cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

namespace.c (116529B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 *  linux/fs/namespace.c
      4 *
      5 * (C) Copyright Al Viro 2000, 2001
      6 *
      7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
      8 * Heavily rewritten.
      9 */
     10
     11#include <linux/syscalls.h>
     12#include <linux/export.h>
     13#include <linux/capability.h>
     14#include <linux/mnt_namespace.h>
     15#include <linux/user_namespace.h>
     16#include <linux/namei.h>
     17#include <linux/security.h>
     18#include <linux/cred.h>
     19#include <linux/idr.h>
     20#include <linux/init.h>		/* init_rootfs */
     21#include <linux/fs_struct.h>	/* get_fs_root et.al. */
     22#include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
     23#include <linux/file.h>
     24#include <linux/uaccess.h>
     25#include <linux/proc_ns.h>
     26#include <linux/magic.h>
     27#include <linux/memblock.h>
     28#include <linux/proc_fs.h>
     29#include <linux/task_work.h>
     30#include <linux/sched/task.h>
     31#include <uapi/linux/mount.h>
     32#include <linux/fs_context.h>
     33#include <linux/shmem_fs.h>
     34#include <linux/mnt_idmapping.h>
     35
     36#include "pnode.h"
     37#include "internal.h"
     38
     39/* Maximum number of mounts in a mount namespace */
     40static unsigned int sysctl_mount_max __read_mostly = 100000;
     41
     42static unsigned int m_hash_mask __read_mostly;
     43static unsigned int m_hash_shift __read_mostly;
     44static unsigned int mp_hash_mask __read_mostly;
     45static unsigned int mp_hash_shift __read_mostly;
     46
     47static __initdata unsigned long mhash_entries;
     48static int __init set_mhash_entries(char *str)
     49{
     50	if (!str)
     51		return 0;
     52	mhash_entries = simple_strtoul(str, &str, 0);
     53	return 1;
     54}
     55__setup("mhash_entries=", set_mhash_entries);
     56
     57static __initdata unsigned long mphash_entries;
     58static int __init set_mphash_entries(char *str)
     59{
     60	if (!str)
     61		return 0;
     62	mphash_entries = simple_strtoul(str, &str, 0);
     63	return 1;
     64}
     65__setup("mphash_entries=", set_mphash_entries);
     66
     67static u64 event;
     68static DEFINE_IDA(mnt_id_ida);
     69static DEFINE_IDA(mnt_group_ida);
     70
     71static struct hlist_head *mount_hashtable __read_mostly;
     72static struct hlist_head *mountpoint_hashtable __read_mostly;
     73static struct kmem_cache *mnt_cache __read_mostly;
     74static DECLARE_RWSEM(namespace_sem);
     75static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
     76static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
     77
     78struct mount_kattr {
     79	unsigned int attr_set;
     80	unsigned int attr_clr;
     81	unsigned int propagation;
     82	unsigned int lookup_flags;
     83	bool recurse;
     84	struct user_namespace *mnt_userns;
     85};
     86
     87/* /sys/fs */
     88struct kobject *fs_kobj;
     89EXPORT_SYMBOL_GPL(fs_kobj);
     90
     91/*
     92 * vfsmount lock may be taken for read to prevent changes to the
     93 * vfsmount hash, ie. during mountpoint lookups or walking back
     94 * up the tree.
     95 *
     96 * It should be taken for write in all cases where the vfsmount
     97 * tree or hash is modified or when a vfsmount structure is modified.
     98 */
     99__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
    100
    101static inline void lock_mount_hash(void)
    102{
    103	write_seqlock(&mount_lock);
    104}
    105
    106static inline void unlock_mount_hash(void)
    107{
    108	write_sequnlock(&mount_lock);
    109}
    110
    111static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
    112{
    113	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
    114	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
    115	tmp = tmp + (tmp >> m_hash_shift);
    116	return &mount_hashtable[tmp & m_hash_mask];
    117}
    118
    119static inline struct hlist_head *mp_hash(struct dentry *dentry)
    120{
    121	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
    122	tmp = tmp + (tmp >> mp_hash_shift);
    123	return &mountpoint_hashtable[tmp & mp_hash_mask];
    124}
    125
    126static int mnt_alloc_id(struct mount *mnt)
    127{
    128	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
    129
    130	if (res < 0)
    131		return res;
    132	mnt->mnt_id = res;
    133	return 0;
    134}
    135
    136static void mnt_free_id(struct mount *mnt)
    137{
    138	ida_free(&mnt_id_ida, mnt->mnt_id);
    139}
    140
    141/*
    142 * Allocate a new peer group ID
    143 */
    144static int mnt_alloc_group_id(struct mount *mnt)
    145{
    146	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
    147
    148	if (res < 0)
    149		return res;
    150	mnt->mnt_group_id = res;
    151	return 0;
    152}
    153
    154/*
    155 * Release a peer group ID
    156 */
    157void mnt_release_group_id(struct mount *mnt)
    158{
    159	ida_free(&mnt_group_ida, mnt->mnt_group_id);
    160	mnt->mnt_group_id = 0;
    161}
    162
    163/*
    164 * vfsmount lock must be held for read
    165 */
    166static inline void mnt_add_count(struct mount *mnt, int n)
    167{
    168#ifdef CONFIG_SMP
    169	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
    170#else
    171	preempt_disable();
    172	mnt->mnt_count += n;
    173	preempt_enable();
    174#endif
    175}
    176
    177/*
    178 * vfsmount lock must be held for write
    179 */
    180int mnt_get_count(struct mount *mnt)
    181{
    182#ifdef CONFIG_SMP
    183	int count = 0;
    184	int cpu;
    185
    186	for_each_possible_cpu(cpu) {
    187		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
    188	}
    189
    190	return count;
    191#else
    192	return mnt->mnt_count;
    193#endif
    194}
    195
    196static struct mount *alloc_vfsmnt(const char *name)
    197{
    198	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
    199	if (mnt) {
    200		int err;
    201
    202		err = mnt_alloc_id(mnt);
    203		if (err)
    204			goto out_free_cache;
    205
    206		if (name) {
    207			mnt->mnt_devname = kstrdup_const(name,
    208							 GFP_KERNEL_ACCOUNT);
    209			if (!mnt->mnt_devname)
    210				goto out_free_id;
    211		}
    212
    213#ifdef CONFIG_SMP
    214		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
    215		if (!mnt->mnt_pcp)
    216			goto out_free_devname;
    217
    218		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
    219#else
    220		mnt->mnt_count = 1;
    221		mnt->mnt_writers = 0;
    222#endif
    223
    224		INIT_HLIST_NODE(&mnt->mnt_hash);
    225		INIT_LIST_HEAD(&mnt->mnt_child);
    226		INIT_LIST_HEAD(&mnt->mnt_mounts);
    227		INIT_LIST_HEAD(&mnt->mnt_list);
    228		INIT_LIST_HEAD(&mnt->mnt_expire);
    229		INIT_LIST_HEAD(&mnt->mnt_share);
    230		INIT_LIST_HEAD(&mnt->mnt_slave_list);
    231		INIT_LIST_HEAD(&mnt->mnt_slave);
    232		INIT_HLIST_NODE(&mnt->mnt_mp_list);
    233		INIT_LIST_HEAD(&mnt->mnt_umounting);
    234		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
    235		mnt->mnt.mnt_userns = &init_user_ns;
    236	}
    237	return mnt;
    238
    239#ifdef CONFIG_SMP
    240out_free_devname:
    241	kfree_const(mnt->mnt_devname);
    242#endif
    243out_free_id:
    244	mnt_free_id(mnt);
    245out_free_cache:
    246	kmem_cache_free(mnt_cache, mnt);
    247	return NULL;
    248}
    249
    250/*
    251 * Most r/o checks on a fs are for operations that take
    252 * discrete amounts of time, like a write() or unlink().
    253 * We must keep track of when those operations start
    254 * (for permission checks) and when they end, so that
    255 * we can determine when writes are able to occur to
    256 * a filesystem.
    257 */
    258/*
    259 * __mnt_is_readonly: check whether a mount is read-only
    260 * @mnt: the mount to check for its write status
    261 *
    262 * This shouldn't be used directly ouside of the VFS.
    263 * It does not guarantee that the filesystem will stay
    264 * r/w, just that it is right *now*.  This can not and
    265 * should not be used in place of IS_RDONLY(inode).
    266 * mnt_want/drop_write() will _keep_ the filesystem
    267 * r/w.
    268 */
    269bool __mnt_is_readonly(struct vfsmount *mnt)
    270{
    271	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
    272}
    273EXPORT_SYMBOL_GPL(__mnt_is_readonly);
    274
    275static inline void mnt_inc_writers(struct mount *mnt)
    276{
    277#ifdef CONFIG_SMP
    278	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
    279#else
    280	mnt->mnt_writers++;
    281#endif
    282}
    283
    284static inline void mnt_dec_writers(struct mount *mnt)
    285{
    286#ifdef CONFIG_SMP
    287	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
    288#else
    289	mnt->mnt_writers--;
    290#endif
    291}
    292
    293static unsigned int mnt_get_writers(struct mount *mnt)
    294{
    295#ifdef CONFIG_SMP
    296	unsigned int count = 0;
    297	int cpu;
    298
    299	for_each_possible_cpu(cpu) {
    300		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
    301	}
    302
    303	return count;
    304#else
    305	return mnt->mnt_writers;
    306#endif
    307}
    308
    309static int mnt_is_readonly(struct vfsmount *mnt)
    310{
    311	if (mnt->mnt_sb->s_readonly_remount)
    312		return 1;
    313	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
    314	smp_rmb();
    315	return __mnt_is_readonly(mnt);
    316}
    317
    318/*
    319 * Most r/o & frozen checks on a fs are for operations that take discrete
    320 * amounts of time, like a write() or unlink().  We must keep track of when
    321 * those operations start (for permission checks) and when they end, so that we
    322 * can determine when writes are able to occur to a filesystem.
    323 */
    324/**
    325 * __mnt_want_write - get write access to a mount without freeze protection
    326 * @m: the mount on which to take a write
    327 *
    328 * This tells the low-level filesystem that a write is about to be performed to
    329 * it, and makes sure that writes are allowed (mnt it read-write) before
    330 * returning success. This operation does not protect against filesystem being
    331 * frozen. When the write operation is finished, __mnt_drop_write() must be
    332 * called. This is effectively a refcount.
    333 */
    334int __mnt_want_write(struct vfsmount *m)
    335{
    336	struct mount *mnt = real_mount(m);
    337	int ret = 0;
    338
    339	preempt_disable();
    340	mnt_inc_writers(mnt);
    341	/*
    342	 * The store to mnt_inc_writers must be visible before we pass
    343	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
    344	 * incremented count after it has set MNT_WRITE_HOLD.
    345	 */
    346	smp_mb();
    347	might_lock(&mount_lock.lock);
    348	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
    349		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
    350			cpu_relax();
    351		} else {
    352			/*
    353			 * This prevents priority inversion, if the task
    354			 * setting MNT_WRITE_HOLD got preempted on a remote
    355			 * CPU, and it prevents life lock if the task setting
    356			 * MNT_WRITE_HOLD has a lower priority and is bound to
    357			 * the same CPU as the task that is spinning here.
    358			 */
    359			preempt_enable();
    360			lock_mount_hash();
    361			unlock_mount_hash();
    362			preempt_disable();
    363		}
    364	}
    365	/*
    366	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
    367	 * be set to match its requirements. So we must not load that until
    368	 * MNT_WRITE_HOLD is cleared.
    369	 */
    370	smp_rmb();
    371	if (mnt_is_readonly(m)) {
    372		mnt_dec_writers(mnt);
    373		ret = -EROFS;
    374	}
    375	preempt_enable();
    376
    377	return ret;
    378}
    379
    380/**
    381 * mnt_want_write - get write access to a mount
    382 * @m: the mount on which to take a write
    383 *
    384 * This tells the low-level filesystem that a write is about to be performed to
    385 * it, and makes sure that writes are allowed (mount is read-write, filesystem
    386 * is not frozen) before returning success.  When the write operation is
    387 * finished, mnt_drop_write() must be called.  This is effectively a refcount.
    388 */
    389int mnt_want_write(struct vfsmount *m)
    390{
    391	int ret;
    392
    393	sb_start_write(m->mnt_sb);
    394	ret = __mnt_want_write(m);
    395	if (ret)
    396		sb_end_write(m->mnt_sb);
    397	return ret;
    398}
    399EXPORT_SYMBOL_GPL(mnt_want_write);
    400
    401/**
    402 * __mnt_want_write_file - get write access to a file's mount
    403 * @file: the file who's mount on which to take a write
    404 *
    405 * This is like __mnt_want_write, but if the file is already open for writing it
    406 * skips incrementing mnt_writers (since the open file already has a reference)
    407 * and instead only does the check for emergency r/o remounts.  This must be
    408 * paired with __mnt_drop_write_file.
    409 */
    410int __mnt_want_write_file(struct file *file)
    411{
    412	if (file->f_mode & FMODE_WRITER) {
    413		/*
    414		 * Superblock may have become readonly while there are still
    415		 * writable fd's, e.g. due to a fs error with errors=remount-ro
    416		 */
    417		if (__mnt_is_readonly(file->f_path.mnt))
    418			return -EROFS;
    419		return 0;
    420	}
    421	return __mnt_want_write(file->f_path.mnt);
    422}
    423
    424/**
    425 * mnt_want_write_file - get write access to a file's mount
    426 * @file: the file who's mount on which to take a write
    427 *
    428 * This is like mnt_want_write, but if the file is already open for writing it
    429 * skips incrementing mnt_writers (since the open file already has a reference)
    430 * and instead only does the freeze protection and the check for emergency r/o
    431 * remounts.  This must be paired with mnt_drop_write_file.
    432 */
    433int mnt_want_write_file(struct file *file)
    434{
    435	int ret;
    436
    437	sb_start_write(file_inode(file)->i_sb);
    438	ret = __mnt_want_write_file(file);
    439	if (ret)
    440		sb_end_write(file_inode(file)->i_sb);
    441	return ret;
    442}
    443EXPORT_SYMBOL_GPL(mnt_want_write_file);
    444
    445/**
    446 * __mnt_drop_write - give up write access to a mount
    447 * @mnt: the mount on which to give up write access
    448 *
    449 * Tells the low-level filesystem that we are done
    450 * performing writes to it.  Must be matched with
    451 * __mnt_want_write() call above.
    452 */
    453void __mnt_drop_write(struct vfsmount *mnt)
    454{
    455	preempt_disable();
    456	mnt_dec_writers(real_mount(mnt));
    457	preempt_enable();
    458}
    459
    460/**
    461 * mnt_drop_write - give up write access to a mount
    462 * @mnt: the mount on which to give up write access
    463 *
    464 * Tells the low-level filesystem that we are done performing writes to it and
    465 * also allows filesystem to be frozen again.  Must be matched with
    466 * mnt_want_write() call above.
    467 */
    468void mnt_drop_write(struct vfsmount *mnt)
    469{
    470	__mnt_drop_write(mnt);
    471	sb_end_write(mnt->mnt_sb);
    472}
    473EXPORT_SYMBOL_GPL(mnt_drop_write);
    474
    475void __mnt_drop_write_file(struct file *file)
    476{
    477	if (!(file->f_mode & FMODE_WRITER))
    478		__mnt_drop_write(file->f_path.mnt);
    479}
    480
    481void mnt_drop_write_file(struct file *file)
    482{
    483	__mnt_drop_write_file(file);
    484	sb_end_write(file_inode(file)->i_sb);
    485}
    486EXPORT_SYMBOL(mnt_drop_write_file);
    487
    488/**
    489 * mnt_hold_writers - prevent write access to the given mount
    490 * @mnt: mnt to prevent write access to
    491 *
    492 * Prevents write access to @mnt if there are no active writers for @mnt.
    493 * This function needs to be called and return successfully before changing
    494 * properties of @mnt that need to remain stable for callers with write access
    495 * to @mnt.
    496 *
    497 * After this functions has been called successfully callers must pair it with
    498 * a call to mnt_unhold_writers() in order to stop preventing write access to
    499 * @mnt.
    500 *
    501 * Context: This function expects lock_mount_hash() to be held serializing
    502 *          setting MNT_WRITE_HOLD.
    503 * Return: On success 0 is returned.
    504 *	   On error, -EBUSY is returned.
    505 */
    506static inline int mnt_hold_writers(struct mount *mnt)
    507{
    508	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
    509	/*
    510	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
    511	 * should be visible before we do.
    512	 */
    513	smp_mb();
    514
    515	/*
    516	 * With writers on hold, if this value is zero, then there are
    517	 * definitely no active writers (although held writers may subsequently
    518	 * increment the count, they'll have to wait, and decrement it after
    519	 * seeing MNT_READONLY).
    520	 *
    521	 * It is OK to have counter incremented on one CPU and decremented on
    522	 * another: the sum will add up correctly. The danger would be when we
    523	 * sum up each counter, if we read a counter before it is incremented,
    524	 * but then read another CPU's count which it has been subsequently
    525	 * decremented from -- we would see more decrements than we should.
    526	 * MNT_WRITE_HOLD protects against this scenario, because
    527	 * mnt_want_write first increments count, then smp_mb, then spins on
    528	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
    529	 * we're counting up here.
    530	 */
    531	if (mnt_get_writers(mnt) > 0)
    532		return -EBUSY;
    533
    534	return 0;
    535}
    536
    537/**
    538 * mnt_unhold_writers - stop preventing write access to the given mount
    539 * @mnt: mnt to stop preventing write access to
    540 *
    541 * Stop preventing write access to @mnt allowing callers to gain write access
    542 * to @mnt again.
    543 *
    544 * This function can only be called after a successful call to
    545 * mnt_hold_writers().
    546 *
    547 * Context: This function expects lock_mount_hash() to be held.
    548 */
    549static inline void mnt_unhold_writers(struct mount *mnt)
    550{
    551	/*
    552	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
    553	 * that become unheld will see MNT_READONLY.
    554	 */
    555	smp_wmb();
    556	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
    557}
    558
    559static int mnt_make_readonly(struct mount *mnt)
    560{
    561	int ret;
    562
    563	ret = mnt_hold_writers(mnt);
    564	if (!ret)
    565		mnt->mnt.mnt_flags |= MNT_READONLY;
    566	mnt_unhold_writers(mnt);
    567	return ret;
    568}
    569
    570int sb_prepare_remount_readonly(struct super_block *sb)
    571{
    572	struct mount *mnt;
    573	int err = 0;
    574
    575	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
    576	if (atomic_long_read(&sb->s_remove_count))
    577		return -EBUSY;
    578
    579	lock_mount_hash();
    580	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
    581		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
    582			err = mnt_hold_writers(mnt);
    583			if (err)
    584				break;
    585		}
    586	}
    587	if (!err && atomic_long_read(&sb->s_remove_count))
    588		err = -EBUSY;
    589
    590	if (!err) {
    591		sb->s_readonly_remount = 1;
    592		smp_wmb();
    593	}
    594	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
    595		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
    596			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
    597	}
    598	unlock_mount_hash();
    599
    600	return err;
    601}
    602
    603static void free_vfsmnt(struct mount *mnt)
    604{
    605	struct user_namespace *mnt_userns;
    606
    607	mnt_userns = mnt_user_ns(&mnt->mnt);
    608	if (!initial_idmapping(mnt_userns))
    609		put_user_ns(mnt_userns);
    610	kfree_const(mnt->mnt_devname);
    611#ifdef CONFIG_SMP
    612	free_percpu(mnt->mnt_pcp);
    613#endif
    614	kmem_cache_free(mnt_cache, mnt);
    615}
    616
    617static void delayed_free_vfsmnt(struct rcu_head *head)
    618{
    619	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
    620}
    621
    622/* call under rcu_read_lock */
    623int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
    624{
    625	struct mount *mnt;
    626	if (read_seqretry(&mount_lock, seq))
    627		return 1;
    628	if (bastard == NULL)
    629		return 0;
    630	mnt = real_mount(bastard);
    631	mnt_add_count(mnt, 1);
    632	smp_mb();			// see mntput_no_expire()
    633	if (likely(!read_seqretry(&mount_lock, seq)))
    634		return 0;
    635	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
    636		mnt_add_count(mnt, -1);
    637		return 1;
    638	}
    639	lock_mount_hash();
    640	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
    641		mnt_add_count(mnt, -1);
    642		unlock_mount_hash();
    643		return 1;
    644	}
    645	unlock_mount_hash();
    646	/* caller will mntput() */
    647	return -1;
    648}
    649
    650/* call under rcu_read_lock */
    651bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
    652{
    653	int res = __legitimize_mnt(bastard, seq);
    654	if (likely(!res))
    655		return true;
    656	if (unlikely(res < 0)) {
    657		rcu_read_unlock();
    658		mntput(bastard);
    659		rcu_read_lock();
    660	}
    661	return false;
    662}
    663
    664/*
    665 * find the first mount at @dentry on vfsmount @mnt.
    666 * call under rcu_read_lock()
    667 */
    668struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
    669{
    670	struct hlist_head *head = m_hash(mnt, dentry);
    671	struct mount *p;
    672
    673	hlist_for_each_entry_rcu(p, head, mnt_hash)
    674		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
    675			return p;
    676	return NULL;
    677}
    678
    679/*
    680 * lookup_mnt - Return the first child mount mounted at path
    681 *
    682 * "First" means first mounted chronologically.  If you create the
    683 * following mounts:
    684 *
    685 * mount /dev/sda1 /mnt
    686 * mount /dev/sda2 /mnt
    687 * mount /dev/sda3 /mnt
    688 *
    689 * Then lookup_mnt() on the base /mnt dentry in the root mount will
    690 * return successively the root dentry and vfsmount of /dev/sda1, then
    691 * /dev/sda2, then /dev/sda3, then NULL.
    692 *
    693 * lookup_mnt takes a reference to the found vfsmount.
    694 */
    695struct vfsmount *lookup_mnt(const struct path *path)
    696{
    697	struct mount *child_mnt;
    698	struct vfsmount *m;
    699	unsigned seq;
    700
    701	rcu_read_lock();
    702	do {
    703		seq = read_seqbegin(&mount_lock);
    704		child_mnt = __lookup_mnt(path->mnt, path->dentry);
    705		m = child_mnt ? &child_mnt->mnt : NULL;
    706	} while (!legitimize_mnt(m, seq));
    707	rcu_read_unlock();
    708	return m;
    709}
    710
    711static inline void lock_ns_list(struct mnt_namespace *ns)
    712{
    713	spin_lock(&ns->ns_lock);
    714}
    715
    716static inline void unlock_ns_list(struct mnt_namespace *ns)
    717{
    718	spin_unlock(&ns->ns_lock);
    719}
    720
    721static inline bool mnt_is_cursor(struct mount *mnt)
    722{
    723	return mnt->mnt.mnt_flags & MNT_CURSOR;
    724}
    725
    726/*
    727 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
    728 *                         current mount namespace.
    729 *
    730 * The common case is dentries are not mountpoints at all and that
    731 * test is handled inline.  For the slow case when we are actually
    732 * dealing with a mountpoint of some kind, walk through all of the
    733 * mounts in the current mount namespace and test to see if the dentry
    734 * is a mountpoint.
    735 *
    736 * The mount_hashtable is not usable in the context because we
    737 * need to identify all mounts that may be in the current mount
    738 * namespace not just a mount that happens to have some specified
    739 * parent mount.
    740 */
    741bool __is_local_mountpoint(struct dentry *dentry)
    742{
    743	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
    744	struct mount *mnt;
    745	bool is_covered = false;
    746
    747	down_read(&namespace_sem);
    748	lock_ns_list(ns);
    749	list_for_each_entry(mnt, &ns->list, mnt_list) {
    750		if (mnt_is_cursor(mnt))
    751			continue;
    752		is_covered = (mnt->mnt_mountpoint == dentry);
    753		if (is_covered)
    754			break;
    755	}
    756	unlock_ns_list(ns);
    757	up_read(&namespace_sem);
    758
    759	return is_covered;
    760}
    761
    762static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
    763{
    764	struct hlist_head *chain = mp_hash(dentry);
    765	struct mountpoint *mp;
    766
    767	hlist_for_each_entry(mp, chain, m_hash) {
    768		if (mp->m_dentry == dentry) {
    769			mp->m_count++;
    770			return mp;
    771		}
    772	}
    773	return NULL;
    774}
    775
    776static struct mountpoint *get_mountpoint(struct dentry *dentry)
    777{
    778	struct mountpoint *mp, *new = NULL;
    779	int ret;
    780
    781	if (d_mountpoint(dentry)) {
    782		/* might be worth a WARN_ON() */
    783		if (d_unlinked(dentry))
    784			return ERR_PTR(-ENOENT);
    785mountpoint:
    786		read_seqlock_excl(&mount_lock);
    787		mp = lookup_mountpoint(dentry);
    788		read_sequnlock_excl(&mount_lock);
    789		if (mp)
    790			goto done;
    791	}
    792
    793	if (!new)
    794		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
    795	if (!new)
    796		return ERR_PTR(-ENOMEM);
    797
    798
    799	/* Exactly one processes may set d_mounted */
    800	ret = d_set_mounted(dentry);
    801
    802	/* Someone else set d_mounted? */
    803	if (ret == -EBUSY)
    804		goto mountpoint;
    805
    806	/* The dentry is not available as a mountpoint? */
    807	mp = ERR_PTR(ret);
    808	if (ret)
    809		goto done;
    810
    811	/* Add the new mountpoint to the hash table */
    812	read_seqlock_excl(&mount_lock);
    813	new->m_dentry = dget(dentry);
    814	new->m_count = 1;
    815	hlist_add_head(&new->m_hash, mp_hash(dentry));
    816	INIT_HLIST_HEAD(&new->m_list);
    817	read_sequnlock_excl(&mount_lock);
    818
    819	mp = new;
    820	new = NULL;
    821done:
    822	kfree(new);
    823	return mp;
    824}
    825
    826/*
    827 * vfsmount lock must be held.  Additionally, the caller is responsible
    828 * for serializing calls for given disposal list.
    829 */
    830static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
    831{
    832	if (!--mp->m_count) {
    833		struct dentry *dentry = mp->m_dentry;
    834		BUG_ON(!hlist_empty(&mp->m_list));
    835		spin_lock(&dentry->d_lock);
    836		dentry->d_flags &= ~DCACHE_MOUNTED;
    837		spin_unlock(&dentry->d_lock);
    838		dput_to_list(dentry, list);
    839		hlist_del(&mp->m_hash);
    840		kfree(mp);
    841	}
    842}
    843
    844/* called with namespace_lock and vfsmount lock */
    845static void put_mountpoint(struct mountpoint *mp)
    846{
    847	__put_mountpoint(mp, &ex_mountpoints);
    848}
    849
    850static inline int check_mnt(struct mount *mnt)
    851{
    852	return mnt->mnt_ns == current->nsproxy->mnt_ns;
    853}
    854
    855/*
    856 * vfsmount lock must be held for write
    857 */
    858static void touch_mnt_namespace(struct mnt_namespace *ns)
    859{
    860	if (ns) {
    861		ns->event = ++event;
    862		wake_up_interruptible(&ns->poll);
    863	}
    864}
    865
    866/*
    867 * vfsmount lock must be held for write
    868 */
    869static void __touch_mnt_namespace(struct mnt_namespace *ns)
    870{
    871	if (ns && ns->event != event) {
    872		ns->event = event;
    873		wake_up_interruptible(&ns->poll);
    874	}
    875}
    876
    877/*
    878 * vfsmount lock must be held for write
    879 */
    880static struct mountpoint *unhash_mnt(struct mount *mnt)
    881{
    882	struct mountpoint *mp;
    883	mnt->mnt_parent = mnt;
    884	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
    885	list_del_init(&mnt->mnt_child);
    886	hlist_del_init_rcu(&mnt->mnt_hash);
    887	hlist_del_init(&mnt->mnt_mp_list);
    888	mp = mnt->mnt_mp;
    889	mnt->mnt_mp = NULL;
    890	return mp;
    891}
    892
    893/*
    894 * vfsmount lock must be held for write
    895 */
    896static void umount_mnt(struct mount *mnt)
    897{
    898	put_mountpoint(unhash_mnt(mnt));
    899}
    900
    901/*
    902 * vfsmount lock must be held for write
    903 */
    904void mnt_set_mountpoint(struct mount *mnt,
    905			struct mountpoint *mp,
    906			struct mount *child_mnt)
    907{
    908	mp->m_count++;
    909	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
    910	child_mnt->mnt_mountpoint = mp->m_dentry;
    911	child_mnt->mnt_parent = mnt;
    912	child_mnt->mnt_mp = mp;
    913	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
    914}
    915
    916static void __attach_mnt(struct mount *mnt, struct mount *parent)
    917{
    918	hlist_add_head_rcu(&mnt->mnt_hash,
    919			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
    920	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
    921}
    922
    923/*
    924 * vfsmount lock must be held for write
    925 */
    926static void attach_mnt(struct mount *mnt,
    927			struct mount *parent,
    928			struct mountpoint *mp)
    929{
    930	mnt_set_mountpoint(parent, mp, mnt);
    931	__attach_mnt(mnt, parent);
    932}
    933
    934void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
    935{
    936	struct mountpoint *old_mp = mnt->mnt_mp;
    937	struct mount *old_parent = mnt->mnt_parent;
    938
    939	list_del_init(&mnt->mnt_child);
    940	hlist_del_init(&mnt->mnt_mp_list);
    941	hlist_del_init_rcu(&mnt->mnt_hash);
    942
    943	attach_mnt(mnt, parent, mp);
    944
    945	put_mountpoint(old_mp);
    946	mnt_add_count(old_parent, -1);
    947}
    948
    949/*
    950 * vfsmount lock must be held for write
    951 */
    952static void commit_tree(struct mount *mnt)
    953{
    954	struct mount *parent = mnt->mnt_parent;
    955	struct mount *m;
    956	LIST_HEAD(head);
    957	struct mnt_namespace *n = parent->mnt_ns;
    958
    959	BUG_ON(parent == mnt);
    960
    961	list_add_tail(&head, &mnt->mnt_list);
    962	list_for_each_entry(m, &head, mnt_list)
    963		m->mnt_ns = n;
    964
    965	list_splice(&head, n->list.prev);
    966
    967	n->mounts += n->pending_mounts;
    968	n->pending_mounts = 0;
    969
    970	__attach_mnt(mnt, parent);
    971	touch_mnt_namespace(n);
    972}
    973
    974static struct mount *next_mnt(struct mount *p, struct mount *root)
    975{
    976	struct list_head *next = p->mnt_mounts.next;
    977	if (next == &p->mnt_mounts) {
    978		while (1) {
    979			if (p == root)
    980				return NULL;
    981			next = p->mnt_child.next;
    982			if (next != &p->mnt_parent->mnt_mounts)
    983				break;
    984			p = p->mnt_parent;
    985		}
    986	}
    987	return list_entry(next, struct mount, mnt_child);
    988}
    989
    990static struct mount *skip_mnt_tree(struct mount *p)
    991{
    992	struct list_head *prev = p->mnt_mounts.prev;
    993	while (prev != &p->mnt_mounts) {
    994		p = list_entry(prev, struct mount, mnt_child);
    995		prev = p->mnt_mounts.prev;
    996	}
    997	return p;
    998}
    999
   1000/**
   1001 * vfs_create_mount - Create a mount for a configured superblock
   1002 * @fc: The configuration context with the superblock attached
   1003 *
   1004 * Create a mount to an already configured superblock.  If necessary, the
   1005 * caller should invoke vfs_get_tree() before calling this.
   1006 *
   1007 * Note that this does not attach the mount to anything.
   1008 */
   1009struct vfsmount *vfs_create_mount(struct fs_context *fc)
   1010{
   1011	struct mount *mnt;
   1012	struct user_namespace *fs_userns;
   1013
   1014	if (!fc->root)
   1015		return ERR_PTR(-EINVAL);
   1016
   1017	mnt = alloc_vfsmnt(fc->source ?: "none");
   1018	if (!mnt)
   1019		return ERR_PTR(-ENOMEM);
   1020
   1021	if (fc->sb_flags & SB_KERNMOUNT)
   1022		mnt->mnt.mnt_flags = MNT_INTERNAL;
   1023
   1024	atomic_inc(&fc->root->d_sb->s_active);
   1025	mnt->mnt.mnt_sb		= fc->root->d_sb;
   1026	mnt->mnt.mnt_root	= dget(fc->root);
   1027	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
   1028	mnt->mnt_parent		= mnt;
   1029
   1030	fs_userns = mnt->mnt.mnt_sb->s_user_ns;
   1031	if (!initial_idmapping(fs_userns))
   1032		mnt->mnt.mnt_userns = get_user_ns(fs_userns);
   1033
   1034	lock_mount_hash();
   1035	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
   1036	unlock_mount_hash();
   1037	return &mnt->mnt;
   1038}
   1039EXPORT_SYMBOL(vfs_create_mount);
   1040
   1041struct vfsmount *fc_mount(struct fs_context *fc)
   1042{
   1043	int err = vfs_get_tree(fc);
   1044	if (!err) {
   1045		up_write(&fc->root->d_sb->s_umount);
   1046		return vfs_create_mount(fc);
   1047	}
   1048	return ERR_PTR(err);
   1049}
   1050EXPORT_SYMBOL(fc_mount);
   1051
   1052struct vfsmount *vfs_kern_mount(struct file_system_type *type,
   1053				int flags, const char *name,
   1054				void *data)
   1055{
   1056	struct fs_context *fc;
   1057	struct vfsmount *mnt;
   1058	int ret = 0;
   1059
   1060	if (!type)
   1061		return ERR_PTR(-EINVAL);
   1062
   1063	fc = fs_context_for_mount(type, flags);
   1064	if (IS_ERR(fc))
   1065		return ERR_CAST(fc);
   1066
   1067	if (name)
   1068		ret = vfs_parse_fs_string(fc, "source",
   1069					  name, strlen(name));
   1070	if (!ret)
   1071		ret = parse_monolithic_mount_data(fc, data);
   1072	if (!ret)
   1073		mnt = fc_mount(fc);
   1074	else
   1075		mnt = ERR_PTR(ret);
   1076
   1077	put_fs_context(fc);
   1078	return mnt;
   1079}
   1080EXPORT_SYMBOL_GPL(vfs_kern_mount);
   1081
   1082struct vfsmount *
   1083vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
   1084	     const char *name, void *data)
   1085{
   1086	/* Until it is worked out how to pass the user namespace
   1087	 * through from the parent mount to the submount don't support
   1088	 * unprivileged mounts with submounts.
   1089	 */
   1090	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
   1091		return ERR_PTR(-EPERM);
   1092
   1093	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
   1094}
   1095EXPORT_SYMBOL_GPL(vfs_submount);
   1096
   1097static struct mount *clone_mnt(struct mount *old, struct dentry *root,
   1098					int flag)
   1099{
   1100	struct super_block *sb = old->mnt.mnt_sb;
   1101	struct mount *mnt;
   1102	int err;
   1103
   1104	mnt = alloc_vfsmnt(old->mnt_devname);
   1105	if (!mnt)
   1106		return ERR_PTR(-ENOMEM);
   1107
   1108	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
   1109		mnt->mnt_group_id = 0; /* not a peer of original */
   1110	else
   1111		mnt->mnt_group_id = old->mnt_group_id;
   1112
   1113	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
   1114		err = mnt_alloc_group_id(mnt);
   1115		if (err)
   1116			goto out_free;
   1117	}
   1118
   1119	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
   1120	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
   1121
   1122	atomic_inc(&sb->s_active);
   1123	mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt);
   1124	if (!initial_idmapping(mnt->mnt.mnt_userns))
   1125		mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns);
   1126	mnt->mnt.mnt_sb = sb;
   1127	mnt->mnt.mnt_root = dget(root);
   1128	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
   1129	mnt->mnt_parent = mnt;
   1130	lock_mount_hash();
   1131	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
   1132	unlock_mount_hash();
   1133
   1134	if ((flag & CL_SLAVE) ||
   1135	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
   1136		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
   1137		mnt->mnt_master = old;
   1138		CLEAR_MNT_SHARED(mnt);
   1139	} else if (!(flag & CL_PRIVATE)) {
   1140		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
   1141			list_add(&mnt->mnt_share, &old->mnt_share);
   1142		if (IS_MNT_SLAVE(old))
   1143			list_add(&mnt->mnt_slave, &old->mnt_slave);
   1144		mnt->mnt_master = old->mnt_master;
   1145	} else {
   1146		CLEAR_MNT_SHARED(mnt);
   1147	}
   1148	if (flag & CL_MAKE_SHARED)
   1149		set_mnt_shared(mnt);
   1150
   1151	/* stick the duplicate mount on the same expiry list
   1152	 * as the original if that was on one */
   1153	if (flag & CL_EXPIRE) {
   1154		if (!list_empty(&old->mnt_expire))
   1155			list_add(&mnt->mnt_expire, &old->mnt_expire);
   1156	}
   1157
   1158	return mnt;
   1159
   1160 out_free:
   1161	mnt_free_id(mnt);
   1162	free_vfsmnt(mnt);
   1163	return ERR_PTR(err);
   1164}
   1165
   1166static void cleanup_mnt(struct mount *mnt)
   1167{
   1168	struct hlist_node *p;
   1169	struct mount *m;
   1170	/*
   1171	 * The warning here probably indicates that somebody messed
   1172	 * up a mnt_want/drop_write() pair.  If this happens, the
   1173	 * filesystem was probably unable to make r/w->r/o transitions.
   1174	 * The locking used to deal with mnt_count decrement provides barriers,
   1175	 * so mnt_get_writers() below is safe.
   1176	 */
   1177	WARN_ON(mnt_get_writers(mnt));
   1178	if (unlikely(mnt->mnt_pins.first))
   1179		mnt_pin_kill(mnt);
   1180	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
   1181		hlist_del(&m->mnt_umount);
   1182		mntput(&m->mnt);
   1183	}
   1184	fsnotify_vfsmount_delete(&mnt->mnt);
   1185	dput(mnt->mnt.mnt_root);
   1186	deactivate_super(mnt->mnt.mnt_sb);
   1187	mnt_free_id(mnt);
   1188	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
   1189}
   1190
   1191static void __cleanup_mnt(struct rcu_head *head)
   1192{
   1193	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
   1194}
   1195
   1196static LLIST_HEAD(delayed_mntput_list);
   1197static void delayed_mntput(struct work_struct *unused)
   1198{
   1199	struct llist_node *node = llist_del_all(&delayed_mntput_list);
   1200	struct mount *m, *t;
   1201
   1202	llist_for_each_entry_safe(m, t, node, mnt_llist)
   1203		cleanup_mnt(m);
   1204}
   1205static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
   1206
   1207static void mntput_no_expire(struct mount *mnt)
   1208{
   1209	LIST_HEAD(list);
   1210	int count;
   1211
   1212	rcu_read_lock();
   1213	if (likely(READ_ONCE(mnt->mnt_ns))) {
   1214		/*
   1215		 * Since we don't do lock_mount_hash() here,
   1216		 * ->mnt_ns can change under us.  However, if it's
   1217		 * non-NULL, then there's a reference that won't
   1218		 * be dropped until after an RCU delay done after
   1219		 * turning ->mnt_ns NULL.  So if we observe it
   1220		 * non-NULL under rcu_read_lock(), the reference
   1221		 * we are dropping is not the final one.
   1222		 */
   1223		mnt_add_count(mnt, -1);
   1224		rcu_read_unlock();
   1225		return;
   1226	}
   1227	lock_mount_hash();
   1228	/*
   1229	 * make sure that if __legitimize_mnt() has not seen us grab
   1230	 * mount_lock, we'll see their refcount increment here.
   1231	 */
   1232	smp_mb();
   1233	mnt_add_count(mnt, -1);
   1234	count = mnt_get_count(mnt);
   1235	if (count != 0) {
   1236		WARN_ON(count < 0);
   1237		rcu_read_unlock();
   1238		unlock_mount_hash();
   1239		return;
   1240	}
   1241	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
   1242		rcu_read_unlock();
   1243		unlock_mount_hash();
   1244		return;
   1245	}
   1246	mnt->mnt.mnt_flags |= MNT_DOOMED;
   1247	rcu_read_unlock();
   1248
   1249	list_del(&mnt->mnt_instance);
   1250
   1251	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
   1252		struct mount *p, *tmp;
   1253		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
   1254			__put_mountpoint(unhash_mnt(p), &list);
   1255			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
   1256		}
   1257	}
   1258	unlock_mount_hash();
   1259	shrink_dentry_list(&list);
   1260
   1261	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
   1262		struct task_struct *task = current;
   1263		if (likely(!(task->flags & PF_KTHREAD))) {
   1264			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
   1265			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
   1266				return;
   1267		}
   1268		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
   1269			schedule_delayed_work(&delayed_mntput_work, 1);
   1270		return;
   1271	}
   1272	cleanup_mnt(mnt);
   1273}
   1274
   1275void mntput(struct vfsmount *mnt)
   1276{
   1277	if (mnt) {
   1278		struct mount *m = real_mount(mnt);
   1279		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
   1280		if (unlikely(m->mnt_expiry_mark))
   1281			m->mnt_expiry_mark = 0;
   1282		mntput_no_expire(m);
   1283	}
   1284}
   1285EXPORT_SYMBOL(mntput);
   1286
   1287struct vfsmount *mntget(struct vfsmount *mnt)
   1288{
   1289	if (mnt)
   1290		mnt_add_count(real_mount(mnt), 1);
   1291	return mnt;
   1292}
   1293EXPORT_SYMBOL(mntget);
   1294
   1295/**
   1296 * path_is_mountpoint() - Check if path is a mount in the current namespace.
   1297 * @path: path to check
   1298 *
   1299 *  d_mountpoint() can only be used reliably to establish if a dentry is
   1300 *  not mounted in any namespace and that common case is handled inline.
   1301 *  d_mountpoint() isn't aware of the possibility there may be multiple
   1302 *  mounts using a given dentry in a different namespace. This function
   1303 *  checks if the passed in path is a mountpoint rather than the dentry
   1304 *  alone.
   1305 */
   1306bool path_is_mountpoint(const struct path *path)
   1307{
   1308	unsigned seq;
   1309	bool res;
   1310
   1311	if (!d_mountpoint(path->dentry))
   1312		return false;
   1313
   1314	rcu_read_lock();
   1315	do {
   1316		seq = read_seqbegin(&mount_lock);
   1317		res = __path_is_mountpoint(path);
   1318	} while (read_seqretry(&mount_lock, seq));
   1319	rcu_read_unlock();
   1320
   1321	return res;
   1322}
   1323EXPORT_SYMBOL(path_is_mountpoint);
   1324
   1325struct vfsmount *mnt_clone_internal(const struct path *path)
   1326{
   1327	struct mount *p;
   1328	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
   1329	if (IS_ERR(p))
   1330		return ERR_CAST(p);
   1331	p->mnt.mnt_flags |= MNT_INTERNAL;
   1332	return &p->mnt;
   1333}
   1334
   1335#ifdef CONFIG_PROC_FS
   1336static struct mount *mnt_list_next(struct mnt_namespace *ns,
   1337				   struct list_head *p)
   1338{
   1339	struct mount *mnt, *ret = NULL;
   1340
   1341	lock_ns_list(ns);
   1342	list_for_each_continue(p, &ns->list) {
   1343		mnt = list_entry(p, typeof(*mnt), mnt_list);
   1344		if (!mnt_is_cursor(mnt)) {
   1345			ret = mnt;
   1346			break;
   1347		}
   1348	}
   1349	unlock_ns_list(ns);
   1350
   1351	return ret;
   1352}
   1353
   1354/* iterator; we want it to have access to namespace_sem, thus here... */
   1355static void *m_start(struct seq_file *m, loff_t *pos)
   1356{
   1357	struct proc_mounts *p = m->private;
   1358	struct list_head *prev;
   1359
   1360	down_read(&namespace_sem);
   1361	if (!*pos) {
   1362		prev = &p->ns->list;
   1363	} else {
   1364		prev = &p->cursor.mnt_list;
   1365
   1366		/* Read after we'd reached the end? */
   1367		if (list_empty(prev))
   1368			return NULL;
   1369	}
   1370
   1371	return mnt_list_next(p->ns, prev);
   1372}
   1373
   1374static void *m_next(struct seq_file *m, void *v, loff_t *pos)
   1375{
   1376	struct proc_mounts *p = m->private;
   1377	struct mount *mnt = v;
   1378
   1379	++*pos;
   1380	return mnt_list_next(p->ns, &mnt->mnt_list);
   1381}
   1382
   1383static void m_stop(struct seq_file *m, void *v)
   1384{
   1385	struct proc_mounts *p = m->private;
   1386	struct mount *mnt = v;
   1387
   1388	lock_ns_list(p->ns);
   1389	if (mnt)
   1390		list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
   1391	else
   1392		list_del_init(&p->cursor.mnt_list);
   1393	unlock_ns_list(p->ns);
   1394	up_read(&namespace_sem);
   1395}
   1396
   1397static int m_show(struct seq_file *m, void *v)
   1398{
   1399	struct proc_mounts *p = m->private;
   1400	struct mount *r = v;
   1401	return p->show(m, &r->mnt);
   1402}
   1403
   1404const struct seq_operations mounts_op = {
   1405	.start	= m_start,
   1406	.next	= m_next,
   1407	.stop	= m_stop,
   1408	.show	= m_show,
   1409};
   1410
   1411void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
   1412{
   1413	down_read(&namespace_sem);
   1414	lock_ns_list(ns);
   1415	list_del(&cursor->mnt_list);
   1416	unlock_ns_list(ns);
   1417	up_read(&namespace_sem);
   1418}
   1419#endif  /* CONFIG_PROC_FS */
   1420
   1421/**
   1422 * may_umount_tree - check if a mount tree is busy
   1423 * @m: root of mount tree
   1424 *
   1425 * This is called to check if a tree of mounts has any
   1426 * open files, pwds, chroots or sub mounts that are
   1427 * busy.
   1428 */
   1429int may_umount_tree(struct vfsmount *m)
   1430{
   1431	struct mount *mnt = real_mount(m);
   1432	int actual_refs = 0;
   1433	int minimum_refs = 0;
   1434	struct mount *p;
   1435	BUG_ON(!m);
   1436
   1437	/* write lock needed for mnt_get_count */
   1438	lock_mount_hash();
   1439	for (p = mnt; p; p = next_mnt(p, mnt)) {
   1440		actual_refs += mnt_get_count(p);
   1441		minimum_refs += 2;
   1442	}
   1443	unlock_mount_hash();
   1444
   1445	if (actual_refs > minimum_refs)
   1446		return 0;
   1447
   1448	return 1;
   1449}
   1450
   1451EXPORT_SYMBOL(may_umount_tree);
   1452
   1453/**
   1454 * may_umount - check if a mount point is busy
   1455 * @mnt: root of mount
   1456 *
   1457 * This is called to check if a mount point has any
   1458 * open files, pwds, chroots or sub mounts. If the
   1459 * mount has sub mounts this will return busy
   1460 * regardless of whether the sub mounts are busy.
   1461 *
   1462 * Doesn't take quota and stuff into account. IOW, in some cases it will
   1463 * give false negatives. The main reason why it's here is that we need
   1464 * a non-destructive way to look for easily umountable filesystems.
   1465 */
   1466int may_umount(struct vfsmount *mnt)
   1467{
   1468	int ret = 1;
   1469	down_read(&namespace_sem);
   1470	lock_mount_hash();
   1471	if (propagate_mount_busy(real_mount(mnt), 2))
   1472		ret = 0;
   1473	unlock_mount_hash();
   1474	up_read(&namespace_sem);
   1475	return ret;
   1476}
   1477
   1478EXPORT_SYMBOL(may_umount);
   1479
   1480static void namespace_unlock(void)
   1481{
   1482	struct hlist_head head;
   1483	struct hlist_node *p;
   1484	struct mount *m;
   1485	LIST_HEAD(list);
   1486
   1487	hlist_move_list(&unmounted, &head);
   1488	list_splice_init(&ex_mountpoints, &list);
   1489
   1490	up_write(&namespace_sem);
   1491
   1492	shrink_dentry_list(&list);
   1493
   1494	if (likely(hlist_empty(&head)))
   1495		return;
   1496
   1497	synchronize_rcu_expedited();
   1498
   1499	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
   1500		hlist_del(&m->mnt_umount);
   1501		mntput(&m->mnt);
   1502	}
   1503}
   1504
   1505static inline void namespace_lock(void)
   1506{
   1507	down_write(&namespace_sem);
   1508}
   1509
   1510enum umount_tree_flags {
   1511	UMOUNT_SYNC = 1,
   1512	UMOUNT_PROPAGATE = 2,
   1513	UMOUNT_CONNECTED = 4,
   1514};
   1515
   1516static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
   1517{
   1518	/* Leaving mounts connected is only valid for lazy umounts */
   1519	if (how & UMOUNT_SYNC)
   1520		return true;
   1521
   1522	/* A mount without a parent has nothing to be connected to */
   1523	if (!mnt_has_parent(mnt))
   1524		return true;
   1525
   1526	/* Because the reference counting rules change when mounts are
   1527	 * unmounted and connected, umounted mounts may not be
   1528	 * connected to mounted mounts.
   1529	 */
   1530	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
   1531		return true;
   1532
   1533	/* Has it been requested that the mount remain connected? */
   1534	if (how & UMOUNT_CONNECTED)
   1535		return false;
   1536
   1537	/* Is the mount locked such that it needs to remain connected? */
   1538	if (IS_MNT_LOCKED(mnt))
   1539		return false;
   1540
   1541	/* By default disconnect the mount */
   1542	return true;
   1543}
   1544
   1545/*
   1546 * mount_lock must be held
   1547 * namespace_sem must be held for write
   1548 */
   1549static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
   1550{
   1551	LIST_HEAD(tmp_list);
   1552	struct mount *p;
   1553
   1554	if (how & UMOUNT_PROPAGATE)
   1555		propagate_mount_unlock(mnt);
   1556
   1557	/* Gather the mounts to umount */
   1558	for (p = mnt; p; p = next_mnt(p, mnt)) {
   1559		p->mnt.mnt_flags |= MNT_UMOUNT;
   1560		list_move(&p->mnt_list, &tmp_list);
   1561	}
   1562
   1563	/* Hide the mounts from mnt_mounts */
   1564	list_for_each_entry(p, &tmp_list, mnt_list) {
   1565		list_del_init(&p->mnt_child);
   1566	}
   1567
   1568	/* Add propogated mounts to the tmp_list */
   1569	if (how & UMOUNT_PROPAGATE)
   1570		propagate_umount(&tmp_list);
   1571
   1572	while (!list_empty(&tmp_list)) {
   1573		struct mnt_namespace *ns;
   1574		bool disconnect;
   1575		p = list_first_entry(&tmp_list, struct mount, mnt_list);
   1576		list_del_init(&p->mnt_expire);
   1577		list_del_init(&p->mnt_list);
   1578		ns = p->mnt_ns;
   1579		if (ns) {
   1580			ns->mounts--;
   1581			__touch_mnt_namespace(ns);
   1582		}
   1583		p->mnt_ns = NULL;
   1584		if (how & UMOUNT_SYNC)
   1585			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
   1586
   1587		disconnect = disconnect_mount(p, how);
   1588		if (mnt_has_parent(p)) {
   1589			mnt_add_count(p->mnt_parent, -1);
   1590			if (!disconnect) {
   1591				/* Don't forget about p */
   1592				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
   1593			} else {
   1594				umount_mnt(p);
   1595			}
   1596		}
   1597		change_mnt_propagation(p, MS_PRIVATE);
   1598		if (disconnect)
   1599			hlist_add_head(&p->mnt_umount, &unmounted);
   1600	}
   1601}
   1602
   1603static void shrink_submounts(struct mount *mnt);
   1604
   1605static int do_umount_root(struct super_block *sb)
   1606{
   1607	int ret = 0;
   1608
   1609	down_write(&sb->s_umount);
   1610	if (!sb_rdonly(sb)) {
   1611		struct fs_context *fc;
   1612
   1613		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
   1614						SB_RDONLY);
   1615		if (IS_ERR(fc)) {
   1616			ret = PTR_ERR(fc);
   1617		} else {
   1618			ret = parse_monolithic_mount_data(fc, NULL);
   1619			if (!ret)
   1620				ret = reconfigure_super(fc);
   1621			put_fs_context(fc);
   1622		}
   1623	}
   1624	up_write(&sb->s_umount);
   1625	return ret;
   1626}
   1627
   1628static int do_umount(struct mount *mnt, int flags)
   1629{
   1630	struct super_block *sb = mnt->mnt.mnt_sb;
   1631	int retval;
   1632
   1633	retval = security_sb_umount(&mnt->mnt, flags);
   1634	if (retval)
   1635		return retval;
   1636
   1637	/*
   1638	 * Allow userspace to request a mountpoint be expired rather than
   1639	 * unmounting unconditionally. Unmount only happens if:
   1640	 *  (1) the mark is already set (the mark is cleared by mntput())
   1641	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
   1642	 */
   1643	if (flags & MNT_EXPIRE) {
   1644		if (&mnt->mnt == current->fs->root.mnt ||
   1645		    flags & (MNT_FORCE | MNT_DETACH))
   1646			return -EINVAL;
   1647
   1648		/*
   1649		 * probably don't strictly need the lock here if we examined
   1650		 * all race cases, but it's a slowpath.
   1651		 */
   1652		lock_mount_hash();
   1653		if (mnt_get_count(mnt) != 2) {
   1654			unlock_mount_hash();
   1655			return -EBUSY;
   1656		}
   1657		unlock_mount_hash();
   1658
   1659		if (!xchg(&mnt->mnt_expiry_mark, 1))
   1660			return -EAGAIN;
   1661	}
   1662
   1663	/*
   1664	 * If we may have to abort operations to get out of this
   1665	 * mount, and they will themselves hold resources we must
   1666	 * allow the fs to do things. In the Unix tradition of
   1667	 * 'Gee thats tricky lets do it in userspace' the umount_begin
   1668	 * might fail to complete on the first run through as other tasks
   1669	 * must return, and the like. Thats for the mount program to worry
   1670	 * about for the moment.
   1671	 */
   1672
   1673	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
   1674		sb->s_op->umount_begin(sb);
   1675	}
   1676
   1677	/*
   1678	 * No sense to grab the lock for this test, but test itself looks
   1679	 * somewhat bogus. Suggestions for better replacement?
   1680	 * Ho-hum... In principle, we might treat that as umount + switch
   1681	 * to rootfs. GC would eventually take care of the old vfsmount.
   1682	 * Actually it makes sense, especially if rootfs would contain a
   1683	 * /reboot - static binary that would close all descriptors and
   1684	 * call reboot(9). Then init(8) could umount root and exec /reboot.
   1685	 */
   1686	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
   1687		/*
   1688		 * Special case for "unmounting" root ...
   1689		 * we just try to remount it readonly.
   1690		 */
   1691		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
   1692			return -EPERM;
   1693		return do_umount_root(sb);
   1694	}
   1695
   1696	namespace_lock();
   1697	lock_mount_hash();
   1698
   1699	/* Recheck MNT_LOCKED with the locks held */
   1700	retval = -EINVAL;
   1701	if (mnt->mnt.mnt_flags & MNT_LOCKED)
   1702		goto out;
   1703
   1704	event++;
   1705	if (flags & MNT_DETACH) {
   1706		if (!list_empty(&mnt->mnt_list))
   1707			umount_tree(mnt, UMOUNT_PROPAGATE);
   1708		retval = 0;
   1709	} else {
   1710		shrink_submounts(mnt);
   1711		retval = -EBUSY;
   1712		if (!propagate_mount_busy(mnt, 2)) {
   1713			if (!list_empty(&mnt->mnt_list))
   1714				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
   1715			retval = 0;
   1716		}
   1717	}
   1718out:
   1719	unlock_mount_hash();
   1720	namespace_unlock();
   1721	return retval;
   1722}
   1723
   1724/*
   1725 * __detach_mounts - lazily unmount all mounts on the specified dentry
   1726 *
   1727 * During unlink, rmdir, and d_drop it is possible to loose the path
   1728 * to an existing mountpoint, and wind up leaking the mount.
   1729 * detach_mounts allows lazily unmounting those mounts instead of
   1730 * leaking them.
   1731 *
   1732 * The caller may hold dentry->d_inode->i_mutex.
   1733 */
   1734void __detach_mounts(struct dentry *dentry)
   1735{
   1736	struct mountpoint *mp;
   1737	struct mount *mnt;
   1738
   1739	namespace_lock();
   1740	lock_mount_hash();
   1741	mp = lookup_mountpoint(dentry);
   1742	if (!mp)
   1743		goto out_unlock;
   1744
   1745	event++;
   1746	while (!hlist_empty(&mp->m_list)) {
   1747		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
   1748		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
   1749			umount_mnt(mnt);
   1750			hlist_add_head(&mnt->mnt_umount, &unmounted);
   1751		}
   1752		else umount_tree(mnt, UMOUNT_CONNECTED);
   1753	}
   1754	put_mountpoint(mp);
   1755out_unlock:
   1756	unlock_mount_hash();
   1757	namespace_unlock();
   1758}
   1759
   1760/*
   1761 * Is the caller allowed to modify his namespace?
   1762 */
   1763bool may_mount(void)
   1764{
   1765	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
   1766}
   1767
   1768static void warn_mandlock(void)
   1769{
   1770	pr_warn_once("=======================================================\n"
   1771		     "WARNING: The mand mount option has been deprecated and\n"
   1772		     "         and is ignored by this kernel. Remove the mand\n"
   1773		     "         option from the mount to silence this warning.\n"
   1774		     "=======================================================\n");
   1775}
   1776
   1777static int can_umount(const struct path *path, int flags)
   1778{
   1779	struct mount *mnt = real_mount(path->mnt);
   1780
   1781	if (!may_mount())
   1782		return -EPERM;
   1783	if (path->dentry != path->mnt->mnt_root)
   1784		return -EINVAL;
   1785	if (!check_mnt(mnt))
   1786		return -EINVAL;
   1787	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
   1788		return -EINVAL;
   1789	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
   1790		return -EPERM;
   1791	return 0;
   1792}
   1793
   1794// caller is responsible for flags being sane
   1795int path_umount(struct path *path, int flags)
   1796{
   1797	struct mount *mnt = real_mount(path->mnt);
   1798	int ret;
   1799
   1800	ret = can_umount(path, flags);
   1801	if (!ret)
   1802		ret = do_umount(mnt, flags);
   1803
   1804	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
   1805	dput(path->dentry);
   1806	mntput_no_expire(mnt);
   1807	return ret;
   1808}
   1809
   1810static int ksys_umount(char __user *name, int flags)
   1811{
   1812	int lookup_flags = LOOKUP_MOUNTPOINT;
   1813	struct path path;
   1814	int ret;
   1815
   1816	// basic validity checks done first
   1817	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
   1818		return -EINVAL;
   1819
   1820	if (!(flags & UMOUNT_NOFOLLOW))
   1821		lookup_flags |= LOOKUP_FOLLOW;
   1822	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
   1823	if (ret)
   1824		return ret;
   1825	return path_umount(&path, flags);
   1826}
   1827
   1828SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
   1829{
   1830	return ksys_umount(name, flags);
   1831}
   1832
   1833#ifdef __ARCH_WANT_SYS_OLDUMOUNT
   1834
   1835/*
   1836 *	The 2.0 compatible umount. No flags.
   1837 */
   1838SYSCALL_DEFINE1(oldumount, char __user *, name)
   1839{
   1840	return ksys_umount(name, 0);
   1841}
   1842
   1843#endif
   1844
   1845static bool is_mnt_ns_file(struct dentry *dentry)
   1846{
   1847	/* Is this a proxy for a mount namespace? */
   1848	return dentry->d_op == &ns_dentry_operations &&
   1849	       dentry->d_fsdata == &mntns_operations;
   1850}
   1851
   1852static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
   1853{
   1854	return container_of(ns, struct mnt_namespace, ns);
   1855}
   1856
   1857struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
   1858{
   1859	return &mnt->ns;
   1860}
   1861
   1862static bool mnt_ns_loop(struct dentry *dentry)
   1863{
   1864	/* Could bind mounting the mount namespace inode cause a
   1865	 * mount namespace loop?
   1866	 */
   1867	struct mnt_namespace *mnt_ns;
   1868	if (!is_mnt_ns_file(dentry))
   1869		return false;
   1870
   1871	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
   1872	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
   1873}
   1874
   1875struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
   1876					int flag)
   1877{
   1878	struct mount *res, *p, *q, *r, *parent;
   1879
   1880	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
   1881		return ERR_PTR(-EINVAL);
   1882
   1883	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
   1884		return ERR_PTR(-EINVAL);
   1885
   1886	res = q = clone_mnt(mnt, dentry, flag);
   1887	if (IS_ERR(q))
   1888		return q;
   1889
   1890	q->mnt_mountpoint = mnt->mnt_mountpoint;
   1891
   1892	p = mnt;
   1893	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
   1894		struct mount *s;
   1895		if (!is_subdir(r->mnt_mountpoint, dentry))
   1896			continue;
   1897
   1898		for (s = r; s; s = next_mnt(s, r)) {
   1899			if (!(flag & CL_COPY_UNBINDABLE) &&
   1900			    IS_MNT_UNBINDABLE(s)) {
   1901				if (s->mnt.mnt_flags & MNT_LOCKED) {
   1902					/* Both unbindable and locked. */
   1903					q = ERR_PTR(-EPERM);
   1904					goto out;
   1905				} else {
   1906					s = skip_mnt_tree(s);
   1907					continue;
   1908				}
   1909			}
   1910			if (!(flag & CL_COPY_MNT_NS_FILE) &&
   1911			    is_mnt_ns_file(s->mnt.mnt_root)) {
   1912				s = skip_mnt_tree(s);
   1913				continue;
   1914			}
   1915			while (p != s->mnt_parent) {
   1916				p = p->mnt_parent;
   1917				q = q->mnt_parent;
   1918			}
   1919			p = s;
   1920			parent = q;
   1921			q = clone_mnt(p, p->mnt.mnt_root, flag);
   1922			if (IS_ERR(q))
   1923				goto out;
   1924			lock_mount_hash();
   1925			list_add_tail(&q->mnt_list, &res->mnt_list);
   1926			attach_mnt(q, parent, p->mnt_mp);
   1927			unlock_mount_hash();
   1928		}
   1929	}
   1930	return res;
   1931out:
   1932	if (res) {
   1933		lock_mount_hash();
   1934		umount_tree(res, UMOUNT_SYNC);
   1935		unlock_mount_hash();
   1936	}
   1937	return q;
   1938}
   1939
   1940/* Caller should check returned pointer for errors */
   1941
   1942struct vfsmount *collect_mounts(const struct path *path)
   1943{
   1944	struct mount *tree;
   1945	namespace_lock();
   1946	if (!check_mnt(real_mount(path->mnt)))
   1947		tree = ERR_PTR(-EINVAL);
   1948	else
   1949		tree = copy_tree(real_mount(path->mnt), path->dentry,
   1950				 CL_COPY_ALL | CL_PRIVATE);
   1951	namespace_unlock();
   1952	if (IS_ERR(tree))
   1953		return ERR_CAST(tree);
   1954	return &tree->mnt;
   1955}
   1956
   1957static void free_mnt_ns(struct mnt_namespace *);
   1958static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
   1959
   1960void dissolve_on_fput(struct vfsmount *mnt)
   1961{
   1962	struct mnt_namespace *ns;
   1963	namespace_lock();
   1964	lock_mount_hash();
   1965	ns = real_mount(mnt)->mnt_ns;
   1966	if (ns) {
   1967		if (is_anon_ns(ns))
   1968			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
   1969		else
   1970			ns = NULL;
   1971	}
   1972	unlock_mount_hash();
   1973	namespace_unlock();
   1974	if (ns)
   1975		free_mnt_ns(ns);
   1976}
   1977
   1978void drop_collected_mounts(struct vfsmount *mnt)
   1979{
   1980	namespace_lock();
   1981	lock_mount_hash();
   1982	umount_tree(real_mount(mnt), 0);
   1983	unlock_mount_hash();
   1984	namespace_unlock();
   1985}
   1986
   1987static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
   1988{
   1989	struct mount *child;
   1990
   1991	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
   1992		if (!is_subdir(child->mnt_mountpoint, dentry))
   1993			continue;
   1994
   1995		if (child->mnt.mnt_flags & MNT_LOCKED)
   1996			return true;
   1997	}
   1998	return false;
   1999}
   2000
   2001/**
   2002 * clone_private_mount - create a private clone of a path
   2003 * @path: path to clone
   2004 *
   2005 * This creates a new vfsmount, which will be the clone of @path.  The new mount
   2006 * will not be attached anywhere in the namespace and will be private (i.e.
   2007 * changes to the originating mount won't be propagated into this).
   2008 *
   2009 * Release with mntput().
   2010 */
   2011struct vfsmount *clone_private_mount(const struct path *path)
   2012{
   2013	struct mount *old_mnt = real_mount(path->mnt);
   2014	struct mount *new_mnt;
   2015
   2016	down_read(&namespace_sem);
   2017	if (IS_MNT_UNBINDABLE(old_mnt))
   2018		goto invalid;
   2019
   2020	if (!check_mnt(old_mnt))
   2021		goto invalid;
   2022
   2023	if (has_locked_children(old_mnt, path->dentry))
   2024		goto invalid;
   2025
   2026	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
   2027	up_read(&namespace_sem);
   2028
   2029	if (IS_ERR(new_mnt))
   2030		return ERR_CAST(new_mnt);
   2031
   2032	/* Longterm mount to be removed by kern_unmount*() */
   2033	new_mnt->mnt_ns = MNT_NS_INTERNAL;
   2034
   2035	return &new_mnt->mnt;
   2036
   2037invalid:
   2038	up_read(&namespace_sem);
   2039	return ERR_PTR(-EINVAL);
   2040}
   2041EXPORT_SYMBOL_GPL(clone_private_mount);
   2042
   2043int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
   2044		   struct vfsmount *root)
   2045{
   2046	struct mount *mnt;
   2047	int res = f(root, arg);
   2048	if (res)
   2049		return res;
   2050	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
   2051		res = f(&mnt->mnt, arg);
   2052		if (res)
   2053			return res;
   2054	}
   2055	return 0;
   2056}
   2057
   2058static void lock_mnt_tree(struct mount *mnt)
   2059{
   2060	struct mount *p;
   2061
   2062	for (p = mnt; p; p = next_mnt(p, mnt)) {
   2063		int flags = p->mnt.mnt_flags;
   2064		/* Don't allow unprivileged users to change mount flags */
   2065		flags |= MNT_LOCK_ATIME;
   2066
   2067		if (flags & MNT_READONLY)
   2068			flags |= MNT_LOCK_READONLY;
   2069
   2070		if (flags & MNT_NODEV)
   2071			flags |= MNT_LOCK_NODEV;
   2072
   2073		if (flags & MNT_NOSUID)
   2074			flags |= MNT_LOCK_NOSUID;
   2075
   2076		if (flags & MNT_NOEXEC)
   2077			flags |= MNT_LOCK_NOEXEC;
   2078		/* Don't allow unprivileged users to reveal what is under a mount */
   2079		if (list_empty(&p->mnt_expire))
   2080			flags |= MNT_LOCKED;
   2081		p->mnt.mnt_flags = flags;
   2082	}
   2083}
   2084
   2085static void cleanup_group_ids(struct mount *mnt, struct mount *end)
   2086{
   2087	struct mount *p;
   2088
   2089	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
   2090		if (p->mnt_group_id && !IS_MNT_SHARED(p))
   2091			mnt_release_group_id(p);
   2092	}
   2093}
   2094
   2095static int invent_group_ids(struct mount *mnt, bool recurse)
   2096{
   2097	struct mount *p;
   2098
   2099	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
   2100		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
   2101			int err = mnt_alloc_group_id(p);
   2102			if (err) {
   2103				cleanup_group_ids(mnt, p);
   2104				return err;
   2105			}
   2106		}
   2107	}
   2108
   2109	return 0;
   2110}
   2111
   2112int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
   2113{
   2114	unsigned int max = READ_ONCE(sysctl_mount_max);
   2115	unsigned int mounts = 0;
   2116	struct mount *p;
   2117
   2118	if (ns->mounts >= max)
   2119		return -ENOSPC;
   2120	max -= ns->mounts;
   2121	if (ns->pending_mounts >= max)
   2122		return -ENOSPC;
   2123	max -= ns->pending_mounts;
   2124
   2125	for (p = mnt; p; p = next_mnt(p, mnt))
   2126		mounts++;
   2127
   2128	if (mounts > max)
   2129		return -ENOSPC;
   2130
   2131	ns->pending_mounts += mounts;
   2132	return 0;
   2133}
   2134
   2135/*
   2136 *  @source_mnt : mount tree to be attached
   2137 *  @nd         : place the mount tree @source_mnt is attached
   2138 *  @parent_nd  : if non-null, detach the source_mnt from its parent and
   2139 *  		   store the parent mount and mountpoint dentry.
   2140 *  		   (done when source_mnt is moved)
   2141 *
   2142 *  NOTE: in the table below explains the semantics when a source mount
   2143 *  of a given type is attached to a destination mount of a given type.
   2144 * ---------------------------------------------------------------------------
   2145 * |         BIND MOUNT OPERATION                                            |
   2146 * |**************************************************************************
   2147 * | source-->| shared        |       private  |       slave    | unbindable |
   2148 * | dest     |               |                |                |            |
   2149 * |   |      |               |                |                |            |
   2150 * |   v      |               |                |                |            |
   2151 * |**************************************************************************
   2152 * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
   2153 * |          |               |                |                |            |
   2154 * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
   2155 * ***************************************************************************
   2156 * A bind operation clones the source mount and mounts the clone on the
   2157 * destination mount.
   2158 *
   2159 * (++)  the cloned mount is propagated to all the mounts in the propagation
   2160 * 	 tree of the destination mount and the cloned mount is added to
   2161 * 	 the peer group of the source mount.
   2162 * (+)   the cloned mount is created under the destination mount and is marked
   2163 *       as shared. The cloned mount is added to the peer group of the source
   2164 *       mount.
   2165 * (+++) the mount is propagated to all the mounts in the propagation tree
   2166 *       of the destination mount and the cloned mount is made slave
   2167 *       of the same master as that of the source mount. The cloned mount
   2168 *       is marked as 'shared and slave'.
   2169 * (*)   the cloned mount is made a slave of the same master as that of the
   2170 * 	 source mount.
   2171 *
   2172 * ---------------------------------------------------------------------------
   2173 * |         		MOVE MOUNT OPERATION                                 |
   2174 * |**************************************************************************
   2175 * | source-->| shared        |       private  |       slave    | unbindable |
   2176 * | dest     |               |                |                |            |
   2177 * |   |      |               |                |                |            |
   2178 * |   v      |               |                |                |            |
   2179 * |**************************************************************************
   2180 * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
   2181 * |          |               |                |                |            |
   2182 * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
   2183 * ***************************************************************************
   2184 *
   2185 * (+)  the mount is moved to the destination. And is then propagated to
   2186 * 	all the mounts in the propagation tree of the destination mount.
   2187 * (+*)  the mount is moved to the destination.
   2188 * (+++)  the mount is moved to the destination and is then propagated to
   2189 * 	all the mounts belonging to the destination mount's propagation tree.
   2190 * 	the mount is marked as 'shared and slave'.
   2191 * (*)	the mount continues to be a slave at the new location.
   2192 *
   2193 * if the source mount is a tree, the operations explained above is
   2194 * applied to each mount in the tree.
   2195 * Must be called without spinlocks held, since this function can sleep
   2196 * in allocations.
   2197 */
   2198static int attach_recursive_mnt(struct mount *source_mnt,
   2199			struct mount *dest_mnt,
   2200			struct mountpoint *dest_mp,
   2201			bool moving)
   2202{
   2203	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
   2204	HLIST_HEAD(tree_list);
   2205	struct mnt_namespace *ns = dest_mnt->mnt_ns;
   2206	struct mountpoint *smp;
   2207	struct mount *child, *p;
   2208	struct hlist_node *n;
   2209	int err;
   2210
   2211	/* Preallocate a mountpoint in case the new mounts need
   2212	 * to be tucked under other mounts.
   2213	 */
   2214	smp = get_mountpoint(source_mnt->mnt.mnt_root);
   2215	if (IS_ERR(smp))
   2216		return PTR_ERR(smp);
   2217
   2218	/* Is there space to add these mounts to the mount namespace? */
   2219	if (!moving) {
   2220		err = count_mounts(ns, source_mnt);
   2221		if (err)
   2222			goto out;
   2223	}
   2224
   2225	if (IS_MNT_SHARED(dest_mnt)) {
   2226		err = invent_group_ids(source_mnt, true);
   2227		if (err)
   2228			goto out;
   2229		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
   2230		lock_mount_hash();
   2231		if (err)
   2232			goto out_cleanup_ids;
   2233		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
   2234			set_mnt_shared(p);
   2235	} else {
   2236		lock_mount_hash();
   2237	}
   2238	if (moving) {
   2239		unhash_mnt(source_mnt);
   2240		attach_mnt(source_mnt, dest_mnt, dest_mp);
   2241		touch_mnt_namespace(source_mnt->mnt_ns);
   2242	} else {
   2243		if (source_mnt->mnt_ns) {
   2244			/* move from anon - the caller will destroy */
   2245			list_del_init(&source_mnt->mnt_ns->list);
   2246		}
   2247		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
   2248		commit_tree(source_mnt);
   2249	}
   2250
   2251	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
   2252		struct mount *q;
   2253		hlist_del_init(&child->mnt_hash);
   2254		q = __lookup_mnt(&child->mnt_parent->mnt,
   2255				 child->mnt_mountpoint);
   2256		if (q)
   2257			mnt_change_mountpoint(child, smp, q);
   2258		/* Notice when we are propagating across user namespaces */
   2259		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
   2260			lock_mnt_tree(child);
   2261		child->mnt.mnt_flags &= ~MNT_LOCKED;
   2262		commit_tree(child);
   2263	}
   2264	put_mountpoint(smp);
   2265	unlock_mount_hash();
   2266
   2267	return 0;
   2268
   2269 out_cleanup_ids:
   2270	while (!hlist_empty(&tree_list)) {
   2271		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
   2272		child->mnt_parent->mnt_ns->pending_mounts = 0;
   2273		umount_tree(child, UMOUNT_SYNC);
   2274	}
   2275	unlock_mount_hash();
   2276	cleanup_group_ids(source_mnt, NULL);
   2277 out:
   2278	ns->pending_mounts = 0;
   2279
   2280	read_seqlock_excl(&mount_lock);
   2281	put_mountpoint(smp);
   2282	read_sequnlock_excl(&mount_lock);
   2283
   2284	return err;
   2285}
   2286
   2287static struct mountpoint *lock_mount(struct path *path)
   2288{
   2289	struct vfsmount *mnt;
   2290	struct dentry *dentry = path->dentry;
   2291retry:
   2292	inode_lock(dentry->d_inode);
   2293	if (unlikely(cant_mount(dentry))) {
   2294		inode_unlock(dentry->d_inode);
   2295		return ERR_PTR(-ENOENT);
   2296	}
   2297	namespace_lock();
   2298	mnt = lookup_mnt(path);
   2299	if (likely(!mnt)) {
   2300		struct mountpoint *mp = get_mountpoint(dentry);
   2301		if (IS_ERR(mp)) {
   2302			namespace_unlock();
   2303			inode_unlock(dentry->d_inode);
   2304			return mp;
   2305		}
   2306		return mp;
   2307	}
   2308	namespace_unlock();
   2309	inode_unlock(path->dentry->d_inode);
   2310	path_put(path);
   2311	path->mnt = mnt;
   2312	dentry = path->dentry = dget(mnt->mnt_root);
   2313	goto retry;
   2314}
   2315
   2316static void unlock_mount(struct mountpoint *where)
   2317{
   2318	struct dentry *dentry = where->m_dentry;
   2319
   2320	read_seqlock_excl(&mount_lock);
   2321	put_mountpoint(where);
   2322	read_sequnlock_excl(&mount_lock);
   2323
   2324	namespace_unlock();
   2325	inode_unlock(dentry->d_inode);
   2326}
   2327
   2328static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
   2329{
   2330	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
   2331		return -EINVAL;
   2332
   2333	if (d_is_dir(mp->m_dentry) !=
   2334	      d_is_dir(mnt->mnt.mnt_root))
   2335		return -ENOTDIR;
   2336
   2337	return attach_recursive_mnt(mnt, p, mp, false);
   2338}
   2339
   2340/*
   2341 * Sanity check the flags to change_mnt_propagation.
   2342 */
   2343
   2344static int flags_to_propagation_type(int ms_flags)
   2345{
   2346	int type = ms_flags & ~(MS_REC | MS_SILENT);
   2347
   2348	/* Fail if any non-propagation flags are set */
   2349	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
   2350		return 0;
   2351	/* Only one propagation flag should be set */
   2352	if (!is_power_of_2(type))
   2353		return 0;
   2354	return type;
   2355}
   2356
   2357/*
   2358 * recursively change the type of the mountpoint.
   2359 */
   2360static int do_change_type(struct path *path, int ms_flags)
   2361{
   2362	struct mount *m;
   2363	struct mount *mnt = real_mount(path->mnt);
   2364	int recurse = ms_flags & MS_REC;
   2365	int type;
   2366	int err = 0;
   2367
   2368	if (path->dentry != path->mnt->mnt_root)
   2369		return -EINVAL;
   2370
   2371	type = flags_to_propagation_type(ms_flags);
   2372	if (!type)
   2373		return -EINVAL;
   2374
   2375	namespace_lock();
   2376	if (type == MS_SHARED) {
   2377		err = invent_group_ids(mnt, recurse);
   2378		if (err)
   2379			goto out_unlock;
   2380	}
   2381
   2382	lock_mount_hash();
   2383	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
   2384		change_mnt_propagation(m, type);
   2385	unlock_mount_hash();
   2386
   2387 out_unlock:
   2388	namespace_unlock();
   2389	return err;
   2390}
   2391
   2392static struct mount *__do_loopback(struct path *old_path, int recurse)
   2393{
   2394	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
   2395
   2396	if (IS_MNT_UNBINDABLE(old))
   2397		return mnt;
   2398
   2399	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
   2400		return mnt;
   2401
   2402	if (!recurse && has_locked_children(old, old_path->dentry))
   2403		return mnt;
   2404
   2405	if (recurse)
   2406		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
   2407	else
   2408		mnt = clone_mnt(old, old_path->dentry, 0);
   2409
   2410	if (!IS_ERR(mnt))
   2411		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
   2412
   2413	return mnt;
   2414}
   2415
   2416/*
   2417 * do loopback mount.
   2418 */
   2419static int do_loopback(struct path *path, const char *old_name,
   2420				int recurse)
   2421{
   2422	struct path old_path;
   2423	struct mount *mnt = NULL, *parent;
   2424	struct mountpoint *mp;
   2425	int err;
   2426	if (!old_name || !*old_name)
   2427		return -EINVAL;
   2428	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
   2429	if (err)
   2430		return err;
   2431
   2432	err = -EINVAL;
   2433	if (mnt_ns_loop(old_path.dentry))
   2434		goto out;
   2435
   2436	mp = lock_mount(path);
   2437	if (IS_ERR(mp)) {
   2438		err = PTR_ERR(mp);
   2439		goto out;
   2440	}
   2441
   2442	parent = real_mount(path->mnt);
   2443	if (!check_mnt(parent))
   2444		goto out2;
   2445
   2446	mnt = __do_loopback(&old_path, recurse);
   2447	if (IS_ERR(mnt)) {
   2448		err = PTR_ERR(mnt);
   2449		goto out2;
   2450	}
   2451
   2452	err = graft_tree(mnt, parent, mp);
   2453	if (err) {
   2454		lock_mount_hash();
   2455		umount_tree(mnt, UMOUNT_SYNC);
   2456		unlock_mount_hash();
   2457	}
   2458out2:
   2459	unlock_mount(mp);
   2460out:
   2461	path_put(&old_path);
   2462	return err;
   2463}
   2464
   2465static struct file *open_detached_copy(struct path *path, bool recursive)
   2466{
   2467	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
   2468	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
   2469	struct mount *mnt, *p;
   2470	struct file *file;
   2471
   2472	if (IS_ERR(ns))
   2473		return ERR_CAST(ns);
   2474
   2475	namespace_lock();
   2476	mnt = __do_loopback(path, recursive);
   2477	if (IS_ERR(mnt)) {
   2478		namespace_unlock();
   2479		free_mnt_ns(ns);
   2480		return ERR_CAST(mnt);
   2481	}
   2482
   2483	lock_mount_hash();
   2484	for (p = mnt; p; p = next_mnt(p, mnt)) {
   2485		p->mnt_ns = ns;
   2486		ns->mounts++;
   2487	}
   2488	ns->root = mnt;
   2489	list_add_tail(&ns->list, &mnt->mnt_list);
   2490	mntget(&mnt->mnt);
   2491	unlock_mount_hash();
   2492	namespace_unlock();
   2493
   2494	mntput(path->mnt);
   2495	path->mnt = &mnt->mnt;
   2496	file = dentry_open(path, O_PATH, current_cred());
   2497	if (IS_ERR(file))
   2498		dissolve_on_fput(path->mnt);
   2499	else
   2500		file->f_mode |= FMODE_NEED_UNMOUNT;
   2501	return file;
   2502}
   2503
   2504SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
   2505{
   2506	struct file *file;
   2507	struct path path;
   2508	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
   2509	bool detached = flags & OPEN_TREE_CLONE;
   2510	int error;
   2511	int fd;
   2512
   2513	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
   2514
   2515	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
   2516		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
   2517		      OPEN_TREE_CLOEXEC))
   2518		return -EINVAL;
   2519
   2520	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
   2521		return -EINVAL;
   2522
   2523	if (flags & AT_NO_AUTOMOUNT)
   2524		lookup_flags &= ~LOOKUP_AUTOMOUNT;
   2525	if (flags & AT_SYMLINK_NOFOLLOW)
   2526		lookup_flags &= ~LOOKUP_FOLLOW;
   2527	if (flags & AT_EMPTY_PATH)
   2528		lookup_flags |= LOOKUP_EMPTY;
   2529
   2530	if (detached && !may_mount())
   2531		return -EPERM;
   2532
   2533	fd = get_unused_fd_flags(flags & O_CLOEXEC);
   2534	if (fd < 0)
   2535		return fd;
   2536
   2537	error = user_path_at(dfd, filename, lookup_flags, &path);
   2538	if (unlikely(error)) {
   2539		file = ERR_PTR(error);
   2540	} else {
   2541		if (detached)
   2542			file = open_detached_copy(&path, flags & AT_RECURSIVE);
   2543		else
   2544			file = dentry_open(&path, O_PATH, current_cred());
   2545		path_put(&path);
   2546	}
   2547	if (IS_ERR(file)) {
   2548		put_unused_fd(fd);
   2549		return PTR_ERR(file);
   2550	}
   2551	fd_install(fd, file);
   2552	return fd;
   2553}
   2554
   2555/*
   2556 * Don't allow locked mount flags to be cleared.
   2557 *
   2558 * No locks need to be held here while testing the various MNT_LOCK
   2559 * flags because those flags can never be cleared once they are set.
   2560 */
   2561static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
   2562{
   2563	unsigned int fl = mnt->mnt.mnt_flags;
   2564
   2565	if ((fl & MNT_LOCK_READONLY) &&
   2566	    !(mnt_flags & MNT_READONLY))
   2567		return false;
   2568
   2569	if ((fl & MNT_LOCK_NODEV) &&
   2570	    !(mnt_flags & MNT_NODEV))
   2571		return false;
   2572
   2573	if ((fl & MNT_LOCK_NOSUID) &&
   2574	    !(mnt_flags & MNT_NOSUID))
   2575		return false;
   2576
   2577	if ((fl & MNT_LOCK_NOEXEC) &&
   2578	    !(mnt_flags & MNT_NOEXEC))
   2579		return false;
   2580
   2581	if ((fl & MNT_LOCK_ATIME) &&
   2582	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
   2583		return false;
   2584
   2585	return true;
   2586}
   2587
   2588static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
   2589{
   2590	bool readonly_request = (mnt_flags & MNT_READONLY);
   2591
   2592	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
   2593		return 0;
   2594
   2595	if (readonly_request)
   2596		return mnt_make_readonly(mnt);
   2597
   2598	mnt->mnt.mnt_flags &= ~MNT_READONLY;
   2599	return 0;
   2600}
   2601
   2602static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
   2603{
   2604	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
   2605	mnt->mnt.mnt_flags = mnt_flags;
   2606	touch_mnt_namespace(mnt->mnt_ns);
   2607}
   2608
   2609static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
   2610{
   2611	struct super_block *sb = mnt->mnt_sb;
   2612
   2613	if (!__mnt_is_readonly(mnt) &&
   2614	   (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
   2615	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
   2616		char *buf = (char *)__get_free_page(GFP_KERNEL);
   2617		char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
   2618		struct tm tm;
   2619
   2620		time64_to_tm(sb->s_time_max, 0, &tm);
   2621
   2622		pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
   2623			sb->s_type->name,
   2624			is_mounted(mnt) ? "remounted" : "mounted",
   2625			mntpath,
   2626			tm.tm_year+1900, (unsigned long long)sb->s_time_max);
   2627
   2628		free_page((unsigned long)buf);
   2629		sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
   2630	}
   2631}
   2632
   2633/*
   2634 * Handle reconfiguration of the mountpoint only without alteration of the
   2635 * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
   2636 * to mount(2).
   2637 */
   2638static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
   2639{
   2640	struct super_block *sb = path->mnt->mnt_sb;
   2641	struct mount *mnt = real_mount(path->mnt);
   2642	int ret;
   2643
   2644	if (!check_mnt(mnt))
   2645		return -EINVAL;
   2646
   2647	if (path->dentry != mnt->mnt.mnt_root)
   2648		return -EINVAL;
   2649
   2650	if (!can_change_locked_flags(mnt, mnt_flags))
   2651		return -EPERM;
   2652
   2653	/*
   2654	 * We're only checking whether the superblock is read-only not
   2655	 * changing it, so only take down_read(&sb->s_umount).
   2656	 */
   2657	down_read(&sb->s_umount);
   2658	lock_mount_hash();
   2659	ret = change_mount_ro_state(mnt, mnt_flags);
   2660	if (ret == 0)
   2661		set_mount_attributes(mnt, mnt_flags);
   2662	unlock_mount_hash();
   2663	up_read(&sb->s_umount);
   2664
   2665	mnt_warn_timestamp_expiry(path, &mnt->mnt);
   2666
   2667	return ret;
   2668}
   2669
   2670/*
   2671 * change filesystem flags. dir should be a physical root of filesystem.
   2672 * If you've mounted a non-root directory somewhere and want to do remount
   2673 * on it - tough luck.
   2674 */
   2675static int do_remount(struct path *path, int ms_flags, int sb_flags,
   2676		      int mnt_flags, void *data)
   2677{
   2678	int err;
   2679	struct super_block *sb = path->mnt->mnt_sb;
   2680	struct mount *mnt = real_mount(path->mnt);
   2681	struct fs_context *fc;
   2682
   2683	if (!check_mnt(mnt))
   2684		return -EINVAL;
   2685
   2686	if (path->dentry != path->mnt->mnt_root)
   2687		return -EINVAL;
   2688
   2689	if (!can_change_locked_flags(mnt, mnt_flags))
   2690		return -EPERM;
   2691
   2692	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
   2693	if (IS_ERR(fc))
   2694		return PTR_ERR(fc);
   2695
   2696	fc->oldapi = true;
   2697	err = parse_monolithic_mount_data(fc, data);
   2698	if (!err) {
   2699		down_write(&sb->s_umount);
   2700		err = -EPERM;
   2701		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
   2702			err = reconfigure_super(fc);
   2703			if (!err) {
   2704				lock_mount_hash();
   2705				set_mount_attributes(mnt, mnt_flags);
   2706				unlock_mount_hash();
   2707			}
   2708		}
   2709		up_write(&sb->s_umount);
   2710	}
   2711
   2712	mnt_warn_timestamp_expiry(path, &mnt->mnt);
   2713
   2714	put_fs_context(fc);
   2715	return err;
   2716}
   2717
   2718static inline int tree_contains_unbindable(struct mount *mnt)
   2719{
   2720	struct mount *p;
   2721	for (p = mnt; p; p = next_mnt(p, mnt)) {
   2722		if (IS_MNT_UNBINDABLE(p))
   2723			return 1;
   2724	}
   2725	return 0;
   2726}
   2727
   2728/*
   2729 * Check that there aren't references to earlier/same mount namespaces in the
   2730 * specified subtree.  Such references can act as pins for mount namespaces
   2731 * that aren't checked by the mount-cycle checking code, thereby allowing
   2732 * cycles to be made.
   2733 */
   2734static bool check_for_nsfs_mounts(struct mount *subtree)
   2735{
   2736	struct mount *p;
   2737	bool ret = false;
   2738
   2739	lock_mount_hash();
   2740	for (p = subtree; p; p = next_mnt(p, subtree))
   2741		if (mnt_ns_loop(p->mnt.mnt_root))
   2742			goto out;
   2743
   2744	ret = true;
   2745out:
   2746	unlock_mount_hash();
   2747	return ret;
   2748}
   2749
   2750static int do_set_group(struct path *from_path, struct path *to_path)
   2751{
   2752	struct mount *from, *to;
   2753	int err;
   2754
   2755	from = real_mount(from_path->mnt);
   2756	to = real_mount(to_path->mnt);
   2757
   2758	namespace_lock();
   2759
   2760	err = -EINVAL;
   2761	/* To and From must be mounted */
   2762	if (!is_mounted(&from->mnt))
   2763		goto out;
   2764	if (!is_mounted(&to->mnt))
   2765		goto out;
   2766
   2767	err = -EPERM;
   2768	/* We should be allowed to modify mount namespaces of both mounts */
   2769	if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
   2770		goto out;
   2771	if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
   2772		goto out;
   2773
   2774	err = -EINVAL;
   2775	/* To and From paths should be mount roots */
   2776	if (from_path->dentry != from_path->mnt->mnt_root)
   2777		goto out;
   2778	if (to_path->dentry != to_path->mnt->mnt_root)
   2779		goto out;
   2780
   2781	/* Setting sharing groups is only allowed across same superblock */
   2782	if (from->mnt.mnt_sb != to->mnt.mnt_sb)
   2783		goto out;
   2784
   2785	/* From mount root should be wider than To mount root */
   2786	if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
   2787		goto out;
   2788
   2789	/* From mount should not have locked children in place of To's root */
   2790	if (has_locked_children(from, to->mnt.mnt_root))
   2791		goto out;
   2792
   2793	/* Setting sharing groups is only allowed on private mounts */
   2794	if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
   2795		goto out;
   2796
   2797	/* From should not be private */
   2798	if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
   2799		goto out;
   2800
   2801	if (IS_MNT_SLAVE(from)) {
   2802		struct mount *m = from->mnt_master;
   2803
   2804		list_add(&to->mnt_slave, &m->mnt_slave_list);
   2805		to->mnt_master = m;
   2806	}
   2807
   2808	if (IS_MNT_SHARED(from)) {
   2809		to->mnt_group_id = from->mnt_group_id;
   2810		list_add(&to->mnt_share, &from->mnt_share);
   2811		lock_mount_hash();
   2812		set_mnt_shared(to);
   2813		unlock_mount_hash();
   2814	}
   2815
   2816	err = 0;
   2817out:
   2818	namespace_unlock();
   2819	return err;
   2820}
   2821
   2822static int do_move_mount(struct path *old_path, struct path *new_path)
   2823{
   2824	struct mnt_namespace *ns;
   2825	struct mount *p;
   2826	struct mount *old;
   2827	struct mount *parent;
   2828	struct mountpoint *mp, *old_mp;
   2829	int err;
   2830	bool attached;
   2831
   2832	mp = lock_mount(new_path);
   2833	if (IS_ERR(mp))
   2834		return PTR_ERR(mp);
   2835
   2836	old = real_mount(old_path->mnt);
   2837	p = real_mount(new_path->mnt);
   2838	parent = old->mnt_parent;
   2839	attached = mnt_has_parent(old);
   2840	old_mp = old->mnt_mp;
   2841	ns = old->mnt_ns;
   2842
   2843	err = -EINVAL;
   2844	/* The mountpoint must be in our namespace. */
   2845	if (!check_mnt(p))
   2846		goto out;
   2847
   2848	/* The thing moved must be mounted... */
   2849	if (!is_mounted(&old->mnt))
   2850		goto out;
   2851
   2852	/* ... and either ours or the root of anon namespace */
   2853	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
   2854		goto out;
   2855
   2856	if (old->mnt.mnt_flags & MNT_LOCKED)
   2857		goto out;
   2858
   2859	if (old_path->dentry != old_path->mnt->mnt_root)
   2860		goto out;
   2861
   2862	if (d_is_dir(new_path->dentry) !=
   2863	    d_is_dir(old_path->dentry))
   2864		goto out;
   2865	/*
   2866	 * Don't move a mount residing in a shared parent.
   2867	 */
   2868	if (attached && IS_MNT_SHARED(parent))
   2869		goto out;
   2870	/*
   2871	 * Don't move a mount tree containing unbindable mounts to a destination
   2872	 * mount which is shared.
   2873	 */
   2874	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
   2875		goto out;
   2876	err = -ELOOP;
   2877	if (!check_for_nsfs_mounts(old))
   2878		goto out;
   2879	for (; mnt_has_parent(p); p = p->mnt_parent)
   2880		if (p == old)
   2881			goto out;
   2882
   2883	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
   2884				   attached);
   2885	if (err)
   2886		goto out;
   2887
   2888	/* if the mount is moved, it should no longer be expire
   2889	 * automatically */
   2890	list_del_init(&old->mnt_expire);
   2891	if (attached)
   2892		put_mountpoint(old_mp);
   2893out:
   2894	unlock_mount(mp);
   2895	if (!err) {
   2896		if (attached)
   2897			mntput_no_expire(parent);
   2898		else
   2899			free_mnt_ns(ns);
   2900	}
   2901	return err;
   2902}
   2903
   2904static int do_move_mount_old(struct path *path, const char *old_name)
   2905{
   2906	struct path old_path;
   2907	int err;
   2908
   2909	if (!old_name || !*old_name)
   2910		return -EINVAL;
   2911
   2912	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
   2913	if (err)
   2914		return err;
   2915
   2916	err = do_move_mount(&old_path, path);
   2917	path_put(&old_path);
   2918	return err;
   2919}
   2920
   2921/*
   2922 * add a mount into a namespace's mount tree
   2923 */
   2924static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
   2925			const struct path *path, int mnt_flags)
   2926{
   2927	struct mount *parent = real_mount(path->mnt);
   2928
   2929	mnt_flags &= ~MNT_INTERNAL_FLAGS;
   2930
   2931	if (unlikely(!check_mnt(parent))) {
   2932		/* that's acceptable only for automounts done in private ns */
   2933		if (!(mnt_flags & MNT_SHRINKABLE))
   2934			return -EINVAL;
   2935		/* ... and for those we'd better have mountpoint still alive */
   2936		if (!parent->mnt_ns)
   2937			return -EINVAL;
   2938	}
   2939
   2940	/* Refuse the same filesystem on the same mount point */
   2941	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
   2942	    path->mnt->mnt_root == path->dentry)
   2943		return -EBUSY;
   2944
   2945	if (d_is_symlink(newmnt->mnt.mnt_root))
   2946		return -EINVAL;
   2947
   2948	newmnt->mnt.mnt_flags = mnt_flags;
   2949	return graft_tree(newmnt, parent, mp);
   2950}
   2951
   2952static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
   2953
   2954/*
   2955 * Create a new mount using a superblock configuration and request it
   2956 * be added to the namespace tree.
   2957 */
   2958static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
   2959			   unsigned int mnt_flags)
   2960{
   2961	struct vfsmount *mnt;
   2962	struct mountpoint *mp;
   2963	struct super_block *sb = fc->root->d_sb;
   2964	int error;
   2965
   2966	error = security_sb_kern_mount(sb);
   2967	if (!error && mount_too_revealing(sb, &mnt_flags))
   2968		error = -EPERM;
   2969
   2970	if (unlikely(error)) {
   2971		fc_drop_locked(fc);
   2972		return error;
   2973	}
   2974
   2975	up_write(&sb->s_umount);
   2976
   2977	mnt = vfs_create_mount(fc);
   2978	if (IS_ERR(mnt))
   2979		return PTR_ERR(mnt);
   2980
   2981	mnt_warn_timestamp_expiry(mountpoint, mnt);
   2982
   2983	mp = lock_mount(mountpoint);
   2984	if (IS_ERR(mp)) {
   2985		mntput(mnt);
   2986		return PTR_ERR(mp);
   2987	}
   2988	error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
   2989	unlock_mount(mp);
   2990	if (error < 0)
   2991		mntput(mnt);
   2992	return error;
   2993}
   2994
   2995/*
   2996 * create a new mount for userspace and request it to be added into the
   2997 * namespace's tree
   2998 */
   2999static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
   3000			int mnt_flags, const char *name, void *data)
   3001{
   3002	struct file_system_type *type;
   3003	struct fs_context *fc;
   3004	const char *subtype = NULL;
   3005	int err = 0;
   3006
   3007	if (!fstype)
   3008		return -EINVAL;
   3009
   3010	type = get_fs_type(fstype);
   3011	if (!type)
   3012		return -ENODEV;
   3013
   3014	if (type->fs_flags & FS_HAS_SUBTYPE) {
   3015		subtype = strchr(fstype, '.');
   3016		if (subtype) {
   3017			subtype++;
   3018			if (!*subtype) {
   3019				put_filesystem(type);
   3020				return -EINVAL;
   3021			}
   3022		}
   3023	}
   3024
   3025	fc = fs_context_for_mount(type, sb_flags);
   3026	put_filesystem(type);
   3027	if (IS_ERR(fc))
   3028		return PTR_ERR(fc);
   3029
   3030	if (subtype)
   3031		err = vfs_parse_fs_string(fc, "subtype",
   3032					  subtype, strlen(subtype));
   3033	if (!err && name)
   3034		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
   3035	if (!err)
   3036		err = parse_monolithic_mount_data(fc, data);
   3037	if (!err && !mount_capable(fc))
   3038		err = -EPERM;
   3039	if (!err)
   3040		err = vfs_get_tree(fc);
   3041	if (!err)
   3042		err = do_new_mount_fc(fc, path, mnt_flags);
   3043
   3044	put_fs_context(fc);
   3045	return err;
   3046}
   3047
   3048int finish_automount(struct vfsmount *m, const struct path *path)
   3049{
   3050	struct dentry *dentry = path->dentry;
   3051	struct mountpoint *mp;
   3052	struct mount *mnt;
   3053	int err;
   3054
   3055	if (!m)
   3056		return 0;
   3057	if (IS_ERR(m))
   3058		return PTR_ERR(m);
   3059
   3060	mnt = real_mount(m);
   3061	/* The new mount record should have at least 2 refs to prevent it being
   3062	 * expired before we get a chance to add it
   3063	 */
   3064	BUG_ON(mnt_get_count(mnt) < 2);
   3065
   3066	if (m->mnt_sb == path->mnt->mnt_sb &&
   3067	    m->mnt_root == dentry) {
   3068		err = -ELOOP;
   3069		goto discard;
   3070	}
   3071
   3072	/*
   3073	 * we don't want to use lock_mount() - in this case finding something
   3074	 * that overmounts our mountpoint to be means "quitely drop what we've
   3075	 * got", not "try to mount it on top".
   3076	 */
   3077	inode_lock(dentry->d_inode);
   3078	namespace_lock();
   3079	if (unlikely(cant_mount(dentry))) {
   3080		err = -ENOENT;
   3081		goto discard_locked;
   3082	}
   3083	rcu_read_lock();
   3084	if (unlikely(__lookup_mnt(path->mnt, dentry))) {
   3085		rcu_read_unlock();
   3086		err = 0;
   3087		goto discard_locked;
   3088	}
   3089	rcu_read_unlock();
   3090	mp = get_mountpoint(dentry);
   3091	if (IS_ERR(mp)) {
   3092		err = PTR_ERR(mp);
   3093		goto discard_locked;
   3094	}
   3095
   3096	err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
   3097	unlock_mount(mp);
   3098	if (unlikely(err))
   3099		goto discard;
   3100	mntput(m);
   3101	return 0;
   3102
   3103discard_locked:
   3104	namespace_unlock();
   3105	inode_unlock(dentry->d_inode);
   3106discard:
   3107	/* remove m from any expiration list it may be on */
   3108	if (!list_empty(&mnt->mnt_expire)) {
   3109		namespace_lock();
   3110		list_del_init(&mnt->mnt_expire);
   3111		namespace_unlock();
   3112	}
   3113	mntput(m);
   3114	mntput(m);
   3115	return err;
   3116}
   3117
   3118/**
   3119 * mnt_set_expiry - Put a mount on an expiration list
   3120 * @mnt: The mount to list.
   3121 * @expiry_list: The list to add the mount to.
   3122 */
   3123void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
   3124{
   3125	namespace_lock();
   3126
   3127	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
   3128
   3129	namespace_unlock();
   3130}
   3131EXPORT_SYMBOL(mnt_set_expiry);
   3132
   3133/*
   3134 * process a list of expirable mountpoints with the intent of discarding any
   3135 * mountpoints that aren't in use and haven't been touched since last we came
   3136 * here
   3137 */
   3138void mark_mounts_for_expiry(struct list_head *mounts)
   3139{
   3140	struct mount *mnt, *next;
   3141	LIST_HEAD(graveyard);
   3142
   3143	if (list_empty(mounts))
   3144		return;
   3145
   3146	namespace_lock();
   3147	lock_mount_hash();
   3148
   3149	/* extract from the expiration list every vfsmount that matches the
   3150	 * following criteria:
   3151	 * - only referenced by its parent vfsmount
   3152	 * - still marked for expiry (marked on the last call here; marks are
   3153	 *   cleared by mntput())
   3154	 */
   3155	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
   3156		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
   3157			propagate_mount_busy(mnt, 1))
   3158			continue;
   3159		list_move(&mnt->mnt_expire, &graveyard);
   3160	}
   3161	while (!list_empty(&graveyard)) {
   3162		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
   3163		touch_mnt_namespace(mnt->mnt_ns);
   3164		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
   3165	}
   3166	unlock_mount_hash();
   3167	namespace_unlock();
   3168}
   3169
   3170EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
   3171
   3172/*
   3173 * Ripoff of 'select_parent()'
   3174 *
   3175 * search the list of submounts for a given mountpoint, and move any
   3176 * shrinkable submounts to the 'graveyard' list.
   3177 */
   3178static int select_submounts(struct mount *parent, struct list_head *graveyard)
   3179{
   3180	struct mount *this_parent = parent;
   3181	struct list_head *next;
   3182	int found = 0;
   3183
   3184repeat:
   3185	next = this_parent->mnt_mounts.next;
   3186resume:
   3187	while (next != &this_parent->mnt_mounts) {
   3188		struct list_head *tmp = next;
   3189		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
   3190
   3191		next = tmp->next;
   3192		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
   3193			continue;
   3194		/*
   3195		 * Descend a level if the d_mounts list is non-empty.
   3196		 */
   3197		if (!list_empty(&mnt->mnt_mounts)) {
   3198			this_parent = mnt;
   3199			goto repeat;
   3200		}
   3201
   3202		if (!propagate_mount_busy(mnt, 1)) {
   3203			list_move_tail(&mnt->mnt_expire, graveyard);
   3204			found++;
   3205		}
   3206	}
   3207	/*
   3208	 * All done at this level ... ascend and resume the search
   3209	 */
   3210	if (this_parent != parent) {
   3211		next = this_parent->mnt_child.next;
   3212		this_parent = this_parent->mnt_parent;
   3213		goto resume;
   3214	}
   3215	return found;
   3216}
   3217
   3218/*
   3219 * process a list of expirable mountpoints with the intent of discarding any
   3220 * submounts of a specific parent mountpoint
   3221 *
   3222 * mount_lock must be held for write
   3223 */
   3224static void shrink_submounts(struct mount *mnt)
   3225{
   3226	LIST_HEAD(graveyard);
   3227	struct mount *m;
   3228
   3229	/* extract submounts of 'mountpoint' from the expiration list */
   3230	while (select_submounts(mnt, &graveyard)) {
   3231		while (!list_empty(&graveyard)) {
   3232			m = list_first_entry(&graveyard, struct mount,
   3233						mnt_expire);
   3234			touch_mnt_namespace(m->mnt_ns);
   3235			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
   3236		}
   3237	}
   3238}
   3239
   3240static void *copy_mount_options(const void __user * data)
   3241{
   3242	char *copy;
   3243	unsigned left, offset;
   3244
   3245	if (!data)
   3246		return NULL;
   3247
   3248	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
   3249	if (!copy)
   3250		return ERR_PTR(-ENOMEM);
   3251
   3252	left = copy_from_user(copy, data, PAGE_SIZE);
   3253
   3254	/*
   3255	 * Not all architectures have an exact copy_from_user(). Resort to
   3256	 * byte at a time.
   3257	 */
   3258	offset = PAGE_SIZE - left;
   3259	while (left) {
   3260		char c;
   3261		if (get_user(c, (const char __user *)data + offset))
   3262			break;
   3263		copy[offset] = c;
   3264		left--;
   3265		offset++;
   3266	}
   3267
   3268	if (left == PAGE_SIZE) {
   3269		kfree(copy);
   3270		return ERR_PTR(-EFAULT);
   3271	}
   3272
   3273	return copy;
   3274}
   3275
   3276static char *copy_mount_string(const void __user *data)
   3277{
   3278	return data ? strndup_user(data, PATH_MAX) : NULL;
   3279}
   3280
   3281/*
   3282 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
   3283 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
   3284 *
   3285 * data is a (void *) that can point to any structure up to
   3286 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
   3287 * information (or be NULL).
   3288 *
   3289 * Pre-0.97 versions of mount() didn't have a flags word.
   3290 * When the flags word was introduced its top half was required
   3291 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
   3292 * Therefore, if this magic number is present, it carries no information
   3293 * and must be discarded.
   3294 */
   3295int path_mount(const char *dev_name, struct path *path,
   3296		const char *type_page, unsigned long flags, void *data_page)
   3297{
   3298	unsigned int mnt_flags = 0, sb_flags;
   3299	int ret;
   3300
   3301	/* Discard magic */
   3302	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
   3303		flags &= ~MS_MGC_MSK;
   3304
   3305	/* Basic sanity checks */
   3306	if (data_page)
   3307		((char *)data_page)[PAGE_SIZE - 1] = 0;
   3308
   3309	if (flags & MS_NOUSER)
   3310		return -EINVAL;
   3311
   3312	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
   3313	if (ret)
   3314		return ret;
   3315	if (!may_mount())
   3316		return -EPERM;
   3317	if (flags & SB_MANDLOCK)
   3318		warn_mandlock();
   3319
   3320	/* Default to relatime unless overriden */
   3321	if (!(flags & MS_NOATIME))
   3322		mnt_flags |= MNT_RELATIME;
   3323
   3324	/* Separate the per-mountpoint flags */
   3325	if (flags & MS_NOSUID)
   3326		mnt_flags |= MNT_NOSUID;
   3327	if (flags & MS_NODEV)
   3328		mnt_flags |= MNT_NODEV;
   3329	if (flags & MS_NOEXEC)
   3330		mnt_flags |= MNT_NOEXEC;
   3331	if (flags & MS_NOATIME)
   3332		mnt_flags |= MNT_NOATIME;
   3333	if (flags & MS_NODIRATIME)
   3334		mnt_flags |= MNT_NODIRATIME;
   3335	if (flags & MS_STRICTATIME)
   3336		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
   3337	if (flags & MS_RDONLY)
   3338		mnt_flags |= MNT_READONLY;
   3339	if (flags & MS_NOSYMFOLLOW)
   3340		mnt_flags |= MNT_NOSYMFOLLOW;
   3341
   3342	/* The default atime for remount is preservation */
   3343	if ((flags & MS_REMOUNT) &&
   3344	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
   3345		       MS_STRICTATIME)) == 0)) {
   3346		mnt_flags &= ~MNT_ATIME_MASK;
   3347		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
   3348	}
   3349
   3350	sb_flags = flags & (SB_RDONLY |
   3351			    SB_SYNCHRONOUS |
   3352			    SB_MANDLOCK |
   3353			    SB_DIRSYNC |
   3354			    SB_SILENT |
   3355			    SB_POSIXACL |
   3356			    SB_LAZYTIME |
   3357			    SB_I_VERSION);
   3358
   3359	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
   3360		return do_reconfigure_mnt(path, mnt_flags);
   3361	if (flags & MS_REMOUNT)
   3362		return do_remount(path, flags, sb_flags, mnt_flags, data_page);
   3363	if (flags & MS_BIND)
   3364		return do_loopback(path, dev_name, flags & MS_REC);
   3365	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
   3366		return do_change_type(path, flags);
   3367	if (flags & MS_MOVE)
   3368		return do_move_mount_old(path, dev_name);
   3369
   3370	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
   3371			    data_page);
   3372}
   3373
   3374long do_mount(const char *dev_name, const char __user *dir_name,
   3375		const char *type_page, unsigned long flags, void *data_page)
   3376{
   3377	struct path path;
   3378	int ret;
   3379
   3380	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
   3381	if (ret)
   3382		return ret;
   3383	ret = path_mount(dev_name, &path, type_page, flags, data_page);
   3384	path_put(&path);
   3385	return ret;
   3386}
   3387
   3388static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
   3389{
   3390	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
   3391}
   3392
   3393static void dec_mnt_namespaces(struct ucounts *ucounts)
   3394{
   3395	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
   3396}
   3397
   3398static void free_mnt_ns(struct mnt_namespace *ns)
   3399{
   3400	if (!is_anon_ns(ns))
   3401		ns_free_inum(&ns->ns);
   3402	dec_mnt_namespaces(ns->ucounts);
   3403	put_user_ns(ns->user_ns);
   3404	kfree(ns);
   3405}
   3406
   3407/*
   3408 * Assign a sequence number so we can detect when we attempt to bind
   3409 * mount a reference to an older mount namespace into the current
   3410 * mount namespace, preventing reference counting loops.  A 64bit
   3411 * number incrementing at 10Ghz will take 12,427 years to wrap which
   3412 * is effectively never, so we can ignore the possibility.
   3413 */
   3414static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
   3415
   3416static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
   3417{
   3418	struct mnt_namespace *new_ns;
   3419	struct ucounts *ucounts;
   3420	int ret;
   3421
   3422	ucounts = inc_mnt_namespaces(user_ns);
   3423	if (!ucounts)
   3424		return ERR_PTR(-ENOSPC);
   3425
   3426	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
   3427	if (!new_ns) {
   3428		dec_mnt_namespaces(ucounts);
   3429		return ERR_PTR(-ENOMEM);
   3430	}
   3431	if (!anon) {
   3432		ret = ns_alloc_inum(&new_ns->ns);
   3433		if (ret) {
   3434			kfree(new_ns);
   3435			dec_mnt_namespaces(ucounts);
   3436			return ERR_PTR(ret);
   3437		}
   3438	}
   3439	new_ns->ns.ops = &mntns_operations;
   3440	if (!anon)
   3441		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
   3442	refcount_set(&new_ns->ns.count, 1);
   3443	INIT_LIST_HEAD(&new_ns->list);
   3444	init_waitqueue_head(&new_ns->poll);
   3445	spin_lock_init(&new_ns->ns_lock);
   3446	new_ns->user_ns = get_user_ns(user_ns);
   3447	new_ns->ucounts = ucounts;
   3448	return new_ns;
   3449}
   3450
   3451__latent_entropy
   3452struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
   3453		struct user_namespace *user_ns, struct fs_struct *new_fs)
   3454{
   3455	struct mnt_namespace *new_ns;
   3456	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
   3457	struct mount *p, *q;
   3458	struct mount *old;
   3459	struct mount *new;
   3460	int copy_flags;
   3461
   3462	BUG_ON(!ns);
   3463
   3464	if (likely(!(flags & CLONE_NEWNS))) {
   3465		get_mnt_ns(ns);
   3466		return ns;
   3467	}
   3468
   3469	old = ns->root;
   3470
   3471	new_ns = alloc_mnt_ns(user_ns, false);
   3472	if (IS_ERR(new_ns))
   3473		return new_ns;
   3474
   3475	namespace_lock();
   3476	/* First pass: copy the tree topology */
   3477	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
   3478	if (user_ns != ns->user_ns)
   3479		copy_flags |= CL_SHARED_TO_SLAVE;
   3480	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
   3481	if (IS_ERR(new)) {
   3482		namespace_unlock();
   3483		free_mnt_ns(new_ns);
   3484		return ERR_CAST(new);
   3485	}
   3486	if (user_ns != ns->user_ns) {
   3487		lock_mount_hash();
   3488		lock_mnt_tree(new);
   3489		unlock_mount_hash();
   3490	}
   3491	new_ns->root = new;
   3492	list_add_tail(&new_ns->list, &new->mnt_list);
   3493
   3494	/*
   3495	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
   3496	 * as belonging to new namespace.  We have already acquired a private
   3497	 * fs_struct, so tsk->fs->lock is not needed.
   3498	 */
   3499	p = old;
   3500	q = new;
   3501	while (p) {
   3502		q->mnt_ns = new_ns;
   3503		new_ns->mounts++;
   3504		if (new_fs) {
   3505			if (&p->mnt == new_fs->root.mnt) {
   3506				new_fs->root.mnt = mntget(&q->mnt);
   3507				rootmnt = &p->mnt;
   3508			}
   3509			if (&p->mnt == new_fs->pwd.mnt) {
   3510				new_fs->pwd.mnt = mntget(&q->mnt);
   3511				pwdmnt = &p->mnt;
   3512			}
   3513		}
   3514		p = next_mnt(p, old);
   3515		q = next_mnt(q, new);
   3516		if (!q)
   3517			break;
   3518		while (p->mnt.mnt_root != q->mnt.mnt_root)
   3519			p = next_mnt(p, old);
   3520	}
   3521	namespace_unlock();
   3522
   3523	if (rootmnt)
   3524		mntput(rootmnt);
   3525	if (pwdmnt)
   3526		mntput(pwdmnt);
   3527
   3528	return new_ns;
   3529}
   3530
   3531struct dentry *mount_subtree(struct vfsmount *m, const char *name)
   3532{
   3533	struct mount *mnt = real_mount(m);
   3534	struct mnt_namespace *ns;
   3535	struct super_block *s;
   3536	struct path path;
   3537	int err;
   3538
   3539	ns = alloc_mnt_ns(&init_user_ns, true);
   3540	if (IS_ERR(ns)) {
   3541		mntput(m);
   3542		return ERR_CAST(ns);
   3543	}
   3544	mnt->mnt_ns = ns;
   3545	ns->root = mnt;
   3546	ns->mounts++;
   3547	list_add(&mnt->mnt_list, &ns->list);
   3548
   3549	err = vfs_path_lookup(m->mnt_root, m,
   3550			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
   3551
   3552	put_mnt_ns(ns);
   3553
   3554	if (err)
   3555		return ERR_PTR(err);
   3556
   3557	/* trade a vfsmount reference for active sb one */
   3558	s = path.mnt->mnt_sb;
   3559	atomic_inc(&s->s_active);
   3560	mntput(path.mnt);
   3561	/* lock the sucker */
   3562	down_write(&s->s_umount);
   3563	/* ... and return the root of (sub)tree on it */
   3564	return path.dentry;
   3565}
   3566EXPORT_SYMBOL(mount_subtree);
   3567
   3568SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
   3569		char __user *, type, unsigned long, flags, void __user *, data)
   3570{
   3571	int ret;
   3572	char *kernel_type;
   3573	char *kernel_dev;
   3574	void *options;
   3575
   3576	kernel_type = copy_mount_string(type);
   3577	ret = PTR_ERR(kernel_type);
   3578	if (IS_ERR(kernel_type))
   3579		goto out_type;
   3580
   3581	kernel_dev = copy_mount_string(dev_name);
   3582	ret = PTR_ERR(kernel_dev);
   3583	if (IS_ERR(kernel_dev))
   3584		goto out_dev;
   3585
   3586	options = copy_mount_options(data);
   3587	ret = PTR_ERR(options);
   3588	if (IS_ERR(options))
   3589		goto out_data;
   3590
   3591	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
   3592
   3593	kfree(options);
   3594out_data:
   3595	kfree(kernel_dev);
   3596out_dev:
   3597	kfree(kernel_type);
   3598out_type:
   3599	return ret;
   3600}
   3601
   3602#define FSMOUNT_VALID_FLAGS                                                    \
   3603	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
   3604	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
   3605	 MOUNT_ATTR_NOSYMFOLLOW)
   3606
   3607#define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
   3608
   3609#define MOUNT_SETATTR_PROPAGATION_FLAGS \
   3610	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
   3611
   3612static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
   3613{
   3614	unsigned int mnt_flags = 0;
   3615
   3616	if (attr_flags & MOUNT_ATTR_RDONLY)
   3617		mnt_flags |= MNT_READONLY;
   3618	if (attr_flags & MOUNT_ATTR_NOSUID)
   3619		mnt_flags |= MNT_NOSUID;
   3620	if (attr_flags & MOUNT_ATTR_NODEV)
   3621		mnt_flags |= MNT_NODEV;
   3622	if (attr_flags & MOUNT_ATTR_NOEXEC)
   3623		mnt_flags |= MNT_NOEXEC;
   3624	if (attr_flags & MOUNT_ATTR_NODIRATIME)
   3625		mnt_flags |= MNT_NODIRATIME;
   3626	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
   3627		mnt_flags |= MNT_NOSYMFOLLOW;
   3628
   3629	return mnt_flags;
   3630}
   3631
   3632/*
   3633 * Create a kernel mount representation for a new, prepared superblock
   3634 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
   3635 */
   3636SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
   3637		unsigned int, attr_flags)
   3638{
   3639	struct mnt_namespace *ns;
   3640	struct fs_context *fc;
   3641	struct file *file;
   3642	struct path newmount;
   3643	struct mount *mnt;
   3644	struct fd f;
   3645	unsigned int mnt_flags = 0;
   3646	long ret;
   3647
   3648	if (!may_mount())
   3649		return -EPERM;
   3650
   3651	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
   3652		return -EINVAL;
   3653
   3654	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
   3655		return -EINVAL;
   3656
   3657	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
   3658
   3659	switch (attr_flags & MOUNT_ATTR__ATIME) {
   3660	case MOUNT_ATTR_STRICTATIME:
   3661		break;
   3662	case MOUNT_ATTR_NOATIME:
   3663		mnt_flags |= MNT_NOATIME;
   3664		break;
   3665	case MOUNT_ATTR_RELATIME:
   3666		mnt_flags |= MNT_RELATIME;
   3667		break;
   3668	default:
   3669		return -EINVAL;
   3670	}
   3671
   3672	f = fdget(fs_fd);
   3673	if (!f.file)
   3674		return -EBADF;
   3675
   3676	ret = -EINVAL;
   3677	if (f.file->f_op != &fscontext_fops)
   3678		goto err_fsfd;
   3679
   3680	fc = f.file->private_data;
   3681
   3682	ret = mutex_lock_interruptible(&fc->uapi_mutex);
   3683	if (ret < 0)
   3684		goto err_fsfd;
   3685
   3686	/* There must be a valid superblock or we can't mount it */
   3687	ret = -EINVAL;
   3688	if (!fc->root)
   3689		goto err_unlock;
   3690
   3691	ret = -EPERM;
   3692	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
   3693		pr_warn("VFS: Mount too revealing\n");
   3694		goto err_unlock;
   3695	}
   3696
   3697	ret = -EBUSY;
   3698	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
   3699		goto err_unlock;
   3700
   3701	if (fc->sb_flags & SB_MANDLOCK)
   3702		warn_mandlock();
   3703
   3704	newmount.mnt = vfs_create_mount(fc);
   3705	if (IS_ERR(newmount.mnt)) {
   3706		ret = PTR_ERR(newmount.mnt);
   3707		goto err_unlock;
   3708	}
   3709	newmount.dentry = dget(fc->root);
   3710	newmount.mnt->mnt_flags = mnt_flags;
   3711
   3712	/* We've done the mount bit - now move the file context into more or
   3713	 * less the same state as if we'd done an fspick().  We don't want to
   3714	 * do any memory allocation or anything like that at this point as we
   3715	 * don't want to have to handle any errors incurred.
   3716	 */
   3717	vfs_clean_context(fc);
   3718
   3719	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
   3720	if (IS_ERR(ns)) {
   3721		ret = PTR_ERR(ns);
   3722		goto err_path;
   3723	}
   3724	mnt = real_mount(newmount.mnt);
   3725	mnt->mnt_ns = ns;
   3726	ns->root = mnt;
   3727	ns->mounts = 1;
   3728	list_add(&mnt->mnt_list, &ns->list);
   3729	mntget(newmount.mnt);
   3730
   3731	/* Attach to an apparent O_PATH fd with a note that we need to unmount
   3732	 * it, not just simply put it.
   3733	 */
   3734	file = dentry_open(&newmount, O_PATH, fc->cred);
   3735	if (IS_ERR(file)) {
   3736		dissolve_on_fput(newmount.mnt);
   3737		ret = PTR_ERR(file);
   3738		goto err_path;
   3739	}
   3740	file->f_mode |= FMODE_NEED_UNMOUNT;
   3741
   3742	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
   3743	if (ret >= 0)
   3744		fd_install(ret, file);
   3745	else
   3746		fput(file);
   3747
   3748err_path:
   3749	path_put(&newmount);
   3750err_unlock:
   3751	mutex_unlock(&fc->uapi_mutex);
   3752err_fsfd:
   3753	fdput(f);
   3754	return ret;
   3755}
   3756
   3757/*
   3758 * Move a mount from one place to another.  In combination with
   3759 * fsopen()/fsmount() this is used to install a new mount and in combination
   3760 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
   3761 * a mount subtree.
   3762 *
   3763 * Note the flags value is a combination of MOVE_MOUNT_* flags.
   3764 */
   3765SYSCALL_DEFINE5(move_mount,
   3766		int, from_dfd, const char __user *, from_pathname,
   3767		int, to_dfd, const char __user *, to_pathname,
   3768		unsigned int, flags)
   3769{
   3770	struct path from_path, to_path;
   3771	unsigned int lflags;
   3772	int ret = 0;
   3773
   3774	if (!may_mount())
   3775		return -EPERM;
   3776
   3777	if (flags & ~MOVE_MOUNT__MASK)
   3778		return -EINVAL;
   3779
   3780	/* If someone gives a pathname, they aren't permitted to move
   3781	 * from an fd that requires unmount as we can't get at the flag
   3782	 * to clear it afterwards.
   3783	 */
   3784	lflags = 0;
   3785	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
   3786	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
   3787	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
   3788
   3789	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
   3790	if (ret < 0)
   3791		return ret;
   3792
   3793	lflags = 0;
   3794	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
   3795	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
   3796	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
   3797
   3798	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
   3799	if (ret < 0)
   3800		goto out_from;
   3801
   3802	ret = security_move_mount(&from_path, &to_path);
   3803	if (ret < 0)
   3804		goto out_to;
   3805
   3806	if (flags & MOVE_MOUNT_SET_GROUP)
   3807		ret = do_set_group(&from_path, &to_path);
   3808	else
   3809		ret = do_move_mount(&from_path, &to_path);
   3810
   3811out_to:
   3812	path_put(&to_path);
   3813out_from:
   3814	path_put(&from_path);
   3815	return ret;
   3816}
   3817
   3818/*
   3819 * Return true if path is reachable from root
   3820 *
   3821 * namespace_sem or mount_lock is held
   3822 */
   3823bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
   3824			 const struct path *root)
   3825{
   3826	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
   3827		dentry = mnt->mnt_mountpoint;
   3828		mnt = mnt->mnt_parent;
   3829	}
   3830	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
   3831}
   3832
   3833bool path_is_under(const struct path *path1, const struct path *path2)
   3834{
   3835	bool res;
   3836	read_seqlock_excl(&mount_lock);
   3837	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
   3838	read_sequnlock_excl(&mount_lock);
   3839	return res;
   3840}
   3841EXPORT_SYMBOL(path_is_under);
   3842
   3843/*
   3844 * pivot_root Semantics:
   3845 * Moves the root file system of the current process to the directory put_old,
   3846 * makes new_root as the new root file system of the current process, and sets
   3847 * root/cwd of all processes which had them on the current root to new_root.
   3848 *
   3849 * Restrictions:
   3850 * The new_root and put_old must be directories, and  must not be on the
   3851 * same file  system as the current process root. The put_old  must  be
   3852 * underneath new_root,  i.e. adding a non-zero number of /.. to the string
   3853 * pointed to by put_old must yield the same directory as new_root. No other
   3854 * file system may be mounted on put_old. After all, new_root is a mountpoint.
   3855 *
   3856 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
   3857 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
   3858 * in this situation.
   3859 *
   3860 * Notes:
   3861 *  - we don't move root/cwd if they are not at the root (reason: if something
   3862 *    cared enough to change them, it's probably wrong to force them elsewhere)
   3863 *  - it's okay to pick a root that isn't the root of a file system, e.g.
   3864 *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
   3865 *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
   3866 *    first.
   3867 */
   3868SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
   3869		const char __user *, put_old)
   3870{
   3871	struct path new, old, root;
   3872	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
   3873	struct mountpoint *old_mp, *root_mp;
   3874	int error;
   3875
   3876	if (!may_mount())
   3877		return -EPERM;
   3878
   3879	error = user_path_at(AT_FDCWD, new_root,
   3880			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
   3881	if (error)
   3882		goto out0;
   3883
   3884	error = user_path_at(AT_FDCWD, put_old,
   3885			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
   3886	if (error)
   3887		goto out1;
   3888
   3889	error = security_sb_pivotroot(&old, &new);
   3890	if (error)
   3891		goto out2;
   3892
   3893	get_fs_root(current->fs, &root);
   3894	old_mp = lock_mount(&old);
   3895	error = PTR_ERR(old_mp);
   3896	if (IS_ERR(old_mp))
   3897		goto out3;
   3898
   3899	error = -EINVAL;
   3900	new_mnt = real_mount(new.mnt);
   3901	root_mnt = real_mount(root.mnt);
   3902	old_mnt = real_mount(old.mnt);
   3903	ex_parent = new_mnt->mnt_parent;
   3904	root_parent = root_mnt->mnt_parent;
   3905	if (IS_MNT_SHARED(old_mnt) ||
   3906		IS_MNT_SHARED(ex_parent) ||
   3907		IS_MNT_SHARED(root_parent))
   3908		goto out4;
   3909	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
   3910		goto out4;
   3911	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
   3912		goto out4;
   3913	error = -ENOENT;
   3914	if (d_unlinked(new.dentry))
   3915		goto out4;
   3916	error = -EBUSY;
   3917	if (new_mnt == root_mnt || old_mnt == root_mnt)
   3918		goto out4; /* loop, on the same file system  */
   3919	error = -EINVAL;
   3920	if (root.mnt->mnt_root != root.dentry)
   3921		goto out4; /* not a mountpoint */
   3922	if (!mnt_has_parent(root_mnt))
   3923		goto out4; /* not attached */
   3924	if (new.mnt->mnt_root != new.dentry)
   3925		goto out4; /* not a mountpoint */
   3926	if (!mnt_has_parent(new_mnt))
   3927		goto out4; /* not attached */
   3928	/* make sure we can reach put_old from new_root */
   3929	if (!is_path_reachable(old_mnt, old.dentry, &new))
   3930		goto out4;
   3931	/* make certain new is below the root */
   3932	if (!is_path_reachable(new_mnt, new.dentry, &root))
   3933		goto out4;
   3934	lock_mount_hash();
   3935	umount_mnt(new_mnt);
   3936	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
   3937	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
   3938		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
   3939		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
   3940	}
   3941	/* mount old root on put_old */
   3942	attach_mnt(root_mnt, old_mnt, old_mp);
   3943	/* mount new_root on / */
   3944	attach_mnt(new_mnt, root_parent, root_mp);
   3945	mnt_add_count(root_parent, -1);
   3946	touch_mnt_namespace(current->nsproxy->mnt_ns);
   3947	/* A moved mount should not expire automatically */
   3948	list_del_init(&new_mnt->mnt_expire);
   3949	put_mountpoint(root_mp);
   3950	unlock_mount_hash();
   3951	chroot_fs_refs(&root, &new);
   3952	error = 0;
   3953out4:
   3954	unlock_mount(old_mp);
   3955	if (!error)
   3956		mntput_no_expire(ex_parent);
   3957out3:
   3958	path_put(&root);
   3959out2:
   3960	path_put(&old);
   3961out1:
   3962	path_put(&new);
   3963out0:
   3964	return error;
   3965}
   3966
   3967static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
   3968{
   3969	unsigned int flags = mnt->mnt.mnt_flags;
   3970
   3971	/*  flags to clear */
   3972	flags &= ~kattr->attr_clr;
   3973	/* flags to raise */
   3974	flags |= kattr->attr_set;
   3975
   3976	return flags;
   3977}
   3978
   3979static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
   3980{
   3981	struct vfsmount *m = &mnt->mnt;
   3982	struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
   3983
   3984	if (!kattr->mnt_userns)
   3985		return 0;
   3986
   3987	/*
   3988	 * Creating an idmapped mount with the filesystem wide idmapping
   3989	 * doesn't make sense so block that. We don't allow mushy semantics.
   3990	 */
   3991	if (kattr->mnt_userns == fs_userns)
   3992		return -EINVAL;
   3993
   3994	/*
   3995	 * Once a mount has been idmapped we don't allow it to change its
   3996	 * mapping. It makes things simpler and callers can just create
   3997	 * another bind-mount they can idmap if they want to.
   3998	 */
   3999	if (is_idmapped_mnt(m))
   4000		return -EPERM;
   4001
   4002	/* The underlying filesystem doesn't support idmapped mounts yet. */
   4003	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
   4004		return -EINVAL;
   4005
   4006	/* We're not controlling the superblock. */
   4007	if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
   4008		return -EPERM;
   4009
   4010	/* Mount has already been visible in the filesystem hierarchy. */
   4011	if (!is_anon_ns(mnt->mnt_ns))
   4012		return -EINVAL;
   4013
   4014	return 0;
   4015}
   4016
   4017/**
   4018 * mnt_allow_writers() - check whether the attribute change allows writers
   4019 * @kattr: the new mount attributes
   4020 * @mnt: the mount to which @kattr will be applied
   4021 *
   4022 * Check whether thew new mount attributes in @kattr allow concurrent writers.
   4023 *
   4024 * Return: true if writers need to be held, false if not
   4025 */
   4026static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
   4027				     const struct mount *mnt)
   4028{
   4029	return (!(kattr->attr_set & MNT_READONLY) ||
   4030		(mnt->mnt.mnt_flags & MNT_READONLY)) &&
   4031	       !kattr->mnt_userns;
   4032}
   4033
   4034static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
   4035{
   4036	struct mount *m;
   4037	int err;
   4038
   4039	for (m = mnt; m; m = next_mnt(m, mnt)) {
   4040		if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
   4041			err = -EPERM;
   4042			break;
   4043		}
   4044
   4045		err = can_idmap_mount(kattr, m);
   4046		if (err)
   4047			break;
   4048
   4049		if (!mnt_allow_writers(kattr, m)) {
   4050			err = mnt_hold_writers(m);
   4051			if (err)
   4052				break;
   4053		}
   4054
   4055		if (!kattr->recurse)
   4056			return 0;
   4057	}
   4058
   4059	if (err) {
   4060		struct mount *p;
   4061
   4062		/*
   4063		 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
   4064		 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
   4065		 * mounts and needs to take care to include the first mount.
   4066		 */
   4067		for (p = mnt; p; p = next_mnt(p, mnt)) {
   4068			/* If we had to hold writers unblock them. */
   4069			if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
   4070				mnt_unhold_writers(p);
   4071
   4072			/*
   4073			 * We're done once the first mount we changed got
   4074			 * MNT_WRITE_HOLD unset.
   4075			 */
   4076			if (p == m)
   4077				break;
   4078		}
   4079	}
   4080	return err;
   4081}
   4082
   4083static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
   4084{
   4085	struct user_namespace *mnt_userns, *old_mnt_userns;
   4086
   4087	if (!kattr->mnt_userns)
   4088		return;
   4089
   4090	/*
   4091	 * We're the only ones able to change the mount's idmapping. So
   4092	 * mnt->mnt.mnt_userns is stable and we can retrieve it directly.
   4093	 */
   4094	old_mnt_userns = mnt->mnt.mnt_userns;
   4095
   4096	mnt_userns = get_user_ns(kattr->mnt_userns);
   4097	/* Pairs with smp_load_acquire() in mnt_user_ns(). */
   4098	smp_store_release(&mnt->mnt.mnt_userns, mnt_userns);
   4099
   4100	/*
   4101	 * If this is an idmapped filesystem drop the reference we've taken
   4102	 * in vfs_create_mount() before.
   4103	 */
   4104	if (!initial_idmapping(old_mnt_userns))
   4105		put_user_ns(old_mnt_userns);
   4106}
   4107
   4108static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
   4109{
   4110	struct mount *m;
   4111
   4112	for (m = mnt; m; m = next_mnt(m, mnt)) {
   4113		unsigned int flags;
   4114
   4115		do_idmap_mount(kattr, m);
   4116		flags = recalc_flags(kattr, m);
   4117		WRITE_ONCE(m->mnt.mnt_flags, flags);
   4118
   4119		/* If we had to hold writers unblock them. */
   4120		if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
   4121			mnt_unhold_writers(m);
   4122
   4123		if (kattr->propagation)
   4124			change_mnt_propagation(m, kattr->propagation);
   4125		if (!kattr->recurse)
   4126			break;
   4127	}
   4128	touch_mnt_namespace(mnt->mnt_ns);
   4129}
   4130
   4131static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
   4132{
   4133	struct mount *mnt = real_mount(path->mnt);
   4134	int err = 0;
   4135
   4136	if (path->dentry != mnt->mnt.mnt_root)
   4137		return -EINVAL;
   4138
   4139	if (kattr->propagation) {
   4140		/*
   4141		 * Only take namespace_lock() if we're actually changing
   4142		 * propagation.
   4143		 */
   4144		namespace_lock();
   4145		if (kattr->propagation == MS_SHARED) {
   4146			err = invent_group_ids(mnt, kattr->recurse);
   4147			if (err) {
   4148				namespace_unlock();
   4149				return err;
   4150			}
   4151		}
   4152	}
   4153
   4154	err = -EINVAL;
   4155	lock_mount_hash();
   4156
   4157	/* Ensure that this isn't anything purely vfs internal. */
   4158	if (!is_mounted(&mnt->mnt))
   4159		goto out;
   4160
   4161	/*
   4162	 * If this is an attached mount make sure it's located in the callers
   4163	 * mount namespace. If it's not don't let the caller interact with it.
   4164	 * If this is a detached mount make sure it has an anonymous mount
   4165	 * namespace attached to it, i.e. we've created it via OPEN_TREE_CLONE.
   4166	 */
   4167	if (!(mnt_has_parent(mnt) ? check_mnt(mnt) : is_anon_ns(mnt->mnt_ns)))
   4168		goto out;
   4169
   4170	/*
   4171	 * First, we get the mount tree in a shape where we can change mount
   4172	 * properties without failure. If we succeeded to do so we commit all
   4173	 * changes and if we failed we clean up.
   4174	 */
   4175	err = mount_setattr_prepare(kattr, mnt);
   4176	if (!err)
   4177		mount_setattr_commit(kattr, mnt);
   4178
   4179out:
   4180	unlock_mount_hash();
   4181
   4182	if (kattr->propagation) {
   4183		namespace_unlock();
   4184		if (err)
   4185			cleanup_group_ids(mnt, NULL);
   4186	}
   4187
   4188	return err;
   4189}
   4190
   4191static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
   4192				struct mount_kattr *kattr, unsigned int flags)
   4193{
   4194	int err = 0;
   4195	struct ns_common *ns;
   4196	struct user_namespace *mnt_userns;
   4197	struct file *file;
   4198
   4199	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
   4200		return 0;
   4201
   4202	/*
   4203	 * We currently do not support clearing an idmapped mount. If this ever
   4204	 * is a use-case we can revisit this but for now let's keep it simple
   4205	 * and not allow it.
   4206	 */
   4207	if (attr->attr_clr & MOUNT_ATTR_IDMAP)
   4208		return -EINVAL;
   4209
   4210	if (attr->userns_fd > INT_MAX)
   4211		return -EINVAL;
   4212
   4213	file = fget(attr->userns_fd);
   4214	if (!file)
   4215		return -EBADF;
   4216
   4217	if (!proc_ns_file(file)) {
   4218		err = -EINVAL;
   4219		goto out_fput;
   4220	}
   4221
   4222	ns = get_proc_ns(file_inode(file));
   4223	if (ns->ops->type != CLONE_NEWUSER) {
   4224		err = -EINVAL;
   4225		goto out_fput;
   4226	}
   4227
   4228	/*
   4229	 * The initial idmapping cannot be used to create an idmapped
   4230	 * mount. We use the initial idmapping as an indicator of a mount
   4231	 * that is not idmapped. It can simply be passed into helpers that
   4232	 * are aware of idmapped mounts as a convenient shortcut. A user
   4233	 * can just create a dedicated identity mapping to achieve the same
   4234	 * result.
   4235	 */
   4236	mnt_userns = container_of(ns, struct user_namespace, ns);
   4237	if (initial_idmapping(mnt_userns)) {
   4238		err = -EPERM;
   4239		goto out_fput;
   4240	}
   4241	kattr->mnt_userns = get_user_ns(mnt_userns);
   4242
   4243out_fput:
   4244	fput(file);
   4245	return err;
   4246}
   4247
   4248static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
   4249			     struct mount_kattr *kattr, unsigned int flags)
   4250{
   4251	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
   4252
   4253	if (flags & AT_NO_AUTOMOUNT)
   4254		lookup_flags &= ~LOOKUP_AUTOMOUNT;
   4255	if (flags & AT_SYMLINK_NOFOLLOW)
   4256		lookup_flags &= ~LOOKUP_FOLLOW;
   4257	if (flags & AT_EMPTY_PATH)
   4258		lookup_flags |= LOOKUP_EMPTY;
   4259
   4260	*kattr = (struct mount_kattr) {
   4261		.lookup_flags	= lookup_flags,
   4262		.recurse	= !!(flags & AT_RECURSIVE),
   4263	};
   4264
   4265	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
   4266		return -EINVAL;
   4267	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
   4268		return -EINVAL;
   4269	kattr->propagation = attr->propagation;
   4270
   4271	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
   4272		return -EINVAL;
   4273
   4274	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
   4275	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
   4276
   4277	/*
   4278	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
   4279	 * users wanting to transition to a different atime setting cannot
   4280	 * simply specify the atime setting in @attr_set, but must also
   4281	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
   4282	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
   4283	 * @attr_clr and that @attr_set can't have any atime bits set if
   4284	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
   4285	 */
   4286	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
   4287		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
   4288			return -EINVAL;
   4289
   4290		/*
   4291		 * Clear all previous time settings as they are mutually
   4292		 * exclusive.
   4293		 */
   4294		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
   4295		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
   4296		case MOUNT_ATTR_RELATIME:
   4297			kattr->attr_set |= MNT_RELATIME;
   4298			break;
   4299		case MOUNT_ATTR_NOATIME:
   4300			kattr->attr_set |= MNT_NOATIME;
   4301			break;
   4302		case MOUNT_ATTR_STRICTATIME:
   4303			break;
   4304		default:
   4305			return -EINVAL;
   4306		}
   4307	} else {
   4308		if (attr->attr_set & MOUNT_ATTR__ATIME)
   4309			return -EINVAL;
   4310	}
   4311
   4312	return build_mount_idmapped(attr, usize, kattr, flags);
   4313}
   4314
   4315static void finish_mount_kattr(struct mount_kattr *kattr)
   4316{
   4317	put_user_ns(kattr->mnt_userns);
   4318	kattr->mnt_userns = NULL;
   4319}
   4320
   4321SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
   4322		unsigned int, flags, struct mount_attr __user *, uattr,
   4323		size_t, usize)
   4324{
   4325	int err;
   4326	struct path target;
   4327	struct mount_attr attr;
   4328	struct mount_kattr kattr;
   4329
   4330	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
   4331
   4332	if (flags & ~(AT_EMPTY_PATH |
   4333		      AT_RECURSIVE |
   4334		      AT_SYMLINK_NOFOLLOW |
   4335		      AT_NO_AUTOMOUNT))
   4336		return -EINVAL;
   4337
   4338	if (unlikely(usize > PAGE_SIZE))
   4339		return -E2BIG;
   4340	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
   4341		return -EINVAL;
   4342
   4343	if (!may_mount())
   4344		return -EPERM;
   4345
   4346	err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
   4347	if (err)
   4348		return err;
   4349
   4350	/* Don't bother walking through the mounts if this is a nop. */
   4351	if (attr.attr_set == 0 &&
   4352	    attr.attr_clr == 0 &&
   4353	    attr.propagation == 0)
   4354		return 0;
   4355
   4356	err = build_mount_kattr(&attr, usize, &kattr, flags);
   4357	if (err)
   4358		return err;
   4359
   4360	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
   4361	if (!err) {
   4362		err = do_mount_setattr(&target, &kattr);
   4363		path_put(&target);
   4364	}
   4365	finish_mount_kattr(&kattr);
   4366	return err;
   4367}
   4368
   4369static void __init init_mount_tree(void)
   4370{
   4371	struct vfsmount *mnt;
   4372	struct mount *m;
   4373	struct mnt_namespace *ns;
   4374	struct path root;
   4375
   4376	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
   4377	if (IS_ERR(mnt))
   4378		panic("Can't create rootfs");
   4379
   4380	ns = alloc_mnt_ns(&init_user_ns, false);
   4381	if (IS_ERR(ns))
   4382		panic("Can't allocate initial namespace");
   4383	m = real_mount(mnt);
   4384	m->mnt_ns = ns;
   4385	ns->root = m;
   4386	ns->mounts = 1;
   4387	list_add(&m->mnt_list, &ns->list);
   4388	init_task.nsproxy->mnt_ns = ns;
   4389	get_mnt_ns(ns);
   4390
   4391	root.mnt = mnt;
   4392	root.dentry = mnt->mnt_root;
   4393	mnt->mnt_flags |= MNT_LOCKED;
   4394
   4395	set_fs_pwd(current->fs, &root);
   4396	set_fs_root(current->fs, &root);
   4397}
   4398
   4399void __init mnt_init(void)
   4400{
   4401	int err;
   4402
   4403	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
   4404			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
   4405
   4406	mount_hashtable = alloc_large_system_hash("Mount-cache",
   4407				sizeof(struct hlist_head),
   4408				mhash_entries, 19,
   4409				HASH_ZERO,
   4410				&m_hash_shift, &m_hash_mask, 0, 0);
   4411	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
   4412				sizeof(struct hlist_head),
   4413				mphash_entries, 19,
   4414				HASH_ZERO,
   4415				&mp_hash_shift, &mp_hash_mask, 0, 0);
   4416
   4417	if (!mount_hashtable || !mountpoint_hashtable)
   4418		panic("Failed to allocate mount hash table\n");
   4419
   4420	kernfs_init();
   4421
   4422	err = sysfs_init();
   4423	if (err)
   4424		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
   4425			__func__, err);
   4426	fs_kobj = kobject_create_and_add("fs", NULL);
   4427	if (!fs_kobj)
   4428		printk(KERN_WARNING "%s: kobj create error\n", __func__);
   4429	shmem_init();
   4430	init_rootfs();
   4431	init_mount_tree();
   4432}
   4433
   4434void put_mnt_ns(struct mnt_namespace *ns)
   4435{
   4436	if (!refcount_dec_and_test(&ns->ns.count))
   4437		return;
   4438	drop_collected_mounts(&ns->root->mnt);
   4439	free_mnt_ns(ns);
   4440}
   4441
   4442struct vfsmount *kern_mount(struct file_system_type *type)
   4443{
   4444	struct vfsmount *mnt;
   4445	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
   4446	if (!IS_ERR(mnt)) {
   4447		/*
   4448		 * it is a longterm mount, don't release mnt until
   4449		 * we unmount before file sys is unregistered
   4450		*/
   4451		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
   4452	}
   4453	return mnt;
   4454}
   4455EXPORT_SYMBOL_GPL(kern_mount);
   4456
   4457void kern_unmount(struct vfsmount *mnt)
   4458{
   4459	/* release long term mount so mount point can be released */
   4460	if (!IS_ERR_OR_NULL(mnt)) {
   4461		real_mount(mnt)->mnt_ns = NULL;
   4462		synchronize_rcu();	/* yecchhh... */
   4463		mntput(mnt);
   4464	}
   4465}
   4466EXPORT_SYMBOL(kern_unmount);
   4467
   4468void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
   4469{
   4470	unsigned int i;
   4471
   4472	for (i = 0; i < num; i++)
   4473		if (mnt[i])
   4474			real_mount(mnt[i])->mnt_ns = NULL;
   4475	synchronize_rcu_expedited();
   4476	for (i = 0; i < num; i++)
   4477		mntput(mnt[i]);
   4478}
   4479EXPORT_SYMBOL(kern_unmount_array);
   4480
   4481bool our_mnt(struct vfsmount *mnt)
   4482{
   4483	return check_mnt(real_mount(mnt));
   4484}
   4485
   4486bool current_chrooted(void)
   4487{
   4488	/* Does the current process have a non-standard root */
   4489	struct path ns_root;
   4490	struct path fs_root;
   4491	bool chrooted;
   4492
   4493	/* Find the namespace root */
   4494	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
   4495	ns_root.dentry = ns_root.mnt->mnt_root;
   4496	path_get(&ns_root);
   4497	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
   4498		;
   4499
   4500	get_fs_root(current->fs, &fs_root);
   4501
   4502	chrooted = !path_equal(&fs_root, &ns_root);
   4503
   4504	path_put(&fs_root);
   4505	path_put(&ns_root);
   4506
   4507	return chrooted;
   4508}
   4509
   4510static bool mnt_already_visible(struct mnt_namespace *ns,
   4511				const struct super_block *sb,
   4512				int *new_mnt_flags)
   4513{
   4514	int new_flags = *new_mnt_flags;
   4515	struct mount *mnt;
   4516	bool visible = false;
   4517
   4518	down_read(&namespace_sem);
   4519	lock_ns_list(ns);
   4520	list_for_each_entry(mnt, &ns->list, mnt_list) {
   4521		struct mount *child;
   4522		int mnt_flags;
   4523
   4524		if (mnt_is_cursor(mnt))
   4525			continue;
   4526
   4527		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
   4528			continue;
   4529
   4530		/* This mount is not fully visible if it's root directory
   4531		 * is not the root directory of the filesystem.
   4532		 */
   4533		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
   4534			continue;
   4535
   4536		/* A local view of the mount flags */
   4537		mnt_flags = mnt->mnt.mnt_flags;
   4538
   4539		/* Don't miss readonly hidden in the superblock flags */
   4540		if (sb_rdonly(mnt->mnt.mnt_sb))
   4541			mnt_flags |= MNT_LOCK_READONLY;
   4542
   4543		/* Verify the mount flags are equal to or more permissive
   4544		 * than the proposed new mount.
   4545		 */
   4546		if ((mnt_flags & MNT_LOCK_READONLY) &&
   4547		    !(new_flags & MNT_READONLY))
   4548			continue;
   4549		if ((mnt_flags & MNT_LOCK_ATIME) &&
   4550		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
   4551			continue;
   4552
   4553		/* This mount is not fully visible if there are any
   4554		 * locked child mounts that cover anything except for
   4555		 * empty directories.
   4556		 */
   4557		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
   4558			struct inode *inode = child->mnt_mountpoint->d_inode;
   4559			/* Only worry about locked mounts */
   4560			if (!(child->mnt.mnt_flags & MNT_LOCKED))
   4561				continue;
   4562			/* Is the directory permanetly empty? */
   4563			if (!is_empty_dir_inode(inode))
   4564				goto next;
   4565		}
   4566		/* Preserve the locked attributes */
   4567		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
   4568					       MNT_LOCK_ATIME);
   4569		visible = true;
   4570		goto found;
   4571	next:	;
   4572	}
   4573found:
   4574	unlock_ns_list(ns);
   4575	up_read(&namespace_sem);
   4576	return visible;
   4577}
   4578
   4579static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
   4580{
   4581	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
   4582	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
   4583	unsigned long s_iflags;
   4584
   4585	if (ns->user_ns == &init_user_ns)
   4586		return false;
   4587
   4588	/* Can this filesystem be too revealing? */
   4589	s_iflags = sb->s_iflags;
   4590	if (!(s_iflags & SB_I_USERNS_VISIBLE))
   4591		return false;
   4592
   4593	if ((s_iflags & required_iflags) != required_iflags) {
   4594		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
   4595			  required_iflags);
   4596		return true;
   4597	}
   4598
   4599	return !mnt_already_visible(ns, sb, new_mnt_flags);
   4600}
   4601
   4602bool mnt_may_suid(struct vfsmount *mnt)
   4603{
   4604	/*
   4605	 * Foreign mounts (accessed via fchdir or through /proc
   4606	 * symlinks) are always treated as if they are nosuid.  This
   4607	 * prevents namespaces from trusting potentially unsafe
   4608	 * suid/sgid bits, file caps, or security labels that originate
   4609	 * in other namespaces.
   4610	 */
   4611	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
   4612	       current_in_userns(mnt->mnt_sb->s_user_ns);
   4613}
   4614
   4615static struct ns_common *mntns_get(struct task_struct *task)
   4616{
   4617	struct ns_common *ns = NULL;
   4618	struct nsproxy *nsproxy;
   4619
   4620	task_lock(task);
   4621	nsproxy = task->nsproxy;
   4622	if (nsproxy) {
   4623		ns = &nsproxy->mnt_ns->ns;
   4624		get_mnt_ns(to_mnt_ns(ns));
   4625	}
   4626	task_unlock(task);
   4627
   4628	return ns;
   4629}
   4630
   4631static void mntns_put(struct ns_common *ns)
   4632{
   4633	put_mnt_ns(to_mnt_ns(ns));
   4634}
   4635
   4636static int mntns_install(struct nsset *nsset, struct ns_common *ns)
   4637{
   4638	struct nsproxy *nsproxy = nsset->nsproxy;
   4639	struct fs_struct *fs = nsset->fs;
   4640	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
   4641	struct user_namespace *user_ns = nsset->cred->user_ns;
   4642	struct path root;
   4643	int err;
   4644
   4645	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
   4646	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
   4647	    !ns_capable(user_ns, CAP_SYS_ADMIN))
   4648		return -EPERM;
   4649
   4650	if (is_anon_ns(mnt_ns))
   4651		return -EINVAL;
   4652
   4653	if (fs->users != 1)
   4654		return -EINVAL;
   4655
   4656	get_mnt_ns(mnt_ns);
   4657	old_mnt_ns = nsproxy->mnt_ns;
   4658	nsproxy->mnt_ns = mnt_ns;
   4659
   4660	/* Find the root */
   4661	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
   4662				"/", LOOKUP_DOWN, &root);
   4663	if (err) {
   4664		/* revert to old namespace */
   4665		nsproxy->mnt_ns = old_mnt_ns;
   4666		put_mnt_ns(mnt_ns);
   4667		return err;
   4668	}
   4669
   4670	put_mnt_ns(old_mnt_ns);
   4671
   4672	/* Update the pwd and root */
   4673	set_fs_pwd(fs, &root);
   4674	set_fs_root(fs, &root);
   4675
   4676	path_put(&root);
   4677	return 0;
   4678}
   4679
   4680static struct user_namespace *mntns_owner(struct ns_common *ns)
   4681{
   4682	return to_mnt_ns(ns)->user_ns;
   4683}
   4684
   4685const struct proc_ns_operations mntns_operations = {
   4686	.name		= "mnt",
   4687	.type		= CLONE_NEWNS,
   4688	.get		= mntns_get,
   4689	.put		= mntns_put,
   4690	.install	= mntns_install,
   4691	.owner		= mntns_owner,
   4692};
   4693
   4694#ifdef CONFIG_SYSCTL
   4695static struct ctl_table fs_namespace_sysctls[] = {
   4696	{
   4697		.procname	= "mount-max",
   4698		.data		= &sysctl_mount_max,
   4699		.maxlen		= sizeof(unsigned int),
   4700		.mode		= 0644,
   4701		.proc_handler	= proc_dointvec_minmax,
   4702		.extra1		= SYSCTL_ONE,
   4703	},
   4704	{ }
   4705};
   4706
   4707static int __init init_fs_namespace_sysctls(void)
   4708{
   4709	register_sysctl_init("fs", fs_namespace_sysctls);
   4710	return 0;
   4711}
   4712fs_initcall(init_fs_namespace_sysctls);
   4713
   4714#endif /* CONFIG_SYSCTL */