cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

nfscache.c (17339B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Request reply cache. This is currently a global cache, but this may
      4 * change in the future and be a per-client cache.
      5 *
      6 * This code is heavily inspired by the 44BSD implementation, although
      7 * it does things a bit differently.
      8 *
      9 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
     10 */
     11
     12#include <linux/sunrpc/svc_xprt.h>
     13#include <linux/slab.h>
     14#include <linux/vmalloc.h>
     15#include <linux/sunrpc/addr.h>
     16#include <linux/highmem.h>
     17#include <linux/log2.h>
     18#include <linux/hash.h>
     19#include <net/checksum.h>
     20
     21#include "nfsd.h"
     22#include "cache.h"
     23#include "trace.h"
     24
     25/*
     26 * We use this value to determine the number of hash buckets from the max
     27 * cache size, the idea being that when the cache is at its maximum number
     28 * of entries, then this should be the average number of entries per bucket.
     29 */
     30#define TARGET_BUCKET_SIZE	64
     31
     32struct nfsd_drc_bucket {
     33	struct rb_root rb_head;
     34	struct list_head lru_head;
     35	spinlock_t cache_lock;
     36};
     37
     38static struct kmem_cache	*drc_slab;
     39
     40static int	nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
     41static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
     42					    struct shrink_control *sc);
     43static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
     44					   struct shrink_control *sc);
     45
     46/*
     47 * Put a cap on the size of the DRC based on the amount of available
     48 * low memory in the machine.
     49 *
     50 *  64MB:    8192
     51 * 128MB:   11585
     52 * 256MB:   16384
     53 * 512MB:   23170
     54 *   1GB:   32768
     55 *   2GB:   46340
     56 *   4GB:   65536
     57 *   8GB:   92681
     58 *  16GB:  131072
     59 *
     60 * ...with a hard cap of 256k entries. In the worst case, each entry will be
     61 * ~1k, so the above numbers should give a rough max of the amount of memory
     62 * used in k.
     63 *
     64 * XXX: these limits are per-container, so memory used will increase
     65 * linearly with number of containers.  Maybe that's OK.
     66 */
     67static unsigned int
     68nfsd_cache_size_limit(void)
     69{
     70	unsigned int limit;
     71	unsigned long low_pages = totalram_pages() - totalhigh_pages();
     72
     73	limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
     74	return min_t(unsigned int, limit, 256*1024);
     75}
     76
     77/*
     78 * Compute the number of hash buckets we need. Divide the max cachesize by
     79 * the "target" max bucket size, and round up to next power of two.
     80 */
     81static unsigned int
     82nfsd_hashsize(unsigned int limit)
     83{
     84	return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
     85}
     86
     87static struct svc_cacherep *
     88nfsd_reply_cache_alloc(struct svc_rqst *rqstp, __wsum csum,
     89			struct nfsd_net *nn)
     90{
     91	struct svc_cacherep	*rp;
     92
     93	rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
     94	if (rp) {
     95		rp->c_state = RC_UNUSED;
     96		rp->c_type = RC_NOCACHE;
     97		RB_CLEAR_NODE(&rp->c_node);
     98		INIT_LIST_HEAD(&rp->c_lru);
     99
    100		memset(&rp->c_key, 0, sizeof(rp->c_key));
    101		rp->c_key.k_xid = rqstp->rq_xid;
    102		rp->c_key.k_proc = rqstp->rq_proc;
    103		rpc_copy_addr((struct sockaddr *)&rp->c_key.k_addr, svc_addr(rqstp));
    104		rpc_set_port((struct sockaddr *)&rp->c_key.k_addr, rpc_get_port(svc_addr(rqstp)));
    105		rp->c_key.k_prot = rqstp->rq_prot;
    106		rp->c_key.k_vers = rqstp->rq_vers;
    107		rp->c_key.k_len = rqstp->rq_arg.len;
    108		rp->c_key.k_csum = csum;
    109	}
    110	return rp;
    111}
    112
    113static void
    114nfsd_reply_cache_free_locked(struct nfsd_drc_bucket *b, struct svc_cacherep *rp,
    115				struct nfsd_net *nn)
    116{
    117	if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) {
    118		nfsd_stats_drc_mem_usage_sub(nn, rp->c_replvec.iov_len);
    119		kfree(rp->c_replvec.iov_base);
    120	}
    121	if (rp->c_state != RC_UNUSED) {
    122		rb_erase(&rp->c_node, &b->rb_head);
    123		list_del(&rp->c_lru);
    124		atomic_dec(&nn->num_drc_entries);
    125		nfsd_stats_drc_mem_usage_sub(nn, sizeof(*rp));
    126	}
    127	kmem_cache_free(drc_slab, rp);
    128}
    129
    130static void
    131nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct svc_cacherep *rp,
    132			struct nfsd_net *nn)
    133{
    134	spin_lock(&b->cache_lock);
    135	nfsd_reply_cache_free_locked(b, rp, nn);
    136	spin_unlock(&b->cache_lock);
    137}
    138
    139int nfsd_drc_slab_create(void)
    140{
    141	drc_slab = kmem_cache_create("nfsd_drc",
    142				sizeof(struct svc_cacherep), 0, 0, NULL);
    143	return drc_slab ? 0: -ENOMEM;
    144}
    145
    146void nfsd_drc_slab_free(void)
    147{
    148	kmem_cache_destroy(drc_slab);
    149}
    150
    151static int nfsd_reply_cache_stats_init(struct nfsd_net *nn)
    152{
    153	return nfsd_percpu_counters_init(nn->counter, NFSD_NET_COUNTERS_NUM);
    154}
    155
    156static void nfsd_reply_cache_stats_destroy(struct nfsd_net *nn)
    157{
    158	nfsd_percpu_counters_destroy(nn->counter, NFSD_NET_COUNTERS_NUM);
    159}
    160
    161int nfsd_reply_cache_init(struct nfsd_net *nn)
    162{
    163	unsigned int hashsize;
    164	unsigned int i;
    165	int status = 0;
    166
    167	nn->max_drc_entries = nfsd_cache_size_limit();
    168	atomic_set(&nn->num_drc_entries, 0);
    169	hashsize = nfsd_hashsize(nn->max_drc_entries);
    170	nn->maskbits = ilog2(hashsize);
    171
    172	status = nfsd_reply_cache_stats_init(nn);
    173	if (status)
    174		goto out_nomem;
    175
    176	nn->nfsd_reply_cache_shrinker.scan_objects = nfsd_reply_cache_scan;
    177	nn->nfsd_reply_cache_shrinker.count_objects = nfsd_reply_cache_count;
    178	nn->nfsd_reply_cache_shrinker.seeks = 1;
    179	status = register_shrinker(&nn->nfsd_reply_cache_shrinker);
    180	if (status)
    181		goto out_stats_destroy;
    182
    183	nn->drc_hashtbl = kvzalloc(array_size(hashsize,
    184				sizeof(*nn->drc_hashtbl)), GFP_KERNEL);
    185	if (!nn->drc_hashtbl)
    186		goto out_shrinker;
    187
    188	for (i = 0; i < hashsize; i++) {
    189		INIT_LIST_HEAD(&nn->drc_hashtbl[i].lru_head);
    190		spin_lock_init(&nn->drc_hashtbl[i].cache_lock);
    191	}
    192	nn->drc_hashsize = hashsize;
    193
    194	return 0;
    195out_shrinker:
    196	unregister_shrinker(&nn->nfsd_reply_cache_shrinker);
    197out_stats_destroy:
    198	nfsd_reply_cache_stats_destroy(nn);
    199out_nomem:
    200	printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
    201	return -ENOMEM;
    202}
    203
    204void nfsd_reply_cache_shutdown(struct nfsd_net *nn)
    205{
    206	struct svc_cacherep	*rp;
    207	unsigned int i;
    208
    209	unregister_shrinker(&nn->nfsd_reply_cache_shrinker);
    210
    211	for (i = 0; i < nn->drc_hashsize; i++) {
    212		struct list_head *head = &nn->drc_hashtbl[i].lru_head;
    213		while (!list_empty(head)) {
    214			rp = list_first_entry(head, struct svc_cacherep, c_lru);
    215			nfsd_reply_cache_free_locked(&nn->drc_hashtbl[i],
    216									rp, nn);
    217		}
    218	}
    219	nfsd_reply_cache_stats_destroy(nn);
    220
    221	kvfree(nn->drc_hashtbl);
    222	nn->drc_hashtbl = NULL;
    223	nn->drc_hashsize = 0;
    224
    225}
    226
    227/*
    228 * Move cache entry to end of LRU list, and queue the cleaner to run if it's
    229 * not already scheduled.
    230 */
    231static void
    232lru_put_end(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
    233{
    234	rp->c_timestamp = jiffies;
    235	list_move_tail(&rp->c_lru, &b->lru_head);
    236}
    237
    238static noinline struct nfsd_drc_bucket *
    239nfsd_cache_bucket_find(__be32 xid, struct nfsd_net *nn)
    240{
    241	unsigned int hash = hash_32((__force u32)xid, nn->maskbits);
    242
    243	return &nn->drc_hashtbl[hash];
    244}
    245
    246static long prune_bucket(struct nfsd_drc_bucket *b, struct nfsd_net *nn,
    247			 unsigned int max)
    248{
    249	struct svc_cacherep *rp, *tmp;
    250	long freed = 0;
    251
    252	list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) {
    253		/*
    254		 * Don't free entries attached to calls that are still
    255		 * in-progress, but do keep scanning the list.
    256		 */
    257		if (rp->c_state == RC_INPROG)
    258			continue;
    259		if (atomic_read(&nn->num_drc_entries) <= nn->max_drc_entries &&
    260		    time_before(jiffies, rp->c_timestamp + RC_EXPIRE))
    261			break;
    262		nfsd_reply_cache_free_locked(b, rp, nn);
    263		if (max && freed++ > max)
    264			break;
    265	}
    266	return freed;
    267}
    268
    269static long nfsd_prune_bucket(struct nfsd_drc_bucket *b, struct nfsd_net *nn)
    270{
    271	return prune_bucket(b, nn, 3);
    272}
    273
    274/*
    275 * Walk the LRU list and prune off entries that are older than RC_EXPIRE.
    276 * Also prune the oldest ones when the total exceeds the max number of entries.
    277 */
    278static long
    279prune_cache_entries(struct nfsd_net *nn)
    280{
    281	unsigned int i;
    282	long freed = 0;
    283
    284	for (i = 0; i < nn->drc_hashsize; i++) {
    285		struct nfsd_drc_bucket *b = &nn->drc_hashtbl[i];
    286
    287		if (list_empty(&b->lru_head))
    288			continue;
    289		spin_lock(&b->cache_lock);
    290		freed += prune_bucket(b, nn, 0);
    291		spin_unlock(&b->cache_lock);
    292	}
    293	return freed;
    294}
    295
    296static unsigned long
    297nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
    298{
    299	struct nfsd_net *nn = container_of(shrink,
    300				struct nfsd_net, nfsd_reply_cache_shrinker);
    301
    302	return atomic_read(&nn->num_drc_entries);
    303}
    304
    305static unsigned long
    306nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
    307{
    308	struct nfsd_net *nn = container_of(shrink,
    309				struct nfsd_net, nfsd_reply_cache_shrinker);
    310
    311	return prune_cache_entries(nn);
    312}
    313/*
    314 * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes
    315 */
    316static __wsum
    317nfsd_cache_csum(struct svc_rqst *rqstp)
    318{
    319	int idx;
    320	unsigned int base;
    321	__wsum csum;
    322	struct xdr_buf *buf = &rqstp->rq_arg;
    323	const unsigned char *p = buf->head[0].iov_base;
    324	size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len,
    325				RC_CSUMLEN);
    326	size_t len = min(buf->head[0].iov_len, csum_len);
    327
    328	/* rq_arg.head first */
    329	csum = csum_partial(p, len, 0);
    330	csum_len -= len;
    331
    332	/* Continue into page array */
    333	idx = buf->page_base / PAGE_SIZE;
    334	base = buf->page_base & ~PAGE_MASK;
    335	while (csum_len) {
    336		p = page_address(buf->pages[idx]) + base;
    337		len = min_t(size_t, PAGE_SIZE - base, csum_len);
    338		csum = csum_partial(p, len, csum);
    339		csum_len -= len;
    340		base = 0;
    341		++idx;
    342	}
    343	return csum;
    344}
    345
    346static int
    347nfsd_cache_key_cmp(const struct svc_cacherep *key,
    348			const struct svc_cacherep *rp, struct nfsd_net *nn)
    349{
    350	if (key->c_key.k_xid == rp->c_key.k_xid &&
    351	    key->c_key.k_csum != rp->c_key.k_csum) {
    352		nfsd_stats_payload_misses_inc(nn);
    353		trace_nfsd_drc_mismatch(nn, key, rp);
    354	}
    355
    356	return memcmp(&key->c_key, &rp->c_key, sizeof(key->c_key));
    357}
    358
    359/*
    360 * Search the request hash for an entry that matches the given rqstp.
    361 * Must be called with cache_lock held. Returns the found entry or
    362 * inserts an empty key on failure.
    363 */
    364static struct svc_cacherep *
    365nfsd_cache_insert(struct nfsd_drc_bucket *b, struct svc_cacherep *key,
    366			struct nfsd_net *nn)
    367{
    368	struct svc_cacherep	*rp, *ret = key;
    369	struct rb_node		**p = &b->rb_head.rb_node,
    370				*parent = NULL;
    371	unsigned int		entries = 0;
    372	int cmp;
    373
    374	while (*p != NULL) {
    375		++entries;
    376		parent = *p;
    377		rp = rb_entry(parent, struct svc_cacherep, c_node);
    378
    379		cmp = nfsd_cache_key_cmp(key, rp, nn);
    380		if (cmp < 0)
    381			p = &parent->rb_left;
    382		else if (cmp > 0)
    383			p = &parent->rb_right;
    384		else {
    385			ret = rp;
    386			goto out;
    387		}
    388	}
    389	rb_link_node(&key->c_node, parent, p);
    390	rb_insert_color(&key->c_node, &b->rb_head);
    391out:
    392	/* tally hash chain length stats */
    393	if (entries > nn->longest_chain) {
    394		nn->longest_chain = entries;
    395		nn->longest_chain_cachesize = atomic_read(&nn->num_drc_entries);
    396	} else if (entries == nn->longest_chain) {
    397		/* prefer to keep the smallest cachesize possible here */
    398		nn->longest_chain_cachesize = min_t(unsigned int,
    399				nn->longest_chain_cachesize,
    400				atomic_read(&nn->num_drc_entries));
    401	}
    402
    403	lru_put_end(b, ret);
    404	return ret;
    405}
    406
    407/**
    408 * nfsd_cache_lookup - Find an entry in the duplicate reply cache
    409 * @rqstp: Incoming Call to find
    410 *
    411 * Try to find an entry matching the current call in the cache. When none
    412 * is found, we try to grab the oldest expired entry off the LRU list. If
    413 * a suitable one isn't there, then drop the cache_lock and allocate a
    414 * new one, then search again in case one got inserted while this thread
    415 * didn't hold the lock.
    416 *
    417 * Return values:
    418 *   %RC_DOIT: Process the request normally
    419 *   %RC_REPLY: Reply from cache
    420 *   %RC_DROPIT: Do not process the request further
    421 */
    422int nfsd_cache_lookup(struct svc_rqst *rqstp)
    423{
    424	struct nfsd_net		*nn;
    425	struct svc_cacherep	*rp, *found;
    426	__wsum			csum;
    427	struct nfsd_drc_bucket	*b;
    428	int type = rqstp->rq_cachetype;
    429	int rtn = RC_DOIT;
    430
    431	rqstp->rq_cacherep = NULL;
    432	if (type == RC_NOCACHE) {
    433		nfsd_stats_rc_nocache_inc();
    434		goto out;
    435	}
    436
    437	csum = nfsd_cache_csum(rqstp);
    438
    439	/*
    440	 * Since the common case is a cache miss followed by an insert,
    441	 * preallocate an entry.
    442	 */
    443	nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
    444	rp = nfsd_reply_cache_alloc(rqstp, csum, nn);
    445	if (!rp)
    446		goto out;
    447
    448	b = nfsd_cache_bucket_find(rqstp->rq_xid, nn);
    449	spin_lock(&b->cache_lock);
    450	found = nfsd_cache_insert(b, rp, nn);
    451	if (found != rp)
    452		goto found_entry;
    453
    454	nfsd_stats_rc_misses_inc();
    455	rqstp->rq_cacherep = rp;
    456	rp->c_state = RC_INPROG;
    457
    458	atomic_inc(&nn->num_drc_entries);
    459	nfsd_stats_drc_mem_usage_add(nn, sizeof(*rp));
    460
    461	nfsd_prune_bucket(b, nn);
    462
    463out_unlock:
    464	spin_unlock(&b->cache_lock);
    465out:
    466	return rtn;
    467
    468found_entry:
    469	/* We found a matching entry which is either in progress or done. */
    470	nfsd_reply_cache_free_locked(NULL, rp, nn);
    471	nfsd_stats_rc_hits_inc();
    472	rtn = RC_DROPIT;
    473	rp = found;
    474
    475	/* Request being processed */
    476	if (rp->c_state == RC_INPROG)
    477		goto out_trace;
    478
    479	/* From the hall of fame of impractical attacks:
    480	 * Is this a user who tries to snoop on the cache? */
    481	rtn = RC_DOIT;
    482	if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure)
    483		goto out_trace;
    484
    485	/* Compose RPC reply header */
    486	switch (rp->c_type) {
    487	case RC_NOCACHE:
    488		break;
    489	case RC_REPLSTAT:
    490		svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat);
    491		rtn = RC_REPLY;
    492		break;
    493	case RC_REPLBUFF:
    494		if (!nfsd_cache_append(rqstp, &rp->c_replvec))
    495			goto out_unlock; /* should not happen */
    496		rtn = RC_REPLY;
    497		break;
    498	default:
    499		WARN_ONCE(1, "nfsd: bad repcache type %d\n", rp->c_type);
    500	}
    501
    502out_trace:
    503	trace_nfsd_drc_found(nn, rqstp, rtn);
    504	goto out_unlock;
    505}
    506
    507/**
    508 * nfsd_cache_update - Update an entry in the duplicate reply cache.
    509 * @rqstp: svc_rqst with a finished Reply
    510 * @cachetype: which cache to update
    511 * @statp: Reply's status code
    512 *
    513 * This is called from nfsd_dispatch when the procedure has been
    514 * executed and the complete reply is in rqstp->rq_res.
    515 *
    516 * We're copying around data here rather than swapping buffers because
    517 * the toplevel loop requires max-sized buffers, which would be a waste
    518 * of memory for a cache with a max reply size of 100 bytes (diropokres).
    519 *
    520 * If we should start to use different types of cache entries tailored
    521 * specifically for attrstat and fh's, we may save even more space.
    522 *
    523 * Also note that a cachetype of RC_NOCACHE can legally be passed when
    524 * nfsd failed to encode a reply that otherwise would have been cached.
    525 * In this case, nfsd_cache_update is called with statp == NULL.
    526 */
    527void nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp)
    528{
    529	struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
    530	struct svc_cacherep *rp = rqstp->rq_cacherep;
    531	struct kvec	*resv = &rqstp->rq_res.head[0], *cachv;
    532	struct nfsd_drc_bucket *b;
    533	int		len;
    534	size_t		bufsize = 0;
    535
    536	if (!rp)
    537		return;
    538
    539	b = nfsd_cache_bucket_find(rp->c_key.k_xid, nn);
    540
    541	len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
    542	len >>= 2;
    543
    544	/* Don't cache excessive amounts of data and XDR failures */
    545	if (!statp || len > (256 >> 2)) {
    546		nfsd_reply_cache_free(b, rp, nn);
    547		return;
    548	}
    549
    550	switch (cachetype) {
    551	case RC_REPLSTAT:
    552		if (len != 1)
    553			printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
    554		rp->c_replstat = *statp;
    555		break;
    556	case RC_REPLBUFF:
    557		cachv = &rp->c_replvec;
    558		bufsize = len << 2;
    559		cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
    560		if (!cachv->iov_base) {
    561			nfsd_reply_cache_free(b, rp, nn);
    562			return;
    563		}
    564		cachv->iov_len = bufsize;
    565		memcpy(cachv->iov_base, statp, bufsize);
    566		break;
    567	case RC_NOCACHE:
    568		nfsd_reply_cache_free(b, rp, nn);
    569		return;
    570	}
    571	spin_lock(&b->cache_lock);
    572	nfsd_stats_drc_mem_usage_add(nn, bufsize);
    573	lru_put_end(b, rp);
    574	rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags);
    575	rp->c_type = cachetype;
    576	rp->c_state = RC_DONE;
    577	spin_unlock(&b->cache_lock);
    578	return;
    579}
    580
    581/*
    582 * Copy cached reply to current reply buffer. Should always fit.
    583 * FIXME as reply is in a page, we should just attach the page, and
    584 * keep a refcount....
    585 */
    586static int
    587nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
    588{
    589	struct kvec	*vec = &rqstp->rq_res.head[0];
    590
    591	if (vec->iov_len + data->iov_len > PAGE_SIZE) {
    592		printk(KERN_WARNING "nfsd: cached reply too large (%zd).\n",
    593				data->iov_len);
    594		return 0;
    595	}
    596	memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len);
    597	vec->iov_len += data->iov_len;
    598	return 1;
    599}
    600
    601/*
    602 * Note that fields may be added, removed or reordered in the future. Programs
    603 * scraping this file for info should test the labels to ensure they're
    604 * getting the correct field.
    605 */
    606static int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
    607{
    608	struct nfsd_net *nn = m->private;
    609
    610	seq_printf(m, "max entries:           %u\n", nn->max_drc_entries);
    611	seq_printf(m, "num entries:           %u\n",
    612		   atomic_read(&nn->num_drc_entries));
    613	seq_printf(m, "hash buckets:          %u\n", 1 << nn->maskbits);
    614	seq_printf(m, "mem usage:             %lld\n",
    615		   percpu_counter_sum_positive(&nn->counter[NFSD_NET_DRC_MEM_USAGE]));
    616	seq_printf(m, "cache hits:            %lld\n",
    617		   percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_HITS]));
    618	seq_printf(m, "cache misses:          %lld\n",
    619		   percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_MISSES]));
    620	seq_printf(m, "not cached:            %lld\n",
    621		   percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_NOCACHE]));
    622	seq_printf(m, "payload misses:        %lld\n",
    623		   percpu_counter_sum_positive(&nn->counter[NFSD_NET_PAYLOAD_MISSES]));
    624	seq_printf(m, "longest chain len:     %u\n", nn->longest_chain);
    625	seq_printf(m, "cachesize at longest:  %u\n", nn->longest_chain_cachesize);
    626	return 0;
    627}
    628
    629int nfsd_reply_cache_stats_open(struct inode *inode, struct file *file)
    630{
    631	struct nfsd_net *nn = net_generic(file_inode(file)->i_sb->s_fs_info,
    632								nfsd_net_id);
    633
    634	return single_open(file, nfsd_reply_cache_stats_show, nn);
    635}