 } 349} 350 351void locks_init_lock(struct file_lock *fl) 352{ 353 memset(fl, 0, sizeof(struct file_lock)); 354 locks_init_lock_heads(fl); 355} 356EXPORT_SYMBOL(locks_init_lock); 357 358/* 359 * Initialize a new lock from an existing file_lock structure. 360 */ 361void locks_copy_conflock(struct file_lock *new, struct file_lock *fl) 362{ 363 new->fl_owner = fl->fl_owner; 364 new->fl_pid = fl->fl_pid; 365 new->fl_file = NULL; 366 new->fl_flags = fl->fl_flags; 367 new->fl_type = fl->fl_type; 368 new->fl_start = fl->fl_start; 369 new->fl_end = fl->fl_end; 370 new->fl_lmops = fl->fl_lmops; 371 new->fl_ops = NULL; 372 373 if (fl->fl_lmops) { 374 if (fl->fl_lmops->lm_get_owner) 375 fl->fl_lmops->lm_get_owner(fl->fl_owner); 376 } 377} 378EXPORT_SYMBOL(locks_copy_conflock); 379 380void locks_copy_lock(struct file_lock *new, struct file_lock *fl) 381{ 382 /* "new" must be a freshly-initialized lock */ 383 WARN_ON_ONCE(new->fl_ops); 384 385 locks_copy_conflock(new, fl); 386 387 new->fl_file = fl->fl_file; 388 new->fl_ops = fl->fl_ops; 389 390 if (fl->fl_ops) { 391 if (fl->fl_ops->fl_copy_lock) 392 fl->fl_ops->fl_copy_lock(new, fl); 393 } 394} 395EXPORT_SYMBOL(locks_copy_lock); 396 397static void locks_move_blocks(struct file_lock *new, struct file_lock *fl) 398{ 399 struct file_lock *f; 400 401 /* 402 * As ctx->flc_lock is held, new requests cannot be added to 403 * ->fl_blocked_requests, so we don't need a lock to check if it 404 * is empty. 405 */ 406 if (list_empty(&fl->fl_blocked_requests)) 407 return; 408 spin_lock(&blocked_lock_lock); 409 list_splice_init(&fl->fl_blocked_requests, &new->fl_blocked_requests); 410 list_for_each_entry(f, &new->fl_blocked_requests, fl_blocked_member) 411 f->fl_blocker = new; 412 spin_unlock(&blocked_lock_lock); 413} 414 415static inline int flock_translate_cmd(int cmd) { 416 switch (cmd) { 417 case LOCK_SH: 418 return F_RDLCK; 419 case LOCK_EX: 420 return F_WRLCK; 421 case LOCK_UN: 422 return F_UNLCK; 423 } 424 return -EINVAL; 425} 426 427/* Fill in a file_lock structure with an appropriate FLOCK lock. */ 428static struct file_lock * 429flock_make_lock(struct file *filp, unsigned int cmd, struct file_lock *fl) 430{ 431 int type = flock_translate_cmd(cmd); 432 433 if (type < 0) 434 return ERR_PTR(type); 435 436 if (fl == NULL) { 437 fl = locks_alloc_lock(); 438 if (fl == NULL) 439 return ERR_PTR(-ENOMEM); 440 } else { 441 locks_init_lock(fl); 442 } 443 444 fl->fl_file = filp; 445 fl->fl_owner = filp; 446 fl->fl_pid = current->tgid; 447 fl->fl_flags = FL_FLOCK; 448 fl->fl_type = type; 449 fl->fl_end = OFFSET_MAX; 450 451 return fl; 452} 453 454static int assign_type(struct file_lock *fl, long type) 455{ 456 switch (type) { 457 case F_RDLCK: 458 case F_WRLCK: 459 case F_UNLCK: 460 fl->fl_type = type; 461 break; 462 default: 463 return -EINVAL; 464 } 465 return 0; 466} 467 468static int flock64_to_posix_lock(struct file *filp, struct file_lock *fl, 469 struct flock64 *l) 470{ 471 switch (l->l_whence) { 472 case SEEK_SET: 473 fl->fl_start = 0; 474 break; 475 case SEEK_CUR: 476 fl->fl_start = filp->f_pos; 477 break; 478 case SEEK_END: 479 fl->fl_start = i_size_read(file_inode(filp)); 480 break; 481 default: 482 return -EINVAL; 483 } 484 if (l->l_start > OFFSET_MAX - fl->fl_start) 485 return -EOVERFLOW; 486 fl->fl_start += l->l_start; 487 if (fl->fl_start < 0) 488 return -EINVAL; 489 490 /* POSIX-1996 leaves the case l->l_len < 0 undefined; 491 POSIX-2001 defines it. */ 492 if (l->l_len > 0) { 493 if (l->l_len - 1 > OFFSET_MAX - fl->fl_start) 494 return -EOVERFLOW; 495 fl->fl_end = fl->fl_start + (l->l_len - 1); 496 497 } else if (l->l_len < 0) { 498 if (fl->fl_start + l->l_len < 0) 499 return -EINVAL; 500 fl->fl_end = fl->fl_start - 1; 501 fl->fl_start += l->l_len; 502 } else 503 fl->fl_end = OFFSET_MAX; 504 505 fl->fl_owner = current->files; 506 fl->fl_pid = current->tgid; 507 fl->fl_file = filp; 508 fl->fl_flags = FL_POSIX; 509 fl->fl_ops = NULL; 510 fl->fl_lmops = NULL; 511 512 return assign_type(fl, l->l_type); 513} 514 515/* Verify a "struct flock" and copy it to a "struct file_lock" as a POSIX 516 * style lock. 517 */ 518static int flock_to_posix_lock(struct file *filp, struct file_lock *fl, 519 struct flock *l) 520{ 521 struct flock64 ll = { 522 .l_type = l->l_type, 523 .l_whence = l->l_whence, 524 .l_start = l->l_start, 525 .l_len = l->l_len, 526 }; 527 528 return flock64_to_posix_lock(filp, fl, &ll); 529} 530 531/* default lease lock manager operations */ 532static bool 533lease_break_callback(struct file_lock *fl) 534{ 535 kill_fasync(&fl->fl_fasync, SIGIO, POLL_MSG); 536 return false; 537} 538 539static void 540lease_setup(struct file_lock *fl, void **priv) 541{ 542 struct file *filp = fl->fl_file; 543 struct fasync_struct *fa = *priv; 544 545 /* 546 * fasync_insert_entry() returns the old entry if any. If there was no 547 * old entry, then it used "priv" and inserted it into the fasync list. 548 * Clear the pointer to indicate that it shouldn't be freed. 549 */ 550 if (!fasync_insert_entry(fa->fa_fd, filp, &fl->fl_fasync, fa)) 551 *priv = NULL; 552 553 __f_setown(filp, task_pid(current), PIDTYPE_TGID, 0); 554} 555 556static const struct lock_manager_operations lease_manager_ops = { 557 .lm_break = lease_break_callback, 558 .lm_change = lease_modify, 559 .lm_setup = lease_setup, 560}; 561 562/* 563 * Initialize a lease, use the default lock manager operations 564 */ 565static int lease_init(struct file *filp, long type, struct file_lock *fl) 566{ 567 if (assign_type(fl, type) != 0) 568 return -EINVAL; 569 570 fl->fl_owner = filp; 571 fl->fl_pid = current->tgid; 572 573 fl->fl_file = filp; 574 fl->fl_flags = FL_LEASE; 575 fl->fl_start = 0; 576 fl->fl_end = OFFSET_MAX; 577 fl->fl_ops = NULL; 578 fl->fl_lmops = &lease_manager_ops; 579 return 0; 580} 581 582/* Allocate a file_lock initialised to this type of lease */ 583static struct file_lock *lease_alloc(struct file *filp, long type) 584{ 585 struct file_lock *fl = locks_alloc_lock(); 586 int error = -ENOMEM; 587 588 if (fl == NULL) 589 return ERR_PTR(error); 590 591 error = lease_init(filp, type, fl); 592 if (error) { 593 locks_free_lock(fl); 594 return ERR_PTR(error); 595 } 596 return fl; 597} 598 599/* Check if two locks overlap each other. 600 */ 601static inline int locks_overlap(struct file_lock *fl1, struct file_lock *fl2) 602{ 603 return ((fl1->fl_end >= fl2->fl_start) && 604 (fl2->fl_end >= fl1->fl_start)); 605} 606 607/* 608 * Check whether two locks have the same owner. 609 */ 610static int posix_same_owner(struct file_lock *fl1, struct file_lock *fl2) 611{ 612 return fl1->fl_owner == fl2->fl_owner; 613} 614 615/* Must be called with the flc_lock held! */ 616static void locks_insert_global_locks(struct file_lock *fl) 617{ 618 struct file_lock_list_struct *fll = this_cpu_ptr(&file_lock_list); 619 620 percpu_rwsem_assert_held(&file_rwsem); 621 622 spin_lock(&fll->lock); 623 fl->fl_link_cpu = smp_processor_id(); 624 hlist_add_head(&fl->fl_link, &fll->hlist); 625 spin_unlock(&fll->lock); 626} 627 628/* Must be called with the flc_lock held! */ 629static void locks_delete_global_locks(struct file_lock *fl) 630{ 631 struct file_lock_list_struct *fll; 632 633 percpu_rwsem_assert_held(&file_rwsem); 634 635 /* 636 * Avoid taking lock if already unhashed. This is safe since this check 637 * is done while holding the flc_lock, and new insertions into the list 638 * also require that it be held. 639 */ 640 if (hlist_unhashed(&fl->fl_link)) 641 return; 642 643 fll = per_cpu_ptr(&file_lock_list, fl->fl_link_cpu); 644 spin_lock(&fll->lock); 645 hlist_del_init(&fl->fl_link); 646 spin_unlock(&fll->lock); 647} 648 649static unsigned long 650posix_owner_key(struct file_lock *fl) 651{ 652 return (unsigned long)fl->fl_owner; 653} 654 655static void locks_insert_global_blocked(struct file_lock *waiter) 656{ 657 lockdep_assert_held(&blocked_lock_lock); 658 659 hash_add(blocked_hash, &waiter->fl_link, posix_owner_key(waiter)); 660} 661 662static void locks_delete_global_blocked(struct file_lock *waiter) 663{ 664 lockdep_assert_held(&blocked_lock_lock); 665 666 hash_del(&waiter->fl_link); 667} 668 669/* Remove waiter from blocker's block list. 670 * When blocker ends up pointing to itself then the list is empty. 671 * 672 * Must be called with blocked_lock_lock held. 673 */ 674static void __locks_delete_block(struct file_lock *waiter) 675{ 676 locks_delete_global_blocked(waiter); 677 list_del_init(&waiter->fl_blocked_member); 678} 679 680static void __locks_wake_up_blocks(struct file_lock *blocker) 681{ 682 while (!list_empty(&blocker->fl_blocked_requests)) { 683 struct file_lock *waiter; 684 685 waiter = list_first_entry(&blocker->fl_blocked_requests, 686 struct file_lock, fl_blocked_member); 687 __locks_delete_block(waiter); 688 if (waiter->fl_lmops && waiter->fl_lmops->lm_notify) 689 waiter->fl_lmops->lm_notify(waiter); 690 else 691 wake_up(&waiter->fl_wait); 692 693 /* 694 * The setting of fl_blocker to NULL marks the "done" 695 * point in deleting a block. Paired with acquire at the top 696 * of locks_delete_block(). 697 */ 698 smp_store_release(&waiter->fl_blocker, NULL); 699 } 700} 701 702/** 703 * locks_delete_block - stop waiting for a file lock 704 * @waiter: the lock which was waiting 705 * 706 * lockd/nfsd need to disconnect the lock while working on it. 707 */ 708int locks_delete_block(struct file_lock *waiter) 709{ 710 int status = -ENOENT; 711 712 /* 713 * If fl_blocker is NULL, it won't be set again as this thread "owns" 714 * the lock and is the only one that might try to claim the lock. 715 * 716 * We use acquire/release to manage fl_blocker so that we can 717 * optimize away taking the blocked_lock_lock in many cases. 718 * 719 * The smp_load_acquire guarantees two things: 720 * 721 * 1/ that fl_blocked_requests can be tested locklessly. If something 722 * was recently added to that list it must have been in a locked region 723 * *before* the locked region when fl_blocker was set to NULL. 724 * 725 * 2/ that no other thread is accessing 'waiter', so it is safe to free 726 * it. __locks_wake_up_blocks is careful not to touch waiter after 727 * fl_blocker is released. 728 * 729 * If a lockless check of fl_blocker shows it to be NULL, we know that 730 * no new locks can be inserted into its fl_blocked_requests list, and 731 * can avoid doing anything further if the list is empty. 732 */ 733 if (!smp_load_acquire(&waiter->fl_blocker) && 734 list_empty(&waiter->fl_blocked_requests)) 735 return status; 736 737 spin_lock(&blocked_lock_lock); 738 if (waiter->fl_blocker) 739 status = 0; 740 __locks_wake_up_blocks(waiter); 741 __locks_delete_block(waiter); 742 743 /* 744 * The setting of fl_blocker to NULL marks the "done" point in deleting 745 * a block. Paired with acquire at the top of this function. 746 */ 747 smp_store_release(&waiter->fl_blocker, NULL); 748 spin_unlock(&blocked_lock_lock); 749 return status; 750} 751EXPORT_SYMBOL(locks_delete_block); 752 753/* Insert waiter into blocker's block list. 754 * We use a circular list so that processes can be easily woken up in 755 * the order they blocked. The documentation doesn't require this but 756 * it seems like the reasonable thing to do. 757 * 758 * Must be called with both the flc_lock and blocked_lock_lock held. The 759 * fl_blocked_requests list itself is protected by the blocked_lock_lock, 760 * but by ensuring that the flc_lock is also held on insertions we can avoid 761 * taking the blocked_lock_lock in some cases when we see that the 762 * fl_blocked_requests list is empty. 763 * 764 * Rather than just adding to the list, we check for conflicts with any existing 765 * waiters, and add beneath any waiter that blocks the new waiter. 766 * Thus wakeups don't happen until needed. 767 */ 768static void __locks_insert_block(struct file_lock *blocker, 769 struct file_lock *waiter, 770 bool conflict(struct file_lock *, 771 struct file_lock *)) 772{ 773 struct file_lock *fl; 774 BUG_ON(!list_empty(&waiter->fl_blocked_member)); 775 776new_blocker: 777 list_for_each_entry(fl, &blocker->fl_blocked_requests, fl_blocked_member) 778 if (conflict(fl, waiter)) { 779 blocker = fl; 780 goto new_blocker; 781 } 782 waiter->fl_blocker = blocker; 783 list_add_tail(&waiter->fl_blocked_member, &blocker->fl_blocked_requests); 784 if (IS_POSIX(blocker) && !IS_OFDLCK(blocker)) 785 locks_insert_global_blocked(waiter); 786 787 /* The requests in waiter->fl_blocked are known to conflict with 788 * waiter, but might not conflict with blocker, or the requests 789 * and lock which block it. So they all need to be woken. 790 */ 791 __locks_wake_up_blocks(waiter); 792} 793 794/* Must be called with flc_lock held. */ 795static void locks_insert_block(struct file_lock *blocker, 796 struct file_lock *waiter, 797 bool conflict(struct file_lock *, 798 struct file_lock *)) 799{ 800 spin_lock(&blocked_lock_lock); 801 __locks_insert_block(blocker, waiter, conflict); 802 spin_unlock(&blocked_lock_lock); 803} 804 805/* 806 * Wake up processes blocked waiting for blocker. 807 * 808 * Must be called with the inode->flc_lock held! 809 */ 810static void locks_wake_up_blocks(struct file_lock *blocker) 811{ 812 /* 813 * Avoid taking global lock if list is empty. This is safe since new 814 * blocked requests are only added to the list under the flc_lock, and 815 * the flc_lock is always held here. Note that removal from the 816 * fl_blocked_requests list does not require the flc_lock, so we must 817 * recheck list_empty() after acquiring the blocked_lock_lock. 818 */ 819 if (list_empty(&blocker->fl_blocked_requests)) 820 return; 821 822 spin_lock(&blocked_lock_lock); 823 __locks_wake_up_blocks(blocker); 824 spin_unlock(&blocked_lock_lock); 825} 826 827static void 828locks_insert_lock_ctx(struct file_lock *fl, struct list_head *before) 829{ 830 list_add_tail(&fl->fl_list, before); 831 locks_insert_global_locks(fl); 832} 833 834static void 835locks_unlink_lock_ctx(struct file_lock *fl) 836{ 837 locks_delete_global_locks(fl); 838 list_del_init(&fl->fl_list); 839 locks_wake_up_blocks(fl); 840} 841 842static void 843locks_delete_lock_ctx(struct file_lock *fl, struct list_head *dispose) 844{ 845 locks_unlink_lock_ctx(fl); 846 if (dispose) 847 list_add(&fl->fl_list, dispose); 848 else 849 locks_free_lock(fl); 850} 851 852/* Determine if lock sys_fl blocks lock caller_fl. Common functionality 853 * checks for shared/exclusive status of overlapping locks. 854 */ 855static bool locks_conflict(struct file_lock *caller_fl, 856 struct file_lock *sys_fl) 857{ 858 if (sys_fl->fl_type == F_WRLCK) 859 return true; 860 if (caller_fl->fl_type == F_WRLCK) 861 return true; 862 return false; 863} 864 865/* Determine if lock sys_fl blocks lock caller_fl. POSIX specific 866 * checking before calling the locks_conflict(). 867 */ 868static bool posix_locks_conflict(struct file_lock *caller_fl, 869 struct file_lock *sys_fl) 870{ 871 /* POSIX locks owned by the same process do not conflict with 872 * each other. 873 */ 874 if (posix_same_owner(caller_fl, sys_fl)) 875 return false; 876 877 /* Check whether they overlap */ 878 if (!locks_overlap(caller_fl, sys_fl)) 879 return false; 880 881 return locks_conflict(caller_fl, sys_fl); 882} 883 884/* Determine if lock sys_fl blocks lock caller_fl. FLOCK specific 885 * checking before calling the locks_conflict(). 886 */ 887static bool flock_locks_conflict(struct file_lock *caller_fl, 888 struct file_lock *sys_fl) 889{ 890 /* FLOCK locks referring to the same filp do not conflict with 891 * each other. 892 */ 893 if (caller_fl->fl_file == sys_fl->fl_file) 894 return false; 895 896 return locks_conflict(caller_fl, sys_fl); 897} 898 899void 900posix_test_lock(struct file *filp, struct file_lock *fl) 901{ 902 struct file_lock *cfl; 903 struct file_lock_context *ctx; 904 struct inode *inode = locks_inode(filp); 905 void *owner; 906 void (*func)(void); 907 908 ctx = smp_load_acquire(&inode->i_flctx); 909 if (!ctx || list_empty_careful(&ctx->flc_posix)) { 910 fl->fl_type = F_UNLCK; 911 return; 912 } 913 914retry: 915 spin_lock(&ctx->flc_lock); 916 list_for_each_entry(cfl, &ctx->flc_posix, fl_list) { 917 if (!posix_locks_conflict(fl, cfl)) 918 continue; 919 if (cfl->fl_lmops && cfl->fl_lmops->lm_lock_expirable 920 && (*cfl->fl_lmops->lm_lock_expirable)(cfl)) { 921 owner = cfl->fl_lmops->lm_mod_owner; 922 func = cfl->fl_lmops->lm_expire_lock; 923 __module_get(owner); 924 spin_unlock(&ctx->flc_lock); 925 (*func)(); 926 module_put(owner); 927 goto retry; 928 } 929 locks_copy_conflock(fl, cfl); 930 goto out; 931 } 932 fl->fl_type = F_UNLCK; 933out: 934 spin_unlock(&ctx->flc_lock); 935 return; 936} 937EXPORT_SYMBOL(posix_test_lock); 938 939/* 940 * Deadlock detection: 941 * 942 * We attempt to detect deadlocks that are due purely to posix file 943 * locks. 944 * 945 * We assume that a task can be waiting for at most one lock at a time. 946 * So for any acquired lock, the process holding that lock may be 947 * waiting on at most one other lock. That lock in turns may be held by 948 * someone waiting for at most one other lock. Given a requested lock 949 * caller_fl which is about to wait for a conflicting lock block_fl, we 950 * follow this chain of waiters to ensure we are not about to create a 951 * cycle. 952 * 953 * Since we do this before we ever put a process to sleep on a lock, we 954 * are ensured that there is never a cycle; that is what guarantees that 955 * the while() loop in posix_locks_deadlock() eventually completes. 956 * 957 * Note: the above assumption may not be true when handling lock 958 * requests from a broken NFS client. It may also fail in the presence 959 * of tasks (such as posix threads) sharing the same open file table. 960 * To handle those cases, we just bail out after a few iterations. 961 * 962 * For FL_OFDLCK locks, the owner is the filp, not the files_struct. 963 * Because the owner is not even nominally tied to a thread of 964 * execution, the deadlock detection below can't reasonably work well. Just 965 * skip it for those. 966 * 967 * In principle, we could do a more limited deadlock detection on FL_OFDLCK 968 * locks that just checks for the case where two tasks are attempting to 969 * upgrade from read to write locks on the same inode. 970 */ 971 972#define MAX_DEADLK_ITERATIONS 10 973 974/* Find a lock that the owner of the given block_fl is blocking on. */ 975static struct file_lock *what_owner_is_waiting_for(struct file_lock *block_fl) 976{ 977 struct file_lock *fl; 978 979 hash_for_each_possible(blocked_hash, fl, fl_link, posix_owner_key(block_fl)) { 980 if (posix_same_owner(fl, block_fl)) { 981 while (fl->fl_blocker) 982 fl = fl->fl_blocker; 983 return fl; 984 } 985 } 986 return NULL; 987} 988 989/* Must be called with the blocked_lock_lock held! */ 990static int posix_locks_deadlock(struct file_lock *caller_fl, 991 struct file_lock *block_fl) 992{ 993 int i = 0; 994 995 lockdep_assert_held(&blocked_lock_lock); 996 997 /* 998 * This deadlock detector can't reasonably detect deadlocks with 999 * FL_OFDLCK locks, since they aren't owned by a process, per-se. 1000 */ 1001 if (IS_OFDLCK(caller_fl)) 1002 return 0; 1003 1004 while ((block_fl = what_owner_is_waiting_for(block_fl))) { 1005 if (i++ > MAX_DEADLK_ITERATIONS) 1006 return 0; 1007 if (posix_same_owner(caller_fl, block_fl)) 1008 return 1; 1009 } 1010 return 0; 1011} 1012 1013/* Try to create a FLOCK lock on filp. We always insert new FLOCK locks 1014 * after any leases, but before any posix locks. 1015 * 1016 * Note that if called with an FL_EXISTS argument, the caller may determine 1017 * whether or not a lock was successfully freed by testing the return 1018 * value for -ENOENT. 1019 */ 1020static int flock_lock_inode(struct inode *inode, struct file_lock *request) 1021{ 1022 struct file_lock *new_fl = NULL; 1023 struct file_lock *fl; 1024 struct file_lock_context *ctx; 1025 int error = 0; 1026 bool found = false; 1027 LIST_HEAD(dispose); 1028 1029 ctx = locks_get_lock_context(inode, request->fl_type); 1030 if (!ctx) { 1031 if (request->fl_type != F_UNLCK) 1032 return -ENOMEM; 1033 return (request->fl_flags & FL_EXISTS) ? -ENOENT : 0; 1034 } 1035 1036 if (!(request->fl_flags & FL_ACCESS) && (request->fl_type != F_UNLCK)) { 1037 new_fl = locks_alloc_lock(); 1038 if (!new_fl) 1039 return -ENOMEM; 1040 } 1041 1042 percpu_down_read(&file_rwsem); 1043 spin_lock(&ctx->flc_lock); 1044 if (request->fl_flags & FL_ACCESS) 1045 goto find_conflict; 1046 1047 list_for_each_entry(fl, &ctx->flc_flock, fl_list) { 1048 if (request->fl_file != fl->fl_file) 1049 continue; 1050 if (request->fl_type == fl->fl_type) 1051 goto out; 1052 found = true; 1053 locks_delete_lock_ctx(fl, &dispose); 1054 break; 1055 } 1056 1057 if (request->fl_type == F_UNLCK) { 1058 if ((request->fl_flags & FL_EXISTS) && !found) 1059 error = -ENOENT; 1060 goto out; 1061 } 1062 1063find_conflict: 1064 list_for_each_entry(fl, &ctx->flc_flock, fl_list) { 1065 if (!flock_locks_conflict(request, fl)) 1066 continue; 1067 error = -EAGAIN; 1068 if (!(request->fl_flags & FL_SLEEP)) 1069 goto out; 1070 error = FILE_LOCK_DEFERRED; 1071 locks_insert_block(fl, request, flock_locks_conflict); 1072 goto out; 1073 } 1074 if (request->fl_flags & FL_ACCESS) 1075 goto out; 1076 locks_copy_lock(new_fl, request); 1077 locks_move_blocks(new_fl, request); 1078 locks_insert_lock_ctx(new_fl, &ctx->flc_flock); 1079 new_fl = NULL; 1080 error = 0; 1081 1082out: 1083 spin_unlock(&ctx->flc_lock); 1084 percpu_up_read(&file_rwsem); 1085 if (new_fl) 1086 locks_free_lock(new_fl); 1087 locks_dispose_list(&dispose); 1088 trace_flock_lock_inode(inode, request, error); 1089 return error; 1090} 1091 1092static int posix_lock_inode(struct inode *inode, struct file_lock *request, 1093 struct file_lock *conflock) 1094{ 1095 struct file_lock *fl, *tmp; 1096 struct file_lock *new_fl = NULL; 1097 struct file_lock *new_fl2 = NULL; 1098 struct file_lock *left = NULL; 1099 struct file_lock *right = NULL; 1100 struct file_lock_context *ctx; 1101 int error; 1102 bool added = false; 1103 LIST_HEAD(dispose); 1104 void *owner; 1105 void (*func)(void); 1106 1107 ctx = locks_get_lock_context(inode, request->fl_type); 1108 if (!ctx) 1109 return (request->fl_type == F_UNLCK) ? 0 : -ENOMEM; 1110 1111 /* 1112 * We may need two file_lock structures for this operation, 1113 * so we get them in advance to avoid races. 1114 * 1115 * In some cases we can be sure, that no new locks will be needed 1116 */ 1117 if (!(request->fl_flags & FL_ACCESS) && 1118 (request->fl_type != F_UNLCK || 1119 request->fl_start != 0 || request->fl_end != OFFSET_MAX)) { 1120 new_fl = locks_alloc_lock(); 1121 new_fl2 = locks_alloc_lock(); 1122 } 1123 1124retry: 1125 percpu_down_read(&file_rwsem); 1126 spin_lock(&ctx->flc_lock); 1127 /* 1128 * New lock request. Walk all POSIX locks and look for conflicts. If 1129 * there are any, either return error or put the request on the 1130 * blocker's list of waiters and the global blocked_hash. 1131 */ 1132 if (request->fl_type != F_UNLCK) { 1133 list_for_each_entry(fl, &ctx->flc_posix, fl_list) { 1134 if (!posix_locks_conflict(request, fl)) 1135 continue; 1136 if (fl->fl_lmops && fl->fl_lmops->lm_lock_expirable 1137 && (*fl->fl_lmops->lm_lock_expirable)(fl)) { 1138 owner = fl->fl_lmops->lm_mod_owner; 1139 func = fl->fl_lmops->lm_expire_lock; 1140 __module_get(owner); 1141 spin_unlock(&ctx->flc_lock); 1142 percpu_up_read(&file_rwsem); 1143 (*func)(); 1144 module_put(owner); 1145 goto retry; 1146 } 1147 if (conflock) 1148 locks_copy_conflock(conflock, fl); 1149 error = -EAGAIN; 1150 if (!(request->fl_flags & FL_SLEEP)) 1151 goto out; 1152 /* 1153 * Deadlock detection and insertion into the blocked 1154 * locks list must be done while holding the same lock! 1155 */ 1156 error = -EDEADLK; 1157 spin_lock(&blocked_lock_lock); 1158 /* 1159 * Ensure that we don't find any locks blocked on this 1160 * request during deadlock detection. 1161 */ 1162 __locks_wake_up_blocks(request); 1163 if (likely(!posix_locks_deadlock(request, fl))) { 1164 error = FILE_LOCK_DEFERRED; 1165 __locks_insert_block(fl, request, 1166 posix_locks_conflict); 1167 } 1168 spin_unlock(&blocked_lock_lock); 1169 goto out; 1170 } 1171 } 1172 1173 /* If we're just looking for a conflict, we're done. */ 1174 error = 0; 1175 if (request->fl_flags & FL_ACCESS) 1176 goto out; 1177 1178 /* Find the first old lock with the same owner as the new lock */ 1179 list_for_each_entry(fl, &ctx->flc_posix, fl_list) { 1180 if (posix_same_owner(request, fl)) 1181 break; 1182 } 1183 1184 /* Process locks with this owner. */ 1185 list_for_each_entry_safe_from(fl, tmp, &ctx->flc_posix, fl_list) { 1186 if (!posix_same_owner(request, fl)) 1187 break; 1188 1189 /* Detect adjacent or overlapping regions (if same lock type) */ 1190 if (request->fl_type == fl->fl_type) { 1191 /* In all comparisons of start vs end, use 1192 * "start - 1" rather than "end + 1". If end 1193 * is OFFSET_MAX, end + 1 will become negative. 1194 */ 1195 if (fl->fl_end < request->fl_start - 1) 1196 continue; 1197 /* If the next lock in the list has entirely bigger 1198 * addresses than the new one, insert the lock here. 1199 */ 1200 if (fl->fl_start - 1 > request->fl_end) 1201 break; 1202 1203 /* If we come here, the new and old lock are of the 1204 * same type and adjacent or overlapping. Make one 1205 * lock yielding from the lower start address of both 1206 * locks to the higher end address. 1207 */ 1208 if (fl->fl_start > request->fl_start) 1209 fl->fl_start = request->fl_start; 1210 else 1211 request->fl_start = fl->fl_start; 1212 if (fl->fl_end < request->fl_end) 1213 fl->fl_end = request->fl_end; 1214 else 1215 request->fl_end = fl->fl_end; 1216 if (added) { 1217 locks_delete_lock_ctx(fl, &dispose); 1218 continue; 1219 } 1220 request = fl; 1221 added = true; 1222 } else { 1223 /* Processing for different lock types is a bit 1224 * more complex. 1225 */ 1226 if (fl->fl_end < request->fl_start) 1227 continue; 1228 if (fl->fl_start > request->fl_end) 1229 break; 1230 if (request->fl_type == F_UNLCK) 1231 added = true; 1232 if (fl->fl_start < request->fl_start) 1233 left = fl; 1234 /* If the next lock in the list has a higher end 1235 * address than the new one, insert the new one here. 1236 */ 1237 if (fl->fl_end > request->fl_end) { 1238 right = fl; 1239 break; 1240 } 1241 if (fl->fl_start >= request->fl_start) { 1242 /* The new lock completely replaces an old 1243 * one (This may happen several times). 1244 */ 1245 if (added) { 1246 locks_delete_lock_ctx(fl, &dispose); 1247 continue; 1248 } 1249 /* 1250 * Replace the old lock with new_fl, and 1251 * remove the old one. It's safe to do the 1252 * insert here since we know that we won't be 1253 * using new_fl later, and that the lock is 1254 * just replacing an existing lock. 1255 */ 1256 error = -ENOLCK; 1257 if (!new_fl) 1258 goto out; 1259 locks_copy_lock(new_fl, request); 1260 locks_move_blocks(new_fl, request); 1261 request = new_fl; 1262 new_fl = NULL; 1263 locks_insert_lock_ctx(request, &fl->fl_list); 1264 locks_delete_lock_ctx(fl, &dispose); 1265 added = true; 1266 } 1267 } 1268 } 1269 1270 /* 1271 * The above code only modifies existing locks in case of merging or 1272 * replacing. If new lock(s) need to be inserted all modifications are 1273 * done below this, so it's safe yet to bail out. 1274 */ 1275 error = -ENOLCK; /* "no luck" */ 1276 if (right && left == right && !new_fl2) 1277 goto out; 1278 1279 error = 0; 1280 if (!added) { 1281 if (request->fl_type == F_UNLCK) { 1282 if (request->fl_flags & FL_EXISTS) 1283 error = -ENOENT; 1284 goto out; 1285 } 1286 1287 if (!new_fl) { 1288 error = -ENOLCK; 1289 goto out; 1290 } 1291 locks_copy_lock(new_fl, request); 1292 locks_move_blocks(new_fl, request); 1293 locks_insert_lock_ctx(new_fl, &fl->fl_list); 1294 fl = new_fl; 1295 new_fl = NULL; 1296 } 1297 if (right) { 1298 if (left == right) { 1299 /* The new lock breaks the old one in two pieces, 1300 * so we have to use the second new lock. 1301 */ 1302 left = new_fl2; 1303 new_fl2 = NULL; 1304 locks_copy_lock(left, right); 1305 locks_insert_lock_ctx(left, &fl->fl_list); 1306 } 1307 right->fl_start = request->fl_end + 1; 1308 locks_wake_up_blocks(right); 1309 } 1310 if (left) { 1311 left->fl_end = request->fl_start - 1; 1312 locks_wake_up_blocks(left); 1313 } 1314 out: 1315 spin_unlock(&ctx->flc_lock); 1316 percpu_up_read(&file_rwsem); 1317 /* 1318 * Free any unused locks. 1319 */ 1320 if (new_fl) 1321 locks_free_lock(new_fl); 1322 if (new_fl2) 1323 locks_free_lock(new_fl2); 1324 locks_dispose_list(&dispose); 1325 trace_posix_lock_inode(inode, request, error); 1326 1327 return error; 1328} 1329 1330/** 1331 * posix_lock_file - Apply a POSIX-style lock to a file 1332 * @filp: The file to apply the lock to 1333 * @fl: The lock to be applied 1334 * @conflock: Place to return a copy of the conflicting lock, if found. 1335 * 1336 * Add a POSIX style lock to a file. 1337 * We merge adjacent & overlapping locks whenever possible. 1338 * POSIX locks are sorted by owner task, then by starting address 1339 * 1340 * Note that if called with an FL_EXISTS argument, the caller may determine 1341 * whether or not a lock was successfully freed by testing the return 1342 * value for -ENOENT. 1343 */ 1344int posix_lock_file(struct file *filp, struct file_lock *fl, 1345 struct file_lock *conflock) 1346{ 1347 return posix_lock_inode(locks_inode(filp), fl, conflock); 1348} 1349EXPORT_SYMBOL(posix_lock_file); 1350 1351/** 1352 * posix_lock_inode_wait - Apply a POSIX-style lock to a file 1353 * @inode: inode of file to which lock request should be applied 1354 * @fl: The lock to be applied 1355 * 1356 * Apply a POSIX style lock request to an inode. 1357 */ 1358static int posix_lock_inode_wait(struct inode *inode, struct file_lock *fl) 1359{ 1360 int error; 1361 might_sleep (); 1362 for (;;) { 1363 error = posix_lock_inode(inode, fl, NULL); 1364 if (error != FILE_LOCK_DEFERRED) 1365 break; 1366 error = wait_event_interruptible(fl->fl_wait, 1367 list_empty(&fl->fl_blocked_member)); 1368 if (error) 1369 break; 1370 } 1371 locks_delete_block(fl); 1372 return error; 1373} 1374 1375static void lease_clear_pending(struct file_lock *fl, int arg) 1376{ 1377 switch (arg) { 1378 case F_UNLCK: 1379 fl->fl_flags &= ~FL_UNLOCK_PENDING; 1380 fallthrough; 1381 case F_RDLCK: 1382 fl->fl_flags &= ~FL_DOWNGRADE_PENDING; 1383 } 1384} 1385 1386/* We already had a lease on this file; just change its type */ 1387int lease_modify(struct file_lock *fl, int arg, struct list_head *dispose) 1388{ 1389 int error = assign_type(fl, arg); 1390 1391 if (error) 1392 return error; 1393 lease_clear_pending(fl, arg); 1394 locks_wake_up_blocks(fl); 1395 if (arg == F_UNLCK) { 1396 struct file *filp = fl->fl_file; 1397 1398 f_delown(filp); 1399 filp->f_owner.signum = 0; 1400 fasync_helper(0, fl->fl_file, 0, &fl->fl_fasync); 1401 if (fl->fl_fasync != NULL) { 1402 printk(KERN_ERR "locks_delete_lock: fasync == %p\n", fl->fl_fasync); 1403 fl->fl_fasync = NULL; 1404 } 1405 locks_delete_lock_ctx(fl, dispose); 1406 } 1407 return 0; 1408} 1409EXPORT_SYMBOL(lease_modify); 1410 1411static bool past_time(unsigned long then) 1412{ 1413 if (!then) 1414 /* 0 is a special value meaning "this never expires": */ 1415 return false; 1416 return time_after(jiffies, then); 1417} 1418 1419static void time_out_leases(struct inode *inode, struct list_head *dispose) 1420{ 1421 struct file_lock_context *ctx = inode->i_flctx; 1422 struct file_lock *fl, *tmp; 1423 1424 lockdep_assert_held(&ctx->flc_lock); 1425 1426 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) { 1427 trace_time_out_leases(inode, fl); 1428 if (past_time(fl->fl_downgrade_time)) 1429 lease_modify(fl, F_RDLCK, dispose); 1430 if (past_time(fl->fl_break_time)) 1431 lease_modify(fl, F_UNLCK, dispose); 1432 } 1433} 1434 1435static bool leases_conflict(struct file_lock *lease, struct file_lock *breaker) 1436{ 1437 bool rc; 1438 1439 if (lease->fl_lmops->lm_breaker_owns_lease 1440 && lease->fl_lmops->lm_breaker_owns_lease(lease)) 1441 return false; 1442 if ((breaker->fl_flags & FL_LAYOUT) != (lease->fl_flags & FL_LAYOUT)) { 1443 rc = false; 1444 goto trace; 1445 } 1446 if ((breaker->fl_flags & FL_DELEG) && (lease->fl_flags & FL_LEASE)) { 1447 rc = false; 1448 goto trace; 1449 } 1450 1451 rc = locks_conflict(breaker, lease); 1452trace: 1453 trace_leases_conflict(rc, lease, breaker); 1454 return rc; 1455} 1456 1457static bool 1458any_leases_conflict(struct inode *inode, struct file_lock *breaker) 1459{ 1460 struct file_lock_context *ctx = inode->i_flctx; 1461 struct file_lock *fl; 1462 1463 lockdep_assert_held(&ctx->flc_lock); 1464 1465 list_for_each_entry(fl, &ctx->flc_lease, fl_list) { 1466 if (leases_conflict(fl, breaker)) 1467 return true; 1468 } 1469 return false; 1470} 1471 1472/** 1473 * __break_lease - revoke all outstanding leases on file 1474 * @inode: the inode of the file to return 1475 * @mode: O_RDONLY: break only write leases; O_WRONLY or O_RDWR: 1476 * break all leases 1477 * @type: FL_LEASE: break leases and delegations; FL_DELEG: break 1478 * only delegations 1479 * 1480 * break_lease (inlined for speed) has checked there already is at least 1481 * some kind of lock (maybe a lease) on this file. Leases are broken on 1482 * a call to open() or truncate(). This function can sleep unless you 1483 * specified %O_NONBLOCK to your open(). 1484 */ 1485int __break_lease(struct inode *inode, unsigned int mode, unsigned int type) 1486{ 1487 int error = 0; 1488 struct file_lock_context *ctx; 1489 struct file_lock *new_fl, *fl, *tmp; 1490 unsigned long break_time; 1491 int want_write = (mode & O_ACCMODE) != O_RDONLY; 1492 LIST_HEAD(dispose); 1493 1494 new_fl = lease_alloc(NULL, want_write ? F_WRLCK : F_RDLCK); 1495 if (IS_ERR(new_fl)) 1496 return PTR_ERR(new_fl); 1497 new_fl->fl_flags = type; 1498 1499 /* typically we will check that ctx is non-NULL before calling */ 1500 ctx = smp_load_acquire(&inode->i_flctx); 1501 if (!ctx) { 1502 WARN_ON_ONCE(1); 1503 goto free_lock; 1504 } 1505 1506 percpu_down_read(&file_rwsem); 1507 spin_lock(&ctx->flc_lock); 1508 1509 time_out_leases(inode, &dispose); 1510 1511 if (!any_leases_conflict(inode, new_fl)) 1512 goto out; 1513 1514 break_time = 0; 1515 if (lease_break_time > 0) { 1516 break_time = jiffies + lease_break_time * HZ; 1517 if (break_time == 0) 1518 break_time++; /* so that 0 means no break time */ 1519 } 1520 1521 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) { 1522 if (!leases_conflict(fl, new_fl)) 1523 continue; 1524 if (want_write) { 1525 if (fl->fl_flags & FL_UNLOCK_PENDING) 1526 continue; 1527 fl->fl_flags |= FL_UNLOCK_PENDING; 1528 fl->fl_break_time = break_time; 1529 } else { 1530 if (lease_breaking(fl)) 1531 continue; 1532 fl->fl_flags |= FL_DOWNGRADE_PENDING; 1533 fl->fl_downgrade_time = break_time; 1534 } 1535 if (fl->fl_lmops->lm_break(fl)) 1536 locks_delete_lock_ctx(fl, &dispose); 1537 } 1538 1539 if (list_empty(&ctx->flc_lease)) 1540 goto out; 1541 1542 if (mode & O_NONBLOCK) { 1543 trace_break_lease_noblock(inode, new_fl); 1544 error = -EWOULDBLOCK; 1545 goto out; 1546 } 1547 1548restart: 1549 fl = list_first_entry(&ctx->flc_lease, struct file_lock, fl_list); 1550 break_time = fl->fl_break_time; 1551 if (break_time != 0) 1552 break_time -= jiffies; 1553 if (break_time == 0) 1554 break_time++; 1555 locks_insert_block(fl, new_fl, leases_conflict); 1556 trace_break_lease_block(inode, new_fl); 1557 spin_unlock(&ctx->flc_lock); 1558 percpu_up_read(&file_rwsem); 1559 1560 locks_dispose_list(&dispose); 1561 error = wait_event_interruptible_timeout(new_fl->fl_wait, 1562 list_empty(&new_fl->fl_blocked_member), 1563 break_time); 1564 1565 percpu_down_read(&file_rwsem); 1566 spin_lock(&ctx->flc_lock); 1567 trace_break_lease_unblock(inode, new_fl); 1568 locks_delete_block(new_fl); 1569 if (error >= 0) { 1570 /* 1571 * Wait for the next conflicting lease that has not been 1572 * broken yet 1573 */ 1574 if (error == 0) 1575 time_out_leases(inode, &dispose); 1576 if (any_leases_conflict(inode, new_fl)) 1577 goto restart; 1578 error = 0; 1579 } 1580out: 1581 spin_unlock(&ctx->flc_lock); 1582 percpu_up_read(&file_rwsem); 1583 locks_dispose_list(&dispose); 1584free_lock: 1585 locks_free_lock(new_fl); 1586 return error; 1587} 1588EXPORT_SYMBOL(__break_lease); 1589 1590/** 1591 * lease_get_mtime - update modified time of an inode with exclusive lease 1592 * @inode: the inode 1593 * @time: pointer to a timespec which contains the last modified time 1594 * 1595 * This is to force NFS clients to flush their caches for files with 1596 * exclusive leases. The justification is that if someone has an 1597 * exclusive lease, then they could be modifying it. 1598 */ 1599void lease_get_mtime(struct inode *inode, struct timespec64 *time) 1600{ 1601 bool has_lease = false; 1602 struct file_lock_context *ctx; 1603 struct file_lock *fl; 1604 1605 ctx = smp_load_acquire(&inode->i_flctx); 1606 if (ctx && !list_empty_careful(&ctx->flc_lease)) { 1607 spin_lock(&ctx->flc_lock); 1608 fl = list_first_entry_or_null(&ctx->flc_lease, 1609 struct file_lock, fl_list); 1610 if (fl && (fl->fl_type == F_WRLCK)) 1611 has_lease = true; 1612 spin_unlock(&ctx->flc_lock); 1613 } 1614 1615 if (has_lease) 1616 *time = current_time(inode); 1617} 1618EXPORT_SYMBOL(lease_get_mtime); 1619 1620/** 1621 * fcntl_getlease - Enquire what lease is currently active 1622 * @filp: the file 1623 * 1624 * The value returned by this function will be one of 1625 * (if no lease break is pending): 1626 * 1627 * %F_RDLCK to indicate a shared lease is held. 1628 * 1629 * %F_WRLCK to indicate an exclusive lease is held. 1630 * 1631 * %F_UNLCK to indicate no lease is held. 1632 * 1633 * (if a lease break is pending): 1634 * 1635 * %F_RDLCK to indicate an exclusive lease needs to be 1636 * changed to a shared lease (or removed). 1637 * 1638 * %F_UNLCK to indicate the lease needs to be removed. 1639 * 1640 * XXX: sfr & willy disagree over whether F_INPROGRESS 1641 * should be returned to userspace. 1642 */ 1643int fcntl_getlease(struct file *filp) 1644{ 1645 struct file_lock *fl; 1646 struct inode *inode = locks_inode(filp); 1647 struct file_lock_context *ctx; 1648 int type = F_UNLCK; 1649 LIST_HEAD(dispose); 1650 1651 ctx = smp_load_acquire(&inode->i_flctx); 1652 if (ctx && !list_empty_careful(&ctx->flc_lease)) { 1653 percpu_down_read(&file_rwsem); 1654 spin_lock(&ctx->flc_lock); 1655 time_out_leases(inode, &dispose); 1656 list_for_each_entry(fl, &ctx->flc_lease, fl_list) { 1657 if (fl->fl_file != filp) 1658 continue; 1659 type = target_leasetype(fl); 1660 break; 1661 } 1662 spin_unlock(&ctx->flc_lock); 1663 percpu_up_read(&file_rwsem); 1664 1665 locks_dispose_list(&dispose); 1666 } 1667 return type; 1668} 1669 1670/** 1671 * check_conflicting_open - see if the given file points to an inode that has 1672 * an existing open that would conflict with the 1673 * desired lease. 1674 * @filp: file to check 1675 * @arg: type of lease that we're trying to acquire 1676 * @flags: current lock flags 1677 * 1678 * Check to see if there's an existing open fd on this file that would 1679 * conflict with the lease we're trying to set. 1680 */ 1681static int 1682check_conflicting_open(struct file *filp, const long arg, int flags) 1683{ 1684 struct inode *inode = locks_inode(filp); 1685 int self_wcount = 0, self_rcount = 0; 1686 1687 if (flags & FL_LAYOUT) 1688 return 0; 1689 if (flags & FL_DELEG) 1690 /* We leave these checks to the caller */ 1691 return 0; 1692 1693 if (arg == F_RDLCK) 1694 return inode_is_open_for_write(inode) ? -EAGAIN : 0; 1695 else if (arg != F_WRLCK) 1696 return 0; 1697 1698 /* 1699 * Make sure that only read/write count is from lease requestor. 1700 * Note that this will result in denying write leases when i_writecount 1701 * is negative, which is what we want. (We shouldn't grant write leases 1702 * on files open for execution.) 1703 */ 1704 if (filp->f_mode & FMODE_WRITE) 1705 self_wcount = 1; 1706 else if (filp->f_mode & FMODE_READ) 1707 self_rcount = 1; 1708 1709 if (atomic_read(&inode->i_writecount) != self_wcount || 1710 atomic_read(&inode->i_readcount) != self_rcount) 1711 return -EAGAIN; 1712 1713 return 0; 1714} 1715 1716static int 1717generic_add_lease(struct file *filp, long arg, struct file_lock **flp, void **priv) 1718{ 1719 struct file_lock *fl, *my_fl = NULL, *lease; 1720 struct inode *inode = locks_inode(filp); 1721 struct file_lock_context *ctx; 1722 bool is_deleg = (*flp)->fl_flags & FL_DELEG; 1723 int error; 1724 LIST_HEAD(dispose); 1725 1726 lease = *flp; 1727 trace_generic_add_lease(inode, lease); 1728 1729 /* Note that arg is never F_UNLCK here */ 1730 ctx = locks_get_lock_context(inode, arg); 1731 if (!ctx) 1732 return -ENOMEM; 1733 1734 /* 1735 * In the delegation case we need mutual exclusion with 1736 * a number of operations that take the i_mutex. We trylock 1737 * because delegations are an optional optimization, and if 1738 * there's some chance of a conflict--we'd rather not 1739 * bother, maybe that's a sign this just isn't a good file to 1740 * hand out a delegation on. 1741 */ 1742 if (is_deleg && !inode_trylock(inode)) 1743 return -EAGAIN; 1744 1745 if (is_deleg && arg == F_WRLCK) { 1746 /* Write delegations are not currently supported: */ 1747 inode_unlock(inode); 1748 WARN_ON_ONCE(1); 1749 return -EINVAL; 1750 } 1751 1752 percpu_down_read(&file_rwsem); 1753 spin_lock(&ctx->flc_lock); 1754 time_out_leases(inode, &dispose); 1755 error = check_conflicting_open(filp, arg, lease->fl_flags); 1756 if (error) 1757 goto out; 1758 1759 /* 1760 * At this point, we know that if there is an exclusive 1761 * lease on this file, then we hold it on this filp 1762 * (otherwise our open of this file would have blocked). 1763 * And if we are trying to acquire an exclusive lease, 1764 * then the file is not open by anyone (including us) 1765 * except for this filp. 1766 */ 1767 error = -EAGAIN; 1768 list_for_each_entry(fl, &ctx->flc_lease, fl_list) { 1769 if (fl->fl_file == filp && 1770 fl->fl_owner == lease->fl_owner) { 1771 my_fl = fl; 1772 continue; 1773 } 1774 1775 /* 1776 * No exclusive leases if someone else has a lease on 1777 * this file: 1778 */ 1779 if (arg == F_WRLCK) 1780 goto out; 1781 /* 1782 * Modifying our existing lease is OK, but no getting a 1783 * new lease if someone else is opening for write: 1784 */ 1785 if (fl->fl_flags & FL_UNLOCK_PENDING) 1786 goto out; 1787 } 1788 1789 if (my_fl != NULL) { 1790 lease = my_fl; 1791 error = lease->fl_lmops->lm_change(lease, arg, &dispose); 1792 if (error) 1793 goto out; 1794 goto out_setup; 1795 } 1796 1797 error = -EINVAL; 1798 if (!leases_enable) 1799 goto out; 1800 1801 locks_insert_lock_ctx(lease, &ctx->flc_lease); 1802 /* 1803 * The check in break_lease() is lockless. It's possible for another 1804 * open to race in after we did the earlier check for a conflicting 1805 * open but before the lease was inserted. Check again for a 1806 * conflicting open and cancel the lease if there is one. 1807 * 1808 * We also add a barrier here to ensure that the insertion of the lock 1809 * precedes these checks. 1810 */ 1811 smp_mb(); 1812 error = check_conflicting_open(filp, arg, lease->fl_flags); 1813 if (error) { 1814 locks_unlink_lock_ctx(lease); 1815 goto out; 1816 } 1817 1818out_setup: 1819 if (lease->fl_lmops->lm_setup) 1820 lease->fl_lmops->lm_setup(lease, priv); 1821out: 1822 spin_unlock(&ctx->flc_lock); 1823 percpu_up_read(&file_rwsem); 1824 locks_dispose_list(&dispose); 1825 if (is_deleg) 1826 inode_unlock(inode); 1827 if (!error && !my_fl) 1828 *flp = NULL; 1829 return error; 1830} 1831 1832static int generic_delete_lease(struct file *filp, void *owner) 1833{ 1834 int error = -EAGAIN; 1835 struct file_lock *fl, *victim = NULL; 1836 struct inode *inode = locks_inode(filp); 1837 struct file_lock_context *ctx; 1838 LIST_HEAD(dispose); 1839 1840 ctx = smp_load_acquire(&inode->i_flctx); 1841 if (!ctx) { 1842 trace_generic_delete_lease(inode, NULL); 1843 return error; 1844 } 1845 1846 percpu_down_read(&file_rwsem); 1847 spin_lock(&ctx->flc_lock); 1848 list_for_each_entry(fl, &ctx->flc_lease, fl_list) { 1849 if (fl->fl_file == filp && 1850 fl->fl_owner == owner) { 1851 victim = fl; 1852 break; 1853 } 1854 } 1855 trace_generic_delete_lease(inode, victim); 1856 if (victim) 1857 error = fl->fl_lmops->lm_change(victim, F_UNLCK, &dispose); 1858 spin_unlock(&ctx->flc_lock); 1859 percpu_up_read(&file_rwsem); 1860 locks_dispose_list(&dispose); 1861 return error; 1862} 1863 1864/** 1865 * generic_setlease - sets a lease on an open file 1866 * @filp: file pointer 1867 * @arg: type of lease to obtain 1868 * @flp: input - file_lock to use, output - file_lock inserted 1869 * @priv: private data for lm_setup (may be NULL if lm_setup 1870 * doesn't require it) 1871 * 1872 * The (input) flp->fl_lmops->lm_break function is required 1873 * by break_lease(). 1874 */ 1875int generic_setlease(struct file *filp, long arg, struct file_lock **flp, 1876 void **priv) 1877{ 1878 struct inode *inode = locks_inode(filp); 1879 int error; 1880 1881 if ((!uid_eq(current_fsuid(), inode->i_uid)) && !capable(CAP_LEASE)) 1882 return -EACCES; 1883 if (!S_ISREG(inode->i_mode)) 1884 return -EINVAL; 1885 error = security_file_lock(filp, arg); 1886 if (error) 1887 return error; 1888 1889 switch (arg) { 1890 case F_UNLCK: 1891 return generic_delete_lease(filp, *priv); 1892 case F_RDLCK: 1893 case F_WRLCK: 1894 if (!(*flp)->fl_lmops->lm_break) { 1895 WARN_ON_ONCE(1); 1896 return -ENOLCK; 1897 } 1898 1899 return generic_add_lease(filp, arg, flp, priv); 1900 default: 1901 return -EINVAL; 1902 } 1903} 1904EXPORT_SYMBOL(generic_setlease); 1905 1906#if IS_ENABLED(CONFIG_SRCU) 1907/* 1908 * Kernel subsystems can register to be notified on any attempt to set 1909 * a new lease with the lease_notifier_chain. This is used by (e.g.) nfsd 1910 * to close files that it may have cached when there is an attempt to set a 1911 * conflicting lease. 1912 */ 1913static struct srcu_notifier_head lease_notifier_chain; 1914 1915static inline void 1916lease_notifier_chain_init(void) 1917{ 1918 srcu_init_notifier_head(&lease_notifier_chain); 1919} 1920 1921static inline void 1922setlease_notifier(long arg, struct file_lock *lease) 1923{ 1924 if (arg != F_UNLCK) 1925 srcu_notifier_call_chain(&lease_notifier_chain, arg, lease); 1926} 1927 1928int lease_register_notifier(struct notifier_block *nb) 1929{ 1930 return srcu_notifier_chain_register(&lease_notifier_chain, nb); 1931} 1932EXPORT_SYMBOL_GPL(lease_register_notifier); 1933 1934void lease_unregister_notifier(struct notifier_block *nb) 1935{ 1936 srcu_notifier_chain_unregister(&lease_notifier_chain, nb); 1937} 1938EXPORT_SYMBOL_GPL(lease_unregister_notifier); 1939 1940#else /* !IS_ENABLED(CONFIG_SRCU) */ 1941static inline void 1942lease_notifier_chain_init(void) 1943{ 1944} 1945 1946static inline void 1947setlease_notifier(long arg, struct file_lock *lease) 1948{ 1949} 1950 1951int lease_register_notifier(struct notifier_block *nb) 1952{ 1953 return 0; 1954} 1955EXPORT_SYMBOL_GPL(lease_register_notifier); 1956 1957void lease_unregister_notifier(struct notifier_block *nb) 1958{ 1959} 1960EXPORT_SYMBOL_GPL(lease_unregister_notifier); 1961 1962#endif /* IS_ENABLED(CONFIG_SRCU) */ 1963 1964/** 1965 * vfs_setlease - sets a lease on an open file 1966 * @filp: file pointer 1967 * @arg: type of lease to obtain 1968 * @lease: file_lock to use when adding a lease 1969 * @priv: private info for lm_setup when adding a lease (may be 1970 * NULL if lm_setup doesn't require it) 1971 * 1972 * Call this to establish a lease on the file. The "lease" argument is not 1973 * used for F_UNLCK requests and may be NULL. For commands that set or alter 1974 * an existing lease, the ``(*lease)->fl_lmops->lm_break`` operation must be 1975 * set; if not, this function will return -ENOLCK (and generate a scary-looking 1976 * stack trace). 1977 * 1978 * The "priv" pointer is passed directly to the lm_setup function as-is. It 1979 * may be NULL if the lm_setup operation doesn't require it. 1980 */ 1981int 1982vfs_setlease(struct file *filp, long arg, struct file_lock **lease, void **priv) 1983{ 1984 if (lease) 1985 setlease_notifier(arg, *lease); 1986 if (filp->f_op->setlease) 1987 return filp->f_op->setlease(filp, arg, lease, priv); 1988 else 1989 return generic_setlease(filp, arg, lease, priv); 1990} 1991EXPORT_SYMBOL_GPL(vfs_setlease); 1992 1993static int do_fcntl_add_lease(unsigned int fd, struct file *filp, long arg) 1994{ 1995 struct file_lock *fl; 1996 struct fasync_struct *new; 1997 int error; 1998 1999 fl = lease_alloc(filp, arg); 2000 if (IS_ERR(fl)) 2001 return PTR_ERR(fl); 2002 2003 new = fasync_alloc(); 2004 if (!new) { 2005 locks_free_lock(fl); 2006 return -ENOMEM; 2007 } 2008 new->fa_fd = fd; 2009 2010 error = vfs_setlease(filp, arg, &fl, (void **)&new); 2011 if (fl) 2012 locks_free_lock(fl); 2013 if (new) 2014 fasync_free(new); 2015 return error; 2016} 2017 2018/** 2019 * fcntl_setlease - sets a lease on an open file 2020 * @fd: open file descriptor 2021 * @filp: file pointer 2022 * @arg: type of lease to obtain 2023 * 2024 * Call this fcntl to establish a lease on the file. 2025 * Note that you also need to call %F_SETSIG to 2026 * receive a signal when the lease is broken. 2027 */ 2028int fcntl_setlease(unsigned int fd, struct file *filp, long arg) 2029{ 2030 if (arg == F_UNLCK) 2031 return vfs_setlease(filp, F_UNLCK, NULL, (void **)&filp); 2032 return do_fcntl_add_lease(fd, filp, arg); 2033} 2034 2035/** 2036 * flock_lock_inode_wait - Apply a FLOCK-style lock to a file 2037 * @inode: inode of the file to apply to 2038 * @fl: The lock to be applied 2039 * 2040 * Apply a FLOCK style lock request to an inode. 2041 */ 2042static int flock_lock_inode_wait(struct inode *inode, struct file_lock *fl) 2043{ 2044 int error; 2045 might_sleep(); 2046 for (;;) { 2047 error = flock_lock_inode(inode, fl); 2048 if (error != FILE_LOCK_DEFERRED) 2049 break; 2050 error = wait_event_interruptible(fl->fl_wait, 2051 list_empty(&fl->fl_blocked_member)); 2052 if (error) 2053 break; 2054 } 2055 locks_delete_block(fl); 2056 return error; 2057} 2058 2059/** 2060 * locks_lock_inode_wait - Apply a lock to an inode 2061 * @inode: inode of the file to apply to 2062 * @fl: The lock to be applied 2063 * 2064 * Apply a POSIX or FLOCK style lock request to an inode. 2065 */ 2066int locks_lock_inode_wait(struct inode *inode, struct file_lock *fl) 2067{ 2068 int res = 0; 2069 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) { 2070 case FL_POSIX: 2071 res = posix_lock_inode_wait(inode, fl); 2072 break; 2073 case FL_FLOCK: 2074 res = flock_lock_inode_wait(inode, fl); 2075 break; 2076 default: 2077 BUG(); 2078 } 2079 return res; 2080} 2081EXPORT_SYMBOL(locks_lock_inode_wait); 2082 2083/** 2084 * sys_flock: - flock() system call. 2085 * @fd: the file descriptor to lock. 2086 * @cmd: the type of lock to apply. 2087 * 2088 * Apply a %FL_FLOCK style lock to an open file descriptor. 2089 * The @cmd can be one of: 2090 * 2091 * - %LOCK_SH -- a shared lock. 2092 * - %LOCK_EX -- an exclusive lock. 2093 * - %LOCK_UN -- remove an existing lock. 2094 * - %LOCK_MAND -- a 'mandatory' flock. (DEPRECATED) 2095 * 2096 * %LOCK_MAND support has been removed from the kernel. 2097 */ 2098SYSCALL_DEFINE2(flock, unsigned int, fd, unsigned int, cmd) 2099{ 2100 struct fd f = fdget(fd); 2101 struct file_lock *lock; 2102 int can_sleep, unlock; 2103 int error; 2104 2105 error = -EBADF; 2106 if (!f.file) 2107 goto out; 2108 2109 can_sleep = !(cmd & LOCK_NB); 2110 cmd &= ~LOCK_NB; 2111 unlock = (cmd == LOCK_UN); 2112 2113 if (!unlock && !(f.file->f_mode & (FMODE_READ|FMODE_WRITE))) 2114 goto out_putf; 2115 2116 /* 2117 * LOCK_MAND locks were broken for a long time in that they never 2118 * conflicted with one another and didn't prevent any sort of open, 2119 * read or write activity. 2120 * 2121 * Just ignore these requests now, to preserve legacy behavior, but 2122 * throw a warning to let people know that they don't actually work. 2123 */ 2124 if (cmd & LOCK_MAND) { 2125 pr_warn_once("Attempt to set a LOCK_MAND lock via flock(2). This support has been removed and the request ignored.\n"); 2126 error = 0; 2127 goto out_putf; 2128 } 2129 2130 lock = flock_make_lock(f.file, cmd, NULL); 2131 if (IS_ERR(lock)) { 2132 error = PTR_ERR(lock); 2133 goto out_putf; 2134 } 2135 2136 if (can_sleep) 2137 lock->fl_flags |= FL_SLEEP; 2138 2139 error = security_file_lock(f.file, lock->fl_type); 2140 if (error) 2141 goto out_free; 2142 2143 if (f.file->f_op->flock) 2144 error = f.file->f_op->flock(f.file, 2145 (can_sleep) ? F_SETLKW : F_SETLK, 2146 lock); 2147 else 2148 error = locks_lock_file_wait(f.file, lock); 2149 2150 out_free: 2151 locks_free_lock(lock); 2152 2153 out_putf: 2154 fdput(f); 2155 out: 2156 return error; 2157} 2158 2159/** 2160 * vfs_test_lock - test file byte range lock 2161 * @filp: The file to test lock for 2162 * @fl: The lock to test; also used to hold result 2163 * 2164 * Returns -ERRNO on failure. Indicates presence of conflicting lock by 2165 * setting conf->fl_type to something other than F_UNLCK. 2166 */ 2167int vfs_test_lock(struct file *filp, struct file_lock *fl) 2168{ 2169 if (filp->f_op->lock) 2170 return filp->f_op->lock(filp, F_GETLK, fl); 2171 posix_test_lock(filp, fl); 2172 return 0; 2173} 2174EXPORT_SYMBOL_GPL(vfs_test_lock); 2175 2176/** 2177 * locks_translate_pid - translate a file_lock's fl_pid number into a namespace 2178 * @fl: The file_lock who's fl_pid should be translated 2179 * @ns: The namespace into which the pid should be translated 2180 * 2181 * Used to tranlate a fl_pid into a namespace virtual pid number 2182 */ 2183static pid_t locks_translate_pid(struct file_lock *fl, struct pid_namespace *ns) 2184{ 2185 pid_t vnr; 2186 struct pid *pid; 2187 2188 if (IS_OFDLCK(fl)) 2189 return -1; 2190 if (IS_REMOTELCK(fl)) 2191 return fl->fl_pid; 2192 /* 2193 * If the flock owner process is dead and its pid has been already 2194 * freed, the translation below won't work, but we still want to show 2195 * flock owner pid number in init pidns. 2196 */ 2197 if (ns == &init_pid_ns) 2198 return (pid_t)fl->fl_pid; 2199 2200 rcu_read_lock(); 2201 pid = find_pid_ns(fl->fl_pid, &init_pid_ns); 2202 vnr = pid_nr_ns(pid, ns); 2203 rcu_read_unlock(); 2204 return vnr; 2205} 2206 2207static int posix_lock_to_flock(struct flock *flock, struct file_lock *fl) 2208{ 2209 flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current)); 2210#if BITS_PER_LONG == 32 2211 /* 2212 * Make sure we can represent the posix lock via 2213 * legacy 32bit flock. 2214 */ 2215 if (fl->fl_start > OFFT_OFFSET_MAX) 2216 return -EOVERFLOW; 2217 if (fl->fl_end != OFFSET_MAX && fl->fl_end > OFFT_OFFSET_MAX) 2218 return -EOVERFLOW; 2219#endif 2220 flock->l_start = fl->fl_start; 2221 flock->l_len = fl->fl_end == OFFSET_MAX ? 0 : 2222 fl->fl_end - fl->fl_start + 1; 2223 flock->l_whence = 0; 2224 flock->l_type = fl->fl_type; 2225 return 0; 2226} 2227 2228#if BITS_PER_LONG == 32 2229static void posix_lock_to_flock64(struct flock64 *flock, struct file_lock *fl) 2230{ 2231 flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current)); 2232 flock->l_start = fl->fl_start; 2233 flock->l_len = fl->fl_end == OFFSET_MAX ? 0 : 2234 fl->fl_end - fl->fl_start + 1; 2235 flock->l_whence = 0; 2236 flock->l_type = fl->fl_type; 2237} 2238#endif 2239 2240/* Report the first existing lock that would conflict with l. 2241 * This implements the F_GETLK command of fcntl(). 2242 */ 2243int fcntl_getlk(struct file *filp, unsigned int cmd, struct flock *flock) 2244{ 2245 struct file_lock *fl; 2246 int error; 2247 2248 fl = locks_alloc_lock(); 2249 if (fl == NULL) 2250 return -ENOMEM; 2251 error = -EINVAL; 2252 if (flock->l_type != F_RDLCK && flock->l_type != F_WRLCK) 2253 goto out; 2254 2255 error = flock_to_posix_lock(filp, fl, flock); 2256 if (error) 2257 goto out; 2258 2259 if (cmd == F_OFD_GETLK) { 2260 error = -EINVAL; 2261 if (flock->l_pid != 0) 2262 goto out; 2263 2264 fl->fl_flags |= FL_OFDLCK; 2265 fl->fl_owner = filp; 2266 } 2267 2268 error = vfs_test_lock(filp, fl); 2269 if (error) 2270 goto out; 2271 2272 flock->l_type = fl->fl_type; 2273 if (fl->fl_type != F_UNLCK) { 2274 error = posix_lock_to_flock(flock, fl); 2275 if (error) 2276 goto out; 2277 } 2278out: 2279 locks_free_lock(fl); 2280 return error; 2281} 2282 2283/** 2284 * vfs_lock_file - file byte range lock 2285 * @filp: The file to apply the lock to 2286 * @cmd: type of locking operation (F_SETLK, F_GETLK, etc.) 2287 * @fl: The lock to be applied 2288 * @conf: Place to return a copy of the conflicting lock, if found. 2289 * 2290 * A caller that doesn't care about the conflicting lock may pass NULL 2291 * as the final argument. 2292 * 2293 * If the filesystem defines a private ->lock() method, then @conf will 2294 * be left unchanged; so a caller that cares should initialize it to 2295 * some acceptable default. 2296 * 2297 * To avoid blocking kernel daemons, such as lockd, that need to acquire POSIX 2298 * locks, the ->lock() interface may return asynchronously, before the lock has 2299 * been granted or denied by the underlying filesystem, if (and only if) 2300 * lm_grant is set. Callers expecting ->lock() to return asynchronously 2301 * will only use F_SETLK, not F_SETLKW; they will set FL_SLEEP if (and only if) 2302 * the request is for a blocking lock. When ->lock() does return asynchronously, 2303 * it must return FILE_LOCK_DEFERRED, and call ->lm_grant() when the lock 2304 * request completes. 2305 * If the request is for non-blocking lock the file system should return 2306 * FILE_LOCK_DEFERRED then try to get the lock and call the callback routine 2307 * with the result. If the request timed out the callback routine will return a 2308 * nonzero return code and the file system should release the lock. The file 2309 * system is also responsible to keep a corresponding posix lock when it 2310 * grants a lock so the VFS can find out which locks are locally held and do 2311 * the correct lock cleanup when required. 2312 * The underlying filesystem must not drop the kernel lock or call 2313 * ->lm_grant() before returning to the caller with a FILE_LOCK_DEFERRED 2314 * return code. 2315 */ 2316int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf) 2317{ 2318 if (filp->f_op->lock) 2319 return filp->f_op->lock(filp, cmd, fl); 2320 else 2321 return posix_lock_file(filp, fl, conf); 2322} 2323EXPORT_SYMBOL_GPL(vfs_lock_file); 2324 2325static int do_lock_file_wait(struct file *filp, unsigned int cmd, 2326 struct file_lock *fl) 2327{ 2328 int error; 2329 2330 error = security_file_lock(filp, fl->fl_type); 2331 if (error) 2332 return error; 2333 2334 for (;;) { 2335 error = vfs_lock_file(filp, cmd, fl, NULL); 2336 if (error != FILE_LOCK_DEFERRED) 2337 break; 2338 error = wait_event_interruptible(fl->fl_wait, 2339 list_empty(&fl->fl_blocked_member)); 2340 if (error) 2341 break; 2342 } 2343 locks_delete_block(fl); 2344 2345 return error; 2346} 2347 2348/* Ensure that fl->fl_file has compatible f_mode for F_SETLK calls */ 2349static int 2350check_fmode_for_setlk(struct file_lock *fl) 2351{ 2352 switch (fl->fl_type) { 2353 case F_RDLCK: 2354 if (!(fl->fl_file->f_mode & FMODE_READ)) 2355 return -EBADF; 2356 break; 2357 case F_WRLCK: 2358 if (!(fl->fl_file->f_mode & FMODE_WRITE)) 2359 return -EBADF; 2360 } 2361 return 0; 2362} 2363 2364/* Apply the lock described by l to an open file descriptor. 2365 * This implements both the F_SETLK and F_SETLKW commands of fcntl(). 2366 */ 2367int fcntl_setlk(unsigned int fd, struct file *filp, unsigned int cmd, 2368 struct flock *flock) 2369{ 2370 struct file_lock *file_lock = locks_alloc_lock(); 2371 struct inode *inode = locks_inode(filp); 2372 struct file *f; 2373 int error; 2374 2375 if (file_lock == NULL) 2376 return -ENOLCK; 2377 2378 error = flock_to_posix_lock(filp, file_lock, flock); 2379 if (error) 2380 goto out; 2381 2382 error = check_fmode_for_setlk(file_lock); 2383 if (error) 2384 goto out; 2385 2386 /* 2387 * If the cmd is requesting file-private locks, then set the 2388 * FL_OFDLCK flag and override the owner. 2389 */ 2390 switch (cmd) { 2391 case F_OFD_SETLK: 2392 error = -EINVAL; 2393 if (flock->l_pid != 0) 2394 goto out; 2395 2396 cmd = F_SETLK; 2397 file_lock->fl_flags |= FL_OFDLCK; 2398 file_lock->fl_owner = filp; 2399 break; 2400 case F_OFD_SETLKW: 2401 error = -EINVAL; 2402 if (flock->l_pid != 0) 2403 goto out; 2404 2405 cmd = F_SETLKW; 2406 file_lock->fl_flags |= FL_OFDLCK; 2407 file_lock->fl_owner = filp; 2408 fallthrough; 2409 case F_SETLKW: 2410 file_lock->fl_flags |= FL_SLEEP; 2411 } 2412 2413 error = do_lock_file_wait(filp, cmd, file_lock); 2414 2415 /* 2416 * Attempt to detect a close/fcntl race and recover by releasing the 2417 * lock that was just acquired. There is no need to do that when we're 2418 * unlocking though, or for OFD locks. 2419 */ 2420 if (!error && file_lock->fl_type != F_UNLCK && 2421 !(file_lock->fl_flags & FL_OFDLCK)) { 2422 struct files_struct *files = current->files; 2423 /* 2424 * We need that spin_lock here - it prevents reordering between 2425 * update of i_flctx->flc_posix and check for it done in 2426 * close(). rcu_read_lock() wouldn't do. 2427 */ 2428 spin_lock(&files->file_lock); 2429 f = files_lookup_fd_locked(files, fd); 2430 spin_unlock(&files->file_lock); 2431 if (f != filp) { 2432 file_lock->fl_type = F_UNLCK; 2433 error = do_lock_file_wait(filp, cmd, file_lock); 2434 WARN_ON_ONCE(error); 2435 error = -EBADF; 2436 } 2437 } 2438out: 2439 trace_fcntl_setlk(inode, file_lock, error); 2440 locks_free_lock(file_lock); 2441 return error; 2442} 2443 2444#if BITS_PER_LONG == 32 2445/* Report the first existing lock that would conflict with l. 2446 * This implements the F_GETLK command of fcntl(). 2447 */ 2448int fcntl_getlk64(struct file *filp, unsigned int cmd, struct flock64 *flock) 2449{ 2450 struct file_lock *fl; 2451 int error; 2452 2453 fl = locks_alloc_lock(); 2454 if (fl == NULL) 2455 return -ENOMEM; 2456 2457 error = -EINVAL; 2458 if (flock->l_type != F_RDLCK && flock->l_type != F_WRLCK) 2459 goto out; 2460 2461 error = flock64_to_posix_lock(filp, fl, flock); 2462 if (error) 2463 goto out; 2464 2465 if (cmd == F_OFD_GETLK) { 2466 error = -EINVAL; 2467 if (flock->l_pid != 0) 2468 goto out; 2469 2470 cmd = F_GETLK64; 2471 fl->fl_flags |= FL_OFDLCK; 2472 fl->fl_owner = filp; 2473 } 2474 2475 error = vfs_test_lock(filp, fl); 2476 if (error) 2477 goto out; 2478 2479 flock->l_type = fl->fl_type; 2480 if (fl->fl_type != F_UNLCK) 2481 posix_lock_to_flock64(flock, fl); 2482 2483out: 2484 locks_free_lock(fl); 2485 return error; 2486} 2487 2488/* Apply the lock described by l to an open file descriptor. 2489 * This implements both the F_SETLK and F_SETLKW commands of fcntl(). 2490 */ 2491int fcntl_setlk64(unsigned int fd, struct file *filp, unsigned int cmd, 2492 struct flock64 *flock) 2493{ 2494 struct file_lock *file_lock = locks_alloc_lock(); 2495 struct file *f; 2496 int error; 2497 2498 if (file_lock == NULL) 2499 return -ENOLCK; 2500 2501 error = flock64_to_posix_lock(filp, file_lock, flock); 2502 if (error) 2503 goto out; 2504 2505 error = check_fmode_for_setlk(file_lock); 2506 if (error) 2507 goto out; 2508 2509 /* 2510 * If the cmd is requesting file-private locks, then set the 2511 * FL_OFDLCK flag and override the owner. 2512 */ 2513 switch (cmd) { 2514 case F_OFD_SETLK: 2515 error = -EINVAL; 2516 if (flock->l_pid != 0) 2517 goto out; 2518 2519 cmd = F_SETLK64; 2520 file_lock->fl_flags |= FL_OFDLCK; 2521 file_lock->fl_owner = filp; 2522 break; 2523 case F_OFD_SETLKW: 2524 error = -EINVAL; 2525 if (flock->l_pid != 0) 2526 goto out; 2527 2528 cmd = F_SETLKW64; 2529 file_lock->fl_flags |= FL_OFDLCK; 2530 file_lock->fl_owner = filp; 2531 fallthrough; 2532 case F_SETLKW64: 2533 file_lock->fl_flags |= FL_SLEEP; 2534 } 2535 2536 error = do_lock_file_wait(filp, cmd, file_lock); 2537 2538 /* 2539 * Attempt to detect a close/fcntl race and recover by releasing the 2540 * lock that was just acquired. There is no need to do that when we're 2541 * unlocking though, or for OFD locks. 2542 */ 2543 if (!error && file_lock->fl_type != F_UNLCK && 2544 !(file_lock->fl_flags & FL_OFDLCK)) { 2545 struct files_struct *files = current->files; 2546 /* 2547 * We need that spin_lock here - it prevents reordering between 2548 * update of i_flctx->flc_posix and check for it done in 2549 * close(). rcu_read_lock() wouldn't do. 2550 */ 2551 spin_lock(&files->file_lock); 2552 f = files_lookup_fd_locked(files, fd); 2553 spin_unlock(&files->file_lock); 2554 if (f != filp) { 2555 file_lock->fl_type = F_UNLCK; 2556 error = do_lock_file_wait(filp, cmd, file_lock); 2557 WARN_ON_ONCE(error); 2558 error = -EBADF; 2559 } 2560 } 2561out: 2562 locks_free_lock(file_lock); 2563 return error; 2564} 2565#endif /* BITS_PER_LONG == 32 */ 2566 2567/* 2568 * This function is called when the file is being removed 2569 * from the task's fd array. POSIX locks belonging to this task 2570 * are deleted at this time. 2571 */ 2572void locks_remove_posix(struct file *filp, fl_owner_t owner) 2573{ 2574 int error; 2575 struct inode *inode = locks_inode(filp); 2576 struct file_lock lock; 2577 struct file_lock_context *ctx; 2578 2579 /* 2580 * If there are no locks held on this file, we don't need to call 2581 * posix_lock_file(). Another process could be setting a lock on this 2582 * file at the same time, but we wouldn't remove that lock anyway. 2583 */ 2584 ctx = smp_load_acquire(&inode->i_flctx); 2585 if (!ctx || list_empty(&ctx->flc_posix)) 2586 return; 2587 2588 locks_init_lock(&lock); 2589 lock.fl_type = F_UNLCK; 2590 lock.fl_flags = FL_POSIX | FL_CLOSE; 2591 lock.fl_start = 0; 2592 lock.fl_end = OFFSET_MAX; 2593 lock.fl_owner = owner; 2594 lock.fl_pid = current->tgid; 2595 lock.fl_file = filp; 2596 lock.fl_ops = NULL; 2597 lock.fl_lmops = NULL; 2598 2599 error = vfs_lock_file(filp, F_SETLK, &lock, NULL); 2600 2601 if (lock.fl_ops && lock.fl_ops->fl_release_private) 2602 lock.fl_ops->fl_release_private(&lock); 2603 trace_locks_remove_posix(inode, &lock, error); 2604} 2605EXPORT_SYMBOL(locks_remove_posix); 2606 2607/* The i_flctx must be valid when calling into here */ 2608static void 2609locks_remove_flock(struct file *filp, struct file_lock_context *flctx) 2610{ 2611 struct file_lock fl; 2612 struct inode *inode = locks_inode(filp); 2613 2614 if (list_empty(&flctx->flc_flock)) 2615 return; 2616 2617 flock_make_lock(filp, LOCK_UN, &fl); 2618 fl.fl_flags |= FL_CLOSE; 2619 2620 if (filp->f_op->flock) 2621 filp->f_op->flock(filp, F_SETLKW, &fl); 2622 else 2623 flock_lock_inode(inode, &fl); 2624 2625 if (fl.fl_ops && fl.fl_ops->fl_release_private) 2626 fl.fl_ops->fl_release_private(&fl); 2627} 2628 2629/* The i_flctx must be valid when calling into here */ 2630static void 2631locks_remove_lease(struct file *filp, struct file_lock_context *ctx) 2632{ 2633 struct file_lock *fl, *tmp; 2634 LIST_HEAD(dispose); 2635 2636 if (list_empty(&ctx->flc_lease)) 2637 return; 2638 2639 percpu_down_read(&file_rwsem); 2640 spin_lock(&ctx->flc_lock); 2641 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) 2642 if (filp == fl->fl_file) 2643 lease_modify(fl, F_UNLCK, &dispose); 2644 spin_unlock(&ctx->flc_lock); 2645 percpu_up_read(&file_rwsem); 2646 2647 locks_dispose_list(&dispose); 2648} 2649 2650/* 2651 * This function is called on the last close of an open file. 2652 */ 2653void locks_remove_file(struct file *filp) 2654{ 2655 struct file_lock_context *ctx; 2656 2657 ctx = smp_load_acquire(&locks_inode(filp)->i_flctx); 2658 if (!ctx) 2659 return; 2660 2661 /* remove any OFD locks */ 2662 locks_remove_posix(filp, filp); 2663 2664 /* remove flock locks */ 2665 locks_remove_flock(filp, ctx); 2666 2667 /* remove any leases */ 2668 locks_remove_lease(filp, ctx); 2669 2670 spin_lock(&ctx->flc_lock); 2671 locks_check_ctx_file_list(filp, &ctx->flc_posix, "POSIX"); 2672 locks_check_ctx_file_list(filp, &ctx->flc_flock, "FLOCK"); 2673 locks_check_ctx_file_list(filp, &ctx->flc_lease, "LEASE"); 2674 spin_unlock(&ctx->flc_lock); 2675} 2676 2677/** 2678 * vfs_cancel_lock - file byte range unblock lock 2679 * @filp: The file to apply the unblock to 2680 * @fl: The lock to be unblocked 2681 * 2682 * Used by lock managers to cancel blocked requests 2683 */ 2684int vfs_cancel_lock(struct file *filp, struct file_lock *fl) 2685{ 2686 if (filp->f_op->lock) 2687 return filp->f_op->lock(filp, F_CANCELLK, fl); 2688 return 0; 2689} 2690EXPORT_SYMBOL_GPL(vfs_cancel_lock); 2691 2692#ifdef CONFIG_PROC_FS 2693#include <linux/proc_fs.h> 2694#include <linux/seq_file.h> 2695 2696struct locks_iterator { 2697 int li_cpu; 2698 loff_t li_pos; 2699}; 2700 2701static void lock_get_status(struct seq_file *f, struct file_lock *fl, 2702 loff_t id, char *pfx, int repeat) 2703{ 2704 struct inode *inode = NULL; 2705 unsigned int fl_pid; 2706 struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb); 2707 int type; 2708 2709 fl_pid = locks_translate_pid(fl, proc_pidns); 2710 /* 2711 * If lock owner is dead (and pid is freed) or not visible in current 2712 * pidns, zero is shown as a pid value. Check lock info from 2713 * init_pid_ns to get saved lock pid value. 2714 */ 2715 2716 if (fl->fl_file != NULL) 2717 inode = locks_inode(fl->fl_file); 2718 2719 seq_printf(f, "%lld: ", id); 2720 2721 if (repeat) 2722 seq_printf(f, "%*s", repeat - 1 + (int)strlen(pfx), pfx); 2723 2724 if (IS_POSIX(fl)) { 2725 if (fl->fl_flags & FL_ACCESS) 2726 seq_puts(f, "ACCESS"); 2727 else if (IS_OFDLCK(fl)) 2728 seq_puts(f, "OFDLCK"); 2729 else 2730 seq_puts(f, "POSIX "); 2731 2732 seq_printf(f, " %s ", 2733 (inode == NULL) ? "*NOINODE*" : "ADVISORY "); 2734 } else if (IS_FLOCK(fl)) { 2735 seq_puts(f, "FLOCK ADVISORY "); 2736 } else if (IS_LEASE(fl)) { 2737 if (fl->fl_flags & FL_DELEG) 2738 seq_puts(f, "DELEG "); 2739 else 2740 seq_puts(f, "LEASE "); 2741 2742 if (lease_breaking(fl)) 2743 seq_puts(f, "BREAKING "); 2744 else if (fl->fl_file) 2745 seq_puts(f, "ACTIVE "); 2746 else 2747 seq_puts(f, "BREAKER "); 2748 } else { 2749 seq_puts(f, "UNKNOWN UNKNOWN "); 2750 } 2751 type = IS_LEASE(fl) ? target_leasetype(fl) : fl->fl_type; 2752 2753 seq_printf(f, "%s ", (type == F_WRLCK) ? "WRITE" : 2754 (type == F_RDLCK) ? "READ" : "UNLCK"); 2755 if (inode) { 2756 /* userspace relies on this representation of dev_t */ 2757 seq_printf(f, "%d %02x:%02x:%lu ", fl_pid, 2758 MAJOR(inode->i_sb->s_dev), 2759 MINOR(inode->i_sb->s_dev), inode->i_ino); 2760 } else { 2761 seq_printf(f, "%d <none>:0 ", fl_pid); 2762 } 2763 if (IS_POSIX(fl)) { 2764 if (fl->fl_end == OFFSET_MAX) 2765 seq_printf(f, "%Ld EOF\n", fl->fl_start); 2766 else 2767 seq_printf(f, "%Ld %Ld\n", fl->fl_start, fl->fl_end); 2768 } else { 2769 seq_puts(f, "0 EOF\n"); 2770 } 2771} 2772 2773static struct file_lock *get_next_blocked_member(struct file_lock *node) 2774{ 2775 struct file_lock *tmp; 2776 2777 /* NULL node or root node */ 2778 if (node == NULL || node->fl_blocker == NULL) 2779 return NULL; 2780 2781 /* Next member in the linked list could be itself */ 2782 tmp = list_next_entry(node, fl_blocked_member); 2783 if (list_entry_is_head(tmp, &node->fl_blocker->fl_blocked_requests, fl_blocked_member) 2784 || tmp == node) { 2785 return NULL; 2786 } 2787 2788 return tmp; 2789} 2790 2791static int locks_show(struct seq_file *f, void *v) 2792{ 2793 struct locks_iterator *iter = f->private; 2794 struct file_lock *cur, *tmp; 2795 struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb); 2796 int level = 0; 2797 2798 cur = hlist_entry(v, struct file_lock, fl_link); 2799 2800 if (locks_translate_pid(cur, proc_pidns) == 0) 2801 return 0; 2802 2803 /* View this crossed linked list as a binary tree, the first member of fl_blocked_requests 2804 * is the left child of current node, the next silibing in fl_blocked_member is the 2805 * right child, we can alse get the parent of current node from fl_blocker, so this 2806 * question becomes traversal of a binary tree 2807 */ 2808 while (cur != NULL) { 2809 if (level) 2810 lock_get_status(f, cur, iter->li_pos, "-> ", level); 2811 else 2812 lock_get_status(f, cur, iter->li_pos, "", level); 2813 2814 if (!list_empty(&cur->fl_blocked_requests)) { 2815 /* Turn left */ 2816 cur = list_first_entry_or_null(&cur->fl_blocked_requests, 2817 struct file_lock, fl_blocked_member); 2818 level++; 2819 } else { 2820 /* Turn right */ 2821 tmp = get_next_blocked_member(cur); 2822 /* Fall back to parent node */ 2823 while (tmp == NULL && cur->fl_blocker != NULL) { 2824 cur = cur->fl_blocker; 2825 level--; 2826 tmp = get_next_blocked_member(cur); 2827 } 2828 cur = tmp; 2829 } 2830 } 2831 2832 return 0; 2833} 2834 2835static void __show_fd_locks(struct seq_file *f, 2836 struct list_head *head, int *id, 2837 struct file *filp, struct files_struct *files) 2838{ 2839 struct file_lock *fl; 2840 2841 list_for_each_entry(fl, head, fl_list) { 2842 2843 if (filp != fl->fl_file) 2844 continue; 2845 if (fl->fl_owner != files && 2846 fl->fl_owner != filp) 2847 continue; 2848 2849 (*id)++; 2850 seq_puts(f, "lock:\t"); 2851 lock_get_status(f, fl, *id, "", 0); 2852 } 2853} 2854 2855void show_fd_locks(struct seq_file *f, 2856 struct file *filp, struct files_struct *files) 2857{ 2858 struct inode *inode = locks_inode(filp); 2859 struct file_lock_context *ctx; 2860 int id = 0; 2861 2862 ctx = smp_load_acquire(&inode->i_flctx); 2863 if (!ctx) 2864 return; 2865 2866 spin_lock(&ctx->flc_lock); 2867 __show_fd_locks(f, &ctx->flc_flock, &id, filp, files); 2868 __show_fd_locks(f, &ctx->flc_posix, &id, filp, files); 2869 __show_fd_locks(f, &ctx->flc_lease, &id, filp, files); 2870 spin_unlock(&ctx->flc_lock); 2871} 2872 2873static void *locks_start(struct seq_file *f, loff_t *pos) 2874 __acquires(&blocked_lock_lock) 2875{ 2876 struct locks_iterator *iter = f->private; 2877 2878 iter->li_pos = *pos + 1; 2879 percpu_down_write(&file_rwsem); 2880 spin_lock(&blocked_lock_lock); 2881 return seq_hlist_start_percpu(&file_lock_list.hlist, &iter->li_cpu, *pos); 2882} 2883 2884static void *locks_next(struct seq_file *f, void *v, loff_t *pos) 2885{ 2886 struct locks_iterator *iter = f->private; 2887 2888 ++iter->li_pos; 2889 return seq_hlist_next_percpu(v, &file_lock_list.hlist, &iter->li_cpu, pos); 2890} 2891 2892static void locks_stop(struct seq_file *f, void *v) 2893 __releases(&blocked_lock_lock) 2894{ 2895 spin_unlock(&blocked_lock_lock); 2896 percpu_up_write(&file_rwsem); 2897} 2898 2899static const struct seq_operations locks_seq_operations = { 2900 .start = locks_start, 2901 .next = locks_next, 2902 .stop = locks_stop, 2903 .show = locks_show, 2904}; 2905 2906static int __init proc_locks_init(void) 2907{ 2908 proc_create_seq_private("locks", 0, NULL, &locks_seq_operations, 2909 sizeof(struct locks_iterator), NULL); 2910 return 0; 2911} 2912fs_initcall(proc_locks_init); 2913#endif 2914 2915static int __init filelock_init(void) 2916{ 2917 int i; 2918 2919 flctx_cache = kmem_cache_create("file_lock_ctx", 2920 sizeof(struct file_lock_context), 0, SLAB_PANIC, NULL); 2921 2922 filelock_cache = kmem_cache_create("file_lock_cache", 2923 sizeof(struct file_lock), 0, SLAB_PANIC, NULL); 2924 2925 for_each_possible_cpu(i) { 2926 struct file_lock_list_struct *fll = per_cpu_ptr(&file_lock_list, i); 2927 2928 spin_lock_init(&fll->lock); 2929 INIT_HLIST_HEAD(&fll->hlist); 2930 } 2931 2932 lease_notifier_chain_init(); 2933 return 0; 2934} 2935core_initcall(filelock_init);