cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

nfs42xattr.c (26002B)


      1// SPDX-License-Identifier: GPL-2.0
      2
      3/*
      4 * Copyright 2019, 2020 Amazon.com, Inc. or its affiliates. All rights reserved.
      5 *
      6 * User extended attribute client side cache functions.
      7 *
      8 * Author: Frank van der Linden <fllinden@amazon.com>
      9 */
     10#include <linux/errno.h>
     11#include <linux/nfs_fs.h>
     12#include <linux/hashtable.h>
     13#include <linux/refcount.h>
     14#include <uapi/linux/xattr.h>
     15
     16#include "nfs4_fs.h"
     17#include "internal.h"
     18
     19/*
     20 * User extended attributes client side caching is implemented by having
     21 * a cache structure attached to NFS inodes. This structure is allocated
     22 * when needed, and freed when the cache is zapped.
     23 *
     24 * The cache structure contains as hash table of entries, and a pointer
     25 * to a special-cased entry for the listxattr cache.
     26 *
     27 * Accessing and allocating / freeing the caches is done via reference
     28 * counting. The cache entries use a similar refcounting scheme.
     29 *
     30 * This makes freeing a cache, both from the shrinker and from the
     31 * zap cache path, easy. It also means that, in current use cases,
     32 * the large majority of inodes will not waste any memory, as they
     33 * will never have any user extended attributes assigned to them.
     34 *
     35 * Attribute entries are hashed in to a simple hash table. They are
     36 * also part of an LRU.
     37 *
     38 * There are three shrinkers.
     39 *
     40 * Two shrinkers deal with the cache entries themselves: one for
     41 * large entries (> PAGE_SIZE), and one for smaller entries. The
     42 * shrinker for the larger entries works more aggressively than
     43 * those for the smaller entries.
     44 *
     45 * The other shrinker frees the cache structures themselves.
     46 */
     47
     48/*
     49 * 64 buckets is a good default. There is likely no reasonable
     50 * workload that uses more than even 64 user extended attributes.
     51 * You can certainly add a lot more - but you get what you ask for
     52 * in those circumstances.
     53 */
     54#define NFS4_XATTR_HASH_SIZE	64
     55
     56#define NFSDBG_FACILITY	NFSDBG_XATTRCACHE
     57
     58struct nfs4_xattr_cache;
     59struct nfs4_xattr_entry;
     60
     61struct nfs4_xattr_bucket {
     62	spinlock_t lock;
     63	struct hlist_head hlist;
     64	struct nfs4_xattr_cache *cache;
     65	bool draining;
     66};
     67
     68struct nfs4_xattr_cache {
     69	struct kref ref;
     70	struct nfs4_xattr_bucket buckets[NFS4_XATTR_HASH_SIZE];
     71	struct list_head lru;
     72	struct list_head dispose;
     73	atomic_long_t nent;
     74	spinlock_t listxattr_lock;
     75	struct inode *inode;
     76	struct nfs4_xattr_entry *listxattr;
     77};
     78
     79struct nfs4_xattr_entry {
     80	struct kref ref;
     81	struct hlist_node hnode;
     82	struct list_head lru;
     83	struct list_head dispose;
     84	char *xattr_name;
     85	void *xattr_value;
     86	size_t xattr_size;
     87	struct nfs4_xattr_bucket *bucket;
     88	uint32_t flags;
     89};
     90
     91#define	NFS4_XATTR_ENTRY_EXTVAL	0x0001
     92
     93/*
     94 * LRU list of NFS inodes that have xattr caches.
     95 */
     96static struct list_lru nfs4_xattr_cache_lru;
     97static struct list_lru nfs4_xattr_entry_lru;
     98static struct list_lru nfs4_xattr_large_entry_lru;
     99
    100static struct kmem_cache *nfs4_xattr_cache_cachep;
    101
    102/*
    103 * Hashing helper functions.
    104 */
    105static void
    106nfs4_xattr_hash_init(struct nfs4_xattr_cache *cache)
    107{
    108	unsigned int i;
    109
    110	for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) {
    111		INIT_HLIST_HEAD(&cache->buckets[i].hlist);
    112		spin_lock_init(&cache->buckets[i].lock);
    113		cache->buckets[i].cache = cache;
    114		cache->buckets[i].draining = false;
    115	}
    116}
    117
    118/*
    119 * Locking order:
    120 * 1. inode i_lock or bucket lock
    121 * 2. list_lru lock (taken by list_lru_* functions)
    122 */
    123
    124/*
    125 * Wrapper functions to add a cache entry to the right LRU.
    126 */
    127static bool
    128nfs4_xattr_entry_lru_add(struct nfs4_xattr_entry *entry)
    129{
    130	struct list_lru *lru;
    131
    132	lru = (entry->flags & NFS4_XATTR_ENTRY_EXTVAL) ?
    133	    &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
    134
    135	return list_lru_add(lru, &entry->lru);
    136}
    137
    138static bool
    139nfs4_xattr_entry_lru_del(struct nfs4_xattr_entry *entry)
    140{
    141	struct list_lru *lru;
    142
    143	lru = (entry->flags & NFS4_XATTR_ENTRY_EXTVAL) ?
    144	    &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
    145
    146	return list_lru_del(lru, &entry->lru);
    147}
    148
    149/*
    150 * This function allocates cache entries. They are the normal
    151 * extended attribute name/value pairs, but may also be a listxattr
    152 * cache. Those allocations use the same entry so that they can be
    153 * treated as one by the memory shrinker.
    154 *
    155 * xattr cache entries are allocated together with names. If the
    156 * value fits in to one page with the entry structure and the name,
    157 * it will also be part of the same allocation (kmalloc). This is
    158 * expected to be the vast majority of cases. Larger allocations
    159 * have a value pointer that is allocated separately by kvmalloc.
    160 *
    161 * Parameters:
    162 *
    163 * @name:  Name of the extended attribute. NULL for listxattr cache
    164 *         entry.
    165 * @value: Value of attribute, or listxattr cache. NULL if the
    166 *         value is to be copied from pages instead.
    167 * @pages: Pages to copy the value from, if not NULL. Passed in to
    168 *	   make it easier to copy the value after an RPC, even if
    169 *	   the value will not be passed up to application (e.g.
    170 *	   for a 'query' getxattr with NULL buffer).
    171 * @len:   Length of the value. Can be 0 for zero-length attributes.
    172 *         @value and @pages will be NULL if @len is 0.
    173 */
    174static struct nfs4_xattr_entry *
    175nfs4_xattr_alloc_entry(const char *name, const void *value,
    176		       struct page **pages, size_t len)
    177{
    178	struct nfs4_xattr_entry *entry;
    179	void *valp;
    180	char *namep;
    181	size_t alloclen, slen;
    182	char *buf;
    183	uint32_t flags;
    184
    185	BUILD_BUG_ON(sizeof(struct nfs4_xattr_entry) +
    186	    XATTR_NAME_MAX + 1 > PAGE_SIZE);
    187
    188	alloclen = sizeof(struct nfs4_xattr_entry);
    189	if (name != NULL) {
    190		slen = strlen(name) + 1;
    191		alloclen += slen;
    192	} else
    193		slen = 0;
    194
    195	if (alloclen + len <= PAGE_SIZE) {
    196		alloclen += len;
    197		flags = 0;
    198	} else {
    199		flags = NFS4_XATTR_ENTRY_EXTVAL;
    200	}
    201
    202	buf = kmalloc(alloclen, GFP_KERNEL);
    203	if (buf == NULL)
    204		return NULL;
    205	entry = (struct nfs4_xattr_entry *)buf;
    206
    207	if (name != NULL) {
    208		namep = buf + sizeof(struct nfs4_xattr_entry);
    209		memcpy(namep, name, slen);
    210	} else {
    211		namep = NULL;
    212	}
    213
    214
    215	if (flags & NFS4_XATTR_ENTRY_EXTVAL) {
    216		valp = kvmalloc(len, GFP_KERNEL);
    217		if (valp == NULL) {
    218			kfree(buf);
    219			return NULL;
    220		}
    221	} else if (len != 0) {
    222		valp = buf + sizeof(struct nfs4_xattr_entry) + slen;
    223	} else
    224		valp = NULL;
    225
    226	if (valp != NULL) {
    227		if (value != NULL)
    228			memcpy(valp, value, len);
    229		else
    230			_copy_from_pages(valp, pages, 0, len);
    231	}
    232
    233	entry->flags = flags;
    234	entry->xattr_value = valp;
    235	kref_init(&entry->ref);
    236	entry->xattr_name = namep;
    237	entry->xattr_size = len;
    238	entry->bucket = NULL;
    239	INIT_LIST_HEAD(&entry->lru);
    240	INIT_LIST_HEAD(&entry->dispose);
    241	INIT_HLIST_NODE(&entry->hnode);
    242
    243	return entry;
    244}
    245
    246static void
    247nfs4_xattr_free_entry(struct nfs4_xattr_entry *entry)
    248{
    249	if (entry->flags & NFS4_XATTR_ENTRY_EXTVAL)
    250		kvfree(entry->xattr_value);
    251	kfree(entry);
    252}
    253
    254static void
    255nfs4_xattr_free_entry_cb(struct kref *kref)
    256{
    257	struct nfs4_xattr_entry *entry;
    258
    259	entry = container_of(kref, struct nfs4_xattr_entry, ref);
    260
    261	if (WARN_ON(!list_empty(&entry->lru)))
    262		return;
    263
    264	nfs4_xattr_free_entry(entry);
    265}
    266
    267static void
    268nfs4_xattr_free_cache_cb(struct kref *kref)
    269{
    270	struct nfs4_xattr_cache *cache;
    271	int i;
    272
    273	cache = container_of(kref, struct nfs4_xattr_cache, ref);
    274
    275	for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) {
    276		if (WARN_ON(!hlist_empty(&cache->buckets[i].hlist)))
    277			return;
    278		cache->buckets[i].draining = false;
    279	}
    280
    281	cache->listxattr = NULL;
    282
    283	kmem_cache_free(nfs4_xattr_cache_cachep, cache);
    284
    285}
    286
    287static struct nfs4_xattr_cache *
    288nfs4_xattr_alloc_cache(void)
    289{
    290	struct nfs4_xattr_cache *cache;
    291
    292	cache = kmem_cache_alloc(nfs4_xattr_cache_cachep, GFP_KERNEL);
    293	if (cache == NULL)
    294		return NULL;
    295
    296	kref_init(&cache->ref);
    297	atomic_long_set(&cache->nent, 0);
    298
    299	return cache;
    300}
    301
    302/*
    303 * Set the listxattr cache, which is a special-cased cache entry.
    304 * The special value ERR_PTR(-ESTALE) is used to indicate that
    305 * the cache is being drained - this prevents a new listxattr
    306 * cache from being added to what is now a stale cache.
    307 */
    308static int
    309nfs4_xattr_set_listcache(struct nfs4_xattr_cache *cache,
    310			 struct nfs4_xattr_entry *new)
    311{
    312	struct nfs4_xattr_entry *old;
    313	int ret = 1;
    314
    315	spin_lock(&cache->listxattr_lock);
    316
    317	old = cache->listxattr;
    318
    319	if (old == ERR_PTR(-ESTALE)) {
    320		ret = 0;
    321		goto out;
    322	}
    323
    324	cache->listxattr = new;
    325	if (new != NULL && new != ERR_PTR(-ESTALE))
    326		nfs4_xattr_entry_lru_add(new);
    327
    328	if (old != NULL) {
    329		nfs4_xattr_entry_lru_del(old);
    330		kref_put(&old->ref, nfs4_xattr_free_entry_cb);
    331	}
    332out:
    333	spin_unlock(&cache->listxattr_lock);
    334
    335	return ret;
    336}
    337
    338/*
    339 * Unlink a cache from its parent inode, clearing out an invalid
    340 * cache. Must be called with i_lock held.
    341 */
    342static struct nfs4_xattr_cache *
    343nfs4_xattr_cache_unlink(struct inode *inode)
    344{
    345	struct nfs_inode *nfsi;
    346	struct nfs4_xattr_cache *oldcache;
    347
    348	nfsi = NFS_I(inode);
    349
    350	oldcache = nfsi->xattr_cache;
    351	if (oldcache != NULL) {
    352		list_lru_del(&nfs4_xattr_cache_lru, &oldcache->lru);
    353		oldcache->inode = NULL;
    354	}
    355	nfsi->xattr_cache = NULL;
    356	nfsi->cache_validity &= ~NFS_INO_INVALID_XATTR;
    357
    358	return oldcache;
    359
    360}
    361
    362/*
    363 * Discard a cache. Called by get_cache() if there was an old,
    364 * invalid cache. Can also be called from a shrinker callback.
    365 *
    366 * The cache is dead, it has already been unlinked from its inode,
    367 * and no longer appears on the cache LRU list.
    368 *
    369 * Mark all buckets as draining, so that no new entries are added. This
    370 * could still happen in the unlikely, but possible case that another
    371 * thread had grabbed a reference before it was unlinked from the inode,
    372 * and is still holding it for an add operation.
    373 *
    374 * Remove all entries from the LRU lists, so that there is no longer
    375 * any way to 'find' this cache. Then, remove the entries from the hash
    376 * table.
    377 *
    378 * At that point, the cache will remain empty and can be freed when the final
    379 * reference drops, which is very likely the kref_put at the end of
    380 * this function, or the one called immediately afterwards in the
    381 * shrinker callback.
    382 */
    383static void
    384nfs4_xattr_discard_cache(struct nfs4_xattr_cache *cache)
    385{
    386	unsigned int i;
    387	struct nfs4_xattr_entry *entry;
    388	struct nfs4_xattr_bucket *bucket;
    389	struct hlist_node *n;
    390
    391	nfs4_xattr_set_listcache(cache, ERR_PTR(-ESTALE));
    392
    393	for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) {
    394		bucket = &cache->buckets[i];
    395
    396		spin_lock(&bucket->lock);
    397		bucket->draining = true;
    398		hlist_for_each_entry_safe(entry, n, &bucket->hlist, hnode) {
    399			nfs4_xattr_entry_lru_del(entry);
    400			hlist_del_init(&entry->hnode);
    401			kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
    402		}
    403		spin_unlock(&bucket->lock);
    404	}
    405
    406	atomic_long_set(&cache->nent, 0);
    407
    408	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
    409}
    410
    411/*
    412 * Get a referenced copy of the cache structure. Avoid doing allocs
    413 * while holding i_lock. Which means that we do some optimistic allocation,
    414 * and might have to free the result in rare cases.
    415 *
    416 * This function only checks the NFS_INO_INVALID_XATTR cache validity bit
    417 * and acts accordingly, replacing the cache when needed. For the read case
    418 * (!add), this means that the caller must make sure that the cache
    419 * is valid before caling this function. getxattr and listxattr call
    420 * revalidate_inode to do this. The attribute cache timeout (for the
    421 * non-delegated case) is expected to be dealt with in the revalidate
    422 * call.
    423 */
    424
    425static struct nfs4_xattr_cache *
    426nfs4_xattr_get_cache(struct inode *inode, int add)
    427{
    428	struct nfs_inode *nfsi;
    429	struct nfs4_xattr_cache *cache, *oldcache, *newcache;
    430
    431	nfsi = NFS_I(inode);
    432
    433	cache = oldcache = NULL;
    434
    435	spin_lock(&inode->i_lock);
    436
    437	if (nfsi->cache_validity & NFS_INO_INVALID_XATTR)
    438		oldcache = nfs4_xattr_cache_unlink(inode);
    439	else
    440		cache = nfsi->xattr_cache;
    441
    442	if (cache != NULL)
    443		kref_get(&cache->ref);
    444
    445	spin_unlock(&inode->i_lock);
    446
    447	if (add && cache == NULL) {
    448		newcache = NULL;
    449
    450		cache = nfs4_xattr_alloc_cache();
    451		if (cache == NULL)
    452			goto out;
    453
    454		spin_lock(&inode->i_lock);
    455		if (nfsi->cache_validity & NFS_INO_INVALID_XATTR) {
    456			/*
    457			 * The cache was invalidated again. Give up,
    458			 * since what we want to enter is now likely
    459			 * outdated anyway.
    460			 */
    461			spin_unlock(&inode->i_lock);
    462			kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
    463			cache = NULL;
    464			goto out;
    465		}
    466
    467		/*
    468		 * Check if someone beat us to it.
    469		 */
    470		if (nfsi->xattr_cache != NULL) {
    471			newcache = nfsi->xattr_cache;
    472			kref_get(&newcache->ref);
    473		} else {
    474			kref_get(&cache->ref);
    475			nfsi->xattr_cache = cache;
    476			cache->inode = inode;
    477			list_lru_add(&nfs4_xattr_cache_lru, &cache->lru);
    478		}
    479
    480		spin_unlock(&inode->i_lock);
    481
    482		/*
    483		 * If there was a race, throw away the cache we just
    484		 * allocated, and use the new one allocated by someone
    485		 * else.
    486		 */
    487		if (newcache != NULL) {
    488			kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
    489			cache = newcache;
    490		}
    491	}
    492
    493out:
    494	/*
    495	 * Discard the now orphaned old cache.
    496	 */
    497	if (oldcache != NULL)
    498		nfs4_xattr_discard_cache(oldcache);
    499
    500	return cache;
    501}
    502
    503static inline struct nfs4_xattr_bucket *
    504nfs4_xattr_hash_bucket(struct nfs4_xattr_cache *cache, const char *name)
    505{
    506	return &cache->buckets[jhash(name, strlen(name), 0) &
    507	    (ARRAY_SIZE(cache->buckets) - 1)];
    508}
    509
    510static struct nfs4_xattr_entry *
    511nfs4_xattr_get_entry(struct nfs4_xattr_bucket *bucket, const char *name)
    512{
    513	struct nfs4_xattr_entry *entry;
    514
    515	entry = NULL;
    516
    517	hlist_for_each_entry(entry, &bucket->hlist, hnode) {
    518		if (!strcmp(entry->xattr_name, name))
    519			break;
    520	}
    521
    522	return entry;
    523}
    524
    525static int
    526nfs4_xattr_hash_add(struct nfs4_xattr_cache *cache,
    527		    struct nfs4_xattr_entry *entry)
    528{
    529	struct nfs4_xattr_bucket *bucket;
    530	struct nfs4_xattr_entry *oldentry = NULL;
    531	int ret = 1;
    532
    533	bucket = nfs4_xattr_hash_bucket(cache, entry->xattr_name);
    534	entry->bucket = bucket;
    535
    536	spin_lock(&bucket->lock);
    537
    538	if (bucket->draining) {
    539		ret = 0;
    540		goto out;
    541	}
    542
    543	oldentry = nfs4_xattr_get_entry(bucket, entry->xattr_name);
    544	if (oldentry != NULL) {
    545		hlist_del_init(&oldentry->hnode);
    546		nfs4_xattr_entry_lru_del(oldentry);
    547	} else {
    548		atomic_long_inc(&cache->nent);
    549	}
    550
    551	hlist_add_head(&entry->hnode, &bucket->hlist);
    552	nfs4_xattr_entry_lru_add(entry);
    553
    554out:
    555	spin_unlock(&bucket->lock);
    556
    557	if (oldentry != NULL)
    558		kref_put(&oldentry->ref, nfs4_xattr_free_entry_cb);
    559
    560	return ret;
    561}
    562
    563static void
    564nfs4_xattr_hash_remove(struct nfs4_xattr_cache *cache, const char *name)
    565{
    566	struct nfs4_xattr_bucket *bucket;
    567	struct nfs4_xattr_entry *entry;
    568
    569	bucket = nfs4_xattr_hash_bucket(cache, name);
    570
    571	spin_lock(&bucket->lock);
    572
    573	entry = nfs4_xattr_get_entry(bucket, name);
    574	if (entry != NULL) {
    575		hlist_del_init(&entry->hnode);
    576		nfs4_xattr_entry_lru_del(entry);
    577		atomic_long_dec(&cache->nent);
    578	}
    579
    580	spin_unlock(&bucket->lock);
    581
    582	if (entry != NULL)
    583		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
    584}
    585
    586static struct nfs4_xattr_entry *
    587nfs4_xattr_hash_find(struct nfs4_xattr_cache *cache, const char *name)
    588{
    589	struct nfs4_xattr_bucket *bucket;
    590	struct nfs4_xattr_entry *entry;
    591
    592	bucket = nfs4_xattr_hash_bucket(cache, name);
    593
    594	spin_lock(&bucket->lock);
    595
    596	entry = nfs4_xattr_get_entry(bucket, name);
    597	if (entry != NULL)
    598		kref_get(&entry->ref);
    599
    600	spin_unlock(&bucket->lock);
    601
    602	return entry;
    603}
    604
    605/*
    606 * Entry point to retrieve an entry from the cache.
    607 */
    608ssize_t nfs4_xattr_cache_get(struct inode *inode, const char *name, char *buf,
    609			 ssize_t buflen)
    610{
    611	struct nfs4_xattr_cache *cache;
    612	struct nfs4_xattr_entry *entry;
    613	ssize_t ret;
    614
    615	cache = nfs4_xattr_get_cache(inode, 0);
    616	if (cache == NULL)
    617		return -ENOENT;
    618
    619	ret = 0;
    620	entry = nfs4_xattr_hash_find(cache, name);
    621
    622	if (entry != NULL) {
    623		dprintk("%s: cache hit '%s', len %lu\n", __func__,
    624		    entry->xattr_name, (unsigned long)entry->xattr_size);
    625		if (buflen == 0) {
    626			/* Length probe only */
    627			ret = entry->xattr_size;
    628		} else if (buflen < entry->xattr_size)
    629			ret = -ERANGE;
    630		else {
    631			memcpy(buf, entry->xattr_value, entry->xattr_size);
    632			ret = entry->xattr_size;
    633		}
    634		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
    635	} else {
    636		dprintk("%s: cache miss '%s'\n", __func__, name);
    637		ret = -ENOENT;
    638	}
    639
    640	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
    641
    642	return ret;
    643}
    644
    645/*
    646 * Retrieve a cached list of xattrs from the cache.
    647 */
    648ssize_t nfs4_xattr_cache_list(struct inode *inode, char *buf, ssize_t buflen)
    649{
    650	struct nfs4_xattr_cache *cache;
    651	struct nfs4_xattr_entry *entry;
    652	ssize_t ret;
    653
    654	cache = nfs4_xattr_get_cache(inode, 0);
    655	if (cache == NULL)
    656		return -ENOENT;
    657
    658	spin_lock(&cache->listxattr_lock);
    659
    660	entry = cache->listxattr;
    661
    662	if (entry != NULL && entry != ERR_PTR(-ESTALE)) {
    663		if (buflen == 0) {
    664			/* Length probe only */
    665			ret = entry->xattr_size;
    666		} else if (entry->xattr_size > buflen)
    667			ret = -ERANGE;
    668		else {
    669			memcpy(buf, entry->xattr_value, entry->xattr_size);
    670			ret = entry->xattr_size;
    671		}
    672	} else {
    673		ret = -ENOENT;
    674	}
    675
    676	spin_unlock(&cache->listxattr_lock);
    677
    678	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
    679
    680	return ret;
    681}
    682
    683/*
    684 * Add an xattr to the cache.
    685 *
    686 * This also invalidates the xattr list cache.
    687 */
    688void nfs4_xattr_cache_add(struct inode *inode, const char *name,
    689			  const char *buf, struct page **pages, ssize_t buflen)
    690{
    691	struct nfs4_xattr_cache *cache;
    692	struct nfs4_xattr_entry *entry;
    693
    694	dprintk("%s: add '%s' len %lu\n", __func__,
    695	    name, (unsigned long)buflen);
    696
    697	cache = nfs4_xattr_get_cache(inode, 1);
    698	if (cache == NULL)
    699		return;
    700
    701	entry = nfs4_xattr_alloc_entry(name, buf, pages, buflen);
    702	if (entry == NULL)
    703		goto out;
    704
    705	(void)nfs4_xattr_set_listcache(cache, NULL);
    706
    707	if (!nfs4_xattr_hash_add(cache, entry))
    708		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
    709
    710out:
    711	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
    712}
    713
    714
    715/*
    716 * Remove an xattr from the cache.
    717 *
    718 * This also invalidates the xattr list cache.
    719 */
    720void nfs4_xattr_cache_remove(struct inode *inode, const char *name)
    721{
    722	struct nfs4_xattr_cache *cache;
    723
    724	dprintk("%s: remove '%s'\n", __func__, name);
    725
    726	cache = nfs4_xattr_get_cache(inode, 0);
    727	if (cache == NULL)
    728		return;
    729
    730	(void)nfs4_xattr_set_listcache(cache, NULL);
    731	nfs4_xattr_hash_remove(cache, name);
    732
    733	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
    734}
    735
    736/*
    737 * Cache listxattr output, replacing any possible old one.
    738 */
    739void nfs4_xattr_cache_set_list(struct inode *inode, const char *buf,
    740			       ssize_t buflen)
    741{
    742	struct nfs4_xattr_cache *cache;
    743	struct nfs4_xattr_entry *entry;
    744
    745	cache = nfs4_xattr_get_cache(inode, 1);
    746	if (cache == NULL)
    747		return;
    748
    749	entry = nfs4_xattr_alloc_entry(NULL, buf, NULL, buflen);
    750	if (entry == NULL)
    751		goto out;
    752
    753	/*
    754	 * This is just there to be able to get to bucket->cache,
    755	 * which is obviously the same for all buckets, so just
    756	 * use bucket 0.
    757	 */
    758	entry->bucket = &cache->buckets[0];
    759
    760	if (!nfs4_xattr_set_listcache(cache, entry))
    761		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
    762
    763out:
    764	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
    765}
    766
    767/*
    768 * Zap the entire cache. Called when an inode is evicted.
    769 */
    770void nfs4_xattr_cache_zap(struct inode *inode)
    771{
    772	struct nfs4_xattr_cache *oldcache;
    773
    774	spin_lock(&inode->i_lock);
    775	oldcache = nfs4_xattr_cache_unlink(inode);
    776	spin_unlock(&inode->i_lock);
    777
    778	if (oldcache)
    779		nfs4_xattr_discard_cache(oldcache);
    780}
    781
    782/*
    783 * The entry LRU is shrunk more aggressively than the cache LRU,
    784 * by settings @seeks to 1.
    785 *
    786 * Cache structures are freed only when they've become empty, after
    787 * pruning all but one entry.
    788 */
    789
    790static unsigned long nfs4_xattr_cache_count(struct shrinker *shrink,
    791					    struct shrink_control *sc);
    792static unsigned long nfs4_xattr_entry_count(struct shrinker *shrink,
    793					    struct shrink_control *sc);
    794static unsigned long nfs4_xattr_cache_scan(struct shrinker *shrink,
    795					   struct shrink_control *sc);
    796static unsigned long nfs4_xattr_entry_scan(struct shrinker *shrink,
    797					   struct shrink_control *sc);
    798
    799static struct shrinker nfs4_xattr_cache_shrinker = {
    800	.count_objects	= nfs4_xattr_cache_count,
    801	.scan_objects	= nfs4_xattr_cache_scan,
    802	.seeks		= DEFAULT_SEEKS,
    803	.flags		= SHRINKER_MEMCG_AWARE,
    804};
    805
    806static struct shrinker nfs4_xattr_entry_shrinker = {
    807	.count_objects	= nfs4_xattr_entry_count,
    808	.scan_objects	= nfs4_xattr_entry_scan,
    809	.seeks		= DEFAULT_SEEKS,
    810	.batch		= 512,
    811	.flags		= SHRINKER_MEMCG_AWARE,
    812};
    813
    814static struct shrinker nfs4_xattr_large_entry_shrinker = {
    815	.count_objects	= nfs4_xattr_entry_count,
    816	.scan_objects	= nfs4_xattr_entry_scan,
    817	.seeks		= 1,
    818	.batch		= 512,
    819	.flags		= SHRINKER_MEMCG_AWARE,
    820};
    821
    822static enum lru_status
    823cache_lru_isolate(struct list_head *item,
    824	struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
    825{
    826	struct list_head *dispose = arg;
    827	struct inode *inode;
    828	struct nfs4_xattr_cache *cache = container_of(item,
    829	    struct nfs4_xattr_cache, lru);
    830
    831	if (atomic_long_read(&cache->nent) > 1)
    832		return LRU_SKIP;
    833
    834	/*
    835	 * If a cache structure is on the LRU list, we know that
    836	 * its inode is valid. Try to lock it to break the link.
    837	 * Since we're inverting the lock order here, only try.
    838	 */
    839	inode = cache->inode;
    840
    841	if (!spin_trylock(&inode->i_lock))
    842		return LRU_SKIP;
    843
    844	kref_get(&cache->ref);
    845
    846	cache->inode = NULL;
    847	NFS_I(inode)->xattr_cache = NULL;
    848	NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_XATTR;
    849	list_lru_isolate(lru, &cache->lru);
    850
    851	spin_unlock(&inode->i_lock);
    852
    853	list_add_tail(&cache->dispose, dispose);
    854	return LRU_REMOVED;
    855}
    856
    857static unsigned long
    858nfs4_xattr_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
    859{
    860	LIST_HEAD(dispose);
    861	unsigned long freed;
    862	struct nfs4_xattr_cache *cache;
    863
    864	freed = list_lru_shrink_walk(&nfs4_xattr_cache_lru, sc,
    865	    cache_lru_isolate, &dispose);
    866	while (!list_empty(&dispose)) {
    867		cache = list_first_entry(&dispose, struct nfs4_xattr_cache,
    868		    dispose);
    869		list_del_init(&cache->dispose);
    870		nfs4_xattr_discard_cache(cache);
    871		kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
    872	}
    873
    874	return freed;
    875}
    876
    877
    878static unsigned long
    879nfs4_xattr_cache_count(struct shrinker *shrink, struct shrink_control *sc)
    880{
    881	unsigned long count;
    882
    883	count = list_lru_shrink_count(&nfs4_xattr_cache_lru, sc);
    884	return vfs_pressure_ratio(count);
    885}
    886
    887static enum lru_status
    888entry_lru_isolate(struct list_head *item,
    889	struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
    890{
    891	struct list_head *dispose = arg;
    892	struct nfs4_xattr_bucket *bucket;
    893	struct nfs4_xattr_cache *cache;
    894	struct nfs4_xattr_entry *entry = container_of(item,
    895	    struct nfs4_xattr_entry, lru);
    896
    897	bucket = entry->bucket;
    898	cache = bucket->cache;
    899
    900	/*
    901	 * Unhook the entry from its parent (either a cache bucket
    902	 * or a cache structure if it's a listxattr buf), so that
    903	 * it's no longer found. Then add it to the isolate list,
    904	 * to be freed later.
    905	 *
    906	 * In both cases, we're reverting lock order, so use
    907	 * trylock and skip the entry if we can't get the lock.
    908	 */
    909	if (entry->xattr_name != NULL) {
    910		/* Regular cache entry */
    911		if (!spin_trylock(&bucket->lock))
    912			return LRU_SKIP;
    913
    914		kref_get(&entry->ref);
    915
    916		hlist_del_init(&entry->hnode);
    917		atomic_long_dec(&cache->nent);
    918		list_lru_isolate(lru, &entry->lru);
    919
    920		spin_unlock(&bucket->lock);
    921	} else {
    922		/* Listxattr cache entry */
    923		if (!spin_trylock(&cache->listxattr_lock))
    924			return LRU_SKIP;
    925
    926		kref_get(&entry->ref);
    927
    928		cache->listxattr = NULL;
    929		list_lru_isolate(lru, &entry->lru);
    930
    931		spin_unlock(&cache->listxattr_lock);
    932	}
    933
    934	list_add_tail(&entry->dispose, dispose);
    935	return LRU_REMOVED;
    936}
    937
    938static unsigned long
    939nfs4_xattr_entry_scan(struct shrinker *shrink, struct shrink_control *sc)
    940{
    941	LIST_HEAD(dispose);
    942	unsigned long freed;
    943	struct nfs4_xattr_entry *entry;
    944	struct list_lru *lru;
    945
    946	lru = (shrink == &nfs4_xattr_large_entry_shrinker) ?
    947	    &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
    948
    949	freed = list_lru_shrink_walk(lru, sc, entry_lru_isolate, &dispose);
    950
    951	while (!list_empty(&dispose)) {
    952		entry = list_first_entry(&dispose, struct nfs4_xattr_entry,
    953		    dispose);
    954		list_del_init(&entry->dispose);
    955
    956		/*
    957		 * Drop two references: the one that we just grabbed
    958		 * in entry_lru_isolate, and the one that was set
    959		 * when the entry was first allocated.
    960		 */
    961		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
    962		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
    963	}
    964
    965	return freed;
    966}
    967
    968static unsigned long
    969nfs4_xattr_entry_count(struct shrinker *shrink, struct shrink_control *sc)
    970{
    971	unsigned long count;
    972	struct list_lru *lru;
    973
    974	lru = (shrink == &nfs4_xattr_large_entry_shrinker) ?
    975	    &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
    976
    977	count = list_lru_shrink_count(lru, sc);
    978	return vfs_pressure_ratio(count);
    979}
    980
    981
    982static void nfs4_xattr_cache_init_once(void *p)
    983{
    984	struct nfs4_xattr_cache *cache = (struct nfs4_xattr_cache *)p;
    985
    986	spin_lock_init(&cache->listxattr_lock);
    987	atomic_long_set(&cache->nent, 0);
    988	nfs4_xattr_hash_init(cache);
    989	cache->listxattr = NULL;
    990	INIT_LIST_HEAD(&cache->lru);
    991	INIT_LIST_HEAD(&cache->dispose);
    992}
    993
    994int __init nfs4_xattr_cache_init(void)
    995{
    996	int ret = 0;
    997
    998	nfs4_xattr_cache_cachep = kmem_cache_create("nfs4_xattr_cache_cache",
    999	    sizeof(struct nfs4_xattr_cache), 0,
   1000	    (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD),
   1001	    nfs4_xattr_cache_init_once);
   1002	if (nfs4_xattr_cache_cachep == NULL)
   1003		return -ENOMEM;
   1004
   1005	ret = list_lru_init_memcg(&nfs4_xattr_large_entry_lru,
   1006	    &nfs4_xattr_large_entry_shrinker);
   1007	if (ret)
   1008		goto out4;
   1009
   1010	ret = list_lru_init_memcg(&nfs4_xattr_entry_lru,
   1011	    &nfs4_xattr_entry_shrinker);
   1012	if (ret)
   1013		goto out3;
   1014
   1015	ret = list_lru_init_memcg(&nfs4_xattr_cache_lru,
   1016	    &nfs4_xattr_cache_shrinker);
   1017	if (ret)
   1018		goto out2;
   1019
   1020	ret = register_shrinker(&nfs4_xattr_cache_shrinker);
   1021	if (ret)
   1022		goto out1;
   1023
   1024	ret = register_shrinker(&nfs4_xattr_entry_shrinker);
   1025	if (ret)
   1026		goto out;
   1027
   1028	ret = register_shrinker(&nfs4_xattr_large_entry_shrinker);
   1029	if (!ret)
   1030		return 0;
   1031
   1032	unregister_shrinker(&nfs4_xattr_entry_shrinker);
   1033out:
   1034	unregister_shrinker(&nfs4_xattr_cache_shrinker);
   1035out1:
   1036	list_lru_destroy(&nfs4_xattr_cache_lru);
   1037out2:
   1038	list_lru_destroy(&nfs4_xattr_entry_lru);
   1039out3:
   1040	list_lru_destroy(&nfs4_xattr_large_entry_lru);
   1041out4:
   1042	kmem_cache_destroy(nfs4_xattr_cache_cachep);
   1043
   1044	return ret;
   1045}
   1046
   1047void nfs4_xattr_cache_exit(void)
   1048{
   1049	unregister_shrinker(&nfs4_xattr_large_entry_shrinker);
   1050	unregister_shrinker(&nfs4_xattr_entry_shrinker);
   1051	unregister_shrinker(&nfs4_xattr_cache_shrinker);
   1052	list_lru_destroy(&nfs4_xattr_large_entry_lru);
   1053	list_lru_destroy(&nfs4_xattr_entry_lru);
   1054	list_lru_destroy(&nfs4_xattr_cache_lru);
   1055	kmem_cache_destroy(nfs4_xattr_cache_cachep);
   1056}