cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mbcache.c (12306B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2#include <linux/spinlock.h>
      3#include <linux/slab.h>
      4#include <linux/list.h>
      5#include <linux/list_bl.h>
      6#include <linux/module.h>
      7#include <linux/sched.h>
      8#include <linux/workqueue.h>
      9#include <linux/mbcache.h>
     10
     11/*
     12 * Mbcache is a simple key-value store. Keys need not be unique, however
     13 * key-value pairs are expected to be unique (we use this fact in
     14 * mb_cache_entry_delete()).
     15 *
     16 * Ext2 and ext4 use this cache for deduplication of extended attribute blocks.
     17 * Ext4 also uses it for deduplication of xattr values stored in inodes.
     18 * They use hash of data as a key and provide a value that may represent a
     19 * block or inode number. That's why keys need not be unique (hash of different
     20 * data may be the same). However user provided value always uniquely
     21 * identifies a cache entry.
     22 *
     23 * We provide functions for creation and removal of entries, search by key,
     24 * and a special "delete entry with given key-value pair" operation. Fixed
     25 * size hash table is used for fast key lookups.
     26 */
     27
     28struct mb_cache {
     29	/* Hash table of entries */
     30	struct hlist_bl_head	*c_hash;
     31	/* log2 of hash table size */
     32	int			c_bucket_bits;
     33	/* Maximum entries in cache to avoid degrading hash too much */
     34	unsigned long		c_max_entries;
     35	/* Protects c_list, c_entry_count */
     36	spinlock_t		c_list_lock;
     37	struct list_head	c_list;
     38	/* Number of entries in cache */
     39	unsigned long		c_entry_count;
     40	struct shrinker		c_shrink;
     41	/* Work for shrinking when the cache has too many entries */
     42	struct work_struct	c_shrink_work;
     43};
     44
     45static struct kmem_cache *mb_entry_cache;
     46
     47static unsigned long mb_cache_shrink(struct mb_cache *cache,
     48				     unsigned long nr_to_scan);
     49
     50static inline struct hlist_bl_head *mb_cache_entry_head(struct mb_cache *cache,
     51							u32 key)
     52{
     53	return &cache->c_hash[hash_32(key, cache->c_bucket_bits)];
     54}
     55
     56/*
     57 * Number of entries to reclaim synchronously when there are too many entries
     58 * in cache
     59 */
     60#define SYNC_SHRINK_BATCH 64
     61
     62/*
     63 * mb_cache_entry_create - create entry in cache
     64 * @cache - cache where the entry should be created
     65 * @mask - gfp mask with which the entry should be allocated
     66 * @key - key of the entry
     67 * @value - value of the entry
     68 * @reusable - is the entry reusable by others?
     69 *
     70 * Creates entry in @cache with key @key and value @value. The function returns
     71 * -EBUSY if entry with the same key and value already exists in cache.
     72 * Otherwise 0 is returned.
     73 */
     74int mb_cache_entry_create(struct mb_cache *cache, gfp_t mask, u32 key,
     75			  u64 value, bool reusable)
     76{
     77	struct mb_cache_entry *entry, *dup;
     78	struct hlist_bl_node *dup_node;
     79	struct hlist_bl_head *head;
     80
     81	/* Schedule background reclaim if there are too many entries */
     82	if (cache->c_entry_count >= cache->c_max_entries)
     83		schedule_work(&cache->c_shrink_work);
     84	/* Do some sync reclaim if background reclaim cannot keep up */
     85	if (cache->c_entry_count >= 2*cache->c_max_entries)
     86		mb_cache_shrink(cache, SYNC_SHRINK_BATCH);
     87
     88	entry = kmem_cache_alloc(mb_entry_cache, mask);
     89	if (!entry)
     90		return -ENOMEM;
     91
     92	INIT_LIST_HEAD(&entry->e_list);
     93	/* One ref for hash, one ref returned */
     94	atomic_set(&entry->e_refcnt, 1);
     95	entry->e_key = key;
     96	entry->e_value = value;
     97	entry->e_reusable = reusable;
     98	entry->e_referenced = 0;
     99	head = mb_cache_entry_head(cache, key);
    100	hlist_bl_lock(head);
    101	hlist_bl_for_each_entry(dup, dup_node, head, e_hash_list) {
    102		if (dup->e_key == key && dup->e_value == value) {
    103			hlist_bl_unlock(head);
    104			kmem_cache_free(mb_entry_cache, entry);
    105			return -EBUSY;
    106		}
    107	}
    108	hlist_bl_add_head(&entry->e_hash_list, head);
    109	hlist_bl_unlock(head);
    110
    111	spin_lock(&cache->c_list_lock);
    112	list_add_tail(&entry->e_list, &cache->c_list);
    113	/* Grab ref for LRU list */
    114	atomic_inc(&entry->e_refcnt);
    115	cache->c_entry_count++;
    116	spin_unlock(&cache->c_list_lock);
    117
    118	return 0;
    119}
    120EXPORT_SYMBOL(mb_cache_entry_create);
    121
    122void __mb_cache_entry_free(struct mb_cache_entry *entry)
    123{
    124	kmem_cache_free(mb_entry_cache, entry);
    125}
    126EXPORT_SYMBOL(__mb_cache_entry_free);
    127
    128static struct mb_cache_entry *__entry_find(struct mb_cache *cache,
    129					   struct mb_cache_entry *entry,
    130					   u32 key)
    131{
    132	struct mb_cache_entry *old_entry = entry;
    133	struct hlist_bl_node *node;
    134	struct hlist_bl_head *head;
    135
    136	head = mb_cache_entry_head(cache, key);
    137	hlist_bl_lock(head);
    138	if (entry && !hlist_bl_unhashed(&entry->e_hash_list))
    139		node = entry->e_hash_list.next;
    140	else
    141		node = hlist_bl_first(head);
    142	while (node) {
    143		entry = hlist_bl_entry(node, struct mb_cache_entry,
    144				       e_hash_list);
    145		if (entry->e_key == key && entry->e_reusable) {
    146			atomic_inc(&entry->e_refcnt);
    147			goto out;
    148		}
    149		node = node->next;
    150	}
    151	entry = NULL;
    152out:
    153	hlist_bl_unlock(head);
    154	if (old_entry)
    155		mb_cache_entry_put(cache, old_entry);
    156
    157	return entry;
    158}
    159
    160/*
    161 * mb_cache_entry_find_first - find the first reusable entry with the given key
    162 * @cache: cache where we should search
    163 * @key: key to look for
    164 *
    165 * Search in @cache for a reusable entry with key @key. Grabs reference to the
    166 * first reusable entry found and returns the entry.
    167 */
    168struct mb_cache_entry *mb_cache_entry_find_first(struct mb_cache *cache,
    169						 u32 key)
    170{
    171	return __entry_find(cache, NULL, key);
    172}
    173EXPORT_SYMBOL(mb_cache_entry_find_first);
    174
    175/*
    176 * mb_cache_entry_find_next - find next reusable entry with the same key
    177 * @cache: cache where we should search
    178 * @entry: entry to start search from
    179 *
    180 * Finds next reusable entry in the hash chain which has the same key as @entry.
    181 * If @entry is unhashed (which can happen when deletion of entry races with the
    182 * search), finds the first reusable entry in the hash chain. The function drops
    183 * reference to @entry and returns with a reference to the found entry.
    184 */
    185struct mb_cache_entry *mb_cache_entry_find_next(struct mb_cache *cache,
    186						struct mb_cache_entry *entry)
    187{
    188	return __entry_find(cache, entry, entry->e_key);
    189}
    190EXPORT_SYMBOL(mb_cache_entry_find_next);
    191
    192/*
    193 * mb_cache_entry_get - get a cache entry by value (and key)
    194 * @cache - cache we work with
    195 * @key - key
    196 * @value - value
    197 */
    198struct mb_cache_entry *mb_cache_entry_get(struct mb_cache *cache, u32 key,
    199					  u64 value)
    200{
    201	struct hlist_bl_node *node;
    202	struct hlist_bl_head *head;
    203	struct mb_cache_entry *entry;
    204
    205	head = mb_cache_entry_head(cache, key);
    206	hlist_bl_lock(head);
    207	hlist_bl_for_each_entry(entry, node, head, e_hash_list) {
    208		if (entry->e_key == key && entry->e_value == value) {
    209			atomic_inc(&entry->e_refcnt);
    210			goto out;
    211		}
    212	}
    213	entry = NULL;
    214out:
    215	hlist_bl_unlock(head);
    216	return entry;
    217}
    218EXPORT_SYMBOL(mb_cache_entry_get);
    219
    220/* mb_cache_entry_delete - remove a cache entry
    221 * @cache - cache we work with
    222 * @key - key
    223 * @value - value
    224 *
    225 * Remove entry from cache @cache with key @key and value @value.
    226 */
    227void mb_cache_entry_delete(struct mb_cache *cache, u32 key, u64 value)
    228{
    229	struct hlist_bl_node *node;
    230	struct hlist_bl_head *head;
    231	struct mb_cache_entry *entry;
    232
    233	head = mb_cache_entry_head(cache, key);
    234	hlist_bl_lock(head);
    235	hlist_bl_for_each_entry(entry, node, head, e_hash_list) {
    236		if (entry->e_key == key && entry->e_value == value) {
    237			/* We keep hash list reference to keep entry alive */
    238			hlist_bl_del_init(&entry->e_hash_list);
    239			hlist_bl_unlock(head);
    240			spin_lock(&cache->c_list_lock);
    241			if (!list_empty(&entry->e_list)) {
    242				list_del_init(&entry->e_list);
    243				if (!WARN_ONCE(cache->c_entry_count == 0,
    244		"mbcache: attempt to decrement c_entry_count past zero"))
    245					cache->c_entry_count--;
    246				atomic_dec(&entry->e_refcnt);
    247			}
    248			spin_unlock(&cache->c_list_lock);
    249			mb_cache_entry_put(cache, entry);
    250			return;
    251		}
    252	}
    253	hlist_bl_unlock(head);
    254}
    255EXPORT_SYMBOL(mb_cache_entry_delete);
    256
    257/* mb_cache_entry_touch - cache entry got used
    258 * @cache - cache the entry belongs to
    259 * @entry - entry that got used
    260 *
    261 * Marks entry as used to give hit higher chances of surviving in cache.
    262 */
    263void mb_cache_entry_touch(struct mb_cache *cache,
    264			  struct mb_cache_entry *entry)
    265{
    266	entry->e_referenced = 1;
    267}
    268EXPORT_SYMBOL(mb_cache_entry_touch);
    269
    270static unsigned long mb_cache_count(struct shrinker *shrink,
    271				    struct shrink_control *sc)
    272{
    273	struct mb_cache *cache = container_of(shrink, struct mb_cache,
    274					      c_shrink);
    275
    276	return cache->c_entry_count;
    277}
    278
    279/* Shrink number of entries in cache */
    280static unsigned long mb_cache_shrink(struct mb_cache *cache,
    281				     unsigned long nr_to_scan)
    282{
    283	struct mb_cache_entry *entry;
    284	struct hlist_bl_head *head;
    285	unsigned long shrunk = 0;
    286
    287	spin_lock(&cache->c_list_lock);
    288	while (nr_to_scan-- && !list_empty(&cache->c_list)) {
    289		entry = list_first_entry(&cache->c_list,
    290					 struct mb_cache_entry, e_list);
    291		if (entry->e_referenced) {
    292			entry->e_referenced = 0;
    293			list_move_tail(&entry->e_list, &cache->c_list);
    294			continue;
    295		}
    296		list_del_init(&entry->e_list);
    297		cache->c_entry_count--;
    298		/*
    299		 * We keep LRU list reference so that entry doesn't go away
    300		 * from under us.
    301		 */
    302		spin_unlock(&cache->c_list_lock);
    303		head = mb_cache_entry_head(cache, entry->e_key);
    304		hlist_bl_lock(head);
    305		if (!hlist_bl_unhashed(&entry->e_hash_list)) {
    306			hlist_bl_del_init(&entry->e_hash_list);
    307			atomic_dec(&entry->e_refcnt);
    308		}
    309		hlist_bl_unlock(head);
    310		if (mb_cache_entry_put(cache, entry))
    311			shrunk++;
    312		cond_resched();
    313		spin_lock(&cache->c_list_lock);
    314	}
    315	spin_unlock(&cache->c_list_lock);
    316
    317	return shrunk;
    318}
    319
    320static unsigned long mb_cache_scan(struct shrinker *shrink,
    321				   struct shrink_control *sc)
    322{
    323	struct mb_cache *cache = container_of(shrink, struct mb_cache,
    324					      c_shrink);
    325	return mb_cache_shrink(cache, sc->nr_to_scan);
    326}
    327
    328/* We shrink 1/X of the cache when we have too many entries in it */
    329#define SHRINK_DIVISOR 16
    330
    331static void mb_cache_shrink_worker(struct work_struct *work)
    332{
    333	struct mb_cache *cache = container_of(work, struct mb_cache,
    334					      c_shrink_work);
    335	mb_cache_shrink(cache, cache->c_max_entries / SHRINK_DIVISOR);
    336}
    337
    338/*
    339 * mb_cache_create - create cache
    340 * @bucket_bits: log2 of the hash table size
    341 *
    342 * Create cache for keys with 2^bucket_bits hash entries.
    343 */
    344struct mb_cache *mb_cache_create(int bucket_bits)
    345{
    346	struct mb_cache *cache;
    347	unsigned long bucket_count = 1UL << bucket_bits;
    348	unsigned long i;
    349
    350	cache = kzalloc(sizeof(struct mb_cache), GFP_KERNEL);
    351	if (!cache)
    352		goto err_out;
    353	cache->c_bucket_bits = bucket_bits;
    354	cache->c_max_entries = bucket_count << 4;
    355	INIT_LIST_HEAD(&cache->c_list);
    356	spin_lock_init(&cache->c_list_lock);
    357	cache->c_hash = kmalloc_array(bucket_count,
    358				      sizeof(struct hlist_bl_head),
    359				      GFP_KERNEL);
    360	if (!cache->c_hash) {
    361		kfree(cache);
    362		goto err_out;
    363	}
    364	for (i = 0; i < bucket_count; i++)
    365		INIT_HLIST_BL_HEAD(&cache->c_hash[i]);
    366
    367	cache->c_shrink.count_objects = mb_cache_count;
    368	cache->c_shrink.scan_objects = mb_cache_scan;
    369	cache->c_shrink.seeks = DEFAULT_SEEKS;
    370	if (register_shrinker(&cache->c_shrink)) {
    371		kfree(cache->c_hash);
    372		kfree(cache);
    373		goto err_out;
    374	}
    375
    376	INIT_WORK(&cache->c_shrink_work, mb_cache_shrink_worker);
    377
    378	return cache;
    379
    380err_out:
    381	return NULL;
    382}
    383EXPORT_SYMBOL(mb_cache_create);
    384
    385/*
    386 * mb_cache_destroy - destroy cache
    387 * @cache: the cache to destroy
    388 *
    389 * Free all entries in cache and cache itself. Caller must make sure nobody
    390 * (except shrinker) can reach @cache when calling this.
    391 */
    392void mb_cache_destroy(struct mb_cache *cache)
    393{
    394	struct mb_cache_entry *entry, *next;
    395
    396	unregister_shrinker(&cache->c_shrink);
    397
    398	/*
    399	 * We don't bother with any locking. Cache must not be used at this
    400	 * point.
    401	 */
    402	list_for_each_entry_safe(entry, next, &cache->c_list, e_list) {
    403		if (!hlist_bl_unhashed(&entry->e_hash_list)) {
    404			hlist_bl_del_init(&entry->e_hash_list);
    405			atomic_dec(&entry->e_refcnt);
    406		} else
    407			WARN_ON(1);
    408		list_del(&entry->e_list);
    409		WARN_ON(atomic_read(&entry->e_refcnt) != 1);
    410		mb_cache_entry_put(cache, entry);
    411	}
    412	kfree(cache->c_hash);
    413	kfree(cache);
    414}
    415EXPORT_SYMBOL(mb_cache_destroy);
    416
    417static int __init mbcache_init(void)
    418{
    419	mb_entry_cache = kmem_cache_create("mbcache",
    420				sizeof(struct mb_cache_entry), 0,
    421				SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
    422	if (!mb_entry_cache)
    423		return -ENOMEM;
    424	return 0;
    425}
    426
    427static void __exit mbcache_exit(void)
    428{
    429	kmem_cache_destroy(mb_entry_cache);
    430}
    431
    432module_init(mbcache_init)
    433module_exit(mbcache_exit)
    434
    435MODULE_AUTHOR("Jan Kara <jack@suse.cz>");
    436MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
    437MODULE_LICENSE("GPL");