cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

aops.c (52853B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/**
      3 * aops.c - NTFS kernel address space operations and page cache handling.
      4 *
      5 * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
      6 * Copyright (c) 2002 Richard Russon
      7 */
      8
      9#include <linux/errno.h>
     10#include <linux/fs.h>
     11#include <linux/gfp.h>
     12#include <linux/mm.h>
     13#include <linux/pagemap.h>
     14#include <linux/swap.h>
     15#include <linux/buffer_head.h>
     16#include <linux/writeback.h>
     17#include <linux/bit_spinlock.h>
     18#include <linux/bio.h>
     19
     20#include "aops.h"
     21#include "attrib.h"
     22#include "debug.h"
     23#include "inode.h"
     24#include "mft.h"
     25#include "runlist.h"
     26#include "types.h"
     27#include "ntfs.h"
     28
     29/**
     30 * ntfs_end_buffer_async_read - async io completion for reading attributes
     31 * @bh:		buffer head on which io is completed
     32 * @uptodate:	whether @bh is now uptodate or not
     33 *
     34 * Asynchronous I/O completion handler for reading pages belonging to the
     35 * attribute address space of an inode.  The inodes can either be files or
     36 * directories or they can be fake inodes describing some attribute.
     37 *
     38 * If NInoMstProtected(), perform the post read mst fixups when all IO on the
     39 * page has been completed and mark the page uptodate or set the error bit on
     40 * the page.  To determine the size of the records that need fixing up, we
     41 * cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs
     42 * record size, and index_block_size_bits, to the log(base 2) of the ntfs
     43 * record size.
     44 */
     45static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate)
     46{
     47	unsigned long flags;
     48	struct buffer_head *first, *tmp;
     49	struct page *page;
     50	struct inode *vi;
     51	ntfs_inode *ni;
     52	int page_uptodate = 1;
     53
     54	page = bh->b_page;
     55	vi = page->mapping->host;
     56	ni = NTFS_I(vi);
     57
     58	if (likely(uptodate)) {
     59		loff_t i_size;
     60		s64 file_ofs, init_size;
     61
     62		set_buffer_uptodate(bh);
     63
     64		file_ofs = ((s64)page->index << PAGE_SHIFT) +
     65				bh_offset(bh);
     66		read_lock_irqsave(&ni->size_lock, flags);
     67		init_size = ni->initialized_size;
     68		i_size = i_size_read(vi);
     69		read_unlock_irqrestore(&ni->size_lock, flags);
     70		if (unlikely(init_size > i_size)) {
     71			/* Race with shrinking truncate. */
     72			init_size = i_size;
     73		}
     74		/* Check for the current buffer head overflowing. */
     75		if (unlikely(file_ofs + bh->b_size > init_size)) {
     76			int ofs;
     77			void *kaddr;
     78
     79			ofs = 0;
     80			if (file_ofs < init_size)
     81				ofs = init_size - file_ofs;
     82			kaddr = kmap_atomic(page);
     83			memset(kaddr + bh_offset(bh) + ofs, 0,
     84					bh->b_size - ofs);
     85			flush_dcache_page(page);
     86			kunmap_atomic(kaddr);
     87		}
     88	} else {
     89		clear_buffer_uptodate(bh);
     90		SetPageError(page);
     91		ntfs_error(ni->vol->sb, "Buffer I/O error, logical block "
     92				"0x%llx.", (unsigned long long)bh->b_blocknr);
     93	}
     94	first = page_buffers(page);
     95	spin_lock_irqsave(&first->b_uptodate_lock, flags);
     96	clear_buffer_async_read(bh);
     97	unlock_buffer(bh);
     98	tmp = bh;
     99	do {
    100		if (!buffer_uptodate(tmp))
    101			page_uptodate = 0;
    102		if (buffer_async_read(tmp)) {
    103			if (likely(buffer_locked(tmp)))
    104				goto still_busy;
    105			/* Async buffers must be locked. */
    106			BUG();
    107		}
    108		tmp = tmp->b_this_page;
    109	} while (tmp != bh);
    110	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
    111	/*
    112	 * If none of the buffers had errors then we can set the page uptodate,
    113	 * but we first have to perform the post read mst fixups, if the
    114	 * attribute is mst protected, i.e. if NInoMstProteced(ni) is true.
    115	 * Note we ignore fixup errors as those are detected when
    116	 * map_mft_record() is called which gives us per record granularity
    117	 * rather than per page granularity.
    118	 */
    119	if (!NInoMstProtected(ni)) {
    120		if (likely(page_uptodate && !PageError(page)))
    121			SetPageUptodate(page);
    122	} else {
    123		u8 *kaddr;
    124		unsigned int i, recs;
    125		u32 rec_size;
    126
    127		rec_size = ni->itype.index.block_size;
    128		recs = PAGE_SIZE / rec_size;
    129		/* Should have been verified before we got here... */
    130		BUG_ON(!recs);
    131		kaddr = kmap_atomic(page);
    132		for (i = 0; i < recs; i++)
    133			post_read_mst_fixup((NTFS_RECORD*)(kaddr +
    134					i * rec_size), rec_size);
    135		kunmap_atomic(kaddr);
    136		flush_dcache_page(page);
    137		if (likely(page_uptodate && !PageError(page)))
    138			SetPageUptodate(page);
    139	}
    140	unlock_page(page);
    141	return;
    142still_busy:
    143	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
    144	return;
    145}
    146
    147/**
    148 * ntfs_read_block - fill a @page of an address space with data
    149 * @page:	page cache page to fill with data
    150 *
    151 * Fill the page @page of the address space belonging to the @page->host inode.
    152 * We read each buffer asynchronously and when all buffers are read in, our io
    153 * completion handler ntfs_end_buffer_read_async(), if required, automatically
    154 * applies the mst fixups to the page before finally marking it uptodate and
    155 * unlocking it.
    156 *
    157 * We only enforce allocated_size limit because i_size is checked for in
    158 * generic_file_read().
    159 *
    160 * Return 0 on success and -errno on error.
    161 *
    162 * Contains an adapted version of fs/buffer.c::block_read_full_folio().
    163 */
    164static int ntfs_read_block(struct page *page)
    165{
    166	loff_t i_size;
    167	VCN vcn;
    168	LCN lcn;
    169	s64 init_size;
    170	struct inode *vi;
    171	ntfs_inode *ni;
    172	ntfs_volume *vol;
    173	runlist_element *rl;
    174	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
    175	sector_t iblock, lblock, zblock;
    176	unsigned long flags;
    177	unsigned int blocksize, vcn_ofs;
    178	int i, nr;
    179	unsigned char blocksize_bits;
    180
    181	vi = page->mapping->host;
    182	ni = NTFS_I(vi);
    183	vol = ni->vol;
    184
    185	/* $MFT/$DATA must have its complete runlist in memory at all times. */
    186	BUG_ON(!ni->runlist.rl && !ni->mft_no && !NInoAttr(ni));
    187
    188	blocksize = vol->sb->s_blocksize;
    189	blocksize_bits = vol->sb->s_blocksize_bits;
    190
    191	if (!page_has_buffers(page)) {
    192		create_empty_buffers(page, blocksize, 0);
    193		if (unlikely(!page_has_buffers(page))) {
    194			unlock_page(page);
    195			return -ENOMEM;
    196		}
    197	}
    198	bh = head = page_buffers(page);
    199	BUG_ON(!bh);
    200
    201	/*
    202	 * We may be racing with truncate.  To avoid some of the problems we
    203	 * now take a snapshot of the various sizes and use those for the whole
    204	 * of the function.  In case of an extending truncate it just means we
    205	 * may leave some buffers unmapped which are now allocated.  This is
    206	 * not a problem since these buffers will just get mapped when a write
    207	 * occurs.  In case of a shrinking truncate, we will detect this later
    208	 * on due to the runlist being incomplete and if the page is being
    209	 * fully truncated, truncate will throw it away as soon as we unlock
    210	 * it so no need to worry what we do with it.
    211	 */
    212	iblock = (s64)page->index << (PAGE_SHIFT - blocksize_bits);
    213	read_lock_irqsave(&ni->size_lock, flags);
    214	lblock = (ni->allocated_size + blocksize - 1) >> blocksize_bits;
    215	init_size = ni->initialized_size;
    216	i_size = i_size_read(vi);
    217	read_unlock_irqrestore(&ni->size_lock, flags);
    218	if (unlikely(init_size > i_size)) {
    219		/* Race with shrinking truncate. */
    220		init_size = i_size;
    221	}
    222	zblock = (init_size + blocksize - 1) >> blocksize_bits;
    223
    224	/* Loop through all the buffers in the page. */
    225	rl = NULL;
    226	nr = i = 0;
    227	do {
    228		int err = 0;
    229
    230		if (unlikely(buffer_uptodate(bh)))
    231			continue;
    232		if (unlikely(buffer_mapped(bh))) {
    233			arr[nr++] = bh;
    234			continue;
    235		}
    236		bh->b_bdev = vol->sb->s_bdev;
    237		/* Is the block within the allowed limits? */
    238		if (iblock < lblock) {
    239			bool is_retry = false;
    240
    241			/* Convert iblock into corresponding vcn and offset. */
    242			vcn = (VCN)iblock << blocksize_bits >>
    243					vol->cluster_size_bits;
    244			vcn_ofs = ((VCN)iblock << blocksize_bits) &
    245					vol->cluster_size_mask;
    246			if (!rl) {
    247lock_retry_remap:
    248				down_read(&ni->runlist.lock);
    249				rl = ni->runlist.rl;
    250			}
    251			if (likely(rl != NULL)) {
    252				/* Seek to element containing target vcn. */
    253				while (rl->length && rl[1].vcn <= vcn)
    254					rl++;
    255				lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
    256			} else
    257				lcn = LCN_RL_NOT_MAPPED;
    258			/* Successful remap. */
    259			if (lcn >= 0) {
    260				/* Setup buffer head to correct block. */
    261				bh->b_blocknr = ((lcn << vol->cluster_size_bits)
    262						+ vcn_ofs) >> blocksize_bits;
    263				set_buffer_mapped(bh);
    264				/* Only read initialized data blocks. */
    265				if (iblock < zblock) {
    266					arr[nr++] = bh;
    267					continue;
    268				}
    269				/* Fully non-initialized data block, zero it. */
    270				goto handle_zblock;
    271			}
    272			/* It is a hole, need to zero it. */
    273			if (lcn == LCN_HOLE)
    274				goto handle_hole;
    275			/* If first try and runlist unmapped, map and retry. */
    276			if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
    277				is_retry = true;
    278				/*
    279				 * Attempt to map runlist, dropping lock for
    280				 * the duration.
    281				 */
    282				up_read(&ni->runlist.lock);
    283				err = ntfs_map_runlist(ni, vcn);
    284				if (likely(!err))
    285					goto lock_retry_remap;
    286				rl = NULL;
    287			} else if (!rl)
    288				up_read(&ni->runlist.lock);
    289			/*
    290			 * If buffer is outside the runlist, treat it as a
    291			 * hole.  This can happen due to concurrent truncate
    292			 * for example.
    293			 */
    294			if (err == -ENOENT || lcn == LCN_ENOENT) {
    295				err = 0;
    296				goto handle_hole;
    297			}
    298			/* Hard error, zero out region. */
    299			if (!err)
    300				err = -EIO;
    301			bh->b_blocknr = -1;
    302			SetPageError(page);
    303			ntfs_error(vol->sb, "Failed to read from inode 0x%lx, "
    304					"attribute type 0x%x, vcn 0x%llx, "
    305					"offset 0x%x because its location on "
    306					"disk could not be determined%s "
    307					"(error code %i).", ni->mft_no,
    308					ni->type, (unsigned long long)vcn,
    309					vcn_ofs, is_retry ? " even after "
    310					"retrying" : "", err);
    311		}
    312		/*
    313		 * Either iblock was outside lblock limits or
    314		 * ntfs_rl_vcn_to_lcn() returned error.  Just zero that portion
    315		 * of the page and set the buffer uptodate.
    316		 */
    317handle_hole:
    318		bh->b_blocknr = -1UL;
    319		clear_buffer_mapped(bh);
    320handle_zblock:
    321		zero_user(page, i * blocksize, blocksize);
    322		if (likely(!err))
    323			set_buffer_uptodate(bh);
    324	} while (i++, iblock++, (bh = bh->b_this_page) != head);
    325
    326	/* Release the lock if we took it. */
    327	if (rl)
    328		up_read(&ni->runlist.lock);
    329
    330	/* Check we have at least one buffer ready for i/o. */
    331	if (nr) {
    332		struct buffer_head *tbh;
    333
    334		/* Lock the buffers. */
    335		for (i = 0; i < nr; i++) {
    336			tbh = arr[i];
    337			lock_buffer(tbh);
    338			tbh->b_end_io = ntfs_end_buffer_async_read;
    339			set_buffer_async_read(tbh);
    340		}
    341		/* Finally, start i/o on the buffers. */
    342		for (i = 0; i < nr; i++) {
    343			tbh = arr[i];
    344			if (likely(!buffer_uptodate(tbh)))
    345				submit_bh(REQ_OP_READ, 0, tbh);
    346			else
    347				ntfs_end_buffer_async_read(tbh, 1);
    348		}
    349		return 0;
    350	}
    351	/* No i/o was scheduled on any of the buffers. */
    352	if (likely(!PageError(page)))
    353		SetPageUptodate(page);
    354	else /* Signal synchronous i/o error. */
    355		nr = -EIO;
    356	unlock_page(page);
    357	return nr;
    358}
    359
    360/**
    361 * ntfs_read_folio - fill a @folio of a @file with data from the device
    362 * @file:	open file to which the folio @folio belongs or NULL
    363 * @folio:	page cache folio to fill with data
    364 *
    365 * For non-resident attributes, ntfs_read_folio() fills the @folio of the open
    366 * file @file by calling the ntfs version of the generic block_read_full_folio()
    367 * function, ntfs_read_block(), which in turn creates and reads in the buffers
    368 * associated with the folio asynchronously.
    369 *
    370 * For resident attributes, OTOH, ntfs_read_folio() fills @folio by copying the
    371 * data from the mft record (which at this stage is most likely in memory) and
    372 * fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as
    373 * even if the mft record is not cached at this point in time, we need to wait
    374 * for it to be read in before we can do the copy.
    375 *
    376 * Return 0 on success and -errno on error.
    377 */
    378static int ntfs_read_folio(struct file *file, struct folio *folio)
    379{
    380	struct page *page = &folio->page;
    381	loff_t i_size;
    382	struct inode *vi;
    383	ntfs_inode *ni, *base_ni;
    384	u8 *addr;
    385	ntfs_attr_search_ctx *ctx;
    386	MFT_RECORD *mrec;
    387	unsigned long flags;
    388	u32 attr_len;
    389	int err = 0;
    390
    391retry_readpage:
    392	BUG_ON(!PageLocked(page));
    393	vi = page->mapping->host;
    394	i_size = i_size_read(vi);
    395	/* Is the page fully outside i_size? (truncate in progress) */
    396	if (unlikely(page->index >= (i_size + PAGE_SIZE - 1) >>
    397			PAGE_SHIFT)) {
    398		zero_user(page, 0, PAGE_SIZE);
    399		ntfs_debug("Read outside i_size - truncated?");
    400		goto done;
    401	}
    402	/*
    403	 * This can potentially happen because we clear PageUptodate() during
    404	 * ntfs_writepage() of MstProtected() attributes.
    405	 */
    406	if (PageUptodate(page)) {
    407		unlock_page(page);
    408		return 0;
    409	}
    410	ni = NTFS_I(vi);
    411	/*
    412	 * Only $DATA attributes can be encrypted and only unnamed $DATA
    413	 * attributes can be compressed.  Index root can have the flags set but
    414	 * this means to create compressed/encrypted files, not that the
    415	 * attribute is compressed/encrypted.  Note we need to check for
    416	 * AT_INDEX_ALLOCATION since this is the type of both directory and
    417	 * index inodes.
    418	 */
    419	if (ni->type != AT_INDEX_ALLOCATION) {
    420		/* If attribute is encrypted, deny access, just like NT4. */
    421		if (NInoEncrypted(ni)) {
    422			BUG_ON(ni->type != AT_DATA);
    423			err = -EACCES;
    424			goto err_out;
    425		}
    426		/* Compressed data streams are handled in compress.c. */
    427		if (NInoNonResident(ni) && NInoCompressed(ni)) {
    428			BUG_ON(ni->type != AT_DATA);
    429			BUG_ON(ni->name_len);
    430			return ntfs_read_compressed_block(page);
    431		}
    432	}
    433	/* NInoNonResident() == NInoIndexAllocPresent() */
    434	if (NInoNonResident(ni)) {
    435		/* Normal, non-resident data stream. */
    436		return ntfs_read_block(page);
    437	}
    438	/*
    439	 * Attribute is resident, implying it is not compressed or encrypted.
    440	 * This also means the attribute is smaller than an mft record and
    441	 * hence smaller than a page, so can simply zero out any pages with
    442	 * index above 0.  Note the attribute can actually be marked compressed
    443	 * but if it is resident the actual data is not compressed so we are
    444	 * ok to ignore the compressed flag here.
    445	 */
    446	if (unlikely(page->index > 0)) {
    447		zero_user(page, 0, PAGE_SIZE);
    448		goto done;
    449	}
    450	if (!NInoAttr(ni))
    451		base_ni = ni;
    452	else
    453		base_ni = ni->ext.base_ntfs_ino;
    454	/* Map, pin, and lock the mft record. */
    455	mrec = map_mft_record(base_ni);
    456	if (IS_ERR(mrec)) {
    457		err = PTR_ERR(mrec);
    458		goto err_out;
    459	}
    460	/*
    461	 * If a parallel write made the attribute non-resident, drop the mft
    462	 * record and retry the read_folio.
    463	 */
    464	if (unlikely(NInoNonResident(ni))) {
    465		unmap_mft_record(base_ni);
    466		goto retry_readpage;
    467	}
    468	ctx = ntfs_attr_get_search_ctx(base_ni, mrec);
    469	if (unlikely(!ctx)) {
    470		err = -ENOMEM;
    471		goto unm_err_out;
    472	}
    473	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
    474			CASE_SENSITIVE, 0, NULL, 0, ctx);
    475	if (unlikely(err))
    476		goto put_unm_err_out;
    477	attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
    478	read_lock_irqsave(&ni->size_lock, flags);
    479	if (unlikely(attr_len > ni->initialized_size))
    480		attr_len = ni->initialized_size;
    481	i_size = i_size_read(vi);
    482	read_unlock_irqrestore(&ni->size_lock, flags);
    483	if (unlikely(attr_len > i_size)) {
    484		/* Race with shrinking truncate. */
    485		attr_len = i_size;
    486	}
    487	addr = kmap_atomic(page);
    488	/* Copy the data to the page. */
    489	memcpy(addr, (u8*)ctx->attr +
    490			le16_to_cpu(ctx->attr->data.resident.value_offset),
    491			attr_len);
    492	/* Zero the remainder of the page. */
    493	memset(addr + attr_len, 0, PAGE_SIZE - attr_len);
    494	flush_dcache_page(page);
    495	kunmap_atomic(addr);
    496put_unm_err_out:
    497	ntfs_attr_put_search_ctx(ctx);
    498unm_err_out:
    499	unmap_mft_record(base_ni);
    500done:
    501	SetPageUptodate(page);
    502err_out:
    503	unlock_page(page);
    504	return err;
    505}
    506
    507#ifdef NTFS_RW
    508
    509/**
    510 * ntfs_write_block - write a @page to the backing store
    511 * @page:	page cache page to write out
    512 * @wbc:	writeback control structure
    513 *
    514 * This function is for writing pages belonging to non-resident, non-mst
    515 * protected attributes to their backing store.
    516 *
    517 * For a page with buffers, map and write the dirty buffers asynchronously
    518 * under page writeback. For a page without buffers, create buffers for the
    519 * page, then proceed as above.
    520 *
    521 * If a page doesn't have buffers the page dirty state is definitive. If a page
    522 * does have buffers, the page dirty state is just a hint, and the buffer dirty
    523 * state is definitive. (A hint which has rules: dirty buffers against a clean
    524 * page is illegal. Other combinations are legal and need to be handled. In
    525 * particular a dirty page containing clean buffers for example.)
    526 *
    527 * Return 0 on success and -errno on error.
    528 *
    529 * Based on ntfs_read_block() and __block_write_full_page().
    530 */
    531static int ntfs_write_block(struct page *page, struct writeback_control *wbc)
    532{
    533	VCN vcn;
    534	LCN lcn;
    535	s64 initialized_size;
    536	loff_t i_size;
    537	sector_t block, dblock, iblock;
    538	struct inode *vi;
    539	ntfs_inode *ni;
    540	ntfs_volume *vol;
    541	runlist_element *rl;
    542	struct buffer_head *bh, *head;
    543	unsigned long flags;
    544	unsigned int blocksize, vcn_ofs;
    545	int err;
    546	bool need_end_writeback;
    547	unsigned char blocksize_bits;
    548
    549	vi = page->mapping->host;
    550	ni = NTFS_I(vi);
    551	vol = ni->vol;
    552
    553	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
    554			"0x%lx.", ni->mft_no, ni->type, page->index);
    555
    556	BUG_ON(!NInoNonResident(ni));
    557	BUG_ON(NInoMstProtected(ni));
    558	blocksize = vol->sb->s_blocksize;
    559	blocksize_bits = vol->sb->s_blocksize_bits;
    560	if (!page_has_buffers(page)) {
    561		BUG_ON(!PageUptodate(page));
    562		create_empty_buffers(page, blocksize,
    563				(1 << BH_Uptodate) | (1 << BH_Dirty));
    564		if (unlikely(!page_has_buffers(page))) {
    565			ntfs_warning(vol->sb, "Error allocating page "
    566					"buffers.  Redirtying page so we try "
    567					"again later.");
    568			/*
    569			 * Put the page back on mapping->dirty_pages, but leave
    570			 * its buffers' dirty state as-is.
    571			 */
    572			redirty_page_for_writepage(wbc, page);
    573			unlock_page(page);
    574			return 0;
    575		}
    576	}
    577	bh = head = page_buffers(page);
    578	BUG_ON(!bh);
    579
    580	/* NOTE: Different naming scheme to ntfs_read_block()! */
    581
    582	/* The first block in the page. */
    583	block = (s64)page->index << (PAGE_SHIFT - blocksize_bits);
    584
    585	read_lock_irqsave(&ni->size_lock, flags);
    586	i_size = i_size_read(vi);
    587	initialized_size = ni->initialized_size;
    588	read_unlock_irqrestore(&ni->size_lock, flags);
    589
    590	/* The first out of bounds block for the data size. */
    591	dblock = (i_size + blocksize - 1) >> blocksize_bits;
    592
    593	/* The last (fully or partially) initialized block. */
    594	iblock = initialized_size >> blocksize_bits;
    595
    596	/*
    597	 * Be very careful.  We have no exclusion from block_dirty_folio
    598	 * here, and the (potentially unmapped) buffers may become dirty at
    599	 * any time.  If a buffer becomes dirty here after we've inspected it
    600	 * then we just miss that fact, and the page stays dirty.
    601	 *
    602	 * Buffers outside i_size may be dirtied by block_dirty_folio;
    603	 * handle that here by just cleaning them.
    604	 */
    605
    606	/*
    607	 * Loop through all the buffers in the page, mapping all the dirty
    608	 * buffers to disk addresses and handling any aliases from the
    609	 * underlying block device's mapping.
    610	 */
    611	rl = NULL;
    612	err = 0;
    613	do {
    614		bool is_retry = false;
    615
    616		if (unlikely(block >= dblock)) {
    617			/*
    618			 * Mapped buffers outside i_size will occur, because
    619			 * this page can be outside i_size when there is a
    620			 * truncate in progress. The contents of such buffers
    621			 * were zeroed by ntfs_writepage().
    622			 *
    623			 * FIXME: What about the small race window where
    624			 * ntfs_writepage() has not done any clearing because
    625			 * the page was within i_size but before we get here,
    626			 * vmtruncate() modifies i_size?
    627			 */
    628			clear_buffer_dirty(bh);
    629			set_buffer_uptodate(bh);
    630			continue;
    631		}
    632
    633		/* Clean buffers are not written out, so no need to map them. */
    634		if (!buffer_dirty(bh))
    635			continue;
    636
    637		/* Make sure we have enough initialized size. */
    638		if (unlikely((block >= iblock) &&
    639				(initialized_size < i_size))) {
    640			/*
    641			 * If this page is fully outside initialized
    642			 * size, zero out all pages between the current
    643			 * initialized size and the current page. Just
    644			 * use ntfs_read_folio() to do the zeroing
    645			 * transparently.
    646			 */
    647			if (block > iblock) {
    648				// TODO:
    649				// For each page do:
    650				// - read_cache_page()
    651				// Again for each page do:
    652				// - wait_on_page_locked()
    653				// - Check (PageUptodate(page) &&
    654				//			!PageError(page))
    655				// Update initialized size in the attribute and
    656				// in the inode.
    657				// Again, for each page do:
    658				//	block_dirty_folio();
    659				// put_page()
    660				// We don't need to wait on the writes.
    661				// Update iblock.
    662			}
    663			/*
    664			 * The current page straddles initialized size. Zero
    665			 * all non-uptodate buffers and set them uptodate (and
    666			 * dirty?). Note, there aren't any non-uptodate buffers
    667			 * if the page is uptodate.
    668			 * FIXME: For an uptodate page, the buffers may need to
    669			 * be written out because they were not initialized on
    670			 * disk before.
    671			 */
    672			if (!PageUptodate(page)) {
    673				// TODO:
    674				// Zero any non-uptodate buffers up to i_size.
    675				// Set them uptodate and dirty.
    676			}
    677			// TODO:
    678			// Update initialized size in the attribute and in the
    679			// inode (up to i_size).
    680			// Update iblock.
    681			// FIXME: This is inefficient. Try to batch the two
    682			// size changes to happen in one go.
    683			ntfs_error(vol->sb, "Writing beyond initialized size "
    684					"is not supported yet. Sorry.");
    685			err = -EOPNOTSUPP;
    686			break;
    687			// Do NOT set_buffer_new() BUT DO clear buffer range
    688			// outside write request range.
    689			// set_buffer_uptodate() on complete buffers as well as
    690			// set_buffer_dirty().
    691		}
    692
    693		/* No need to map buffers that are already mapped. */
    694		if (buffer_mapped(bh))
    695			continue;
    696
    697		/* Unmapped, dirty buffer. Need to map it. */
    698		bh->b_bdev = vol->sb->s_bdev;
    699
    700		/* Convert block into corresponding vcn and offset. */
    701		vcn = (VCN)block << blocksize_bits;
    702		vcn_ofs = vcn & vol->cluster_size_mask;
    703		vcn >>= vol->cluster_size_bits;
    704		if (!rl) {
    705lock_retry_remap:
    706			down_read(&ni->runlist.lock);
    707			rl = ni->runlist.rl;
    708		}
    709		if (likely(rl != NULL)) {
    710			/* Seek to element containing target vcn. */
    711			while (rl->length && rl[1].vcn <= vcn)
    712				rl++;
    713			lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
    714		} else
    715			lcn = LCN_RL_NOT_MAPPED;
    716		/* Successful remap. */
    717		if (lcn >= 0) {
    718			/* Setup buffer head to point to correct block. */
    719			bh->b_blocknr = ((lcn << vol->cluster_size_bits) +
    720					vcn_ofs) >> blocksize_bits;
    721			set_buffer_mapped(bh);
    722			continue;
    723		}
    724		/* It is a hole, need to instantiate it. */
    725		if (lcn == LCN_HOLE) {
    726			u8 *kaddr;
    727			unsigned long *bpos, *bend;
    728
    729			/* Check if the buffer is zero. */
    730			kaddr = kmap_atomic(page);
    731			bpos = (unsigned long *)(kaddr + bh_offset(bh));
    732			bend = (unsigned long *)((u8*)bpos + blocksize);
    733			do {
    734				if (unlikely(*bpos))
    735					break;
    736			} while (likely(++bpos < bend));
    737			kunmap_atomic(kaddr);
    738			if (bpos == bend) {
    739				/*
    740				 * Buffer is zero and sparse, no need to write
    741				 * it.
    742				 */
    743				bh->b_blocknr = -1;
    744				clear_buffer_dirty(bh);
    745				continue;
    746			}
    747			// TODO: Instantiate the hole.
    748			// clear_buffer_new(bh);
    749			// clean_bdev_bh_alias(bh);
    750			ntfs_error(vol->sb, "Writing into sparse regions is "
    751					"not supported yet. Sorry.");
    752			err = -EOPNOTSUPP;
    753			break;
    754		}
    755		/* If first try and runlist unmapped, map and retry. */
    756		if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
    757			is_retry = true;
    758			/*
    759			 * Attempt to map runlist, dropping lock for
    760			 * the duration.
    761			 */
    762			up_read(&ni->runlist.lock);
    763			err = ntfs_map_runlist(ni, vcn);
    764			if (likely(!err))
    765				goto lock_retry_remap;
    766			rl = NULL;
    767		} else if (!rl)
    768			up_read(&ni->runlist.lock);
    769		/*
    770		 * If buffer is outside the runlist, truncate has cut it out
    771		 * of the runlist.  Just clean and clear the buffer and set it
    772		 * uptodate so it can get discarded by the VM.
    773		 */
    774		if (err == -ENOENT || lcn == LCN_ENOENT) {
    775			bh->b_blocknr = -1;
    776			clear_buffer_dirty(bh);
    777			zero_user(page, bh_offset(bh), blocksize);
    778			set_buffer_uptodate(bh);
    779			err = 0;
    780			continue;
    781		}
    782		/* Failed to map the buffer, even after retrying. */
    783		if (!err)
    784			err = -EIO;
    785		bh->b_blocknr = -1;
    786		ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
    787				"attribute type 0x%x, vcn 0x%llx, offset 0x%x "
    788				"because its location on disk could not be "
    789				"determined%s (error code %i).", ni->mft_no,
    790				ni->type, (unsigned long long)vcn,
    791				vcn_ofs, is_retry ? " even after "
    792				"retrying" : "", err);
    793		break;
    794	} while (block++, (bh = bh->b_this_page) != head);
    795
    796	/* Release the lock if we took it. */
    797	if (rl)
    798		up_read(&ni->runlist.lock);
    799
    800	/* For the error case, need to reset bh to the beginning. */
    801	bh = head;
    802
    803	/* Just an optimization, so ->read_folio() is not called later. */
    804	if (unlikely(!PageUptodate(page))) {
    805		int uptodate = 1;
    806		do {
    807			if (!buffer_uptodate(bh)) {
    808				uptodate = 0;
    809				bh = head;
    810				break;
    811			}
    812		} while ((bh = bh->b_this_page) != head);
    813		if (uptodate)
    814			SetPageUptodate(page);
    815	}
    816
    817	/* Setup all mapped, dirty buffers for async write i/o. */
    818	do {
    819		if (buffer_mapped(bh) && buffer_dirty(bh)) {
    820			lock_buffer(bh);
    821			if (test_clear_buffer_dirty(bh)) {
    822				BUG_ON(!buffer_uptodate(bh));
    823				mark_buffer_async_write(bh);
    824			} else
    825				unlock_buffer(bh);
    826		} else if (unlikely(err)) {
    827			/*
    828			 * For the error case. The buffer may have been set
    829			 * dirty during attachment to a dirty page.
    830			 */
    831			if (err != -ENOMEM)
    832				clear_buffer_dirty(bh);
    833		}
    834	} while ((bh = bh->b_this_page) != head);
    835
    836	if (unlikely(err)) {
    837		// TODO: Remove the -EOPNOTSUPP check later on...
    838		if (unlikely(err == -EOPNOTSUPP))
    839			err = 0;
    840		else if (err == -ENOMEM) {
    841			ntfs_warning(vol->sb, "Error allocating memory. "
    842					"Redirtying page so we try again "
    843					"later.");
    844			/*
    845			 * Put the page back on mapping->dirty_pages, but
    846			 * leave its buffer's dirty state as-is.
    847			 */
    848			redirty_page_for_writepage(wbc, page);
    849			err = 0;
    850		} else
    851			SetPageError(page);
    852	}
    853
    854	BUG_ON(PageWriteback(page));
    855	set_page_writeback(page);	/* Keeps try_to_free_buffers() away. */
    856
    857	/* Submit the prepared buffers for i/o. */
    858	need_end_writeback = true;
    859	do {
    860		struct buffer_head *next = bh->b_this_page;
    861		if (buffer_async_write(bh)) {
    862			submit_bh(REQ_OP_WRITE, 0, bh);
    863			need_end_writeback = false;
    864		}
    865		bh = next;
    866	} while (bh != head);
    867	unlock_page(page);
    868
    869	/* If no i/o was started, need to end_page_writeback(). */
    870	if (unlikely(need_end_writeback))
    871		end_page_writeback(page);
    872
    873	ntfs_debug("Done.");
    874	return err;
    875}
    876
    877/**
    878 * ntfs_write_mst_block - write a @page to the backing store
    879 * @page:	page cache page to write out
    880 * @wbc:	writeback control structure
    881 *
    882 * This function is for writing pages belonging to non-resident, mst protected
    883 * attributes to their backing store.  The only supported attributes are index
    884 * allocation and $MFT/$DATA.  Both directory inodes and index inodes are
    885 * supported for the index allocation case.
    886 *
    887 * The page must remain locked for the duration of the write because we apply
    888 * the mst fixups, write, and then undo the fixups, so if we were to unlock the
    889 * page before undoing the fixups, any other user of the page will see the
    890 * page contents as corrupt.
    891 *
    892 * We clear the page uptodate flag for the duration of the function to ensure
    893 * exclusion for the $MFT/$DATA case against someone mapping an mft record we
    894 * are about to apply the mst fixups to.
    895 *
    896 * Return 0 on success and -errno on error.
    897 *
    898 * Based on ntfs_write_block(), ntfs_mft_writepage(), and
    899 * write_mft_record_nolock().
    900 */
    901static int ntfs_write_mst_block(struct page *page,
    902		struct writeback_control *wbc)
    903{
    904	sector_t block, dblock, rec_block;
    905	struct inode *vi = page->mapping->host;
    906	ntfs_inode *ni = NTFS_I(vi);
    907	ntfs_volume *vol = ni->vol;
    908	u8 *kaddr;
    909	unsigned int rec_size = ni->itype.index.block_size;
    910	ntfs_inode *locked_nis[PAGE_SIZE / NTFS_BLOCK_SIZE];
    911	struct buffer_head *bh, *head, *tbh, *rec_start_bh;
    912	struct buffer_head *bhs[MAX_BUF_PER_PAGE];
    913	runlist_element *rl;
    914	int i, nr_locked_nis, nr_recs, nr_bhs, max_bhs, bhs_per_rec, err, err2;
    915	unsigned bh_size, rec_size_bits;
    916	bool sync, is_mft, page_is_dirty, rec_is_dirty;
    917	unsigned char bh_size_bits;
    918
    919	if (WARN_ON(rec_size < NTFS_BLOCK_SIZE))
    920		return -EINVAL;
    921
    922	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
    923			"0x%lx.", vi->i_ino, ni->type, page->index);
    924	BUG_ON(!NInoNonResident(ni));
    925	BUG_ON(!NInoMstProtected(ni));
    926	is_mft = (S_ISREG(vi->i_mode) && !vi->i_ino);
    927	/*
    928	 * NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page
    929	 * in its page cache were to be marked dirty.  However this should
    930	 * never happen with the current driver and considering we do not
    931	 * handle this case here we do want to BUG(), at least for now.
    932	 */
    933	BUG_ON(!(is_mft || S_ISDIR(vi->i_mode) ||
    934			(NInoAttr(ni) && ni->type == AT_INDEX_ALLOCATION)));
    935	bh_size = vol->sb->s_blocksize;
    936	bh_size_bits = vol->sb->s_blocksize_bits;
    937	max_bhs = PAGE_SIZE / bh_size;
    938	BUG_ON(!max_bhs);
    939	BUG_ON(max_bhs > MAX_BUF_PER_PAGE);
    940
    941	/* Were we called for sync purposes? */
    942	sync = (wbc->sync_mode == WB_SYNC_ALL);
    943
    944	/* Make sure we have mapped buffers. */
    945	bh = head = page_buffers(page);
    946	BUG_ON(!bh);
    947
    948	rec_size_bits = ni->itype.index.block_size_bits;
    949	BUG_ON(!(PAGE_SIZE >> rec_size_bits));
    950	bhs_per_rec = rec_size >> bh_size_bits;
    951	BUG_ON(!bhs_per_rec);
    952
    953	/* The first block in the page. */
    954	rec_block = block = (sector_t)page->index <<
    955			(PAGE_SHIFT - bh_size_bits);
    956
    957	/* The first out of bounds block for the data size. */
    958	dblock = (i_size_read(vi) + bh_size - 1) >> bh_size_bits;
    959
    960	rl = NULL;
    961	err = err2 = nr_bhs = nr_recs = nr_locked_nis = 0;
    962	page_is_dirty = rec_is_dirty = false;
    963	rec_start_bh = NULL;
    964	do {
    965		bool is_retry = false;
    966
    967		if (likely(block < rec_block)) {
    968			if (unlikely(block >= dblock)) {
    969				clear_buffer_dirty(bh);
    970				set_buffer_uptodate(bh);
    971				continue;
    972			}
    973			/*
    974			 * This block is not the first one in the record.  We
    975			 * ignore the buffer's dirty state because we could
    976			 * have raced with a parallel mark_ntfs_record_dirty().
    977			 */
    978			if (!rec_is_dirty)
    979				continue;
    980			if (unlikely(err2)) {
    981				if (err2 != -ENOMEM)
    982					clear_buffer_dirty(bh);
    983				continue;
    984			}
    985		} else /* if (block == rec_block) */ {
    986			BUG_ON(block > rec_block);
    987			/* This block is the first one in the record. */
    988			rec_block += bhs_per_rec;
    989			err2 = 0;
    990			if (unlikely(block >= dblock)) {
    991				clear_buffer_dirty(bh);
    992				continue;
    993			}
    994			if (!buffer_dirty(bh)) {
    995				/* Clean records are not written out. */
    996				rec_is_dirty = false;
    997				continue;
    998			}
    999			rec_is_dirty = true;
   1000			rec_start_bh = bh;
   1001		}
   1002		/* Need to map the buffer if it is not mapped already. */
   1003		if (unlikely(!buffer_mapped(bh))) {
   1004			VCN vcn;
   1005			LCN lcn;
   1006			unsigned int vcn_ofs;
   1007
   1008			bh->b_bdev = vol->sb->s_bdev;
   1009			/* Obtain the vcn and offset of the current block. */
   1010			vcn = (VCN)block << bh_size_bits;
   1011			vcn_ofs = vcn & vol->cluster_size_mask;
   1012			vcn >>= vol->cluster_size_bits;
   1013			if (!rl) {
   1014lock_retry_remap:
   1015				down_read(&ni->runlist.lock);
   1016				rl = ni->runlist.rl;
   1017			}
   1018			if (likely(rl != NULL)) {
   1019				/* Seek to element containing target vcn. */
   1020				while (rl->length && rl[1].vcn <= vcn)
   1021					rl++;
   1022				lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
   1023			} else
   1024				lcn = LCN_RL_NOT_MAPPED;
   1025			/* Successful remap. */
   1026			if (likely(lcn >= 0)) {
   1027				/* Setup buffer head to correct block. */
   1028				bh->b_blocknr = ((lcn <<
   1029						vol->cluster_size_bits) +
   1030						vcn_ofs) >> bh_size_bits;
   1031				set_buffer_mapped(bh);
   1032			} else {
   1033				/*
   1034				 * Remap failed.  Retry to map the runlist once
   1035				 * unless we are working on $MFT which always
   1036				 * has the whole of its runlist in memory.
   1037				 */
   1038				if (!is_mft && !is_retry &&
   1039						lcn == LCN_RL_NOT_MAPPED) {
   1040					is_retry = true;
   1041					/*
   1042					 * Attempt to map runlist, dropping
   1043					 * lock for the duration.
   1044					 */
   1045					up_read(&ni->runlist.lock);
   1046					err2 = ntfs_map_runlist(ni, vcn);
   1047					if (likely(!err2))
   1048						goto lock_retry_remap;
   1049					if (err2 == -ENOMEM)
   1050						page_is_dirty = true;
   1051					lcn = err2;
   1052				} else {
   1053					err2 = -EIO;
   1054					if (!rl)
   1055						up_read(&ni->runlist.lock);
   1056				}
   1057				/* Hard error.  Abort writing this record. */
   1058				if (!err || err == -ENOMEM)
   1059					err = err2;
   1060				bh->b_blocknr = -1;
   1061				ntfs_error(vol->sb, "Cannot write ntfs record "
   1062						"0x%llx (inode 0x%lx, "
   1063						"attribute type 0x%x) because "
   1064						"its location on disk could "
   1065						"not be determined (error "
   1066						"code %lli).",
   1067						(long long)block <<
   1068						bh_size_bits >>
   1069						vol->mft_record_size_bits,
   1070						ni->mft_no, ni->type,
   1071						(long long)lcn);
   1072				/*
   1073				 * If this is not the first buffer, remove the
   1074				 * buffers in this record from the list of
   1075				 * buffers to write and clear their dirty bit
   1076				 * if not error -ENOMEM.
   1077				 */
   1078				if (rec_start_bh != bh) {
   1079					while (bhs[--nr_bhs] != rec_start_bh)
   1080						;
   1081					if (err2 != -ENOMEM) {
   1082						do {
   1083							clear_buffer_dirty(
   1084								rec_start_bh);
   1085						} while ((rec_start_bh =
   1086								rec_start_bh->
   1087								b_this_page) !=
   1088								bh);
   1089					}
   1090				}
   1091				continue;
   1092			}
   1093		}
   1094		BUG_ON(!buffer_uptodate(bh));
   1095		BUG_ON(nr_bhs >= max_bhs);
   1096		bhs[nr_bhs++] = bh;
   1097	} while (block++, (bh = bh->b_this_page) != head);
   1098	if (unlikely(rl))
   1099		up_read(&ni->runlist.lock);
   1100	/* If there were no dirty buffers, we are done. */
   1101	if (!nr_bhs)
   1102		goto done;
   1103	/* Map the page so we can access its contents. */
   1104	kaddr = kmap(page);
   1105	/* Clear the page uptodate flag whilst the mst fixups are applied. */
   1106	BUG_ON(!PageUptodate(page));
   1107	ClearPageUptodate(page);
   1108	for (i = 0; i < nr_bhs; i++) {
   1109		unsigned int ofs;
   1110
   1111		/* Skip buffers which are not at the beginning of records. */
   1112		if (i % bhs_per_rec)
   1113			continue;
   1114		tbh = bhs[i];
   1115		ofs = bh_offset(tbh);
   1116		if (is_mft) {
   1117			ntfs_inode *tni;
   1118			unsigned long mft_no;
   1119
   1120			/* Get the mft record number. */
   1121			mft_no = (((s64)page->index << PAGE_SHIFT) + ofs)
   1122					>> rec_size_bits;
   1123			/* Check whether to write this mft record. */
   1124			tni = NULL;
   1125			if (!ntfs_may_write_mft_record(vol, mft_no,
   1126					(MFT_RECORD*)(kaddr + ofs), &tni)) {
   1127				/*
   1128				 * The record should not be written.  This
   1129				 * means we need to redirty the page before
   1130				 * returning.
   1131				 */
   1132				page_is_dirty = true;
   1133				/*
   1134				 * Remove the buffers in this mft record from
   1135				 * the list of buffers to write.
   1136				 */
   1137				do {
   1138					bhs[i] = NULL;
   1139				} while (++i % bhs_per_rec);
   1140				continue;
   1141			}
   1142			/*
   1143			 * The record should be written.  If a locked ntfs
   1144			 * inode was returned, add it to the array of locked
   1145			 * ntfs inodes.
   1146			 */
   1147			if (tni)
   1148				locked_nis[nr_locked_nis++] = tni;
   1149		}
   1150		/* Apply the mst protection fixups. */
   1151		err2 = pre_write_mst_fixup((NTFS_RECORD*)(kaddr + ofs),
   1152				rec_size);
   1153		if (unlikely(err2)) {
   1154			if (!err || err == -ENOMEM)
   1155				err = -EIO;
   1156			ntfs_error(vol->sb, "Failed to apply mst fixups "
   1157					"(inode 0x%lx, attribute type 0x%x, "
   1158					"page index 0x%lx, page offset 0x%x)!"
   1159					"  Unmount and run chkdsk.", vi->i_ino,
   1160					ni->type, page->index, ofs);
   1161			/*
   1162			 * Mark all the buffers in this record clean as we do
   1163			 * not want to write corrupt data to disk.
   1164			 */
   1165			do {
   1166				clear_buffer_dirty(bhs[i]);
   1167				bhs[i] = NULL;
   1168			} while (++i % bhs_per_rec);
   1169			continue;
   1170		}
   1171		nr_recs++;
   1172	}
   1173	/* If no records are to be written out, we are done. */
   1174	if (!nr_recs)
   1175		goto unm_done;
   1176	flush_dcache_page(page);
   1177	/* Lock buffers and start synchronous write i/o on them. */
   1178	for (i = 0; i < nr_bhs; i++) {
   1179		tbh = bhs[i];
   1180		if (!tbh)
   1181			continue;
   1182		if (!trylock_buffer(tbh))
   1183			BUG();
   1184		/* The buffer dirty state is now irrelevant, just clean it. */
   1185		clear_buffer_dirty(tbh);
   1186		BUG_ON(!buffer_uptodate(tbh));
   1187		BUG_ON(!buffer_mapped(tbh));
   1188		get_bh(tbh);
   1189		tbh->b_end_io = end_buffer_write_sync;
   1190		submit_bh(REQ_OP_WRITE, 0, tbh);
   1191	}
   1192	/* Synchronize the mft mirror now if not @sync. */
   1193	if (is_mft && !sync)
   1194		goto do_mirror;
   1195do_wait:
   1196	/* Wait on i/o completion of buffers. */
   1197	for (i = 0; i < nr_bhs; i++) {
   1198		tbh = bhs[i];
   1199		if (!tbh)
   1200			continue;
   1201		wait_on_buffer(tbh);
   1202		if (unlikely(!buffer_uptodate(tbh))) {
   1203			ntfs_error(vol->sb, "I/O error while writing ntfs "
   1204					"record buffer (inode 0x%lx, "
   1205					"attribute type 0x%x, page index "
   1206					"0x%lx, page offset 0x%lx)!  Unmount "
   1207					"and run chkdsk.", vi->i_ino, ni->type,
   1208					page->index, bh_offset(tbh));
   1209			if (!err || err == -ENOMEM)
   1210				err = -EIO;
   1211			/*
   1212			 * Set the buffer uptodate so the page and buffer
   1213			 * states do not become out of sync.
   1214			 */
   1215			set_buffer_uptodate(tbh);
   1216		}
   1217	}
   1218	/* If @sync, now synchronize the mft mirror. */
   1219	if (is_mft && sync) {
   1220do_mirror:
   1221		for (i = 0; i < nr_bhs; i++) {
   1222			unsigned long mft_no;
   1223			unsigned int ofs;
   1224
   1225			/*
   1226			 * Skip buffers which are not at the beginning of
   1227			 * records.
   1228			 */
   1229			if (i % bhs_per_rec)
   1230				continue;
   1231			tbh = bhs[i];
   1232			/* Skip removed buffers (and hence records). */
   1233			if (!tbh)
   1234				continue;
   1235			ofs = bh_offset(tbh);
   1236			/* Get the mft record number. */
   1237			mft_no = (((s64)page->index << PAGE_SHIFT) + ofs)
   1238					>> rec_size_bits;
   1239			if (mft_no < vol->mftmirr_size)
   1240				ntfs_sync_mft_mirror(vol, mft_no,
   1241						(MFT_RECORD*)(kaddr + ofs),
   1242						sync);
   1243		}
   1244		if (!sync)
   1245			goto do_wait;
   1246	}
   1247	/* Remove the mst protection fixups again. */
   1248	for (i = 0; i < nr_bhs; i++) {
   1249		if (!(i % bhs_per_rec)) {
   1250			tbh = bhs[i];
   1251			if (!tbh)
   1252				continue;
   1253			post_write_mst_fixup((NTFS_RECORD*)(kaddr +
   1254					bh_offset(tbh)));
   1255		}
   1256	}
   1257	flush_dcache_page(page);
   1258unm_done:
   1259	/* Unlock any locked inodes. */
   1260	while (nr_locked_nis-- > 0) {
   1261		ntfs_inode *tni, *base_tni;
   1262		
   1263		tni = locked_nis[nr_locked_nis];
   1264		/* Get the base inode. */
   1265		mutex_lock(&tni->extent_lock);
   1266		if (tni->nr_extents >= 0)
   1267			base_tni = tni;
   1268		else {
   1269			base_tni = tni->ext.base_ntfs_ino;
   1270			BUG_ON(!base_tni);
   1271		}
   1272		mutex_unlock(&tni->extent_lock);
   1273		ntfs_debug("Unlocking %s inode 0x%lx.",
   1274				tni == base_tni ? "base" : "extent",
   1275				tni->mft_no);
   1276		mutex_unlock(&tni->mrec_lock);
   1277		atomic_dec(&tni->count);
   1278		iput(VFS_I(base_tni));
   1279	}
   1280	SetPageUptodate(page);
   1281	kunmap(page);
   1282done:
   1283	if (unlikely(err && err != -ENOMEM)) {
   1284		/*
   1285		 * Set page error if there is only one ntfs record in the page.
   1286		 * Otherwise we would loose per-record granularity.
   1287		 */
   1288		if (ni->itype.index.block_size == PAGE_SIZE)
   1289			SetPageError(page);
   1290		NVolSetErrors(vol);
   1291	}
   1292	if (page_is_dirty) {
   1293		ntfs_debug("Page still contains one or more dirty ntfs "
   1294				"records.  Redirtying the page starting at "
   1295				"record 0x%lx.", page->index <<
   1296				(PAGE_SHIFT - rec_size_bits));
   1297		redirty_page_for_writepage(wbc, page);
   1298		unlock_page(page);
   1299	} else {
   1300		/*
   1301		 * Keep the VM happy.  This must be done otherwise the
   1302		 * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though
   1303		 * the page is clean.
   1304		 */
   1305		BUG_ON(PageWriteback(page));
   1306		set_page_writeback(page);
   1307		unlock_page(page);
   1308		end_page_writeback(page);
   1309	}
   1310	if (likely(!err))
   1311		ntfs_debug("Done.");
   1312	return err;
   1313}
   1314
   1315/**
   1316 * ntfs_writepage - write a @page to the backing store
   1317 * @page:	page cache page to write out
   1318 * @wbc:	writeback control structure
   1319 *
   1320 * This is called from the VM when it wants to have a dirty ntfs page cache
   1321 * page cleaned.  The VM has already locked the page and marked it clean.
   1322 *
   1323 * For non-resident attributes, ntfs_writepage() writes the @page by calling
   1324 * the ntfs version of the generic block_write_full_page() function,
   1325 * ntfs_write_block(), which in turn if necessary creates and writes the
   1326 * buffers associated with the page asynchronously.
   1327 *
   1328 * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying
   1329 * the data to the mft record (which at this stage is most likely in memory).
   1330 * The mft record is then marked dirty and written out asynchronously via the
   1331 * vfs inode dirty code path for the inode the mft record belongs to or via the
   1332 * vm page dirty code path for the page the mft record is in.
   1333 *
   1334 * Based on ntfs_read_folio() and fs/buffer.c::block_write_full_page().
   1335 *
   1336 * Return 0 on success and -errno on error.
   1337 */
   1338static int ntfs_writepage(struct page *page, struct writeback_control *wbc)
   1339{
   1340	loff_t i_size;
   1341	struct inode *vi = page->mapping->host;
   1342	ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi);
   1343	char *addr;
   1344	ntfs_attr_search_ctx *ctx = NULL;
   1345	MFT_RECORD *m = NULL;
   1346	u32 attr_len;
   1347	int err;
   1348
   1349retry_writepage:
   1350	BUG_ON(!PageLocked(page));
   1351	i_size = i_size_read(vi);
   1352	/* Is the page fully outside i_size? (truncate in progress) */
   1353	if (unlikely(page->index >= (i_size + PAGE_SIZE - 1) >>
   1354			PAGE_SHIFT)) {
   1355		struct folio *folio = page_folio(page);
   1356		/*
   1357		 * The page may have dirty, unmapped buffers.  Make them
   1358		 * freeable here, so the page does not leak.
   1359		 */
   1360		block_invalidate_folio(folio, 0, folio_size(folio));
   1361		folio_unlock(folio);
   1362		ntfs_debug("Write outside i_size - truncated?");
   1363		return 0;
   1364	}
   1365	/*
   1366	 * Only $DATA attributes can be encrypted and only unnamed $DATA
   1367	 * attributes can be compressed.  Index root can have the flags set but
   1368	 * this means to create compressed/encrypted files, not that the
   1369	 * attribute is compressed/encrypted.  Note we need to check for
   1370	 * AT_INDEX_ALLOCATION since this is the type of both directory and
   1371	 * index inodes.
   1372	 */
   1373	if (ni->type != AT_INDEX_ALLOCATION) {
   1374		/* If file is encrypted, deny access, just like NT4. */
   1375		if (NInoEncrypted(ni)) {
   1376			unlock_page(page);
   1377			BUG_ON(ni->type != AT_DATA);
   1378			ntfs_debug("Denying write access to encrypted file.");
   1379			return -EACCES;
   1380		}
   1381		/* Compressed data streams are handled in compress.c. */
   1382		if (NInoNonResident(ni) && NInoCompressed(ni)) {
   1383			BUG_ON(ni->type != AT_DATA);
   1384			BUG_ON(ni->name_len);
   1385			// TODO: Implement and replace this with
   1386			// return ntfs_write_compressed_block(page);
   1387			unlock_page(page);
   1388			ntfs_error(vi->i_sb, "Writing to compressed files is "
   1389					"not supported yet.  Sorry.");
   1390			return -EOPNOTSUPP;
   1391		}
   1392		// TODO: Implement and remove this check.
   1393		if (NInoNonResident(ni) && NInoSparse(ni)) {
   1394			unlock_page(page);
   1395			ntfs_error(vi->i_sb, "Writing to sparse files is not "
   1396					"supported yet.  Sorry.");
   1397			return -EOPNOTSUPP;
   1398		}
   1399	}
   1400	/* NInoNonResident() == NInoIndexAllocPresent() */
   1401	if (NInoNonResident(ni)) {
   1402		/* We have to zero every time due to mmap-at-end-of-file. */
   1403		if (page->index >= (i_size >> PAGE_SHIFT)) {
   1404			/* The page straddles i_size. */
   1405			unsigned int ofs = i_size & ~PAGE_MASK;
   1406			zero_user_segment(page, ofs, PAGE_SIZE);
   1407		}
   1408		/* Handle mst protected attributes. */
   1409		if (NInoMstProtected(ni))
   1410			return ntfs_write_mst_block(page, wbc);
   1411		/* Normal, non-resident data stream. */
   1412		return ntfs_write_block(page, wbc);
   1413	}
   1414	/*
   1415	 * Attribute is resident, implying it is not compressed, encrypted, or
   1416	 * mst protected.  This also means the attribute is smaller than an mft
   1417	 * record and hence smaller than a page, so can simply return error on
   1418	 * any pages with index above 0.  Note the attribute can actually be
   1419	 * marked compressed but if it is resident the actual data is not
   1420	 * compressed so we are ok to ignore the compressed flag here.
   1421	 */
   1422	BUG_ON(page_has_buffers(page));
   1423	BUG_ON(!PageUptodate(page));
   1424	if (unlikely(page->index > 0)) {
   1425		ntfs_error(vi->i_sb, "BUG()! page->index (0x%lx) > 0.  "
   1426				"Aborting write.", page->index);
   1427		BUG_ON(PageWriteback(page));
   1428		set_page_writeback(page);
   1429		unlock_page(page);
   1430		end_page_writeback(page);
   1431		return -EIO;
   1432	}
   1433	if (!NInoAttr(ni))
   1434		base_ni = ni;
   1435	else
   1436		base_ni = ni->ext.base_ntfs_ino;
   1437	/* Map, pin, and lock the mft record. */
   1438	m = map_mft_record(base_ni);
   1439	if (IS_ERR(m)) {
   1440		err = PTR_ERR(m);
   1441		m = NULL;
   1442		ctx = NULL;
   1443		goto err_out;
   1444	}
   1445	/*
   1446	 * If a parallel write made the attribute non-resident, drop the mft
   1447	 * record and retry the writepage.
   1448	 */
   1449	if (unlikely(NInoNonResident(ni))) {
   1450		unmap_mft_record(base_ni);
   1451		goto retry_writepage;
   1452	}
   1453	ctx = ntfs_attr_get_search_ctx(base_ni, m);
   1454	if (unlikely(!ctx)) {
   1455		err = -ENOMEM;
   1456		goto err_out;
   1457	}
   1458	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
   1459			CASE_SENSITIVE, 0, NULL, 0, ctx);
   1460	if (unlikely(err))
   1461		goto err_out;
   1462	/*
   1463	 * Keep the VM happy.  This must be done otherwise the radix-tree tag
   1464	 * PAGECACHE_TAG_DIRTY remains set even though the page is clean.
   1465	 */
   1466	BUG_ON(PageWriteback(page));
   1467	set_page_writeback(page);
   1468	unlock_page(page);
   1469	attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
   1470	i_size = i_size_read(vi);
   1471	if (unlikely(attr_len > i_size)) {
   1472		/* Race with shrinking truncate or a failed truncate. */
   1473		attr_len = i_size;
   1474		/*
   1475		 * If the truncate failed, fix it up now.  If a concurrent
   1476		 * truncate, we do its job, so it does not have to do anything.
   1477		 */
   1478		err = ntfs_resident_attr_value_resize(ctx->mrec, ctx->attr,
   1479				attr_len);
   1480		/* Shrinking cannot fail. */
   1481		BUG_ON(err);
   1482	}
   1483	addr = kmap_atomic(page);
   1484	/* Copy the data from the page to the mft record. */
   1485	memcpy((u8*)ctx->attr +
   1486			le16_to_cpu(ctx->attr->data.resident.value_offset),
   1487			addr, attr_len);
   1488	/* Zero out of bounds area in the page cache page. */
   1489	memset(addr + attr_len, 0, PAGE_SIZE - attr_len);
   1490	kunmap_atomic(addr);
   1491	flush_dcache_page(page);
   1492	flush_dcache_mft_record_page(ctx->ntfs_ino);
   1493	/* We are done with the page. */
   1494	end_page_writeback(page);
   1495	/* Finally, mark the mft record dirty, so it gets written back. */
   1496	mark_mft_record_dirty(ctx->ntfs_ino);
   1497	ntfs_attr_put_search_ctx(ctx);
   1498	unmap_mft_record(base_ni);
   1499	return 0;
   1500err_out:
   1501	if (err == -ENOMEM) {
   1502		ntfs_warning(vi->i_sb, "Error allocating memory. Redirtying "
   1503				"page so we try again later.");
   1504		/*
   1505		 * Put the page back on mapping->dirty_pages, but leave its
   1506		 * buffers' dirty state as-is.
   1507		 */
   1508		redirty_page_for_writepage(wbc, page);
   1509		err = 0;
   1510	} else {
   1511		ntfs_error(vi->i_sb, "Resident attribute write failed with "
   1512				"error %i.", err);
   1513		SetPageError(page);
   1514		NVolSetErrors(ni->vol);
   1515	}
   1516	unlock_page(page);
   1517	if (ctx)
   1518		ntfs_attr_put_search_ctx(ctx);
   1519	if (m)
   1520		unmap_mft_record(base_ni);
   1521	return err;
   1522}
   1523
   1524#endif	/* NTFS_RW */
   1525
   1526/**
   1527 * ntfs_bmap - map logical file block to physical device block
   1528 * @mapping:	address space mapping to which the block to be mapped belongs
   1529 * @block:	logical block to map to its physical device block
   1530 *
   1531 * For regular, non-resident files (i.e. not compressed and not encrypted), map
   1532 * the logical @block belonging to the file described by the address space
   1533 * mapping @mapping to its physical device block.
   1534 *
   1535 * The size of the block is equal to the @s_blocksize field of the super block
   1536 * of the mounted file system which is guaranteed to be smaller than or equal
   1537 * to the cluster size thus the block is guaranteed to fit entirely inside the
   1538 * cluster which means we do not need to care how many contiguous bytes are
   1539 * available after the beginning of the block.
   1540 *
   1541 * Return the physical device block if the mapping succeeded or 0 if the block
   1542 * is sparse or there was an error.
   1543 *
   1544 * Note: This is a problem if someone tries to run bmap() on $Boot system file
   1545 * as that really is in block zero but there is nothing we can do.  bmap() is
   1546 * just broken in that respect (just like it cannot distinguish sparse from
   1547 * not available or error).
   1548 */
   1549static sector_t ntfs_bmap(struct address_space *mapping, sector_t block)
   1550{
   1551	s64 ofs, size;
   1552	loff_t i_size;
   1553	LCN lcn;
   1554	unsigned long blocksize, flags;
   1555	ntfs_inode *ni = NTFS_I(mapping->host);
   1556	ntfs_volume *vol = ni->vol;
   1557	unsigned delta;
   1558	unsigned char blocksize_bits, cluster_size_shift;
   1559
   1560	ntfs_debug("Entering for mft_no 0x%lx, logical block 0x%llx.",
   1561			ni->mft_no, (unsigned long long)block);
   1562	if (ni->type != AT_DATA || !NInoNonResident(ni) || NInoEncrypted(ni)) {
   1563		ntfs_error(vol->sb, "BMAP does not make sense for %s "
   1564				"attributes, returning 0.",
   1565				(ni->type != AT_DATA) ? "non-data" :
   1566				(!NInoNonResident(ni) ? "resident" :
   1567				"encrypted"));
   1568		return 0;
   1569	}
   1570	/* None of these can happen. */
   1571	BUG_ON(NInoCompressed(ni));
   1572	BUG_ON(NInoMstProtected(ni));
   1573	blocksize = vol->sb->s_blocksize;
   1574	blocksize_bits = vol->sb->s_blocksize_bits;
   1575	ofs = (s64)block << blocksize_bits;
   1576	read_lock_irqsave(&ni->size_lock, flags);
   1577	size = ni->initialized_size;
   1578	i_size = i_size_read(VFS_I(ni));
   1579	read_unlock_irqrestore(&ni->size_lock, flags);
   1580	/*
   1581	 * If the offset is outside the initialized size or the block straddles
   1582	 * the initialized size then pretend it is a hole unless the
   1583	 * initialized size equals the file size.
   1584	 */
   1585	if (unlikely(ofs >= size || (ofs + blocksize > size && size < i_size)))
   1586		goto hole;
   1587	cluster_size_shift = vol->cluster_size_bits;
   1588	down_read(&ni->runlist.lock);
   1589	lcn = ntfs_attr_vcn_to_lcn_nolock(ni, ofs >> cluster_size_shift, false);
   1590	up_read(&ni->runlist.lock);
   1591	if (unlikely(lcn < LCN_HOLE)) {
   1592		/*
   1593		 * Step down to an integer to avoid gcc doing a long long
   1594		 * comparision in the switch when we know @lcn is between
   1595		 * LCN_HOLE and LCN_EIO (i.e. -1 to -5).
   1596		 *
   1597		 * Otherwise older gcc (at least on some architectures) will
   1598		 * try to use __cmpdi2() which is of course not available in
   1599		 * the kernel.
   1600		 */
   1601		switch ((int)lcn) {
   1602		case LCN_ENOENT:
   1603			/*
   1604			 * If the offset is out of bounds then pretend it is a
   1605			 * hole.
   1606			 */
   1607			goto hole;
   1608		case LCN_ENOMEM:
   1609			ntfs_error(vol->sb, "Not enough memory to complete "
   1610					"mapping for inode 0x%lx.  "
   1611					"Returning 0.", ni->mft_no);
   1612			break;
   1613		default:
   1614			ntfs_error(vol->sb, "Failed to complete mapping for "
   1615					"inode 0x%lx.  Run chkdsk.  "
   1616					"Returning 0.", ni->mft_no);
   1617			break;
   1618		}
   1619		return 0;
   1620	}
   1621	if (lcn < 0) {
   1622		/* It is a hole. */
   1623hole:
   1624		ntfs_debug("Done (returning hole).");
   1625		return 0;
   1626	}
   1627	/*
   1628	 * The block is really allocated and fullfils all our criteria.
   1629	 * Convert the cluster to units of block size and return the result.
   1630	 */
   1631	delta = ofs & vol->cluster_size_mask;
   1632	if (unlikely(sizeof(block) < sizeof(lcn))) {
   1633		block = lcn = ((lcn << cluster_size_shift) + delta) >>
   1634				blocksize_bits;
   1635		/* If the block number was truncated return 0. */
   1636		if (unlikely(block != lcn)) {
   1637			ntfs_error(vol->sb, "Physical block 0x%llx is too "
   1638					"large to be returned, returning 0.",
   1639					(long long)lcn);
   1640			return 0;
   1641		}
   1642	} else
   1643		block = ((lcn << cluster_size_shift) + delta) >>
   1644				blocksize_bits;
   1645	ntfs_debug("Done (returning block 0x%llx).", (unsigned long long)lcn);
   1646	return block;
   1647}
   1648
   1649/**
   1650 * ntfs_normal_aops - address space operations for normal inodes and attributes
   1651 *
   1652 * Note these are not used for compressed or mst protected inodes and
   1653 * attributes.
   1654 */
   1655const struct address_space_operations ntfs_normal_aops = {
   1656	.read_folio	= ntfs_read_folio,
   1657#ifdef NTFS_RW
   1658	.writepage	= ntfs_writepage,
   1659	.dirty_folio	= block_dirty_folio,
   1660#endif /* NTFS_RW */
   1661	.bmap		= ntfs_bmap,
   1662	.migratepage	= buffer_migrate_page,
   1663	.is_partially_uptodate = block_is_partially_uptodate,
   1664	.error_remove_page = generic_error_remove_page,
   1665};
   1666
   1667/**
   1668 * ntfs_compressed_aops - address space operations for compressed inodes
   1669 */
   1670const struct address_space_operations ntfs_compressed_aops = {
   1671	.read_folio	= ntfs_read_folio,
   1672#ifdef NTFS_RW
   1673	.writepage	= ntfs_writepage,
   1674	.dirty_folio	= block_dirty_folio,
   1675#endif /* NTFS_RW */
   1676	.migratepage	= buffer_migrate_page,
   1677	.is_partially_uptodate = block_is_partially_uptodate,
   1678	.error_remove_page = generic_error_remove_page,
   1679};
   1680
   1681/**
   1682 * ntfs_mst_aops - general address space operations for mst protecteed inodes
   1683 *		   and attributes
   1684 */
   1685const struct address_space_operations ntfs_mst_aops = {
   1686	.read_folio	= ntfs_read_folio,	/* Fill page with data. */
   1687#ifdef NTFS_RW
   1688	.writepage	= ntfs_writepage,	/* Write dirty page to disk. */
   1689	.dirty_folio	= filemap_dirty_folio,
   1690#endif /* NTFS_RW */
   1691	.migratepage	= buffer_migrate_page,
   1692	.is_partially_uptodate	= block_is_partially_uptodate,
   1693	.error_remove_page = generic_error_remove_page,
   1694};
   1695
   1696#ifdef NTFS_RW
   1697
   1698/**
   1699 * mark_ntfs_record_dirty - mark an ntfs record dirty
   1700 * @page:	page containing the ntfs record to mark dirty
   1701 * @ofs:	byte offset within @page at which the ntfs record begins
   1702 *
   1703 * Set the buffers and the page in which the ntfs record is located dirty.
   1704 *
   1705 * The latter also marks the vfs inode the ntfs record belongs to dirty
   1706 * (I_DIRTY_PAGES only).
   1707 *
   1708 * If the page does not have buffers, we create them and set them uptodate.
   1709 * The page may not be locked which is why we need to handle the buffers under
   1710 * the mapping->private_lock.  Once the buffers are marked dirty we no longer
   1711 * need the lock since try_to_free_buffers() does not free dirty buffers.
   1712 */
   1713void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs) {
   1714	struct address_space *mapping = page->mapping;
   1715	ntfs_inode *ni = NTFS_I(mapping->host);
   1716	struct buffer_head *bh, *head, *buffers_to_free = NULL;
   1717	unsigned int end, bh_size, bh_ofs;
   1718
   1719	BUG_ON(!PageUptodate(page));
   1720	end = ofs + ni->itype.index.block_size;
   1721	bh_size = VFS_I(ni)->i_sb->s_blocksize;
   1722	spin_lock(&mapping->private_lock);
   1723	if (unlikely(!page_has_buffers(page))) {
   1724		spin_unlock(&mapping->private_lock);
   1725		bh = head = alloc_page_buffers(page, bh_size, true);
   1726		spin_lock(&mapping->private_lock);
   1727		if (likely(!page_has_buffers(page))) {
   1728			struct buffer_head *tail;
   1729
   1730			do {
   1731				set_buffer_uptodate(bh);
   1732				tail = bh;
   1733				bh = bh->b_this_page;
   1734			} while (bh);
   1735			tail->b_this_page = head;
   1736			attach_page_private(page, head);
   1737		} else
   1738			buffers_to_free = bh;
   1739	}
   1740	bh = head = page_buffers(page);
   1741	BUG_ON(!bh);
   1742	do {
   1743		bh_ofs = bh_offset(bh);
   1744		if (bh_ofs + bh_size <= ofs)
   1745			continue;
   1746		if (unlikely(bh_ofs >= end))
   1747			break;
   1748		set_buffer_dirty(bh);
   1749	} while ((bh = bh->b_this_page) != head);
   1750	spin_unlock(&mapping->private_lock);
   1751	filemap_dirty_folio(mapping, page_folio(page));
   1752	if (unlikely(buffers_to_free)) {
   1753		do {
   1754			bh = buffers_to_free->b_this_page;
   1755			free_buffer_head(buffers_to_free);
   1756			buffers_to_free = bh;
   1757		} while (buffers_to_free);
   1758	}
   1759}
   1760
   1761#endif /* NTFS_RW */