cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

io.c (19166B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/* Network filesystem high-level read support.
      3 *
      4 * Copyright (C) 2021 Red Hat, Inc. All Rights Reserved.
      5 * Written by David Howells (dhowells@redhat.com)
      6 */
      7
      8#include <linux/module.h>
      9#include <linux/export.h>
     10#include <linux/fs.h>
     11#include <linux/mm.h>
     12#include <linux/pagemap.h>
     13#include <linux/slab.h>
     14#include <linux/uio.h>
     15#include <linux/sched/mm.h>
     16#include <linux/task_io_accounting_ops.h>
     17#include "internal.h"
     18
     19/*
     20 * Clear the unread part of an I/O request.
     21 */
     22static void netfs_clear_unread(struct netfs_io_subrequest *subreq)
     23{
     24	struct iov_iter iter;
     25
     26	iov_iter_xarray(&iter, READ, &subreq->rreq->mapping->i_pages,
     27			subreq->start + subreq->transferred,
     28			subreq->len   - subreq->transferred);
     29	iov_iter_zero(iov_iter_count(&iter), &iter);
     30}
     31
     32static void netfs_cache_read_terminated(void *priv, ssize_t transferred_or_error,
     33					bool was_async)
     34{
     35	struct netfs_io_subrequest *subreq = priv;
     36
     37	netfs_subreq_terminated(subreq, transferred_or_error, was_async);
     38}
     39
     40/*
     41 * Issue a read against the cache.
     42 * - Eats the caller's ref on subreq.
     43 */
     44static void netfs_read_from_cache(struct netfs_io_request *rreq,
     45				  struct netfs_io_subrequest *subreq,
     46				  enum netfs_read_from_hole read_hole)
     47{
     48	struct netfs_cache_resources *cres = &rreq->cache_resources;
     49	struct iov_iter iter;
     50
     51	netfs_stat(&netfs_n_rh_read);
     52	iov_iter_xarray(&iter, READ, &rreq->mapping->i_pages,
     53			subreq->start + subreq->transferred,
     54			subreq->len   - subreq->transferred);
     55
     56	cres->ops->read(cres, subreq->start, &iter, read_hole,
     57			netfs_cache_read_terminated, subreq);
     58}
     59
     60/*
     61 * Fill a subrequest region with zeroes.
     62 */
     63static void netfs_fill_with_zeroes(struct netfs_io_request *rreq,
     64				   struct netfs_io_subrequest *subreq)
     65{
     66	netfs_stat(&netfs_n_rh_zero);
     67	__set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags);
     68	netfs_subreq_terminated(subreq, 0, false);
     69}
     70
     71/*
     72 * Ask the netfs to issue a read request to the server for us.
     73 *
     74 * The netfs is expected to read from subreq->pos + subreq->transferred to
     75 * subreq->pos + subreq->len - 1.  It may not backtrack and write data into the
     76 * buffer prior to the transferred point as it might clobber dirty data
     77 * obtained from the cache.
     78 *
     79 * Alternatively, the netfs is allowed to indicate one of two things:
     80 *
     81 * - NETFS_SREQ_SHORT_READ: A short read - it will get called again to try and
     82 *   make progress.
     83 *
     84 * - NETFS_SREQ_CLEAR_TAIL: A short read - the rest of the buffer will be
     85 *   cleared.
     86 */
     87static void netfs_read_from_server(struct netfs_io_request *rreq,
     88				   struct netfs_io_subrequest *subreq)
     89{
     90	netfs_stat(&netfs_n_rh_download);
     91	rreq->netfs_ops->issue_read(subreq);
     92}
     93
     94/*
     95 * Release those waiting.
     96 */
     97static void netfs_rreq_completed(struct netfs_io_request *rreq, bool was_async)
     98{
     99	trace_netfs_rreq(rreq, netfs_rreq_trace_done);
    100	netfs_clear_subrequests(rreq, was_async);
    101	netfs_put_request(rreq, was_async, netfs_rreq_trace_put_complete);
    102}
    103
    104/*
    105 * Deal with the completion of writing the data to the cache.  We have to clear
    106 * the PG_fscache bits on the folios involved and release the caller's ref.
    107 *
    108 * May be called in softirq mode and we inherit a ref from the caller.
    109 */
    110static void netfs_rreq_unmark_after_write(struct netfs_io_request *rreq,
    111					  bool was_async)
    112{
    113	struct netfs_io_subrequest *subreq;
    114	struct folio *folio;
    115	pgoff_t unlocked = 0;
    116	bool have_unlocked = false;
    117
    118	rcu_read_lock();
    119
    120	list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
    121		XA_STATE(xas, &rreq->mapping->i_pages, subreq->start / PAGE_SIZE);
    122
    123		xas_for_each(&xas, folio, (subreq->start + subreq->len - 1) / PAGE_SIZE) {
    124			/* We might have multiple writes from the same huge
    125			 * folio, but we mustn't unlock a folio more than once.
    126			 */
    127			if (have_unlocked && folio_index(folio) <= unlocked)
    128				continue;
    129			unlocked = folio_index(folio);
    130			folio_end_fscache(folio);
    131			have_unlocked = true;
    132		}
    133	}
    134
    135	rcu_read_unlock();
    136	netfs_rreq_completed(rreq, was_async);
    137}
    138
    139static void netfs_rreq_copy_terminated(void *priv, ssize_t transferred_or_error,
    140				       bool was_async)
    141{
    142	struct netfs_io_subrequest *subreq = priv;
    143	struct netfs_io_request *rreq = subreq->rreq;
    144
    145	if (IS_ERR_VALUE(transferred_or_error)) {
    146		netfs_stat(&netfs_n_rh_write_failed);
    147		trace_netfs_failure(rreq, subreq, transferred_or_error,
    148				    netfs_fail_copy_to_cache);
    149	} else {
    150		netfs_stat(&netfs_n_rh_write_done);
    151	}
    152
    153	trace_netfs_sreq(subreq, netfs_sreq_trace_write_term);
    154
    155	/* If we decrement nr_copy_ops to 0, the ref belongs to us. */
    156	if (atomic_dec_and_test(&rreq->nr_copy_ops))
    157		netfs_rreq_unmark_after_write(rreq, was_async);
    158
    159	netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated);
    160}
    161
    162/*
    163 * Perform any outstanding writes to the cache.  We inherit a ref from the
    164 * caller.
    165 */
    166static void netfs_rreq_do_write_to_cache(struct netfs_io_request *rreq)
    167{
    168	struct netfs_cache_resources *cres = &rreq->cache_resources;
    169	struct netfs_io_subrequest *subreq, *next, *p;
    170	struct iov_iter iter;
    171	int ret;
    172
    173	trace_netfs_rreq(rreq, netfs_rreq_trace_copy);
    174
    175	/* We don't want terminating writes trying to wake us up whilst we're
    176	 * still going through the list.
    177	 */
    178	atomic_inc(&rreq->nr_copy_ops);
    179
    180	list_for_each_entry_safe(subreq, p, &rreq->subrequests, rreq_link) {
    181		if (!test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags)) {
    182			list_del_init(&subreq->rreq_link);
    183			netfs_put_subrequest(subreq, false,
    184					     netfs_sreq_trace_put_no_copy);
    185		}
    186	}
    187
    188	list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
    189		/* Amalgamate adjacent writes */
    190		while (!list_is_last(&subreq->rreq_link, &rreq->subrequests)) {
    191			next = list_next_entry(subreq, rreq_link);
    192			if (next->start != subreq->start + subreq->len)
    193				break;
    194			subreq->len += next->len;
    195			list_del_init(&next->rreq_link);
    196			netfs_put_subrequest(next, false,
    197					     netfs_sreq_trace_put_merged);
    198		}
    199
    200		ret = cres->ops->prepare_write(cres, &subreq->start, &subreq->len,
    201					       rreq->i_size, true);
    202		if (ret < 0) {
    203			trace_netfs_failure(rreq, subreq, ret, netfs_fail_prepare_write);
    204			trace_netfs_sreq(subreq, netfs_sreq_trace_write_skip);
    205			continue;
    206		}
    207
    208		iov_iter_xarray(&iter, WRITE, &rreq->mapping->i_pages,
    209				subreq->start, subreq->len);
    210
    211		atomic_inc(&rreq->nr_copy_ops);
    212		netfs_stat(&netfs_n_rh_write);
    213		netfs_get_subrequest(subreq, netfs_sreq_trace_get_copy_to_cache);
    214		trace_netfs_sreq(subreq, netfs_sreq_trace_write);
    215		cres->ops->write(cres, subreq->start, &iter,
    216				 netfs_rreq_copy_terminated, subreq);
    217	}
    218
    219	/* If we decrement nr_copy_ops to 0, the usage ref belongs to us. */
    220	if (atomic_dec_and_test(&rreq->nr_copy_ops))
    221		netfs_rreq_unmark_after_write(rreq, false);
    222}
    223
    224static void netfs_rreq_write_to_cache_work(struct work_struct *work)
    225{
    226	struct netfs_io_request *rreq =
    227		container_of(work, struct netfs_io_request, work);
    228
    229	netfs_rreq_do_write_to_cache(rreq);
    230}
    231
    232static void netfs_rreq_write_to_cache(struct netfs_io_request *rreq)
    233{
    234	rreq->work.func = netfs_rreq_write_to_cache_work;
    235	if (!queue_work(system_unbound_wq, &rreq->work))
    236		BUG();
    237}
    238
    239/*
    240 * Handle a short read.
    241 */
    242static void netfs_rreq_short_read(struct netfs_io_request *rreq,
    243				  struct netfs_io_subrequest *subreq)
    244{
    245	__clear_bit(NETFS_SREQ_SHORT_IO, &subreq->flags);
    246	__set_bit(NETFS_SREQ_SEEK_DATA_READ, &subreq->flags);
    247
    248	netfs_stat(&netfs_n_rh_short_read);
    249	trace_netfs_sreq(subreq, netfs_sreq_trace_resubmit_short);
    250
    251	netfs_get_subrequest(subreq, netfs_sreq_trace_get_short_read);
    252	atomic_inc(&rreq->nr_outstanding);
    253	if (subreq->source == NETFS_READ_FROM_CACHE)
    254		netfs_read_from_cache(rreq, subreq, NETFS_READ_HOLE_CLEAR);
    255	else
    256		netfs_read_from_server(rreq, subreq);
    257}
    258
    259/*
    260 * Resubmit any short or failed operations.  Returns true if we got the rreq
    261 * ref back.
    262 */
    263static bool netfs_rreq_perform_resubmissions(struct netfs_io_request *rreq)
    264{
    265	struct netfs_io_subrequest *subreq;
    266
    267	WARN_ON(in_interrupt());
    268
    269	trace_netfs_rreq(rreq, netfs_rreq_trace_resubmit);
    270
    271	/* We don't want terminating submissions trying to wake us up whilst
    272	 * we're still going through the list.
    273	 */
    274	atomic_inc(&rreq->nr_outstanding);
    275
    276	__clear_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
    277	list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
    278		if (subreq->error) {
    279			if (subreq->source != NETFS_READ_FROM_CACHE)
    280				break;
    281			subreq->source = NETFS_DOWNLOAD_FROM_SERVER;
    282			subreq->error = 0;
    283			netfs_stat(&netfs_n_rh_download_instead);
    284			trace_netfs_sreq(subreq, netfs_sreq_trace_download_instead);
    285			netfs_get_subrequest(subreq, netfs_sreq_trace_get_resubmit);
    286			atomic_inc(&rreq->nr_outstanding);
    287			netfs_read_from_server(rreq, subreq);
    288		} else if (test_bit(NETFS_SREQ_SHORT_IO, &subreq->flags)) {
    289			netfs_rreq_short_read(rreq, subreq);
    290		}
    291	}
    292
    293	/* If we decrement nr_outstanding to 0, the usage ref belongs to us. */
    294	if (atomic_dec_and_test(&rreq->nr_outstanding))
    295		return true;
    296
    297	wake_up_var(&rreq->nr_outstanding);
    298	return false;
    299}
    300
    301/*
    302 * Check to see if the data read is still valid.
    303 */
    304static void netfs_rreq_is_still_valid(struct netfs_io_request *rreq)
    305{
    306	struct netfs_io_subrequest *subreq;
    307
    308	if (!rreq->netfs_ops->is_still_valid ||
    309	    rreq->netfs_ops->is_still_valid(rreq))
    310		return;
    311
    312	list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
    313		if (subreq->source == NETFS_READ_FROM_CACHE) {
    314			subreq->error = -ESTALE;
    315			__set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
    316		}
    317	}
    318}
    319
    320/*
    321 * Assess the state of a read request and decide what to do next.
    322 *
    323 * Note that we could be in an ordinary kernel thread, on a workqueue or in
    324 * softirq context at this point.  We inherit a ref from the caller.
    325 */
    326static void netfs_rreq_assess(struct netfs_io_request *rreq, bool was_async)
    327{
    328	trace_netfs_rreq(rreq, netfs_rreq_trace_assess);
    329
    330again:
    331	netfs_rreq_is_still_valid(rreq);
    332
    333	if (!test_bit(NETFS_RREQ_FAILED, &rreq->flags) &&
    334	    test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags)) {
    335		if (netfs_rreq_perform_resubmissions(rreq))
    336			goto again;
    337		return;
    338	}
    339
    340	netfs_rreq_unlock_folios(rreq);
    341
    342	clear_bit_unlock(NETFS_RREQ_IN_PROGRESS, &rreq->flags);
    343	wake_up_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS);
    344
    345	if (test_bit(NETFS_RREQ_COPY_TO_CACHE, &rreq->flags))
    346		return netfs_rreq_write_to_cache(rreq);
    347
    348	netfs_rreq_completed(rreq, was_async);
    349}
    350
    351static void netfs_rreq_work(struct work_struct *work)
    352{
    353	struct netfs_io_request *rreq =
    354		container_of(work, struct netfs_io_request, work);
    355	netfs_rreq_assess(rreq, false);
    356}
    357
    358/*
    359 * Handle the completion of all outstanding I/O operations on a read request.
    360 * We inherit a ref from the caller.
    361 */
    362static void netfs_rreq_terminated(struct netfs_io_request *rreq,
    363				  bool was_async)
    364{
    365	if (test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags) &&
    366	    was_async) {
    367		if (!queue_work(system_unbound_wq, &rreq->work))
    368			BUG();
    369	} else {
    370		netfs_rreq_assess(rreq, was_async);
    371	}
    372}
    373
    374/**
    375 * netfs_subreq_terminated - Note the termination of an I/O operation.
    376 * @subreq: The I/O request that has terminated.
    377 * @transferred_or_error: The amount of data transferred or an error code.
    378 * @was_async: The termination was asynchronous
    379 *
    380 * This tells the read helper that a contributory I/O operation has terminated,
    381 * one way or another, and that it should integrate the results.
    382 *
    383 * The caller indicates in @transferred_or_error the outcome of the operation,
    384 * supplying a positive value to indicate the number of bytes transferred, 0 to
    385 * indicate a failure to transfer anything that should be retried or a negative
    386 * error code.  The helper will look after reissuing I/O operations as
    387 * appropriate and writing downloaded data to the cache.
    388 *
    389 * If @was_async is true, the caller might be running in softirq or interrupt
    390 * context and we can't sleep.
    391 */
    392void netfs_subreq_terminated(struct netfs_io_subrequest *subreq,
    393			     ssize_t transferred_or_error,
    394			     bool was_async)
    395{
    396	struct netfs_io_request *rreq = subreq->rreq;
    397	int u;
    398
    399	_enter("[%u]{%llx,%lx},%zd",
    400	       subreq->debug_index, subreq->start, subreq->flags,
    401	       transferred_or_error);
    402
    403	switch (subreq->source) {
    404	case NETFS_READ_FROM_CACHE:
    405		netfs_stat(&netfs_n_rh_read_done);
    406		break;
    407	case NETFS_DOWNLOAD_FROM_SERVER:
    408		netfs_stat(&netfs_n_rh_download_done);
    409		break;
    410	default:
    411		break;
    412	}
    413
    414	if (IS_ERR_VALUE(transferred_or_error)) {
    415		subreq->error = transferred_or_error;
    416		trace_netfs_failure(rreq, subreq, transferred_or_error,
    417				    netfs_fail_read);
    418		goto failed;
    419	}
    420
    421	if (WARN(transferred_or_error > subreq->len - subreq->transferred,
    422		 "Subreq overread: R%x[%x] %zd > %zu - %zu",
    423		 rreq->debug_id, subreq->debug_index,
    424		 transferred_or_error, subreq->len, subreq->transferred))
    425		transferred_or_error = subreq->len - subreq->transferred;
    426
    427	subreq->error = 0;
    428	subreq->transferred += transferred_or_error;
    429	if (subreq->transferred < subreq->len)
    430		goto incomplete;
    431
    432complete:
    433	__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
    434	if (test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags))
    435		set_bit(NETFS_RREQ_COPY_TO_CACHE, &rreq->flags);
    436
    437out:
    438	trace_netfs_sreq(subreq, netfs_sreq_trace_terminated);
    439
    440	/* If we decrement nr_outstanding to 0, the ref belongs to us. */
    441	u = atomic_dec_return(&rreq->nr_outstanding);
    442	if (u == 0)
    443		netfs_rreq_terminated(rreq, was_async);
    444	else if (u == 1)
    445		wake_up_var(&rreq->nr_outstanding);
    446
    447	netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated);
    448	return;
    449
    450incomplete:
    451	if (test_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags)) {
    452		netfs_clear_unread(subreq);
    453		subreq->transferred = subreq->len;
    454		goto complete;
    455	}
    456
    457	if (transferred_or_error == 0) {
    458		if (__test_and_set_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags)) {
    459			subreq->error = -ENODATA;
    460			goto failed;
    461		}
    462	} else {
    463		__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
    464	}
    465
    466	__set_bit(NETFS_SREQ_SHORT_IO, &subreq->flags);
    467	set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
    468	goto out;
    469
    470failed:
    471	if (subreq->source == NETFS_READ_FROM_CACHE) {
    472		netfs_stat(&netfs_n_rh_read_failed);
    473		set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
    474	} else {
    475		netfs_stat(&netfs_n_rh_download_failed);
    476		set_bit(NETFS_RREQ_FAILED, &rreq->flags);
    477		rreq->error = subreq->error;
    478	}
    479	goto out;
    480}
    481EXPORT_SYMBOL(netfs_subreq_terminated);
    482
    483static enum netfs_io_source netfs_cache_prepare_read(struct netfs_io_subrequest *subreq,
    484						       loff_t i_size)
    485{
    486	struct netfs_io_request *rreq = subreq->rreq;
    487	struct netfs_cache_resources *cres = &rreq->cache_resources;
    488
    489	if (cres->ops)
    490		return cres->ops->prepare_read(subreq, i_size);
    491	if (subreq->start >= rreq->i_size)
    492		return NETFS_FILL_WITH_ZEROES;
    493	return NETFS_DOWNLOAD_FROM_SERVER;
    494}
    495
    496/*
    497 * Work out what sort of subrequest the next one will be.
    498 */
    499static enum netfs_io_source
    500netfs_rreq_prepare_read(struct netfs_io_request *rreq,
    501			struct netfs_io_subrequest *subreq)
    502{
    503	enum netfs_io_source source;
    504
    505	_enter("%llx-%llx,%llx", subreq->start, subreq->start + subreq->len, rreq->i_size);
    506
    507	source = netfs_cache_prepare_read(subreq, rreq->i_size);
    508	if (source == NETFS_INVALID_READ)
    509		goto out;
    510
    511	if (source == NETFS_DOWNLOAD_FROM_SERVER) {
    512		/* Call out to the netfs to let it shrink the request to fit
    513		 * its own I/O sizes and boundaries.  If it shinks it here, it
    514		 * will be called again to make simultaneous calls; if it wants
    515		 * to make serial calls, it can indicate a short read and then
    516		 * we will call it again.
    517		 */
    518		if (subreq->len > rreq->i_size - subreq->start)
    519			subreq->len = rreq->i_size - subreq->start;
    520
    521		if (rreq->netfs_ops->clamp_length &&
    522		    !rreq->netfs_ops->clamp_length(subreq)) {
    523			source = NETFS_INVALID_READ;
    524			goto out;
    525		}
    526	}
    527
    528	if (WARN_ON(subreq->len == 0))
    529		source = NETFS_INVALID_READ;
    530
    531out:
    532	subreq->source = source;
    533	trace_netfs_sreq(subreq, netfs_sreq_trace_prepare);
    534	return source;
    535}
    536
    537/*
    538 * Slice off a piece of a read request and submit an I/O request for it.
    539 */
    540static bool netfs_rreq_submit_slice(struct netfs_io_request *rreq,
    541				    unsigned int *_debug_index)
    542{
    543	struct netfs_io_subrequest *subreq;
    544	enum netfs_io_source source;
    545
    546	subreq = netfs_alloc_subrequest(rreq);
    547	if (!subreq)
    548		return false;
    549
    550	subreq->debug_index	= (*_debug_index)++;
    551	subreq->start		= rreq->start + rreq->submitted;
    552	subreq->len		= rreq->len   - rreq->submitted;
    553
    554	_debug("slice %llx,%zx,%zx", subreq->start, subreq->len, rreq->submitted);
    555	list_add_tail(&subreq->rreq_link, &rreq->subrequests);
    556
    557	/* Call out to the cache to find out what it can do with the remaining
    558	 * subset.  It tells us in subreq->flags what it decided should be done
    559	 * and adjusts subreq->len down if the subset crosses a cache boundary.
    560	 *
    561	 * Then when we hand the subset, it can choose to take a subset of that
    562	 * (the starts must coincide), in which case, we go around the loop
    563	 * again and ask it to download the next piece.
    564	 */
    565	source = netfs_rreq_prepare_read(rreq, subreq);
    566	if (source == NETFS_INVALID_READ)
    567		goto subreq_failed;
    568
    569	atomic_inc(&rreq->nr_outstanding);
    570
    571	rreq->submitted += subreq->len;
    572
    573	trace_netfs_sreq(subreq, netfs_sreq_trace_submit);
    574	switch (source) {
    575	case NETFS_FILL_WITH_ZEROES:
    576		netfs_fill_with_zeroes(rreq, subreq);
    577		break;
    578	case NETFS_DOWNLOAD_FROM_SERVER:
    579		netfs_read_from_server(rreq, subreq);
    580		break;
    581	case NETFS_READ_FROM_CACHE:
    582		netfs_read_from_cache(rreq, subreq, NETFS_READ_HOLE_IGNORE);
    583		break;
    584	default:
    585		BUG();
    586	}
    587
    588	return true;
    589
    590subreq_failed:
    591	rreq->error = subreq->error;
    592	netfs_put_subrequest(subreq, false, netfs_sreq_trace_put_failed);
    593	return false;
    594}
    595
    596/*
    597 * Begin the process of reading in a chunk of data, where that data may be
    598 * stitched together from multiple sources, including multiple servers and the
    599 * local cache.
    600 */
    601int netfs_begin_read(struct netfs_io_request *rreq, bool sync)
    602{
    603	unsigned int debug_index = 0;
    604	int ret;
    605
    606	_enter("R=%x %llx-%llx",
    607	       rreq->debug_id, rreq->start, rreq->start + rreq->len - 1);
    608
    609	if (rreq->len == 0) {
    610		pr_err("Zero-sized read [R=%x]\n", rreq->debug_id);
    611		netfs_put_request(rreq, false, netfs_rreq_trace_put_zero_len);
    612		return -EIO;
    613	}
    614
    615	INIT_WORK(&rreq->work, netfs_rreq_work);
    616
    617	if (sync)
    618		netfs_get_request(rreq, netfs_rreq_trace_get_hold);
    619
    620	/* Chop the read into slices according to what the cache and the netfs
    621	 * want and submit each one.
    622	 */
    623	atomic_set(&rreq->nr_outstanding, 1);
    624	do {
    625		if (!netfs_rreq_submit_slice(rreq, &debug_index))
    626			break;
    627
    628	} while (rreq->submitted < rreq->len);
    629
    630	if (sync) {
    631		/* Keep nr_outstanding incremented so that the ref always belongs to
    632		 * us, and the service code isn't punted off to a random thread pool to
    633		 * process.
    634		 */
    635		for (;;) {
    636			wait_var_event(&rreq->nr_outstanding,
    637				       atomic_read(&rreq->nr_outstanding) == 1);
    638			netfs_rreq_assess(rreq, false);
    639			if (!test_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags))
    640				break;
    641			cond_resched();
    642		}
    643
    644		ret = rreq->error;
    645		if (ret == 0 && rreq->submitted < rreq->len) {
    646			trace_netfs_failure(rreq, NULL, ret, netfs_fail_short_read);
    647			ret = -EIO;
    648		}
    649		netfs_put_request(rreq, false, netfs_rreq_trace_put_hold);
    650	} else {
    651		/* If we decrement nr_outstanding to 0, the ref belongs to us. */
    652		if (atomic_dec_and_test(&rreq->nr_outstanding))
    653			netfs_rreq_assess(rreq, false);
    654		ret = 0;
    655	}
    656	return ret;
    657}