cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mpage.c (19827B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * fs/mpage.c
      4 *
      5 * Copyright (C) 2002, Linus Torvalds.
      6 *
      7 * Contains functions related to preparing and submitting BIOs which contain
      8 * multiple pagecache pages.
      9 *
     10 * 15May2002	Andrew Morton
     11 *		Initial version
     12 * 27Jun2002	axboe@suse.de
     13 *		use bio_add_page() to build bio's just the right size
     14 */
     15
     16#include <linux/kernel.h>
     17#include <linux/export.h>
     18#include <linux/mm.h>
     19#include <linux/kdev_t.h>
     20#include <linux/gfp.h>
     21#include <linux/bio.h>
     22#include <linux/fs.h>
     23#include <linux/buffer_head.h>
     24#include <linux/blkdev.h>
     25#include <linux/highmem.h>
     26#include <linux/prefetch.h>
     27#include <linux/mpage.h>
     28#include <linux/mm_inline.h>
     29#include <linux/writeback.h>
     30#include <linux/backing-dev.h>
     31#include <linux/pagevec.h>
     32#include "internal.h"
     33
     34/*
     35 * I/O completion handler for multipage BIOs.
     36 *
     37 * The mpage code never puts partial pages into a BIO (except for end-of-file).
     38 * If a page does not map to a contiguous run of blocks then it simply falls
     39 * back to block_read_full_folio().
     40 *
     41 * Why is this?  If a page's completion depends on a number of different BIOs
     42 * which can complete in any order (or at the same time) then determining the
     43 * status of that page is hard.  See end_buffer_async_read() for the details.
     44 * There is no point in duplicating all that complexity.
     45 */
     46static void mpage_end_io(struct bio *bio)
     47{
     48	struct bio_vec *bv;
     49	struct bvec_iter_all iter_all;
     50
     51	bio_for_each_segment_all(bv, bio, iter_all) {
     52		struct page *page = bv->bv_page;
     53		page_endio(page, bio_op(bio),
     54			   blk_status_to_errno(bio->bi_status));
     55	}
     56
     57	bio_put(bio);
     58}
     59
     60static struct bio *mpage_bio_submit(struct bio *bio)
     61{
     62	bio->bi_end_io = mpage_end_io;
     63	guard_bio_eod(bio);
     64	submit_bio(bio);
     65	return NULL;
     66}
     67
     68/*
     69 * support function for mpage_readahead.  The fs supplied get_block might
     70 * return an up to date buffer.  This is used to map that buffer into
     71 * the page, which allows read_folio to avoid triggering a duplicate call
     72 * to get_block.
     73 *
     74 * The idea is to avoid adding buffers to pages that don't already have
     75 * them.  So when the buffer is up to date and the page size == block size,
     76 * this marks the page up to date instead of adding new buffers.
     77 */
     78static void 
     79map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 
     80{
     81	struct inode *inode = page->mapping->host;
     82	struct buffer_head *page_bh, *head;
     83	int block = 0;
     84
     85	if (!page_has_buffers(page)) {
     86		/*
     87		 * don't make any buffers if there is only one buffer on
     88		 * the page and the page just needs to be set up to date
     89		 */
     90		if (inode->i_blkbits == PAGE_SHIFT &&
     91		    buffer_uptodate(bh)) {
     92			SetPageUptodate(page);    
     93			return;
     94		}
     95		create_empty_buffers(page, i_blocksize(inode), 0);
     96	}
     97	head = page_buffers(page);
     98	page_bh = head;
     99	do {
    100		if (block == page_block) {
    101			page_bh->b_state = bh->b_state;
    102			page_bh->b_bdev = bh->b_bdev;
    103			page_bh->b_blocknr = bh->b_blocknr;
    104			break;
    105		}
    106		page_bh = page_bh->b_this_page;
    107		block++;
    108	} while (page_bh != head);
    109}
    110
    111struct mpage_readpage_args {
    112	struct bio *bio;
    113	struct page *page;
    114	unsigned int nr_pages;
    115	bool is_readahead;
    116	sector_t last_block_in_bio;
    117	struct buffer_head map_bh;
    118	unsigned long first_logical_block;
    119	get_block_t *get_block;
    120};
    121
    122/*
    123 * This is the worker routine which does all the work of mapping the disk
    124 * blocks and constructs largest possible bios, submits them for IO if the
    125 * blocks are not contiguous on the disk.
    126 *
    127 * We pass a buffer_head back and forth and use its buffer_mapped() flag to
    128 * represent the validity of its disk mapping and to decide when to do the next
    129 * get_block() call.
    130 */
    131static struct bio *do_mpage_readpage(struct mpage_readpage_args *args)
    132{
    133	struct page *page = args->page;
    134	struct inode *inode = page->mapping->host;
    135	const unsigned blkbits = inode->i_blkbits;
    136	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
    137	const unsigned blocksize = 1 << blkbits;
    138	struct buffer_head *map_bh = &args->map_bh;
    139	sector_t block_in_file;
    140	sector_t last_block;
    141	sector_t last_block_in_file;
    142	sector_t blocks[MAX_BUF_PER_PAGE];
    143	unsigned page_block;
    144	unsigned first_hole = blocks_per_page;
    145	struct block_device *bdev = NULL;
    146	int length;
    147	int fully_mapped = 1;
    148	int op = REQ_OP_READ;
    149	unsigned nblocks;
    150	unsigned relative_block;
    151	gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
    152
    153	if (args->is_readahead) {
    154		op |= REQ_RAHEAD;
    155		gfp |= __GFP_NORETRY | __GFP_NOWARN;
    156	}
    157
    158	if (page_has_buffers(page))
    159		goto confused;
    160
    161	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
    162	last_block = block_in_file + args->nr_pages * blocks_per_page;
    163	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
    164	if (last_block > last_block_in_file)
    165		last_block = last_block_in_file;
    166	page_block = 0;
    167
    168	/*
    169	 * Map blocks using the result from the previous get_blocks call first.
    170	 */
    171	nblocks = map_bh->b_size >> blkbits;
    172	if (buffer_mapped(map_bh) &&
    173			block_in_file > args->first_logical_block &&
    174			block_in_file < (args->first_logical_block + nblocks)) {
    175		unsigned map_offset = block_in_file - args->first_logical_block;
    176		unsigned last = nblocks - map_offset;
    177
    178		for (relative_block = 0; ; relative_block++) {
    179			if (relative_block == last) {
    180				clear_buffer_mapped(map_bh);
    181				break;
    182			}
    183			if (page_block == blocks_per_page)
    184				break;
    185			blocks[page_block] = map_bh->b_blocknr + map_offset +
    186						relative_block;
    187			page_block++;
    188			block_in_file++;
    189		}
    190		bdev = map_bh->b_bdev;
    191	}
    192
    193	/*
    194	 * Then do more get_blocks calls until we are done with this page.
    195	 */
    196	map_bh->b_page = page;
    197	while (page_block < blocks_per_page) {
    198		map_bh->b_state = 0;
    199		map_bh->b_size = 0;
    200
    201		if (block_in_file < last_block) {
    202			map_bh->b_size = (last_block-block_in_file) << blkbits;
    203			if (args->get_block(inode, block_in_file, map_bh, 0))
    204				goto confused;
    205			args->first_logical_block = block_in_file;
    206		}
    207
    208		if (!buffer_mapped(map_bh)) {
    209			fully_mapped = 0;
    210			if (first_hole == blocks_per_page)
    211				first_hole = page_block;
    212			page_block++;
    213			block_in_file++;
    214			continue;
    215		}
    216
    217		/* some filesystems will copy data into the page during
    218		 * the get_block call, in which case we don't want to
    219		 * read it again.  map_buffer_to_page copies the data
    220		 * we just collected from get_block into the page's buffers
    221		 * so readpage doesn't have to repeat the get_block call
    222		 */
    223		if (buffer_uptodate(map_bh)) {
    224			map_buffer_to_page(page, map_bh, page_block);
    225			goto confused;
    226		}
    227	
    228		if (first_hole != blocks_per_page)
    229			goto confused;		/* hole -> non-hole */
    230
    231		/* Contiguous blocks? */
    232		if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
    233			goto confused;
    234		nblocks = map_bh->b_size >> blkbits;
    235		for (relative_block = 0; ; relative_block++) {
    236			if (relative_block == nblocks) {
    237				clear_buffer_mapped(map_bh);
    238				break;
    239			} else if (page_block == blocks_per_page)
    240				break;
    241			blocks[page_block] = map_bh->b_blocknr+relative_block;
    242			page_block++;
    243			block_in_file++;
    244		}
    245		bdev = map_bh->b_bdev;
    246	}
    247
    248	if (first_hole != blocks_per_page) {
    249		zero_user_segment(page, first_hole << blkbits, PAGE_SIZE);
    250		if (first_hole == 0) {
    251			SetPageUptodate(page);
    252			unlock_page(page);
    253			goto out;
    254		}
    255	} else if (fully_mapped) {
    256		SetPageMappedToDisk(page);
    257	}
    258
    259	/*
    260	 * This page will go to BIO.  Do we need to send this BIO off first?
    261	 */
    262	if (args->bio && (args->last_block_in_bio != blocks[0] - 1))
    263		args->bio = mpage_bio_submit(args->bio);
    264
    265alloc_new:
    266	if (args->bio == NULL) {
    267		if (first_hole == blocks_per_page) {
    268			if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
    269								page))
    270				goto out;
    271		}
    272		args->bio = bio_alloc(bdev, bio_max_segs(args->nr_pages), op,
    273				      gfp);
    274		if (args->bio == NULL)
    275			goto confused;
    276		args->bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
    277	}
    278
    279	length = first_hole << blkbits;
    280	if (bio_add_page(args->bio, page, length, 0) < length) {
    281		args->bio = mpage_bio_submit(args->bio);
    282		goto alloc_new;
    283	}
    284
    285	relative_block = block_in_file - args->first_logical_block;
    286	nblocks = map_bh->b_size >> blkbits;
    287	if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
    288	    (first_hole != blocks_per_page))
    289		args->bio = mpage_bio_submit(args->bio);
    290	else
    291		args->last_block_in_bio = blocks[blocks_per_page - 1];
    292out:
    293	return args->bio;
    294
    295confused:
    296	if (args->bio)
    297		args->bio = mpage_bio_submit(args->bio);
    298	if (!PageUptodate(page))
    299		block_read_full_folio(page_folio(page), args->get_block);
    300	else
    301		unlock_page(page);
    302	goto out;
    303}
    304
    305/**
    306 * mpage_readahead - start reads against pages
    307 * @rac: Describes which pages to read.
    308 * @get_block: The filesystem's block mapper function.
    309 *
    310 * This function walks the pages and the blocks within each page, building and
    311 * emitting large BIOs.
    312 *
    313 * If anything unusual happens, such as:
    314 *
    315 * - encountering a page which has buffers
    316 * - encountering a page which has a non-hole after a hole
    317 * - encountering a page with non-contiguous blocks
    318 *
    319 * then this code just gives up and calls the buffer_head-based read function.
    320 * It does handle a page which has holes at the end - that is a common case:
    321 * the end-of-file on blocksize < PAGE_SIZE setups.
    322 *
    323 * BH_Boundary explanation:
    324 *
    325 * There is a problem.  The mpage read code assembles several pages, gets all
    326 * their disk mappings, and then submits them all.  That's fine, but obtaining
    327 * the disk mappings may require I/O.  Reads of indirect blocks, for example.
    328 *
    329 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
    330 * submitted in the following order:
    331 *
    332 * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
    333 *
    334 * because the indirect block has to be read to get the mappings of blocks
    335 * 13,14,15,16.  Obviously, this impacts performance.
    336 *
    337 * So what we do it to allow the filesystem's get_block() function to set
    338 * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
    339 * after this one will require I/O against a block which is probably close to
    340 * this one.  So you should push what I/O you have currently accumulated.
    341 *
    342 * This all causes the disk requests to be issued in the correct order.
    343 */
    344void mpage_readahead(struct readahead_control *rac, get_block_t get_block)
    345{
    346	struct page *page;
    347	struct mpage_readpage_args args = {
    348		.get_block = get_block,
    349		.is_readahead = true,
    350	};
    351
    352	while ((page = readahead_page(rac))) {
    353		prefetchw(&page->flags);
    354		args.page = page;
    355		args.nr_pages = readahead_count(rac);
    356		args.bio = do_mpage_readpage(&args);
    357		put_page(page);
    358	}
    359	if (args.bio)
    360		mpage_bio_submit(args.bio);
    361}
    362EXPORT_SYMBOL(mpage_readahead);
    363
    364/*
    365 * This isn't called much at all
    366 */
    367int mpage_read_folio(struct folio *folio, get_block_t get_block)
    368{
    369	struct mpage_readpage_args args = {
    370		.page = &folio->page,
    371		.nr_pages = 1,
    372		.get_block = get_block,
    373	};
    374
    375	VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
    376
    377	args.bio = do_mpage_readpage(&args);
    378	if (args.bio)
    379		mpage_bio_submit(args.bio);
    380	return 0;
    381}
    382EXPORT_SYMBOL(mpage_read_folio);
    383
    384/*
    385 * Writing is not so simple.
    386 *
    387 * If the page has buffers then they will be used for obtaining the disk
    388 * mapping.  We only support pages which are fully mapped-and-dirty, with a
    389 * special case for pages which are unmapped at the end: end-of-file.
    390 *
    391 * If the page has no buffers (preferred) then the page is mapped here.
    392 *
    393 * If all blocks are found to be contiguous then the page can go into the
    394 * BIO.  Otherwise fall back to the mapping's writepage().
    395 * 
    396 * FIXME: This code wants an estimate of how many pages are still to be
    397 * written, so it can intelligently allocate a suitably-sized BIO.  For now,
    398 * just allocate full-size (16-page) BIOs.
    399 */
    400
    401struct mpage_data {
    402	struct bio *bio;
    403	sector_t last_block_in_bio;
    404	get_block_t *get_block;
    405	unsigned use_writepage;
    406};
    407
    408/*
    409 * We have our BIO, so we can now mark the buffers clean.  Make
    410 * sure to only clean buffers which we know we'll be writing.
    411 */
    412static void clean_buffers(struct page *page, unsigned first_unmapped)
    413{
    414	unsigned buffer_counter = 0;
    415	struct buffer_head *bh, *head;
    416	if (!page_has_buffers(page))
    417		return;
    418	head = page_buffers(page);
    419	bh = head;
    420
    421	do {
    422		if (buffer_counter++ == first_unmapped)
    423			break;
    424		clear_buffer_dirty(bh);
    425		bh = bh->b_this_page;
    426	} while (bh != head);
    427
    428	/*
    429	 * we cannot drop the bh if the page is not uptodate or a concurrent
    430	 * read_folio would fail to serialize with the bh and it would read from
    431	 * disk before we reach the platter.
    432	 */
    433	if (buffer_heads_over_limit && PageUptodate(page))
    434		try_to_free_buffers(page_folio(page));
    435}
    436
    437/*
    438 * For situations where we want to clean all buffers attached to a page.
    439 * We don't need to calculate how many buffers are attached to the page,
    440 * we just need to specify a number larger than the maximum number of buffers.
    441 */
    442void clean_page_buffers(struct page *page)
    443{
    444	clean_buffers(page, ~0U);
    445}
    446
    447static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
    448		      void *data)
    449{
    450	struct mpage_data *mpd = data;
    451	struct bio *bio = mpd->bio;
    452	struct address_space *mapping = page->mapping;
    453	struct inode *inode = page->mapping->host;
    454	const unsigned blkbits = inode->i_blkbits;
    455	unsigned long end_index;
    456	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
    457	sector_t last_block;
    458	sector_t block_in_file;
    459	sector_t blocks[MAX_BUF_PER_PAGE];
    460	unsigned page_block;
    461	unsigned first_unmapped = blocks_per_page;
    462	struct block_device *bdev = NULL;
    463	int boundary = 0;
    464	sector_t boundary_block = 0;
    465	struct block_device *boundary_bdev = NULL;
    466	int length;
    467	struct buffer_head map_bh;
    468	loff_t i_size = i_size_read(inode);
    469	int ret = 0;
    470
    471	if (page_has_buffers(page)) {
    472		struct buffer_head *head = page_buffers(page);
    473		struct buffer_head *bh = head;
    474
    475		/* If they're all mapped and dirty, do it */
    476		page_block = 0;
    477		do {
    478			BUG_ON(buffer_locked(bh));
    479			if (!buffer_mapped(bh)) {
    480				/*
    481				 * unmapped dirty buffers are created by
    482				 * block_dirty_folio -> mmapped data
    483				 */
    484				if (buffer_dirty(bh))
    485					goto confused;
    486				if (first_unmapped == blocks_per_page)
    487					first_unmapped = page_block;
    488				continue;
    489			}
    490
    491			if (first_unmapped != blocks_per_page)
    492				goto confused;	/* hole -> non-hole */
    493
    494			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
    495				goto confused;
    496			if (page_block) {
    497				if (bh->b_blocknr != blocks[page_block-1] + 1)
    498					goto confused;
    499			}
    500			blocks[page_block++] = bh->b_blocknr;
    501			boundary = buffer_boundary(bh);
    502			if (boundary) {
    503				boundary_block = bh->b_blocknr;
    504				boundary_bdev = bh->b_bdev;
    505			}
    506			bdev = bh->b_bdev;
    507		} while ((bh = bh->b_this_page) != head);
    508
    509		if (first_unmapped)
    510			goto page_is_mapped;
    511
    512		/*
    513		 * Page has buffers, but they are all unmapped. The page was
    514		 * created by pagein or read over a hole which was handled by
    515		 * block_read_full_folio().  If this address_space is also
    516		 * using mpage_readahead then this can rarely happen.
    517		 */
    518		goto confused;
    519	}
    520
    521	/*
    522	 * The page has no buffers: map it to disk
    523	 */
    524	BUG_ON(!PageUptodate(page));
    525	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
    526	last_block = (i_size - 1) >> blkbits;
    527	map_bh.b_page = page;
    528	for (page_block = 0; page_block < blocks_per_page; ) {
    529
    530		map_bh.b_state = 0;
    531		map_bh.b_size = 1 << blkbits;
    532		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
    533			goto confused;
    534		if (buffer_new(&map_bh))
    535			clean_bdev_bh_alias(&map_bh);
    536		if (buffer_boundary(&map_bh)) {
    537			boundary_block = map_bh.b_blocknr;
    538			boundary_bdev = map_bh.b_bdev;
    539		}
    540		if (page_block) {
    541			if (map_bh.b_blocknr != blocks[page_block-1] + 1)
    542				goto confused;
    543		}
    544		blocks[page_block++] = map_bh.b_blocknr;
    545		boundary = buffer_boundary(&map_bh);
    546		bdev = map_bh.b_bdev;
    547		if (block_in_file == last_block)
    548			break;
    549		block_in_file++;
    550	}
    551	BUG_ON(page_block == 0);
    552
    553	first_unmapped = page_block;
    554
    555page_is_mapped:
    556	end_index = i_size >> PAGE_SHIFT;
    557	if (page->index >= end_index) {
    558		/*
    559		 * The page straddles i_size.  It must be zeroed out on each
    560		 * and every writepage invocation because it may be mmapped.
    561		 * "A file is mapped in multiples of the page size.  For a file
    562		 * that is not a multiple of the page size, the remaining memory
    563		 * is zeroed when mapped, and writes to that region are not
    564		 * written out to the file."
    565		 */
    566		unsigned offset = i_size & (PAGE_SIZE - 1);
    567
    568		if (page->index > end_index || !offset)
    569			goto confused;
    570		zero_user_segment(page, offset, PAGE_SIZE);
    571	}
    572
    573	/*
    574	 * This page will go to BIO.  Do we need to send this BIO off first?
    575	 */
    576	if (bio && mpd->last_block_in_bio != blocks[0] - 1)
    577		bio = mpage_bio_submit(bio);
    578
    579alloc_new:
    580	if (bio == NULL) {
    581		if (first_unmapped == blocks_per_page) {
    582			if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
    583								page, wbc))
    584				goto out;
    585		}
    586		bio = bio_alloc(bdev, BIO_MAX_VECS,
    587				REQ_OP_WRITE | wbc_to_write_flags(wbc),
    588				GFP_NOFS);
    589		bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
    590		wbc_init_bio(wbc, bio);
    591	}
    592
    593	/*
    594	 * Must try to add the page before marking the buffer clean or
    595	 * the confused fail path above (OOM) will be very confused when
    596	 * it finds all bh marked clean (i.e. it will not write anything)
    597	 */
    598	wbc_account_cgroup_owner(wbc, page, PAGE_SIZE);
    599	length = first_unmapped << blkbits;
    600	if (bio_add_page(bio, page, length, 0) < length) {
    601		bio = mpage_bio_submit(bio);
    602		goto alloc_new;
    603	}
    604
    605	clean_buffers(page, first_unmapped);
    606
    607	BUG_ON(PageWriteback(page));
    608	set_page_writeback(page);
    609	unlock_page(page);
    610	if (boundary || (first_unmapped != blocks_per_page)) {
    611		bio = mpage_bio_submit(bio);
    612		if (boundary_block) {
    613			write_boundary_block(boundary_bdev,
    614					boundary_block, 1 << blkbits);
    615		}
    616	} else {
    617		mpd->last_block_in_bio = blocks[blocks_per_page - 1];
    618	}
    619	goto out;
    620
    621confused:
    622	if (bio)
    623		bio = mpage_bio_submit(bio);
    624
    625	if (mpd->use_writepage) {
    626		ret = mapping->a_ops->writepage(page, wbc);
    627	} else {
    628		ret = -EAGAIN;
    629		goto out;
    630	}
    631	/*
    632	 * The caller has a ref on the inode, so *mapping is stable
    633	 */
    634	mapping_set_error(mapping, ret);
    635out:
    636	mpd->bio = bio;
    637	return ret;
    638}
    639
    640/**
    641 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
    642 * @mapping: address space structure to write
    643 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
    644 * @get_block: the filesystem's block mapper function.
    645 *             If this is NULL then use a_ops->writepage.  Otherwise, go
    646 *             direct-to-BIO.
    647 *
    648 * This is a library function, which implements the writepages()
    649 * address_space_operation.
    650 *
    651 * If a page is already under I/O, generic_writepages() skips it, even
    652 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
    653 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
    654 * and msync() need to guarantee that all the data which was dirty at the time
    655 * the call was made get new I/O started against them.  If wbc->sync_mode is
    656 * WB_SYNC_ALL then we were called for data integrity and we must wait for
    657 * existing IO to complete.
    658 */
    659int
    660mpage_writepages(struct address_space *mapping,
    661		struct writeback_control *wbc, get_block_t get_block)
    662{
    663	struct blk_plug plug;
    664	int ret;
    665
    666	blk_start_plug(&plug);
    667
    668	if (!get_block)
    669		ret = generic_writepages(mapping, wbc);
    670	else {
    671		struct mpage_data mpd = {
    672			.bio = NULL,
    673			.last_block_in_bio = 0,
    674			.get_block = get_block,
    675			.use_writepage = 1,
    676		};
    677
    678		ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
    679		if (mpd.bio)
    680			mpage_bio_submit(mpd.bio);
    681	}
    682	blk_finish_plug(&plug);
    683	return ret;
    684}
    685EXPORT_SYMBOL(mpage_writepages);
    686
    687int mpage_writepage(struct page *page, get_block_t get_block,
    688	struct writeback_control *wbc)
    689{
    690	struct mpage_data mpd = {
    691		.bio = NULL,
    692		.last_block_in_bio = 0,
    693		.get_block = get_block,
    694		.use_writepage = 0,
    695	};
    696	int ret = __mpage_writepage(page, wbc, &mpd);
    697	if (mpd.bio)
    698		mpage_bio_submit(mpd.bio);
    699	return ret;
    700}
    701EXPORT_SYMBOL(mpage_writepage);