aops.c (52853B)
1// SPDX-License-Identifier: GPL-2.0-or-later 2/** 3 * aops.c - NTFS kernel address space operations and page cache handling. 4 * 5 * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc. 6 * Copyright (c) 2002 Richard Russon 7 */ 8 9#include <linux/errno.h> 10#include <linux/fs.h> 11#include <linux/gfp.h> 12#include <linux/mm.h> 13#include <linux/pagemap.h> 14#include <linux/swap.h> 15#include <linux/buffer_head.h> 16#include <linux/writeback.h> 17#include <linux/bit_spinlock.h> 18#include <linux/bio.h> 19 20#include "aops.h" 21#include "attrib.h" 22#include "debug.h" 23#include "inode.h" 24#include "mft.h" 25#include "runlist.h" 26#include "types.h" 27#include "ntfs.h" 28 29/** 30 * ntfs_end_buffer_async_read - async io completion for reading attributes 31 * @bh: buffer head on which io is completed 32 * @uptodate: whether @bh is now uptodate or not 33 * 34 * Asynchronous I/O completion handler for reading pages belonging to the 35 * attribute address space of an inode. The inodes can either be files or 36 * directories or they can be fake inodes describing some attribute. 37 * 38 * If NInoMstProtected(), perform the post read mst fixups when all IO on the 39 * page has been completed and mark the page uptodate or set the error bit on 40 * the page. To determine the size of the records that need fixing up, we 41 * cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs 42 * record size, and index_block_size_bits, to the log(base 2) of the ntfs 43 * record size. 44 */ 45static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate) 46{ 47 unsigned long flags; 48 struct buffer_head *first, *tmp; 49 struct page *page; 50 struct inode *vi; 51 ntfs_inode *ni; 52 int page_uptodate = 1; 53 54 page = bh->b_page; 55 vi = page->mapping->host; 56 ni = NTFS_I(vi); 57 58 if (likely(uptodate)) { 59 loff_t i_size; 60 s64 file_ofs, init_size; 61 62 set_buffer_uptodate(bh); 63 64 file_ofs = ((s64)page->index << PAGE_SHIFT) + 65 bh_offset(bh); 66 read_lock_irqsave(&ni->size_lock, flags); 67 init_size = ni->initialized_size; 68 i_size = i_size_read(vi); 69 read_unlock_irqrestore(&ni->size_lock, flags); 70 if (unlikely(init_size > i_size)) { 71 /* Race with shrinking truncate. */ 72 init_size = i_size; 73 } 74 /* Check for the current buffer head overflowing. */ 75 if (unlikely(file_ofs + bh->b_size > init_size)) { 76 int ofs; 77 void *kaddr; 78 79 ofs = 0; 80 if (file_ofs < init_size) 81 ofs = init_size - file_ofs; 82 kaddr = kmap_atomic(page); 83 memset(kaddr + bh_offset(bh) + ofs, 0, 84 bh->b_size - ofs); 85 flush_dcache_page(page); 86 kunmap_atomic(kaddr); 87 } 88 } else { 89 clear_buffer_uptodate(bh); 90 SetPageError(page); 91 ntfs_error(ni->vol->sb, "Buffer I/O error, logical block " 92 "0x%llx.", (unsigned long long)bh->b_blocknr); 93 } 94 first = page_buffers(page); 95 spin_lock_irqsave(&first->b_uptodate_lock, flags); 96 clear_buffer_async_read(bh); 97 unlock_buffer(bh); 98 tmp = bh; 99 do { 100 if (!buffer_uptodate(tmp)) 101 page_uptodate = 0; 102 if (buffer_async_read(tmp)) { 103 if (likely(buffer_locked(tmp))) 104 goto still_busy; 105 /* Async buffers must be locked. */ 106 BUG(); 107 } 108 tmp = tmp->b_this_page; 109 } while (tmp != bh); 110 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 111 /* 112 * If none of the buffers had errors then we can set the page uptodate, 113 * but we first have to perform the post read mst fixups, if the 114 * attribute is mst protected, i.e. if NInoMstProteced(ni) is true. 115 * Note we ignore fixup errors as those are detected when 116 * map_mft_record() is called which gives us per record granularity 117 * rather than per page granularity. 118 */ 119 if (!NInoMstProtected(ni)) { 120 if (likely(page_uptodate && !PageError(page))) 121 SetPageUptodate(page); 122 } else { 123 u8 *kaddr; 124 unsigned int i, recs; 125 u32 rec_size; 126 127 rec_size = ni->itype.index.block_size; 128 recs = PAGE_SIZE / rec_size; 129 /* Should have been verified before we got here... */ 130 BUG_ON(!recs); 131 kaddr = kmap_atomic(page); 132 for (i = 0; i < recs; i++) 133 post_read_mst_fixup((NTFS_RECORD*)(kaddr + 134 i * rec_size), rec_size); 135 kunmap_atomic(kaddr); 136 flush_dcache_page(page); 137 if (likely(page_uptodate && !PageError(page))) 138 SetPageUptodate(page); 139 } 140 unlock_page(page); 141 return; 142still_busy: 143 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 144 return; 145} 146 147/** 148 * ntfs_read_block - fill a @page of an address space with data 149 * @page: page cache page to fill with data 150 * 151 * Fill the page @page of the address space belonging to the @page->host inode. 152 * We read each buffer asynchronously and when all buffers are read in, our io 153 * completion handler ntfs_end_buffer_read_async(), if required, automatically 154 * applies the mst fixups to the page before finally marking it uptodate and 155 * unlocking it. 156 * 157 * We only enforce allocated_size limit because i_size is checked for in 158 * generic_file_read(). 159 * 160 * Return 0 on success and -errno on error. 161 * 162 * Contains an adapted version of fs/buffer.c::block_read_full_folio(). 163 */ 164static int ntfs_read_block(struct page *page) 165{ 166 loff_t i_size; 167 VCN vcn; 168 LCN lcn; 169 s64 init_size; 170 struct inode *vi; 171 ntfs_inode *ni; 172 ntfs_volume *vol; 173 runlist_element *rl; 174 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 175 sector_t iblock, lblock, zblock; 176 unsigned long flags; 177 unsigned int blocksize, vcn_ofs; 178 int i, nr; 179 unsigned char blocksize_bits; 180 181 vi = page->mapping->host; 182 ni = NTFS_I(vi); 183 vol = ni->vol; 184 185 /* $MFT/$DATA must have its complete runlist in memory at all times. */ 186 BUG_ON(!ni->runlist.rl && !ni->mft_no && !NInoAttr(ni)); 187 188 blocksize = vol->sb->s_blocksize; 189 blocksize_bits = vol->sb->s_blocksize_bits; 190 191 if (!page_has_buffers(page)) { 192 create_empty_buffers(page, blocksize, 0); 193 if (unlikely(!page_has_buffers(page))) { 194 unlock_page(page); 195 return -ENOMEM; 196 } 197 } 198 bh = head = page_buffers(page); 199 BUG_ON(!bh); 200 201 /* 202 * We may be racing with truncate. To avoid some of the problems we 203 * now take a snapshot of the various sizes and use those for the whole 204 * of the function. In case of an extending truncate it just means we 205 * may leave some buffers unmapped which are now allocated. This is 206 * not a problem since these buffers will just get mapped when a write 207 * occurs. In case of a shrinking truncate, we will detect this later 208 * on due to the runlist being incomplete and if the page is being 209 * fully truncated, truncate will throw it away as soon as we unlock 210 * it so no need to worry what we do with it. 211 */ 212 iblock = (s64)page->index << (PAGE_SHIFT - blocksize_bits); 213 read_lock_irqsave(&ni->size_lock, flags); 214 lblock = (ni->allocated_size + blocksize - 1) >> blocksize_bits; 215 init_size = ni->initialized_size; 216 i_size = i_size_read(vi); 217 read_unlock_irqrestore(&ni->size_lock, flags); 218 if (unlikely(init_size > i_size)) { 219 /* Race with shrinking truncate. */ 220 init_size = i_size; 221 } 222 zblock = (init_size + blocksize - 1) >> blocksize_bits; 223 224 /* Loop through all the buffers in the page. */ 225 rl = NULL; 226 nr = i = 0; 227 do { 228 int err = 0; 229 230 if (unlikely(buffer_uptodate(bh))) 231 continue; 232 if (unlikely(buffer_mapped(bh))) { 233 arr[nr++] = bh; 234 continue; 235 } 236 bh->b_bdev = vol->sb->s_bdev; 237 /* Is the block within the allowed limits? */ 238 if (iblock < lblock) { 239 bool is_retry = false; 240 241 /* Convert iblock into corresponding vcn and offset. */ 242 vcn = (VCN)iblock << blocksize_bits >> 243 vol->cluster_size_bits; 244 vcn_ofs = ((VCN)iblock << blocksize_bits) & 245 vol->cluster_size_mask; 246 if (!rl) { 247lock_retry_remap: 248 down_read(&ni->runlist.lock); 249 rl = ni->runlist.rl; 250 } 251 if (likely(rl != NULL)) { 252 /* Seek to element containing target vcn. */ 253 while (rl->length && rl[1].vcn <= vcn) 254 rl++; 255 lcn = ntfs_rl_vcn_to_lcn(rl, vcn); 256 } else 257 lcn = LCN_RL_NOT_MAPPED; 258 /* Successful remap. */ 259 if (lcn >= 0) { 260 /* Setup buffer head to correct block. */ 261 bh->b_blocknr = ((lcn << vol->cluster_size_bits) 262 + vcn_ofs) >> blocksize_bits; 263 set_buffer_mapped(bh); 264 /* Only read initialized data blocks. */ 265 if (iblock < zblock) { 266 arr[nr++] = bh; 267 continue; 268 } 269 /* Fully non-initialized data block, zero it. */ 270 goto handle_zblock; 271 } 272 /* It is a hole, need to zero it. */ 273 if (lcn == LCN_HOLE) 274 goto handle_hole; 275 /* If first try and runlist unmapped, map and retry. */ 276 if (!is_retry && lcn == LCN_RL_NOT_MAPPED) { 277 is_retry = true; 278 /* 279 * Attempt to map runlist, dropping lock for 280 * the duration. 281 */ 282 up_read(&ni->runlist.lock); 283 err = ntfs_map_runlist(ni, vcn); 284 if (likely(!err)) 285 goto lock_retry_remap; 286 rl = NULL; 287 } else if (!rl) 288 up_read(&ni->runlist.lock); 289 /* 290 * If buffer is outside the runlist, treat it as a 291 * hole. This can happen due to concurrent truncate 292 * for example. 293 */ 294 if (err == -ENOENT || lcn == LCN_ENOENT) { 295 err = 0; 296 goto handle_hole; 297 } 298 /* Hard error, zero out region. */ 299 if (!err) 300 err = -EIO; 301 bh->b_blocknr = -1; 302 SetPageError(page); 303 ntfs_error(vol->sb, "Failed to read from inode 0x%lx, " 304 "attribute type 0x%x, vcn 0x%llx, " 305 "offset 0x%x because its location on " 306 "disk could not be determined%s " 307 "(error code %i).", ni->mft_no, 308 ni->type, (unsigned long long)vcn, 309 vcn_ofs, is_retry ? " even after " 310 "retrying" : "", err); 311 } 312 /* 313 * Either iblock was outside lblock limits or 314 * ntfs_rl_vcn_to_lcn() returned error. Just zero that portion 315 * of the page and set the buffer uptodate. 316 */ 317handle_hole: 318 bh->b_blocknr = -1UL; 319 clear_buffer_mapped(bh); 320handle_zblock: 321 zero_user(page, i * blocksize, blocksize); 322 if (likely(!err)) 323 set_buffer_uptodate(bh); 324 } while (i++, iblock++, (bh = bh->b_this_page) != head); 325 326 /* Release the lock if we took it. */ 327 if (rl) 328 up_read(&ni->runlist.lock); 329 330 /* Check we have at least one buffer ready for i/o. */ 331 if (nr) { 332 struct buffer_head *tbh; 333 334 /* Lock the buffers. */ 335 for (i = 0; i < nr; i++) { 336 tbh = arr[i]; 337 lock_buffer(tbh); 338 tbh->b_end_io = ntfs_end_buffer_async_read; 339 set_buffer_async_read(tbh); 340 } 341 /* Finally, start i/o on the buffers. */ 342 for (i = 0; i < nr; i++) { 343 tbh = arr[i]; 344 if (likely(!buffer_uptodate(tbh))) 345 submit_bh(REQ_OP_READ, 0, tbh); 346 else 347 ntfs_end_buffer_async_read(tbh, 1); 348 } 349 return 0; 350 } 351 /* No i/o was scheduled on any of the buffers. */ 352 if (likely(!PageError(page))) 353 SetPageUptodate(page); 354 else /* Signal synchronous i/o error. */ 355 nr = -EIO; 356 unlock_page(page); 357 return nr; 358} 359 360/** 361 * ntfs_read_folio - fill a @folio of a @file with data from the device 362 * @file: open file to which the folio @folio belongs or NULL 363 * @folio: page cache folio to fill with data 364 * 365 * For non-resident attributes, ntfs_read_folio() fills the @folio of the open 366 * file @file by calling the ntfs version of the generic block_read_full_folio() 367 * function, ntfs_read_block(), which in turn creates and reads in the buffers 368 * associated with the folio asynchronously. 369 * 370 * For resident attributes, OTOH, ntfs_read_folio() fills @folio by copying the 371 * data from the mft record (which at this stage is most likely in memory) and 372 * fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as 373 * even if the mft record is not cached at this point in time, we need to wait 374 * for it to be read in before we can do the copy. 375 * 376 * Return 0 on success and -errno on error. 377 */ 378static int ntfs_read_folio(struct file *file, struct folio *folio) 379{ 380 struct page *page = &folio->page; 381 loff_t i_size; 382 struct inode *vi; 383 ntfs_inode *ni, *base_ni; 384 u8 *addr; 385 ntfs_attr_search_ctx *ctx; 386 MFT_RECORD *mrec; 387 unsigned long flags; 388 u32 attr_len; 389 int err = 0; 390 391retry_readpage: 392 BUG_ON(!PageLocked(page)); 393 vi = page->mapping->host; 394 i_size = i_size_read(vi); 395 /* Is the page fully outside i_size? (truncate in progress) */ 396 if (unlikely(page->index >= (i_size + PAGE_SIZE - 1) >> 397 PAGE_SHIFT)) { 398 zero_user(page, 0, PAGE_SIZE); 399 ntfs_debug("Read outside i_size - truncated?"); 400 goto done; 401 } 402 /* 403 * This can potentially happen because we clear PageUptodate() during 404 * ntfs_writepage() of MstProtected() attributes. 405 */ 406 if (PageUptodate(page)) { 407 unlock_page(page); 408 return 0; 409 } 410 ni = NTFS_I(vi); 411 /* 412 * Only $DATA attributes can be encrypted and only unnamed $DATA 413 * attributes can be compressed. Index root can have the flags set but 414 * this means to create compressed/encrypted files, not that the 415 * attribute is compressed/encrypted. Note we need to check for 416 * AT_INDEX_ALLOCATION since this is the type of both directory and 417 * index inodes. 418 */ 419 if (ni->type != AT_INDEX_ALLOCATION) { 420 /* If attribute is encrypted, deny access, just like NT4. */ 421 if (NInoEncrypted(ni)) { 422 BUG_ON(ni->type != AT_DATA); 423 err = -EACCES; 424 goto err_out; 425 } 426 /* Compressed data streams are handled in compress.c. */ 427 if (NInoNonResident(ni) && NInoCompressed(ni)) { 428 BUG_ON(ni->type != AT_DATA); 429 BUG_ON(ni->name_len); 430 return ntfs_read_compressed_block(page); 431 } 432 } 433 /* NInoNonResident() == NInoIndexAllocPresent() */ 434 if (NInoNonResident(ni)) { 435 /* Normal, non-resident data stream. */ 436 return ntfs_read_block(page); 437 } 438 /* 439 * Attribute is resident, implying it is not compressed or encrypted. 440 * This also means the attribute is smaller than an mft record and 441 * hence smaller than a page, so can simply zero out any pages with 442 * index above 0. Note the attribute can actually be marked compressed 443 * but if it is resident the actual data is not compressed so we are 444 * ok to ignore the compressed flag here. 445 */ 446 if (unlikely(page->index > 0)) { 447 zero_user(page, 0, PAGE_SIZE); 448 goto done; 449 } 450 if (!NInoAttr(ni)) 451 base_ni = ni; 452 else 453 base_ni = ni->ext.base_ntfs_ino; 454 /* Map, pin, and lock the mft record. */ 455 mrec = map_mft_record(base_ni); 456 if (IS_ERR(mrec)) { 457 err = PTR_ERR(mrec); 458 goto err_out; 459 } 460 /* 461 * If a parallel write made the attribute non-resident, drop the mft 462 * record and retry the read_folio. 463 */ 464 if (unlikely(NInoNonResident(ni))) { 465 unmap_mft_record(base_ni); 466 goto retry_readpage; 467 } 468 ctx = ntfs_attr_get_search_ctx(base_ni, mrec); 469 if (unlikely(!ctx)) { 470 err = -ENOMEM; 471 goto unm_err_out; 472 } 473 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 474 CASE_SENSITIVE, 0, NULL, 0, ctx); 475 if (unlikely(err)) 476 goto put_unm_err_out; 477 attr_len = le32_to_cpu(ctx->attr->data.resident.value_length); 478 read_lock_irqsave(&ni->size_lock, flags); 479 if (unlikely(attr_len > ni->initialized_size)) 480 attr_len = ni->initialized_size; 481 i_size = i_size_read(vi); 482 read_unlock_irqrestore(&ni->size_lock, flags); 483 if (unlikely(attr_len > i_size)) { 484 /* Race with shrinking truncate. */ 485 attr_len = i_size; 486 } 487 addr = kmap_atomic(page); 488 /* Copy the data to the page. */ 489 memcpy(addr, (u8*)ctx->attr + 490 le16_to_cpu(ctx->attr->data.resident.value_offset), 491 attr_len); 492 /* Zero the remainder of the page. */ 493 memset(addr + attr_len, 0, PAGE_SIZE - attr_len); 494 flush_dcache_page(page); 495 kunmap_atomic(addr); 496put_unm_err_out: 497 ntfs_attr_put_search_ctx(ctx); 498unm_err_out: 499 unmap_mft_record(base_ni); 500done: 501 SetPageUptodate(page); 502err_out: 503 unlock_page(page); 504 return err; 505} 506 507#ifdef NTFS_RW 508 509/** 510 * ntfs_write_block - write a @page to the backing store 511 * @page: page cache page to write out 512 * @wbc: writeback control structure 513 * 514 * This function is for writing pages belonging to non-resident, non-mst 515 * protected attributes to their backing store. 516 * 517 * For a page with buffers, map and write the dirty buffers asynchronously 518 * under page writeback. For a page without buffers, create buffers for the 519 * page, then proceed as above. 520 * 521 * If a page doesn't have buffers the page dirty state is definitive. If a page 522 * does have buffers, the page dirty state is just a hint, and the buffer dirty 523 * state is definitive. (A hint which has rules: dirty buffers against a clean 524 * page is illegal. Other combinations are legal and need to be handled. In 525 * particular a dirty page containing clean buffers for example.) 526 * 527 * Return 0 on success and -errno on error. 528 * 529 * Based on ntfs_read_block() and __block_write_full_page(). 530 */ 531static int ntfs_write_block(struct page *page, struct writeback_control *wbc) 532{ 533 VCN vcn; 534 LCN lcn; 535 s64 initialized_size; 536 loff_t i_size; 537 sector_t block, dblock, iblock; 538 struct inode *vi; 539 ntfs_inode *ni; 540 ntfs_volume *vol; 541 runlist_element *rl; 542 struct buffer_head *bh, *head; 543 unsigned long flags; 544 unsigned int blocksize, vcn_ofs; 545 int err; 546 bool need_end_writeback; 547 unsigned char blocksize_bits; 548 549 vi = page->mapping->host; 550 ni = NTFS_I(vi); 551 vol = ni->vol; 552 553 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index " 554 "0x%lx.", ni->mft_no, ni->type, page->index); 555 556 BUG_ON(!NInoNonResident(ni)); 557 BUG_ON(NInoMstProtected(ni)); 558 blocksize = vol->sb->s_blocksize; 559 blocksize_bits = vol->sb->s_blocksize_bits; 560 if (!page_has_buffers(page)) { 561 BUG_ON(!PageUptodate(page)); 562 create_empty_buffers(page, blocksize, 563 (1 << BH_Uptodate) | (1 << BH_Dirty)); 564 if (unlikely(!page_has_buffers(page))) { 565 ntfs_warning(vol->sb, "Error allocating page " 566 "buffers. Redirtying page so we try " 567 "again later."); 568 /* 569 * Put the page back on mapping->dirty_pages, but leave 570 * its buffers' dirty state as-is. 571 */ 572 redirty_page_for_writepage(wbc, page); 573 unlock_page(page); 574 return 0; 575 } 576 } 577 bh = head = page_buffers(page); 578 BUG_ON(!bh); 579 580 /* NOTE: Different naming scheme to ntfs_read_block()! */ 581 582 /* The first block in the page. */ 583 block = (s64)page->index << (PAGE_SHIFT - blocksize_bits); 584 585 read_lock_irqsave(&ni->size_lock, flags); 586 i_size = i_size_read(vi); 587 initialized_size = ni->initialized_size; 588 read_unlock_irqrestore(&ni->size_lock, flags); 589 590 /* The first out of bounds block for the data size. */ 591 dblock = (i_size + blocksize - 1) >> blocksize_bits; 592 593 /* The last (fully or partially) initialized block. */ 594 iblock = initialized_size >> blocksize_bits; 595 596 /* 597 * Be very careful. We have no exclusion from block_dirty_folio 598 * here, and the (potentially unmapped) buffers may become dirty at 599 * any time. If a buffer becomes dirty here after we've inspected it 600 * then we just miss that fact, and the page stays dirty. 601 * 602 * Buffers outside i_size may be dirtied by block_dirty_folio; 603 * handle that here by just cleaning them. 604 */ 605 606 /* 607 * Loop through all the buffers in the page, mapping all the dirty 608 * buffers to disk addresses and handling any aliases from the 609 * underlying block device's mapping. 610 */ 611 rl = NULL; 612 err = 0; 613 do { 614 bool is_retry = false; 615 616 if (unlikely(block >= dblock)) { 617 /* 618 * Mapped buffers outside i_size will occur, because 619 * this page can be outside i_size when there is a 620 * truncate in progress. The contents of such buffers 621 * were zeroed by ntfs_writepage(). 622 * 623 * FIXME: What about the small race window where 624 * ntfs_writepage() has not done any clearing because 625 * the page was within i_size but before we get here, 626 * vmtruncate() modifies i_size? 627 */ 628 clear_buffer_dirty(bh); 629 set_buffer_uptodate(bh); 630 continue; 631 } 632 633 /* Clean buffers are not written out, so no need to map them. */ 634 if (!buffer_dirty(bh)) 635 continue; 636 637 /* Make sure we have enough initialized size. */ 638 if (unlikely((block >= iblock) && 639 (initialized_size < i_size))) { 640 /* 641 * If this page is fully outside initialized 642 * size, zero out all pages between the current 643 * initialized size and the current page. Just 644 * use ntfs_read_folio() to do the zeroing 645 * transparently. 646 */ 647 if (block > iblock) { 648 // TODO: 649 // For each page do: 650 // - read_cache_page() 651 // Again for each page do: 652 // - wait_on_page_locked() 653 // - Check (PageUptodate(page) && 654 // !PageError(page)) 655 // Update initialized size in the attribute and 656 // in the inode. 657 // Again, for each page do: 658 // block_dirty_folio(); 659 // put_page() 660 // We don't need to wait on the writes. 661 // Update iblock. 662 } 663 /* 664 * The current page straddles initialized size. Zero 665 * all non-uptodate buffers and set them uptodate (and 666 * dirty?). Note, there aren't any non-uptodate buffers 667 * if the page is uptodate. 668 * FIXME: For an uptodate page, the buffers may need to 669 * be written out because they were not initialized on 670 * disk before. 671 */ 672 if (!PageUptodate(page)) { 673 // TODO: 674 // Zero any non-uptodate buffers up to i_size. 675 // Set them uptodate and dirty. 676 } 677 // TODO: 678 // Update initialized size in the attribute and in the 679 // inode (up to i_size). 680 // Update iblock. 681 // FIXME: This is inefficient. Try to batch the two 682 // size changes to happen in one go. 683 ntfs_error(vol->sb, "Writing beyond initialized size " 684 "is not supported yet. Sorry."); 685 err = -EOPNOTSUPP; 686 break; 687 // Do NOT set_buffer_new() BUT DO clear buffer range 688 // outside write request range. 689 // set_buffer_uptodate() on complete buffers as well as 690 // set_buffer_dirty(). 691 } 692 693 /* No need to map buffers that are already mapped. */ 694 if (buffer_mapped(bh)) 695 continue; 696 697 /* Unmapped, dirty buffer. Need to map it. */ 698 bh->b_bdev = vol->sb->s_bdev; 699 700 /* Convert block into corresponding vcn and offset. */ 701 vcn = (VCN)block << blocksize_bits; 702 vcn_ofs = vcn & vol->cluster_size_mask; 703 vcn >>= vol->cluster_size_bits; 704 if (!rl) { 705lock_retry_remap: 706 down_read(&ni->runlist.lock); 707 rl = ni->runlist.rl; 708 } 709 if (likely(rl != NULL)) { 710 /* Seek to element containing target vcn. */ 711 while (rl->length && rl[1].vcn <= vcn) 712 rl++; 713 lcn = ntfs_rl_vcn_to_lcn(rl, vcn); 714 } else 715 lcn = LCN_RL_NOT_MAPPED; 716 /* Successful remap. */ 717 if (lcn >= 0) { 718 /* Setup buffer head to point to correct block. */ 719 bh->b_blocknr = ((lcn << vol->cluster_size_bits) + 720 vcn_ofs) >> blocksize_bits; 721 set_buffer_mapped(bh); 722 continue; 723 } 724 /* It is a hole, need to instantiate it. */ 725 if (lcn == LCN_HOLE) { 726 u8 *kaddr; 727 unsigned long *bpos, *bend; 728 729 /* Check if the buffer is zero. */ 730 kaddr = kmap_atomic(page); 731 bpos = (unsigned long *)(kaddr + bh_offset(bh)); 732 bend = (unsigned long *)((u8*)bpos + blocksize); 733 do { 734 if (unlikely(*bpos)) 735 break; 736 } while (likely(++bpos < bend)); 737 kunmap_atomic(kaddr); 738 if (bpos == bend) { 739 /* 740 * Buffer is zero and sparse, no need to write 741 * it. 742 */ 743 bh->b_blocknr = -1; 744 clear_buffer_dirty(bh); 745 continue; 746 } 747 // TODO: Instantiate the hole. 748 // clear_buffer_new(bh); 749 // clean_bdev_bh_alias(bh); 750 ntfs_error(vol->sb, "Writing into sparse regions is " 751 "not supported yet. Sorry."); 752 err = -EOPNOTSUPP; 753 break; 754 } 755 /* If first try and runlist unmapped, map and retry. */ 756 if (!is_retry && lcn == LCN_RL_NOT_MAPPED) { 757 is_retry = true; 758 /* 759 * Attempt to map runlist, dropping lock for 760 * the duration. 761 */ 762 up_read(&ni->runlist.lock); 763 err = ntfs_map_runlist(ni, vcn); 764 if (likely(!err)) 765 goto lock_retry_remap; 766 rl = NULL; 767 } else if (!rl) 768 up_read(&ni->runlist.lock); 769 /* 770 * If buffer is outside the runlist, truncate has cut it out 771 * of the runlist. Just clean and clear the buffer and set it 772 * uptodate so it can get discarded by the VM. 773 */ 774 if (err == -ENOENT || lcn == LCN_ENOENT) { 775 bh->b_blocknr = -1; 776 clear_buffer_dirty(bh); 777 zero_user(page, bh_offset(bh), blocksize); 778 set_buffer_uptodate(bh); 779 err = 0; 780 continue; 781 } 782 /* Failed to map the buffer, even after retrying. */ 783 if (!err) 784 err = -EIO; 785 bh->b_blocknr = -1; 786 ntfs_error(vol->sb, "Failed to write to inode 0x%lx, " 787 "attribute type 0x%x, vcn 0x%llx, offset 0x%x " 788 "because its location on disk could not be " 789 "determined%s (error code %i).", ni->mft_no, 790 ni->type, (unsigned long long)vcn, 791 vcn_ofs, is_retry ? " even after " 792 "retrying" : "", err); 793 break; 794 } while (block++, (bh = bh->b_this_page) != head); 795 796 /* Release the lock if we took it. */ 797 if (rl) 798 up_read(&ni->runlist.lock); 799 800 /* For the error case, need to reset bh to the beginning. */ 801 bh = head; 802 803 /* Just an optimization, so ->read_folio() is not called later. */ 804 if (unlikely(!PageUptodate(page))) { 805 int uptodate = 1; 806 do { 807 if (!buffer_uptodate(bh)) { 808 uptodate = 0; 809 bh = head; 810 break; 811 } 812 } while ((bh = bh->b_this_page) != head); 813 if (uptodate) 814 SetPageUptodate(page); 815 } 816 817 /* Setup all mapped, dirty buffers for async write i/o. */ 818 do { 819 if (buffer_mapped(bh) && buffer_dirty(bh)) { 820 lock_buffer(bh); 821 if (test_clear_buffer_dirty(bh)) { 822 BUG_ON(!buffer_uptodate(bh)); 823 mark_buffer_async_write(bh); 824 } else 825 unlock_buffer(bh); 826 } else if (unlikely(err)) { 827 /* 828 * For the error case. The buffer may have been set 829 * dirty during attachment to a dirty page. 830 */ 831 if (err != -ENOMEM) 832 clear_buffer_dirty(bh); 833 } 834 } while ((bh = bh->b_this_page) != head); 835 836 if (unlikely(err)) { 837 // TODO: Remove the -EOPNOTSUPP check later on... 838 if (unlikely(err == -EOPNOTSUPP)) 839 err = 0; 840 else if (err == -ENOMEM) { 841 ntfs_warning(vol->sb, "Error allocating memory. " 842 "Redirtying page so we try again " 843 "later."); 844 /* 845 * Put the page back on mapping->dirty_pages, but 846 * leave its buffer's dirty state as-is. 847 */ 848 redirty_page_for_writepage(wbc, page); 849 err = 0; 850 } else 851 SetPageError(page); 852 } 853 854 BUG_ON(PageWriteback(page)); 855 set_page_writeback(page); /* Keeps try_to_free_buffers() away. */ 856 857 /* Submit the prepared buffers for i/o. */ 858 need_end_writeback = true; 859 do { 860 struct buffer_head *next = bh->b_this_page; 861 if (buffer_async_write(bh)) { 862 submit_bh(REQ_OP_WRITE, 0, bh); 863 need_end_writeback = false; 864 } 865 bh = next; 866 } while (bh != head); 867 unlock_page(page); 868 869 /* If no i/o was started, need to end_page_writeback(). */ 870 if (unlikely(need_end_writeback)) 871 end_page_writeback(page); 872 873 ntfs_debug("Done."); 874 return err; 875} 876 877/** 878 * ntfs_write_mst_block - write a @page to the backing store 879 * @page: page cache page to write out 880 * @wbc: writeback control structure 881 * 882 * This function is for writing pages belonging to non-resident, mst protected 883 * attributes to their backing store. The only supported attributes are index 884 * allocation and $MFT/$DATA. Both directory inodes and index inodes are 885 * supported for the index allocation case. 886 * 887 * The page must remain locked for the duration of the write because we apply 888 * the mst fixups, write, and then undo the fixups, so if we were to unlock the 889 * page before undoing the fixups, any other user of the page will see the 890 * page contents as corrupt. 891 * 892 * We clear the page uptodate flag for the duration of the function to ensure 893 * exclusion for the $MFT/$DATA case against someone mapping an mft record we 894 * are about to apply the mst fixups to. 895 * 896 * Return 0 on success and -errno on error. 897 * 898 * Based on ntfs_write_block(), ntfs_mft_writepage(), and 899 * write_mft_record_nolock(). 900 */ 901static int ntfs_write_mst_block(struct page *page, 902 struct writeback_control *wbc) 903{ 904 sector_t block, dblock, rec_block; 905 struct inode *vi = page->mapping->host; 906 ntfs_inode *ni = NTFS_I(vi); 907 ntfs_volume *vol = ni->vol; 908 u8 *kaddr; 909 unsigned int rec_size = ni->itype.index.block_size; 910 ntfs_inode *locked_nis[PAGE_SIZE / NTFS_BLOCK_SIZE]; 911 struct buffer_head *bh, *head, *tbh, *rec_start_bh; 912 struct buffer_head *bhs[MAX_BUF_PER_PAGE]; 913 runlist_element *rl; 914 int i, nr_locked_nis, nr_recs, nr_bhs, max_bhs, bhs_per_rec, err, err2; 915 unsigned bh_size, rec_size_bits; 916 bool sync, is_mft, page_is_dirty, rec_is_dirty; 917 unsigned char bh_size_bits; 918 919 if (WARN_ON(rec_size < NTFS_BLOCK_SIZE)) 920 return -EINVAL; 921 922 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index " 923 "0x%lx.", vi->i_ino, ni->type, page->index); 924 BUG_ON(!NInoNonResident(ni)); 925 BUG_ON(!NInoMstProtected(ni)); 926 is_mft = (S_ISREG(vi->i_mode) && !vi->i_ino); 927 /* 928 * NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page 929 * in its page cache were to be marked dirty. However this should 930 * never happen with the current driver and considering we do not 931 * handle this case here we do want to BUG(), at least for now. 932 */ 933 BUG_ON(!(is_mft || S_ISDIR(vi->i_mode) || 934 (NInoAttr(ni) && ni->type == AT_INDEX_ALLOCATION))); 935 bh_size = vol->sb->s_blocksize; 936 bh_size_bits = vol->sb->s_blocksize_bits; 937 max_bhs = PAGE_SIZE / bh_size; 938 BUG_ON(!max_bhs); 939 BUG_ON(max_bhs > MAX_BUF_PER_PAGE); 940 941 /* Were we called for sync purposes? */ 942 sync = (wbc->sync_mode == WB_SYNC_ALL); 943 944 /* Make sure we have mapped buffers. */ 945 bh = head = page_buffers(page); 946 BUG_ON(!bh); 947 948 rec_size_bits = ni->itype.index.block_size_bits; 949 BUG_ON(!(PAGE_SIZE >> rec_size_bits)); 950 bhs_per_rec = rec_size >> bh_size_bits; 951 BUG_ON(!bhs_per_rec); 952 953 /* The first block in the page. */ 954 rec_block = block = (sector_t)page->index << 955 (PAGE_SHIFT - bh_size_bits); 956 957 /* The first out of bounds block for the data size. */ 958 dblock = (i_size_read(vi) + bh_size - 1) >> bh_size_bits; 959 960 rl = NULL; 961 err = err2 = nr_bhs = nr_recs = nr_locked_nis = 0; 962 page_is_dirty = rec_is_dirty = false; 963 rec_start_bh = NULL; 964 do { 965 bool is_retry = false; 966 967 if (likely(block < rec_block)) { 968 if (unlikely(block >= dblock)) { 969 clear_buffer_dirty(bh); 970 set_buffer_uptodate(bh); 971 continue; 972 } 973 /* 974 * This block is not the first one in the record. We 975 * ignore the buffer's dirty state because we could 976 * have raced with a parallel mark_ntfs_record_dirty(). 977 */ 978 if (!rec_is_dirty) 979 continue; 980 if (unlikely(err2)) { 981 if (err2 != -ENOMEM) 982 clear_buffer_dirty(bh); 983 continue; 984 } 985 } else /* if (block == rec_block) */ { 986 BUG_ON(block > rec_block); 987 /* This block is the first one in the record. */ 988 rec_block += bhs_per_rec; 989 err2 = 0; 990 if (unlikely(block >= dblock)) { 991 clear_buffer_dirty(bh); 992 continue; 993 } 994 if (!buffer_dirty(bh)) { 995 /* Clean records are not written out. */ 996 rec_is_dirty = false; 997 continue; 998 } 999 rec_is_dirty = true; 1000 rec_start_bh = bh; 1001 } 1002 /* Need to map the buffer if it is not mapped already. */ 1003 if (unlikely(!buffer_mapped(bh))) { 1004 VCN vcn; 1005 LCN lcn; 1006 unsigned int vcn_ofs; 1007 1008 bh->b_bdev = vol->sb->s_bdev; 1009 /* Obtain the vcn and offset of the current block. */ 1010 vcn = (VCN)block << bh_size_bits; 1011 vcn_ofs = vcn & vol->cluster_size_mask; 1012 vcn >>= vol->cluster_size_bits; 1013 if (!rl) { 1014lock_retry_remap: 1015 down_read(&ni->runlist.lock); 1016 rl = ni->runlist.rl; 1017 } 1018 if (likely(rl != NULL)) { 1019 /* Seek to element containing target vcn. */ 1020 while (rl->length && rl[1].vcn <= vcn) 1021 rl++; 1022 lcn = ntfs_rl_vcn_to_lcn(rl, vcn); 1023 } else 1024 lcn = LCN_RL_NOT_MAPPED; 1025 /* Successful remap. */ 1026 if (likely(lcn >= 0)) { 1027 /* Setup buffer head to correct block. */ 1028 bh->b_blocknr = ((lcn << 1029 vol->cluster_size_bits) + 1030 vcn_ofs) >> bh_size_bits; 1031 set_buffer_mapped(bh); 1032 } else { 1033 /* 1034 * Remap failed. Retry to map the runlist once 1035 * unless we are working on $MFT which always 1036 * has the whole of its runlist in memory. 1037 */ 1038 if (!is_mft && !is_retry && 1039 lcn == LCN_RL_NOT_MAPPED) { 1040 is_retry = true; 1041 /* 1042 * Attempt to map runlist, dropping 1043 * lock for the duration. 1044 */ 1045 up_read(&ni->runlist.lock); 1046 err2 = ntfs_map_runlist(ni, vcn); 1047 if (likely(!err2)) 1048 goto lock_retry_remap; 1049 if (err2 == -ENOMEM) 1050 page_is_dirty = true; 1051 lcn = err2; 1052 } else { 1053 err2 = -EIO; 1054 if (!rl) 1055 up_read(&ni->runlist.lock); 1056 } 1057 /* Hard error. Abort writing this record. */ 1058 if (!err || err == -ENOMEM) 1059 err = err2; 1060 bh->b_blocknr = -1; 1061 ntfs_error(vol->sb, "Cannot write ntfs record " 1062 "0x%llx (inode 0x%lx, " 1063 "attribute type 0x%x) because " 1064 "its location on disk could " 1065 "not be determined (error " 1066 "code %lli).", 1067 (long long)block << 1068 bh_size_bits >> 1069 vol->mft_record_size_bits, 1070 ni->mft_no, ni->type, 1071 (long long)lcn); 1072 /* 1073 * If this is not the first buffer, remove the 1074 * buffers in this record from the list of 1075 * buffers to write and clear their dirty bit 1076 * if not error -ENOMEM. 1077 */ 1078 if (rec_start_bh != bh) { 1079 while (bhs[--nr_bhs] != rec_start_bh) 1080 ; 1081 if (err2 != -ENOMEM) { 1082 do { 1083 clear_buffer_dirty( 1084 rec_start_bh); 1085 } while ((rec_start_bh = 1086 rec_start_bh-> 1087 b_this_page) != 1088 bh); 1089 } 1090 } 1091 continue; 1092 } 1093 } 1094 BUG_ON(!buffer_uptodate(bh)); 1095 BUG_ON(nr_bhs >= max_bhs); 1096 bhs[nr_bhs++] = bh; 1097 } while (block++, (bh = bh->b_this_page) != head); 1098 if (unlikely(rl)) 1099 up_read(&ni->runlist.lock); 1100 /* If there were no dirty buffers, we are done. */ 1101 if (!nr_bhs) 1102 goto done; 1103 /* Map the page so we can access its contents. */ 1104 kaddr = kmap(page); 1105 /* Clear the page uptodate flag whilst the mst fixups are applied. */ 1106 BUG_ON(!PageUptodate(page)); 1107 ClearPageUptodate(page); 1108 for (i = 0; i < nr_bhs; i++) { 1109 unsigned int ofs; 1110 1111 /* Skip buffers which are not at the beginning of records. */ 1112 if (i % bhs_per_rec) 1113 continue; 1114 tbh = bhs[i]; 1115 ofs = bh_offset(tbh); 1116 if (is_mft) { 1117 ntfs_inode *tni; 1118 unsigned long mft_no; 1119 1120 /* Get the mft record number. */ 1121 mft_no = (((s64)page->index << PAGE_SHIFT) + ofs) 1122 >> rec_size_bits; 1123 /* Check whether to write this mft record. */ 1124 tni = NULL; 1125 if (!ntfs_may_write_mft_record(vol, mft_no, 1126 (MFT_RECORD*)(kaddr + ofs), &tni)) { 1127 /* 1128 * The record should not be written. This 1129 * means we need to redirty the page before 1130 * returning. 1131 */ 1132 page_is_dirty = true; 1133 /* 1134 * Remove the buffers in this mft record from 1135 * the list of buffers to write. 1136 */ 1137 do { 1138 bhs[i] = NULL; 1139 } while (++i % bhs_per_rec); 1140 continue; 1141 } 1142 /* 1143 * The record should be written. If a locked ntfs 1144 * inode was returned, add it to the array of locked 1145 * ntfs inodes. 1146 */ 1147 if (tni) 1148 locked_nis[nr_locked_nis++] = tni; 1149 } 1150 /* Apply the mst protection fixups. */ 1151 err2 = pre_write_mst_fixup((NTFS_RECORD*)(kaddr + ofs), 1152 rec_size); 1153 if (unlikely(err2)) { 1154 if (!err || err == -ENOMEM) 1155 err = -EIO; 1156 ntfs_error(vol->sb, "Failed to apply mst fixups " 1157 "(inode 0x%lx, attribute type 0x%x, " 1158 "page index 0x%lx, page offset 0x%x)!" 1159 " Unmount and run chkdsk.", vi->i_ino, 1160 ni->type, page->index, ofs); 1161 /* 1162 * Mark all the buffers in this record clean as we do 1163 * not want to write corrupt data to disk. 1164 */ 1165 do { 1166 clear_buffer_dirty(bhs[i]); 1167 bhs[i] = NULL; 1168 } while (++i % bhs_per_rec); 1169 continue; 1170 } 1171 nr_recs++; 1172 } 1173 /* If no records are to be written out, we are done. */ 1174 if (!nr_recs) 1175 goto unm_done; 1176 flush_dcache_page(page); 1177 /* Lock buffers and start synchronous write i/o on them. */ 1178 for (i = 0; i < nr_bhs; i++) { 1179 tbh = bhs[i]; 1180 if (!tbh) 1181 continue; 1182 if (!trylock_buffer(tbh)) 1183 BUG(); 1184 /* The buffer dirty state is now irrelevant, just clean it. */ 1185 clear_buffer_dirty(tbh); 1186 BUG_ON(!buffer_uptodate(tbh)); 1187 BUG_ON(!buffer_mapped(tbh)); 1188 get_bh(tbh); 1189 tbh->b_end_io = end_buffer_write_sync; 1190 submit_bh(REQ_OP_WRITE, 0, tbh); 1191 } 1192 /* Synchronize the mft mirror now if not @sync. */ 1193 if (is_mft && !sync) 1194 goto do_mirror; 1195do_wait: 1196 /* Wait on i/o completion of buffers. */ 1197 for (i = 0; i < nr_bhs; i++) { 1198 tbh = bhs[i]; 1199 if (!tbh) 1200 continue; 1201 wait_on_buffer(tbh); 1202 if (unlikely(!buffer_uptodate(tbh))) { 1203 ntfs_error(vol->sb, "I/O error while writing ntfs " 1204 "record buffer (inode 0x%lx, " 1205 "attribute type 0x%x, page index " 1206 "0x%lx, page offset 0x%lx)! Unmount " 1207 "and run chkdsk.", vi->i_ino, ni->type, 1208 page->index, bh_offset(tbh)); 1209 if (!err || err == -ENOMEM) 1210 err = -EIO; 1211 /* 1212 * Set the buffer uptodate so the page and buffer 1213 * states do not become out of sync. 1214 */ 1215 set_buffer_uptodate(tbh); 1216 } 1217 } 1218 /* If @sync, now synchronize the mft mirror. */ 1219 if (is_mft && sync) { 1220do_mirror: 1221 for (i = 0; i < nr_bhs; i++) { 1222 unsigned long mft_no; 1223 unsigned int ofs; 1224 1225 /* 1226 * Skip buffers which are not at the beginning of 1227 * records. 1228 */ 1229 if (i % bhs_per_rec) 1230 continue; 1231 tbh = bhs[i]; 1232 /* Skip removed buffers (and hence records). */ 1233 if (!tbh) 1234 continue; 1235 ofs = bh_offset(tbh); 1236 /* Get the mft record number. */ 1237 mft_no = (((s64)page->index << PAGE_SHIFT) + ofs) 1238 >> rec_size_bits; 1239 if (mft_no < vol->mftmirr_size) 1240 ntfs_sync_mft_mirror(vol, mft_no, 1241 (MFT_RECORD*)(kaddr + ofs), 1242 sync); 1243 } 1244 if (!sync) 1245 goto do_wait; 1246 } 1247 /* Remove the mst protection fixups again. */ 1248 for (i = 0; i < nr_bhs; i++) { 1249 if (!(i % bhs_per_rec)) { 1250 tbh = bhs[i]; 1251 if (!tbh) 1252 continue; 1253 post_write_mst_fixup((NTFS_RECORD*)(kaddr + 1254 bh_offset(tbh))); 1255 } 1256 } 1257 flush_dcache_page(page); 1258unm_done: 1259 /* Unlock any locked inodes. */ 1260 while (nr_locked_nis-- > 0) { 1261 ntfs_inode *tni, *base_tni; 1262 1263 tni = locked_nis[nr_locked_nis]; 1264 /* Get the base inode. */ 1265 mutex_lock(&tni->extent_lock); 1266 if (tni->nr_extents >= 0) 1267 base_tni = tni; 1268 else { 1269 base_tni = tni->ext.base_ntfs_ino; 1270 BUG_ON(!base_tni); 1271 } 1272 mutex_unlock(&tni->extent_lock); 1273 ntfs_debug("Unlocking %s inode 0x%lx.", 1274 tni == base_tni ? "base" : "extent", 1275 tni->mft_no); 1276 mutex_unlock(&tni->mrec_lock); 1277 atomic_dec(&tni->count); 1278 iput(VFS_I(base_tni)); 1279 } 1280 SetPageUptodate(page); 1281 kunmap(page); 1282done: 1283 if (unlikely(err && err != -ENOMEM)) { 1284 /* 1285 * Set page error if there is only one ntfs record in the page. 1286 * Otherwise we would loose per-record granularity. 1287 */ 1288 if (ni->itype.index.block_size == PAGE_SIZE) 1289 SetPageError(page); 1290 NVolSetErrors(vol); 1291 } 1292 if (page_is_dirty) { 1293 ntfs_debug("Page still contains one or more dirty ntfs " 1294 "records. Redirtying the page starting at " 1295 "record 0x%lx.", page->index << 1296 (PAGE_SHIFT - rec_size_bits)); 1297 redirty_page_for_writepage(wbc, page); 1298 unlock_page(page); 1299 } else { 1300 /* 1301 * Keep the VM happy. This must be done otherwise the 1302 * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though 1303 * the page is clean. 1304 */ 1305 BUG_ON(PageWriteback(page)); 1306 set_page_writeback(page); 1307 unlock_page(page); 1308 end_page_writeback(page); 1309 } 1310 if (likely(!err)) 1311 ntfs_debug("Done."); 1312 return err; 1313} 1314 1315/** 1316 * ntfs_writepage - write a @page to the backing store 1317 * @page: page cache page to write out 1318 * @wbc: writeback control structure 1319 * 1320 * This is called from the VM when it wants to have a dirty ntfs page cache 1321 * page cleaned. The VM has already locked the page and marked it clean. 1322 * 1323 * For non-resident attributes, ntfs_writepage() writes the @page by calling 1324 * the ntfs version of the generic block_write_full_page() function, 1325 * ntfs_write_block(), which in turn if necessary creates and writes the 1326 * buffers associated with the page asynchronously. 1327 * 1328 * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying 1329 * the data to the mft record (which at this stage is most likely in memory). 1330 * The mft record is then marked dirty and written out asynchronously via the 1331 * vfs inode dirty code path for the inode the mft record belongs to or via the 1332 * vm page dirty code path for the page the mft record is in. 1333 * 1334 * Based on ntfs_read_folio() and fs/buffer.c::block_write_full_page(). 1335 * 1336 * Return 0 on success and -errno on error. 1337 */ 1338static int ntfs_writepage(struct page *page, struct writeback_control *wbc) 1339{ 1340 loff_t i_size; 1341 struct inode *vi = page->mapping->host; 1342 ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi); 1343 char *addr; 1344 ntfs_attr_search_ctx *ctx = NULL; 1345 MFT_RECORD *m = NULL; 1346 u32 attr_len; 1347 int err; 1348 1349retry_writepage: 1350 BUG_ON(!PageLocked(page)); 1351 i_size = i_size_read(vi); 1352 /* Is the page fully outside i_size? (truncate in progress) */ 1353 if (unlikely(page->index >= (i_size + PAGE_SIZE - 1) >> 1354 PAGE_SHIFT)) { 1355 struct folio *folio = page_folio(page); 1356 /* 1357 * The page may have dirty, unmapped buffers. Make them 1358 * freeable here, so the page does not leak. 1359 */ 1360 block_invalidate_folio(folio, 0, folio_size(folio)); 1361 folio_unlock(folio); 1362 ntfs_debug("Write outside i_size - truncated?"); 1363 return 0; 1364 } 1365 /* 1366 * Only $DATA attributes can be encrypted and only unnamed $DATA 1367 * attributes can be compressed. Index root can have the flags set but 1368 * this means to create compressed/encrypted files, not that the 1369 * attribute is compressed/encrypted. Note we need to check for 1370 * AT_INDEX_ALLOCATION since this is the type of both directory and 1371 * index inodes. 1372 */ 1373 if (ni->type != AT_INDEX_ALLOCATION) { 1374 /* If file is encrypted, deny access, just like NT4. */ 1375 if (NInoEncrypted(ni)) { 1376 unlock_page(page); 1377 BUG_ON(ni->type != AT_DATA); 1378 ntfs_debug("Denying write access to encrypted file."); 1379 return -EACCES; 1380 } 1381 /* Compressed data streams are handled in compress.c. */ 1382 if (NInoNonResident(ni) && NInoCompressed(ni)) { 1383 BUG_ON(ni->type != AT_DATA); 1384 BUG_ON(ni->name_len); 1385 // TODO: Implement and replace this with 1386 // return ntfs_write_compressed_block(page); 1387 unlock_page(page); 1388 ntfs_error(vi->i_sb, "Writing to compressed files is " 1389 "not supported yet. Sorry."); 1390 return -EOPNOTSUPP; 1391 } 1392 // TODO: Implement and remove this check. 1393 if (NInoNonResident(ni) && NInoSparse(ni)) { 1394 unlock_page(page); 1395 ntfs_error(vi->i_sb, "Writing to sparse files is not " 1396 "supported yet. Sorry."); 1397 return -EOPNOTSUPP; 1398 } 1399 } 1400 /* NInoNonResident() == NInoIndexAllocPresent() */ 1401 if (NInoNonResident(ni)) { 1402 /* We have to zero every time due to mmap-at-end-of-file. */ 1403 if (page->index >= (i_size >> PAGE_SHIFT)) { 1404 /* The page straddles i_size. */ 1405 unsigned int ofs = i_size & ~PAGE_MASK; 1406 zero_user_segment(page, ofs, PAGE_SIZE); 1407 } 1408 /* Handle mst protected attributes. */ 1409 if (NInoMstProtected(ni)) 1410 return ntfs_write_mst_block(page, wbc); 1411 /* Normal, non-resident data stream. */ 1412 return ntfs_write_block(page, wbc); 1413 } 1414 /* 1415 * Attribute is resident, implying it is not compressed, encrypted, or 1416 * mst protected. This also means the attribute is smaller than an mft 1417 * record and hence smaller than a page, so can simply return error on 1418 * any pages with index above 0. Note the attribute can actually be 1419 * marked compressed but if it is resident the actual data is not 1420 * compressed so we are ok to ignore the compressed flag here. 1421 */ 1422 BUG_ON(page_has_buffers(page)); 1423 BUG_ON(!PageUptodate(page)); 1424 if (unlikely(page->index > 0)) { 1425 ntfs_error(vi->i_sb, "BUG()! page->index (0x%lx) > 0. " 1426 "Aborting write.", page->index); 1427 BUG_ON(PageWriteback(page)); 1428 set_page_writeback(page); 1429 unlock_page(page); 1430 end_page_writeback(page); 1431 return -EIO; 1432 } 1433 if (!NInoAttr(ni)) 1434 base_ni = ni; 1435 else 1436 base_ni = ni->ext.base_ntfs_ino; 1437 /* Map, pin, and lock the mft record. */ 1438 m = map_mft_record(base_ni); 1439 if (IS_ERR(m)) { 1440 err = PTR_ERR(m); 1441 m = NULL; 1442 ctx = NULL; 1443 goto err_out; 1444 } 1445 /* 1446 * If a parallel write made the attribute non-resident, drop the mft 1447 * record and retry the writepage. 1448 */ 1449 if (unlikely(NInoNonResident(ni))) { 1450 unmap_mft_record(base_ni); 1451 goto retry_writepage; 1452 } 1453 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1454 if (unlikely(!ctx)) { 1455 err = -ENOMEM; 1456 goto err_out; 1457 } 1458 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 1459 CASE_SENSITIVE, 0, NULL, 0, ctx); 1460 if (unlikely(err)) 1461 goto err_out; 1462 /* 1463 * Keep the VM happy. This must be done otherwise the radix-tree tag 1464 * PAGECACHE_TAG_DIRTY remains set even though the page is clean. 1465 */ 1466 BUG_ON(PageWriteback(page)); 1467 set_page_writeback(page); 1468 unlock_page(page); 1469 attr_len = le32_to_cpu(ctx->attr->data.resident.value_length); 1470 i_size = i_size_read(vi); 1471 if (unlikely(attr_len > i_size)) { 1472 /* Race with shrinking truncate or a failed truncate. */ 1473 attr_len = i_size; 1474 /* 1475 * If the truncate failed, fix it up now. If a concurrent 1476 * truncate, we do its job, so it does not have to do anything. 1477 */ 1478 err = ntfs_resident_attr_value_resize(ctx->mrec, ctx->attr, 1479 attr_len); 1480 /* Shrinking cannot fail. */ 1481 BUG_ON(err); 1482 } 1483 addr = kmap_atomic(page); 1484 /* Copy the data from the page to the mft record. */ 1485 memcpy((u8*)ctx->attr + 1486 le16_to_cpu(ctx->attr->data.resident.value_offset), 1487 addr, attr_len); 1488 /* Zero out of bounds area in the page cache page. */ 1489 memset(addr + attr_len, 0, PAGE_SIZE - attr_len); 1490 kunmap_atomic(addr); 1491 flush_dcache_page(page); 1492 flush_dcache_mft_record_page(ctx->ntfs_ino); 1493 /* We are done with the page. */ 1494 end_page_writeback(page); 1495 /* Finally, mark the mft record dirty, so it gets written back. */ 1496 mark_mft_record_dirty(ctx->ntfs_ino); 1497 ntfs_attr_put_search_ctx(ctx); 1498 unmap_mft_record(base_ni); 1499 return 0; 1500err_out: 1501 if (err == -ENOMEM) { 1502 ntfs_warning(vi->i_sb, "Error allocating memory. Redirtying " 1503 "page so we try again later."); 1504 /* 1505 * Put the page back on mapping->dirty_pages, but leave its 1506 * buffers' dirty state as-is. 1507 */ 1508 redirty_page_for_writepage(wbc, page); 1509 err = 0; 1510 } else { 1511 ntfs_error(vi->i_sb, "Resident attribute write failed with " 1512 "error %i.", err); 1513 SetPageError(page); 1514 NVolSetErrors(ni->vol); 1515 } 1516 unlock_page(page); 1517 if (ctx) 1518 ntfs_attr_put_search_ctx(ctx); 1519 if (m) 1520 unmap_mft_record(base_ni); 1521 return err; 1522} 1523 1524#endif /* NTFS_RW */ 1525 1526/** 1527 * ntfs_bmap - map logical file block to physical device block 1528 * @mapping: address space mapping to which the block to be mapped belongs 1529 * @block: logical block to map to its physical device block 1530 * 1531 * For regular, non-resident files (i.e. not compressed and not encrypted), map 1532 * the logical @block belonging to the file described by the address space 1533 * mapping @mapping to its physical device block. 1534 * 1535 * The size of the block is equal to the @s_blocksize field of the super block 1536 * of the mounted file system which is guaranteed to be smaller than or equal 1537 * to the cluster size thus the block is guaranteed to fit entirely inside the 1538 * cluster which means we do not need to care how many contiguous bytes are 1539 * available after the beginning of the block. 1540 * 1541 * Return the physical device block if the mapping succeeded or 0 if the block 1542 * is sparse or there was an error. 1543 * 1544 * Note: This is a problem if someone tries to run bmap() on $Boot system file 1545 * as that really is in block zero but there is nothing we can do. bmap() is 1546 * just broken in that respect (just like it cannot distinguish sparse from 1547 * not available or error). 1548 */ 1549static sector_t ntfs_bmap(struct address_space *mapping, sector_t block) 1550{ 1551 s64 ofs, size; 1552 loff_t i_size; 1553 LCN lcn; 1554 unsigned long blocksize, flags; 1555 ntfs_inode *ni = NTFS_I(mapping->host); 1556 ntfs_volume *vol = ni->vol; 1557 unsigned delta; 1558 unsigned char blocksize_bits, cluster_size_shift; 1559 1560 ntfs_debug("Entering for mft_no 0x%lx, logical block 0x%llx.", 1561 ni->mft_no, (unsigned long long)block); 1562 if (ni->type != AT_DATA || !NInoNonResident(ni) || NInoEncrypted(ni)) { 1563 ntfs_error(vol->sb, "BMAP does not make sense for %s " 1564 "attributes, returning 0.", 1565 (ni->type != AT_DATA) ? "non-data" : 1566 (!NInoNonResident(ni) ? "resident" : 1567 "encrypted")); 1568 return 0; 1569 } 1570 /* None of these can happen. */ 1571 BUG_ON(NInoCompressed(ni)); 1572 BUG_ON(NInoMstProtected(ni)); 1573 blocksize = vol->sb->s_blocksize; 1574 blocksize_bits = vol->sb->s_blocksize_bits; 1575 ofs = (s64)block << blocksize_bits; 1576 read_lock_irqsave(&ni->size_lock, flags); 1577 size = ni->initialized_size; 1578 i_size = i_size_read(VFS_I(ni)); 1579 read_unlock_irqrestore(&ni->size_lock, flags); 1580 /* 1581 * If the offset is outside the initialized size or the block straddles 1582 * the initialized size then pretend it is a hole unless the 1583 * initialized size equals the file size. 1584 */ 1585 if (unlikely(ofs >= size || (ofs + blocksize > size && size < i_size))) 1586 goto hole; 1587 cluster_size_shift = vol->cluster_size_bits; 1588 down_read(&ni->runlist.lock); 1589 lcn = ntfs_attr_vcn_to_lcn_nolock(ni, ofs >> cluster_size_shift, false); 1590 up_read(&ni->runlist.lock); 1591 if (unlikely(lcn < LCN_HOLE)) { 1592 /* 1593 * Step down to an integer to avoid gcc doing a long long 1594 * comparision in the switch when we know @lcn is between 1595 * LCN_HOLE and LCN_EIO (i.e. -1 to -5). 1596 * 1597 * Otherwise older gcc (at least on some architectures) will 1598 * try to use __cmpdi2() which is of course not available in 1599 * the kernel. 1600 */ 1601 switch ((int)lcn) { 1602 case LCN_ENOENT: 1603 /* 1604 * If the offset is out of bounds then pretend it is a 1605 * hole. 1606 */ 1607 goto hole; 1608 case LCN_ENOMEM: 1609 ntfs_error(vol->sb, "Not enough memory to complete " 1610 "mapping for inode 0x%lx. " 1611 "Returning 0.", ni->mft_no); 1612 break; 1613 default: 1614 ntfs_error(vol->sb, "Failed to complete mapping for " 1615 "inode 0x%lx. Run chkdsk. " 1616 "Returning 0.", ni->mft_no); 1617 break; 1618 } 1619 return 0; 1620 } 1621 if (lcn < 0) { 1622 /* It is a hole. */ 1623hole: 1624 ntfs_debug("Done (returning hole)."); 1625 return 0; 1626 } 1627 /* 1628 * The block is really allocated and fullfils all our criteria. 1629 * Convert the cluster to units of block size and return the result. 1630 */ 1631 delta = ofs & vol->cluster_size_mask; 1632 if (unlikely(sizeof(block) < sizeof(lcn))) { 1633 block = lcn = ((lcn << cluster_size_shift) + delta) >> 1634 blocksize_bits; 1635 /* If the block number was truncated return 0. */ 1636 if (unlikely(block != lcn)) { 1637 ntfs_error(vol->sb, "Physical block 0x%llx is too " 1638 "large to be returned, returning 0.", 1639 (long long)lcn); 1640 return 0; 1641 } 1642 } else 1643 block = ((lcn << cluster_size_shift) + delta) >> 1644 blocksize_bits; 1645 ntfs_debug("Done (returning block 0x%llx).", (unsigned long long)lcn); 1646 return block; 1647} 1648 1649/** 1650 * ntfs_normal_aops - address space operations for normal inodes and attributes 1651 * 1652 * Note these are not used for compressed or mst protected inodes and 1653 * attributes. 1654 */ 1655const struct address_space_operations ntfs_normal_aops = { 1656 .read_folio = ntfs_read_folio, 1657#ifdef NTFS_RW 1658 .writepage = ntfs_writepage, 1659 .dirty_folio = block_dirty_folio, 1660#endif /* NTFS_RW */ 1661 .bmap = ntfs_bmap, 1662 .migratepage = buffer_migrate_page, 1663 .is_partially_uptodate = block_is_partially_uptodate, 1664 .error_remove_page = generic_error_remove_page, 1665}; 1666 1667/** 1668 * ntfs_compressed_aops - address space operations for compressed inodes 1669 */ 1670const struct address_space_operations ntfs_compressed_aops = { 1671 .read_folio = ntfs_read_folio, 1672#ifdef NTFS_RW 1673 .writepage = ntfs_writepage, 1674 .dirty_folio = block_dirty_folio, 1675#endif /* NTFS_RW */ 1676 .migratepage = buffer_migrate_page, 1677 .is_partially_uptodate = block_is_partially_uptodate, 1678 .error_remove_page = generic_error_remove_page, 1679}; 1680 1681/** 1682 * ntfs_mst_aops - general address space operations for mst protecteed inodes 1683 * and attributes 1684 */ 1685const struct address_space_operations ntfs_mst_aops = { 1686 .read_folio = ntfs_read_folio, /* Fill page with data. */ 1687#ifdef NTFS_RW 1688 .writepage = ntfs_writepage, /* Write dirty page to disk. */ 1689 .dirty_folio = filemap_dirty_folio, 1690#endif /* NTFS_RW */ 1691 .migratepage = buffer_migrate_page, 1692 .is_partially_uptodate = block_is_partially_uptodate, 1693 .error_remove_page = generic_error_remove_page, 1694}; 1695 1696#ifdef NTFS_RW 1697 1698/** 1699 * mark_ntfs_record_dirty - mark an ntfs record dirty 1700 * @page: page containing the ntfs record to mark dirty 1701 * @ofs: byte offset within @page at which the ntfs record begins 1702 * 1703 * Set the buffers and the page in which the ntfs record is located dirty. 1704 * 1705 * The latter also marks the vfs inode the ntfs record belongs to dirty 1706 * (I_DIRTY_PAGES only). 1707 * 1708 * If the page does not have buffers, we create them and set them uptodate. 1709 * The page may not be locked which is why we need to handle the buffers under 1710 * the mapping->private_lock. Once the buffers are marked dirty we no longer 1711 * need the lock since try_to_free_buffers() does not free dirty buffers. 1712 */ 1713void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs) { 1714 struct address_space *mapping = page->mapping; 1715 ntfs_inode *ni = NTFS_I(mapping->host); 1716 struct buffer_head *bh, *head, *buffers_to_free = NULL; 1717 unsigned int end, bh_size, bh_ofs; 1718 1719 BUG_ON(!PageUptodate(page)); 1720 end = ofs + ni->itype.index.block_size; 1721 bh_size = VFS_I(ni)->i_sb->s_blocksize; 1722 spin_lock(&mapping->private_lock); 1723 if (unlikely(!page_has_buffers(page))) { 1724 spin_unlock(&mapping->private_lock); 1725 bh = head = alloc_page_buffers(page, bh_size, true); 1726 spin_lock(&mapping->private_lock); 1727 if (likely(!page_has_buffers(page))) { 1728 struct buffer_head *tail; 1729 1730 do { 1731 set_buffer_uptodate(bh); 1732 tail = bh; 1733 bh = bh->b_this_page; 1734 } while (bh); 1735 tail->b_this_page = head; 1736 attach_page_private(page, head); 1737 } else 1738 buffers_to_free = bh; 1739 } 1740 bh = head = page_buffers(page); 1741 BUG_ON(!bh); 1742 do { 1743 bh_ofs = bh_offset(bh); 1744 if (bh_ofs + bh_size <= ofs) 1745 continue; 1746 if (unlikely(bh_ofs >= end)) 1747 break; 1748 set_buffer_dirty(bh); 1749 } while ((bh = bh->b_this_page) != head); 1750 spin_unlock(&mapping->private_lock); 1751 filemap_dirty_folio(mapping, page_folio(page)); 1752 if (unlikely(buffers_to_free)) { 1753 do { 1754 bh = buffers_to_free->b_this_page; 1755 free_buffer_head(buffers_to_free); 1756 buffers_to_free = bh; 1757 } while (buffers_to_free); 1758 } 1759} 1760 1761#endif /* NTFS_RW */