cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mft.c (100991B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/**
      3 * mft.c - NTFS kernel mft record operations. Part of the Linux-NTFS project.
      4 *
      5 * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc.
      6 * Copyright (c) 2002 Richard Russon
      7 */
      8
      9#include <linux/buffer_head.h>
     10#include <linux/slab.h>
     11#include <linux/swap.h>
     12#include <linux/bio.h>
     13
     14#include "attrib.h"
     15#include "aops.h"
     16#include "bitmap.h"
     17#include "debug.h"
     18#include "dir.h"
     19#include "lcnalloc.h"
     20#include "malloc.h"
     21#include "mft.h"
     22#include "ntfs.h"
     23
     24#define MAX_BHS	(PAGE_SIZE / NTFS_BLOCK_SIZE)
     25
     26/**
     27 * map_mft_record_page - map the page in which a specific mft record resides
     28 * @ni:		ntfs inode whose mft record page to map
     29 *
     30 * This maps the page in which the mft record of the ntfs inode @ni is situated
     31 * and returns a pointer to the mft record within the mapped page.
     32 *
     33 * Return value needs to be checked with IS_ERR() and if that is true PTR_ERR()
     34 * contains the negative error code returned.
     35 */
     36static inline MFT_RECORD *map_mft_record_page(ntfs_inode *ni)
     37{
     38	loff_t i_size;
     39	ntfs_volume *vol = ni->vol;
     40	struct inode *mft_vi = vol->mft_ino;
     41	struct page *page;
     42	unsigned long index, end_index;
     43	unsigned ofs;
     44
     45	BUG_ON(ni->page);
     46	/*
     47	 * The index into the page cache and the offset within the page cache
     48	 * page of the wanted mft record. FIXME: We need to check for
     49	 * overflowing the unsigned long, but I don't think we would ever get
     50	 * here if the volume was that big...
     51	 */
     52	index = (u64)ni->mft_no << vol->mft_record_size_bits >>
     53			PAGE_SHIFT;
     54	ofs = (ni->mft_no << vol->mft_record_size_bits) & ~PAGE_MASK;
     55
     56	i_size = i_size_read(mft_vi);
     57	/* The maximum valid index into the page cache for $MFT's data. */
     58	end_index = i_size >> PAGE_SHIFT;
     59
     60	/* If the wanted index is out of bounds the mft record doesn't exist. */
     61	if (unlikely(index >= end_index)) {
     62		if (index > end_index || (i_size & ~PAGE_MASK) < ofs +
     63				vol->mft_record_size) {
     64			page = ERR_PTR(-ENOENT);
     65			ntfs_error(vol->sb, "Attempt to read mft record 0x%lx, "
     66					"which is beyond the end of the mft.  "
     67					"This is probably a bug in the ntfs "
     68					"driver.", ni->mft_no);
     69			goto err_out;
     70		}
     71	}
     72	/* Read, map, and pin the page. */
     73	page = ntfs_map_page(mft_vi->i_mapping, index);
     74	if (!IS_ERR(page)) {
     75		/* Catch multi sector transfer fixup errors. */
     76		if (likely(ntfs_is_mft_recordp((le32*)(page_address(page) +
     77				ofs)))) {
     78			ni->page = page;
     79			ni->page_ofs = ofs;
     80			return page_address(page) + ofs;
     81		}
     82		ntfs_error(vol->sb, "Mft record 0x%lx is corrupt.  "
     83				"Run chkdsk.", ni->mft_no);
     84		ntfs_unmap_page(page);
     85		page = ERR_PTR(-EIO);
     86		NVolSetErrors(vol);
     87	}
     88err_out:
     89	ni->page = NULL;
     90	ni->page_ofs = 0;
     91	return (void*)page;
     92}
     93
     94/**
     95 * map_mft_record - map, pin and lock an mft record
     96 * @ni:		ntfs inode whose MFT record to map
     97 *
     98 * First, take the mrec_lock mutex.  We might now be sleeping, while waiting
     99 * for the mutex if it was already locked by someone else.
    100 *
    101 * The page of the record is mapped using map_mft_record_page() before being
    102 * returned to the caller.
    103 *
    104 * This in turn uses ntfs_map_page() to get the page containing the wanted mft
    105 * record (it in turn calls read_cache_page() which reads it in from disk if
    106 * necessary, increments the use count on the page so that it cannot disappear
    107 * under us and returns a reference to the page cache page).
    108 *
    109 * If read_cache_page() invokes ntfs_readpage() to load the page from disk, it
    110 * sets PG_locked and clears PG_uptodate on the page. Once I/O has completed
    111 * and the post-read mst fixups on each mft record in the page have been
    112 * performed, the page gets PG_uptodate set and PG_locked cleared (this is done
    113 * in our asynchronous I/O completion handler end_buffer_read_mft_async()).
    114 * ntfs_map_page() waits for PG_locked to become clear and checks if
    115 * PG_uptodate is set and returns an error code if not. This provides
    116 * sufficient protection against races when reading/using the page.
    117 *
    118 * However there is the write mapping to think about. Doing the above described
    119 * checking here will be fine, because when initiating the write we will set
    120 * PG_locked and clear PG_uptodate making sure nobody is touching the page
    121 * contents. Doing the locking this way means that the commit to disk code in
    122 * the page cache code paths is automatically sufficiently locked with us as
    123 * we will not touch a page that has been locked or is not uptodate. The only
    124 * locking problem then is them locking the page while we are accessing it.
    125 *
    126 * So that code will end up having to own the mrec_lock of all mft
    127 * records/inodes present in the page before I/O can proceed. In that case we
    128 * wouldn't need to bother with PG_locked and PG_uptodate as nobody will be
    129 * accessing anything without owning the mrec_lock mutex.  But we do need to
    130 * use them because of the read_cache_page() invocation and the code becomes so
    131 * much simpler this way that it is well worth it.
    132 *
    133 * The mft record is now ours and we return a pointer to it. You need to check
    134 * the returned pointer with IS_ERR() and if that is true, PTR_ERR() will return
    135 * the error code.
    136 *
    137 * NOTE: Caller is responsible for setting the mft record dirty before calling
    138 * unmap_mft_record(). This is obviously only necessary if the caller really
    139 * modified the mft record...
    140 * Q: Do we want to recycle one of the VFS inode state bits instead?
    141 * A: No, the inode ones mean we want to change the mft record, not we want to
    142 * write it out.
    143 */
    144MFT_RECORD *map_mft_record(ntfs_inode *ni)
    145{
    146	MFT_RECORD *m;
    147
    148	ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no);
    149
    150	/* Make sure the ntfs inode doesn't go away. */
    151	atomic_inc(&ni->count);
    152
    153	/* Serialize access to this mft record. */
    154	mutex_lock(&ni->mrec_lock);
    155
    156	m = map_mft_record_page(ni);
    157	if (!IS_ERR(m))
    158		return m;
    159
    160	mutex_unlock(&ni->mrec_lock);
    161	atomic_dec(&ni->count);
    162	ntfs_error(ni->vol->sb, "Failed with error code %lu.", -PTR_ERR(m));
    163	return m;
    164}
    165
    166/**
    167 * unmap_mft_record_page - unmap the page in which a specific mft record resides
    168 * @ni:		ntfs inode whose mft record page to unmap
    169 *
    170 * This unmaps the page in which the mft record of the ntfs inode @ni is
    171 * situated and returns. This is a NOOP if highmem is not configured.
    172 *
    173 * The unmap happens via ntfs_unmap_page() which in turn decrements the use
    174 * count on the page thus releasing it from the pinned state.
    175 *
    176 * We do not actually unmap the page from memory of course, as that will be
    177 * done by the page cache code itself when memory pressure increases or
    178 * whatever.
    179 */
    180static inline void unmap_mft_record_page(ntfs_inode *ni)
    181{
    182	BUG_ON(!ni->page);
    183
    184	// TODO: If dirty, blah...
    185	ntfs_unmap_page(ni->page);
    186	ni->page = NULL;
    187	ni->page_ofs = 0;
    188	return;
    189}
    190
    191/**
    192 * unmap_mft_record - release a mapped mft record
    193 * @ni:		ntfs inode whose MFT record to unmap
    194 *
    195 * We release the page mapping and the mrec_lock mutex which unmaps the mft
    196 * record and releases it for others to get hold of. We also release the ntfs
    197 * inode by decrementing the ntfs inode reference count.
    198 *
    199 * NOTE: If caller has modified the mft record, it is imperative to set the mft
    200 * record dirty BEFORE calling unmap_mft_record().
    201 */
    202void unmap_mft_record(ntfs_inode *ni)
    203{
    204	struct page *page = ni->page;
    205
    206	BUG_ON(!page);
    207
    208	ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no);
    209
    210	unmap_mft_record_page(ni);
    211	mutex_unlock(&ni->mrec_lock);
    212	atomic_dec(&ni->count);
    213	/*
    214	 * If pure ntfs_inode, i.e. no vfs inode attached, we leave it to
    215	 * ntfs_clear_extent_inode() in the extent inode case, and to the
    216	 * caller in the non-extent, yet pure ntfs inode case, to do the actual
    217	 * tear down of all structures and freeing of all allocated memory.
    218	 */
    219	return;
    220}
    221
    222/**
    223 * map_extent_mft_record - load an extent inode and attach it to its base
    224 * @base_ni:	base ntfs inode
    225 * @mref:	mft reference of the extent inode to load
    226 * @ntfs_ino:	on successful return, pointer to the ntfs_inode structure
    227 *
    228 * Load the extent mft record @mref and attach it to its base inode @base_ni.
    229 * Return the mapped extent mft record if IS_ERR(result) is false.  Otherwise
    230 * PTR_ERR(result) gives the negative error code.
    231 *
    232 * On successful return, @ntfs_ino contains a pointer to the ntfs_inode
    233 * structure of the mapped extent inode.
    234 */
    235MFT_RECORD *map_extent_mft_record(ntfs_inode *base_ni, MFT_REF mref,
    236		ntfs_inode **ntfs_ino)
    237{
    238	MFT_RECORD *m;
    239	ntfs_inode *ni = NULL;
    240	ntfs_inode **extent_nis = NULL;
    241	int i;
    242	unsigned long mft_no = MREF(mref);
    243	u16 seq_no = MSEQNO(mref);
    244	bool destroy_ni = false;
    245
    246	ntfs_debug("Mapping extent mft record 0x%lx (base mft record 0x%lx).",
    247			mft_no, base_ni->mft_no);
    248	/* Make sure the base ntfs inode doesn't go away. */
    249	atomic_inc(&base_ni->count);
    250	/*
    251	 * Check if this extent inode has already been added to the base inode,
    252	 * in which case just return it. If not found, add it to the base
    253	 * inode before returning it.
    254	 */
    255	mutex_lock(&base_ni->extent_lock);
    256	if (base_ni->nr_extents > 0) {
    257		extent_nis = base_ni->ext.extent_ntfs_inos;
    258		for (i = 0; i < base_ni->nr_extents; i++) {
    259			if (mft_no != extent_nis[i]->mft_no)
    260				continue;
    261			ni = extent_nis[i];
    262			/* Make sure the ntfs inode doesn't go away. */
    263			atomic_inc(&ni->count);
    264			break;
    265		}
    266	}
    267	if (likely(ni != NULL)) {
    268		mutex_unlock(&base_ni->extent_lock);
    269		atomic_dec(&base_ni->count);
    270		/* We found the record; just have to map and return it. */
    271		m = map_mft_record(ni);
    272		/* map_mft_record() has incremented this on success. */
    273		atomic_dec(&ni->count);
    274		if (!IS_ERR(m)) {
    275			/* Verify the sequence number. */
    276			if (likely(le16_to_cpu(m->sequence_number) == seq_no)) {
    277				ntfs_debug("Done 1.");
    278				*ntfs_ino = ni;
    279				return m;
    280			}
    281			unmap_mft_record(ni);
    282			ntfs_error(base_ni->vol->sb, "Found stale extent mft "
    283					"reference! Corrupt filesystem. "
    284					"Run chkdsk.");
    285			return ERR_PTR(-EIO);
    286		}
    287map_err_out:
    288		ntfs_error(base_ni->vol->sb, "Failed to map extent "
    289				"mft record, error code %ld.", -PTR_ERR(m));
    290		return m;
    291	}
    292	/* Record wasn't there. Get a new ntfs inode and initialize it. */
    293	ni = ntfs_new_extent_inode(base_ni->vol->sb, mft_no);
    294	if (unlikely(!ni)) {
    295		mutex_unlock(&base_ni->extent_lock);
    296		atomic_dec(&base_ni->count);
    297		return ERR_PTR(-ENOMEM);
    298	}
    299	ni->vol = base_ni->vol;
    300	ni->seq_no = seq_no;
    301	ni->nr_extents = -1;
    302	ni->ext.base_ntfs_ino = base_ni;
    303	/* Now map the record. */
    304	m = map_mft_record(ni);
    305	if (IS_ERR(m)) {
    306		mutex_unlock(&base_ni->extent_lock);
    307		atomic_dec(&base_ni->count);
    308		ntfs_clear_extent_inode(ni);
    309		goto map_err_out;
    310	}
    311	/* Verify the sequence number if it is present. */
    312	if (seq_no && (le16_to_cpu(m->sequence_number) != seq_no)) {
    313		ntfs_error(base_ni->vol->sb, "Found stale extent mft "
    314				"reference! Corrupt filesystem. Run chkdsk.");
    315		destroy_ni = true;
    316		m = ERR_PTR(-EIO);
    317		goto unm_err_out;
    318	}
    319	/* Attach extent inode to base inode, reallocating memory if needed. */
    320	if (!(base_ni->nr_extents & 3)) {
    321		ntfs_inode **tmp;
    322		int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode *);
    323
    324		tmp = kmalloc(new_size, GFP_NOFS);
    325		if (unlikely(!tmp)) {
    326			ntfs_error(base_ni->vol->sb, "Failed to allocate "
    327					"internal buffer.");
    328			destroy_ni = true;
    329			m = ERR_PTR(-ENOMEM);
    330			goto unm_err_out;
    331		}
    332		if (base_ni->nr_extents) {
    333			BUG_ON(!base_ni->ext.extent_ntfs_inos);
    334			memcpy(tmp, base_ni->ext.extent_ntfs_inos, new_size -
    335					4 * sizeof(ntfs_inode *));
    336			kfree(base_ni->ext.extent_ntfs_inos);
    337		}
    338		base_ni->ext.extent_ntfs_inos = tmp;
    339	}
    340	base_ni->ext.extent_ntfs_inos[base_ni->nr_extents++] = ni;
    341	mutex_unlock(&base_ni->extent_lock);
    342	atomic_dec(&base_ni->count);
    343	ntfs_debug("Done 2.");
    344	*ntfs_ino = ni;
    345	return m;
    346unm_err_out:
    347	unmap_mft_record(ni);
    348	mutex_unlock(&base_ni->extent_lock);
    349	atomic_dec(&base_ni->count);
    350	/*
    351	 * If the extent inode was not attached to the base inode we need to
    352	 * release it or we will leak memory.
    353	 */
    354	if (destroy_ni)
    355		ntfs_clear_extent_inode(ni);
    356	return m;
    357}
    358
    359#ifdef NTFS_RW
    360
    361/**
    362 * __mark_mft_record_dirty - set the mft record and the page containing it dirty
    363 * @ni:		ntfs inode describing the mapped mft record
    364 *
    365 * Internal function.  Users should call mark_mft_record_dirty() instead.
    366 *
    367 * Set the mapped (extent) mft record of the (base or extent) ntfs inode @ni,
    368 * as well as the page containing the mft record, dirty.  Also, mark the base
    369 * vfs inode dirty.  This ensures that any changes to the mft record are
    370 * written out to disk.
    371 *
    372 * NOTE:  We only set I_DIRTY_DATASYNC (and not I_DIRTY_PAGES)
    373 * on the base vfs inode, because even though file data may have been modified,
    374 * it is dirty in the inode meta data rather than the data page cache of the
    375 * inode, and thus there are no data pages that need writing out.  Therefore, a
    376 * full mark_inode_dirty() is overkill.  A mark_inode_dirty_sync(), on the
    377 * other hand, is not sufficient, because ->write_inode needs to be called even
    378 * in case of fdatasync. This needs to happen or the file data would not
    379 * necessarily hit the device synchronously, even though the vfs inode has the
    380 * O_SYNC flag set.  Also, I_DIRTY_DATASYNC simply "feels" better than just
    381 * I_DIRTY_SYNC, since the file data has not actually hit the block device yet,
    382 * which is not what I_DIRTY_SYNC on its own would suggest.
    383 */
    384void __mark_mft_record_dirty(ntfs_inode *ni)
    385{
    386	ntfs_inode *base_ni;
    387
    388	ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
    389	BUG_ON(NInoAttr(ni));
    390	mark_ntfs_record_dirty(ni->page, ni->page_ofs);
    391	/* Determine the base vfs inode and mark it dirty, too. */
    392	mutex_lock(&ni->extent_lock);
    393	if (likely(ni->nr_extents >= 0))
    394		base_ni = ni;
    395	else
    396		base_ni = ni->ext.base_ntfs_ino;
    397	mutex_unlock(&ni->extent_lock);
    398	__mark_inode_dirty(VFS_I(base_ni), I_DIRTY_DATASYNC);
    399}
    400
    401static const char *ntfs_please_email = "Please email "
    402		"linux-ntfs-dev@lists.sourceforge.net and say that you saw "
    403		"this message.  Thank you.";
    404
    405/**
    406 * ntfs_sync_mft_mirror_umount - synchronise an mft record to the mft mirror
    407 * @vol:	ntfs volume on which the mft record to synchronize resides
    408 * @mft_no:	mft record number of mft record to synchronize
    409 * @m:		mapped, mst protected (extent) mft record to synchronize
    410 *
    411 * Write the mapped, mst protected (extent) mft record @m with mft record
    412 * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol,
    413 * bypassing the page cache and the $MFTMirr inode itself.
    414 *
    415 * This function is only for use at umount time when the mft mirror inode has
    416 * already been disposed off.  We BUG() if we are called while the mft mirror
    417 * inode is still attached to the volume.
    418 *
    419 * On success return 0.  On error return -errno.
    420 *
    421 * NOTE:  This function is not implemented yet as I am not convinced it can
    422 * actually be triggered considering the sequence of commits we do in super.c::
    423 * ntfs_put_super().  But just in case we provide this place holder as the
    424 * alternative would be either to BUG() or to get a NULL pointer dereference
    425 * and Oops.
    426 */
    427static int ntfs_sync_mft_mirror_umount(ntfs_volume *vol,
    428		const unsigned long mft_no, MFT_RECORD *m)
    429{
    430	BUG_ON(vol->mftmirr_ino);
    431	ntfs_error(vol->sb, "Umount time mft mirror syncing is not "
    432			"implemented yet.  %s", ntfs_please_email);
    433	return -EOPNOTSUPP;
    434}
    435
    436/**
    437 * ntfs_sync_mft_mirror - synchronize an mft record to the mft mirror
    438 * @vol:	ntfs volume on which the mft record to synchronize resides
    439 * @mft_no:	mft record number of mft record to synchronize
    440 * @m:		mapped, mst protected (extent) mft record to synchronize
    441 * @sync:	if true, wait for i/o completion
    442 *
    443 * Write the mapped, mst protected (extent) mft record @m with mft record
    444 * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol.
    445 *
    446 * On success return 0.  On error return -errno and set the volume errors flag
    447 * in the ntfs volume @vol.
    448 *
    449 * NOTE:  We always perform synchronous i/o and ignore the @sync parameter.
    450 *
    451 * TODO:  If @sync is false, want to do truly asynchronous i/o, i.e. just
    452 * schedule i/o via ->writepage or do it via kntfsd or whatever.
    453 */
    454int ntfs_sync_mft_mirror(ntfs_volume *vol, const unsigned long mft_no,
    455		MFT_RECORD *m, int sync)
    456{
    457	struct page *page;
    458	unsigned int blocksize = vol->sb->s_blocksize;
    459	int max_bhs = vol->mft_record_size / blocksize;
    460	struct buffer_head *bhs[MAX_BHS];
    461	struct buffer_head *bh, *head;
    462	u8 *kmirr;
    463	runlist_element *rl;
    464	unsigned int block_start, block_end, m_start, m_end, page_ofs;
    465	int i_bhs, nr_bhs, err = 0;
    466	unsigned char blocksize_bits = vol->sb->s_blocksize_bits;
    467
    468	ntfs_debug("Entering for inode 0x%lx.", mft_no);
    469	BUG_ON(!max_bhs);
    470	if (WARN_ON(max_bhs > MAX_BHS))
    471		return -EINVAL;
    472	if (unlikely(!vol->mftmirr_ino)) {
    473		/* This could happen during umount... */
    474		err = ntfs_sync_mft_mirror_umount(vol, mft_no, m);
    475		if (likely(!err))
    476			return err;
    477		goto err_out;
    478	}
    479	/* Get the page containing the mirror copy of the mft record @m. */
    480	page = ntfs_map_page(vol->mftmirr_ino->i_mapping, mft_no >>
    481			(PAGE_SHIFT - vol->mft_record_size_bits));
    482	if (IS_ERR(page)) {
    483		ntfs_error(vol->sb, "Failed to map mft mirror page.");
    484		err = PTR_ERR(page);
    485		goto err_out;
    486	}
    487	lock_page(page);
    488	BUG_ON(!PageUptodate(page));
    489	ClearPageUptodate(page);
    490	/* Offset of the mft mirror record inside the page. */
    491	page_ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_MASK;
    492	/* The address in the page of the mirror copy of the mft record @m. */
    493	kmirr = page_address(page) + page_ofs;
    494	/* Copy the mst protected mft record to the mirror. */
    495	memcpy(kmirr, m, vol->mft_record_size);
    496	/* Create uptodate buffers if not present. */
    497	if (unlikely(!page_has_buffers(page))) {
    498		struct buffer_head *tail;
    499
    500		bh = head = alloc_page_buffers(page, blocksize, true);
    501		do {
    502			set_buffer_uptodate(bh);
    503			tail = bh;
    504			bh = bh->b_this_page;
    505		} while (bh);
    506		tail->b_this_page = head;
    507		attach_page_private(page, head);
    508	}
    509	bh = head = page_buffers(page);
    510	BUG_ON(!bh);
    511	rl = NULL;
    512	nr_bhs = 0;
    513	block_start = 0;
    514	m_start = kmirr - (u8*)page_address(page);
    515	m_end = m_start + vol->mft_record_size;
    516	do {
    517		block_end = block_start + blocksize;
    518		/* If the buffer is outside the mft record, skip it. */
    519		if (block_end <= m_start)
    520			continue;
    521		if (unlikely(block_start >= m_end))
    522			break;
    523		/* Need to map the buffer if it is not mapped already. */
    524		if (unlikely(!buffer_mapped(bh))) {
    525			VCN vcn;
    526			LCN lcn;
    527			unsigned int vcn_ofs;
    528
    529			bh->b_bdev = vol->sb->s_bdev;
    530			/* Obtain the vcn and offset of the current block. */
    531			vcn = ((VCN)mft_no << vol->mft_record_size_bits) +
    532					(block_start - m_start);
    533			vcn_ofs = vcn & vol->cluster_size_mask;
    534			vcn >>= vol->cluster_size_bits;
    535			if (!rl) {
    536				down_read(&NTFS_I(vol->mftmirr_ino)->
    537						runlist.lock);
    538				rl = NTFS_I(vol->mftmirr_ino)->runlist.rl;
    539				/*
    540				 * $MFTMirr always has the whole of its runlist
    541				 * in memory.
    542				 */
    543				BUG_ON(!rl);
    544			}
    545			/* Seek to element containing target vcn. */
    546			while (rl->length && rl[1].vcn <= vcn)
    547				rl++;
    548			lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
    549			/* For $MFTMirr, only lcn >= 0 is a successful remap. */
    550			if (likely(lcn >= 0)) {
    551				/* Setup buffer head to correct block. */
    552				bh->b_blocknr = ((lcn <<
    553						vol->cluster_size_bits) +
    554						vcn_ofs) >> blocksize_bits;
    555				set_buffer_mapped(bh);
    556			} else {
    557				bh->b_blocknr = -1;
    558				ntfs_error(vol->sb, "Cannot write mft mirror "
    559						"record 0x%lx because its "
    560						"location on disk could not "
    561						"be determined (error code "
    562						"%lli).", mft_no,
    563						(long long)lcn);
    564				err = -EIO;
    565			}
    566		}
    567		BUG_ON(!buffer_uptodate(bh));
    568		BUG_ON(!nr_bhs && (m_start != block_start));
    569		BUG_ON(nr_bhs >= max_bhs);
    570		bhs[nr_bhs++] = bh;
    571		BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end));
    572	} while (block_start = block_end, (bh = bh->b_this_page) != head);
    573	if (unlikely(rl))
    574		up_read(&NTFS_I(vol->mftmirr_ino)->runlist.lock);
    575	if (likely(!err)) {
    576		/* Lock buffers and start synchronous write i/o on them. */
    577		for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
    578			struct buffer_head *tbh = bhs[i_bhs];
    579
    580			if (!trylock_buffer(tbh))
    581				BUG();
    582			BUG_ON(!buffer_uptodate(tbh));
    583			clear_buffer_dirty(tbh);
    584			get_bh(tbh);
    585			tbh->b_end_io = end_buffer_write_sync;
    586			submit_bh(REQ_OP_WRITE, 0, tbh);
    587		}
    588		/* Wait on i/o completion of buffers. */
    589		for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
    590			struct buffer_head *tbh = bhs[i_bhs];
    591
    592			wait_on_buffer(tbh);
    593			if (unlikely(!buffer_uptodate(tbh))) {
    594				err = -EIO;
    595				/*
    596				 * Set the buffer uptodate so the page and
    597				 * buffer states do not become out of sync.
    598				 */
    599				set_buffer_uptodate(tbh);
    600			}
    601		}
    602	} else /* if (unlikely(err)) */ {
    603		/* Clean the buffers. */
    604		for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++)
    605			clear_buffer_dirty(bhs[i_bhs]);
    606	}
    607	/* Current state: all buffers are clean, unlocked, and uptodate. */
    608	/* Remove the mst protection fixups again. */
    609	post_write_mst_fixup((NTFS_RECORD*)kmirr);
    610	flush_dcache_page(page);
    611	SetPageUptodate(page);
    612	unlock_page(page);
    613	ntfs_unmap_page(page);
    614	if (likely(!err)) {
    615		ntfs_debug("Done.");
    616	} else {
    617		ntfs_error(vol->sb, "I/O error while writing mft mirror "
    618				"record 0x%lx!", mft_no);
    619err_out:
    620		ntfs_error(vol->sb, "Failed to synchronize $MFTMirr (error "
    621				"code %i).  Volume will be left marked dirty "
    622				"on umount.  Run ntfsfix on the partition "
    623				"after umounting to correct this.", -err);
    624		NVolSetErrors(vol);
    625	}
    626	return err;
    627}
    628
    629/**
    630 * write_mft_record_nolock - write out a mapped (extent) mft record
    631 * @ni:		ntfs inode describing the mapped (extent) mft record
    632 * @m:		mapped (extent) mft record to write
    633 * @sync:	if true, wait for i/o completion
    634 *
    635 * Write the mapped (extent) mft record @m described by the (regular or extent)
    636 * ntfs inode @ni to backing store.  If the mft record @m has a counterpart in
    637 * the mft mirror, that is also updated.
    638 *
    639 * We only write the mft record if the ntfs inode @ni is dirty and the first
    640 * buffer belonging to its mft record is dirty, too.  We ignore the dirty state
    641 * of subsequent buffers because we could have raced with
    642 * fs/ntfs/aops.c::mark_ntfs_record_dirty().
    643 *
    644 * On success, clean the mft record and return 0.  On error, leave the mft
    645 * record dirty and return -errno.
    646 *
    647 * NOTE:  We always perform synchronous i/o and ignore the @sync parameter.
    648 * However, if the mft record has a counterpart in the mft mirror and @sync is
    649 * true, we write the mft record, wait for i/o completion, and only then write
    650 * the mft mirror copy.  This ensures that if the system crashes either the mft
    651 * or the mft mirror will contain a self-consistent mft record @m.  If @sync is
    652 * false on the other hand, we start i/o on both and then wait for completion
    653 * on them.  This provides a speedup but no longer guarantees that you will end
    654 * up with a self-consistent mft record in the case of a crash but if you asked
    655 * for asynchronous writing you probably do not care about that anyway.
    656 *
    657 * TODO:  If @sync is false, want to do truly asynchronous i/o, i.e. just
    658 * schedule i/o via ->writepage or do it via kntfsd or whatever.
    659 */
    660int write_mft_record_nolock(ntfs_inode *ni, MFT_RECORD *m, int sync)
    661{
    662	ntfs_volume *vol = ni->vol;
    663	struct page *page = ni->page;
    664	unsigned int blocksize = vol->sb->s_blocksize;
    665	unsigned char blocksize_bits = vol->sb->s_blocksize_bits;
    666	int max_bhs = vol->mft_record_size / blocksize;
    667	struct buffer_head *bhs[MAX_BHS];
    668	struct buffer_head *bh, *head;
    669	runlist_element *rl;
    670	unsigned int block_start, block_end, m_start, m_end;
    671	int i_bhs, nr_bhs, err = 0;
    672
    673	ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
    674	BUG_ON(NInoAttr(ni));
    675	BUG_ON(!max_bhs);
    676	BUG_ON(!PageLocked(page));
    677	if (WARN_ON(max_bhs > MAX_BHS)) {
    678		err = -EINVAL;
    679		goto err_out;
    680	}
    681	/*
    682	 * If the ntfs_inode is clean no need to do anything.  If it is dirty,
    683	 * mark it as clean now so that it can be redirtied later on if needed.
    684	 * There is no danger of races since the caller is holding the locks
    685	 * for the mft record @m and the page it is in.
    686	 */
    687	if (!NInoTestClearDirty(ni))
    688		goto done;
    689	bh = head = page_buffers(page);
    690	BUG_ON(!bh);
    691	rl = NULL;
    692	nr_bhs = 0;
    693	block_start = 0;
    694	m_start = ni->page_ofs;
    695	m_end = m_start + vol->mft_record_size;
    696	do {
    697		block_end = block_start + blocksize;
    698		/* If the buffer is outside the mft record, skip it. */
    699		if (block_end <= m_start)
    700			continue;
    701		if (unlikely(block_start >= m_end))
    702			break;
    703		/*
    704		 * If this block is not the first one in the record, we ignore
    705		 * the buffer's dirty state because we could have raced with a
    706		 * parallel mark_ntfs_record_dirty().
    707		 */
    708		if (block_start == m_start) {
    709			/* This block is the first one in the record. */
    710			if (!buffer_dirty(bh)) {
    711				BUG_ON(nr_bhs);
    712				/* Clean records are not written out. */
    713				break;
    714			}
    715		}
    716		/* Need to map the buffer if it is not mapped already. */
    717		if (unlikely(!buffer_mapped(bh))) {
    718			VCN vcn;
    719			LCN lcn;
    720			unsigned int vcn_ofs;
    721
    722			bh->b_bdev = vol->sb->s_bdev;
    723			/* Obtain the vcn and offset of the current block. */
    724			vcn = ((VCN)ni->mft_no << vol->mft_record_size_bits) +
    725					(block_start - m_start);
    726			vcn_ofs = vcn & vol->cluster_size_mask;
    727			vcn >>= vol->cluster_size_bits;
    728			if (!rl) {
    729				down_read(&NTFS_I(vol->mft_ino)->runlist.lock);
    730				rl = NTFS_I(vol->mft_ino)->runlist.rl;
    731				BUG_ON(!rl);
    732			}
    733			/* Seek to element containing target vcn. */
    734			while (rl->length && rl[1].vcn <= vcn)
    735				rl++;
    736			lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
    737			/* For $MFT, only lcn >= 0 is a successful remap. */
    738			if (likely(lcn >= 0)) {
    739				/* Setup buffer head to correct block. */
    740				bh->b_blocknr = ((lcn <<
    741						vol->cluster_size_bits) +
    742						vcn_ofs) >> blocksize_bits;
    743				set_buffer_mapped(bh);
    744			} else {
    745				bh->b_blocknr = -1;
    746				ntfs_error(vol->sb, "Cannot write mft record "
    747						"0x%lx because its location "
    748						"on disk could not be "
    749						"determined (error code %lli).",
    750						ni->mft_no, (long long)lcn);
    751				err = -EIO;
    752			}
    753		}
    754		BUG_ON(!buffer_uptodate(bh));
    755		BUG_ON(!nr_bhs && (m_start != block_start));
    756		BUG_ON(nr_bhs >= max_bhs);
    757		bhs[nr_bhs++] = bh;
    758		BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end));
    759	} while (block_start = block_end, (bh = bh->b_this_page) != head);
    760	if (unlikely(rl))
    761		up_read(&NTFS_I(vol->mft_ino)->runlist.lock);
    762	if (!nr_bhs)
    763		goto done;
    764	if (unlikely(err))
    765		goto cleanup_out;
    766	/* Apply the mst protection fixups. */
    767	err = pre_write_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size);
    768	if (err) {
    769		ntfs_error(vol->sb, "Failed to apply mst fixups!");
    770		goto cleanup_out;
    771	}
    772	flush_dcache_mft_record_page(ni);
    773	/* Lock buffers and start synchronous write i/o on them. */
    774	for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
    775		struct buffer_head *tbh = bhs[i_bhs];
    776
    777		if (!trylock_buffer(tbh))
    778			BUG();
    779		BUG_ON(!buffer_uptodate(tbh));
    780		clear_buffer_dirty(tbh);
    781		get_bh(tbh);
    782		tbh->b_end_io = end_buffer_write_sync;
    783		submit_bh(REQ_OP_WRITE, 0, tbh);
    784	}
    785	/* Synchronize the mft mirror now if not @sync. */
    786	if (!sync && ni->mft_no < vol->mftmirr_size)
    787		ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync);
    788	/* Wait on i/o completion of buffers. */
    789	for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
    790		struct buffer_head *tbh = bhs[i_bhs];
    791
    792		wait_on_buffer(tbh);
    793		if (unlikely(!buffer_uptodate(tbh))) {
    794			err = -EIO;
    795			/*
    796			 * Set the buffer uptodate so the page and buffer
    797			 * states do not become out of sync.
    798			 */
    799			if (PageUptodate(page))
    800				set_buffer_uptodate(tbh);
    801		}
    802	}
    803	/* If @sync, now synchronize the mft mirror. */
    804	if (sync && ni->mft_no < vol->mftmirr_size)
    805		ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync);
    806	/* Remove the mst protection fixups again. */
    807	post_write_mst_fixup((NTFS_RECORD*)m);
    808	flush_dcache_mft_record_page(ni);
    809	if (unlikely(err)) {
    810		/* I/O error during writing.  This is really bad! */
    811		ntfs_error(vol->sb, "I/O error while writing mft record "
    812				"0x%lx!  Marking base inode as bad.  You "
    813				"should unmount the volume and run chkdsk.",
    814				ni->mft_no);
    815		goto err_out;
    816	}
    817done:
    818	ntfs_debug("Done.");
    819	return 0;
    820cleanup_out:
    821	/* Clean the buffers. */
    822	for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++)
    823		clear_buffer_dirty(bhs[i_bhs]);
    824err_out:
    825	/*
    826	 * Current state: all buffers are clean, unlocked, and uptodate.
    827	 * The caller should mark the base inode as bad so that no more i/o
    828	 * happens.  ->clear_inode() will still be invoked so all extent inodes
    829	 * and other allocated memory will be freed.
    830	 */
    831	if (err == -ENOMEM) {
    832		ntfs_error(vol->sb, "Not enough memory to write mft record.  "
    833				"Redirtying so the write is retried later.");
    834		mark_mft_record_dirty(ni);
    835		err = 0;
    836	} else
    837		NVolSetErrors(vol);
    838	return err;
    839}
    840
    841/**
    842 * ntfs_may_write_mft_record - check if an mft record may be written out
    843 * @vol:	[IN]  ntfs volume on which the mft record to check resides
    844 * @mft_no:	[IN]  mft record number of the mft record to check
    845 * @m:		[IN]  mapped mft record to check
    846 * @locked_ni:	[OUT] caller has to unlock this ntfs inode if one is returned
    847 *
    848 * Check if the mapped (base or extent) mft record @m with mft record number
    849 * @mft_no belonging to the ntfs volume @vol may be written out.  If necessary
    850 * and possible the ntfs inode of the mft record is locked and the base vfs
    851 * inode is pinned.  The locked ntfs inode is then returned in @locked_ni.  The
    852 * caller is responsible for unlocking the ntfs inode and unpinning the base
    853 * vfs inode.
    854 *
    855 * Return 'true' if the mft record may be written out and 'false' if not.
    856 *
    857 * The caller has locked the page and cleared the uptodate flag on it which
    858 * means that we can safely write out any dirty mft records that do not have
    859 * their inodes in icache as determined by ilookup5() as anyone
    860 * opening/creating such an inode would block when attempting to map the mft
    861 * record in read_cache_page() until we are finished with the write out.
    862 *
    863 * Here is a description of the tests we perform:
    864 *
    865 * If the inode is found in icache we know the mft record must be a base mft
    866 * record.  If it is dirty, we do not write it and return 'false' as the vfs
    867 * inode write paths will result in the access times being updated which would
    868 * cause the base mft record to be redirtied and written out again.  (We know
    869 * the access time update will modify the base mft record because Windows
    870 * chkdsk complains if the standard information attribute is not in the base
    871 * mft record.)
    872 *
    873 * If the inode is in icache and not dirty, we attempt to lock the mft record
    874 * and if we find the lock was already taken, it is not safe to write the mft
    875 * record and we return 'false'.
    876 *
    877 * If we manage to obtain the lock we have exclusive access to the mft record,
    878 * which also allows us safe writeout of the mft record.  We then set
    879 * @locked_ni to the locked ntfs inode and return 'true'.
    880 *
    881 * Note we cannot just lock the mft record and sleep while waiting for the lock
    882 * because this would deadlock due to lock reversal (normally the mft record is
    883 * locked before the page is locked but we already have the page locked here
    884 * when we try to lock the mft record).
    885 *
    886 * If the inode is not in icache we need to perform further checks.
    887 *
    888 * If the mft record is not a FILE record or it is a base mft record, we can
    889 * safely write it and return 'true'.
    890 *
    891 * We now know the mft record is an extent mft record.  We check if the inode
    892 * corresponding to its base mft record is in icache and obtain a reference to
    893 * it if it is.  If it is not, we can safely write it and return 'true'.
    894 *
    895 * We now have the base inode for the extent mft record.  We check if it has an
    896 * ntfs inode for the extent mft record attached and if not it is safe to write
    897 * the extent mft record and we return 'true'.
    898 *
    899 * The ntfs inode for the extent mft record is attached to the base inode so we
    900 * attempt to lock the extent mft record and if we find the lock was already
    901 * taken, it is not safe to write the extent mft record and we return 'false'.
    902 *
    903 * If we manage to obtain the lock we have exclusive access to the extent mft
    904 * record, which also allows us safe writeout of the extent mft record.  We
    905 * set the ntfs inode of the extent mft record clean and then set @locked_ni to
    906 * the now locked ntfs inode and return 'true'.
    907 *
    908 * Note, the reason for actually writing dirty mft records here and not just
    909 * relying on the vfs inode dirty code paths is that we can have mft records
    910 * modified without them ever having actual inodes in memory.  Also we can have
    911 * dirty mft records with clean ntfs inodes in memory.  None of the described
    912 * cases would result in the dirty mft records being written out if we only
    913 * relied on the vfs inode dirty code paths.  And these cases can really occur
    914 * during allocation of new mft records and in particular when the
    915 * initialized_size of the $MFT/$DATA attribute is extended and the new space
    916 * is initialized using ntfs_mft_record_format().  The clean inode can then
    917 * appear if the mft record is reused for a new inode before it got written
    918 * out.
    919 */
    920bool ntfs_may_write_mft_record(ntfs_volume *vol, const unsigned long mft_no,
    921		const MFT_RECORD *m, ntfs_inode **locked_ni)
    922{
    923	struct super_block *sb = vol->sb;
    924	struct inode *mft_vi = vol->mft_ino;
    925	struct inode *vi;
    926	ntfs_inode *ni, *eni, **extent_nis;
    927	int i;
    928	ntfs_attr na;
    929
    930	ntfs_debug("Entering for inode 0x%lx.", mft_no);
    931	/*
    932	 * Normally we do not return a locked inode so set @locked_ni to NULL.
    933	 */
    934	BUG_ON(!locked_ni);
    935	*locked_ni = NULL;
    936	/*
    937	 * Check if the inode corresponding to this mft record is in the VFS
    938	 * inode cache and obtain a reference to it if it is.
    939	 */
    940	ntfs_debug("Looking for inode 0x%lx in icache.", mft_no);
    941	na.mft_no = mft_no;
    942	na.name = NULL;
    943	na.name_len = 0;
    944	na.type = AT_UNUSED;
    945	/*
    946	 * Optimize inode 0, i.e. $MFT itself, since we have it in memory and
    947	 * we get here for it rather often.
    948	 */
    949	if (!mft_no) {
    950		/* Balance the below iput(). */
    951		vi = igrab(mft_vi);
    952		BUG_ON(vi != mft_vi);
    953	} else {
    954		/*
    955		 * Have to use ilookup5_nowait() since ilookup5() waits for the
    956		 * inode lock which causes ntfs to deadlock when a concurrent
    957		 * inode write via the inode dirty code paths and the page
    958		 * dirty code path of the inode dirty code path when writing
    959		 * $MFT occurs.
    960		 */
    961		vi = ilookup5_nowait(sb, mft_no, ntfs_test_inode, &na);
    962	}
    963	if (vi) {
    964		ntfs_debug("Base inode 0x%lx is in icache.", mft_no);
    965		/* The inode is in icache. */
    966		ni = NTFS_I(vi);
    967		/* Take a reference to the ntfs inode. */
    968		atomic_inc(&ni->count);
    969		/* If the inode is dirty, do not write this record. */
    970		if (NInoDirty(ni)) {
    971			ntfs_debug("Inode 0x%lx is dirty, do not write it.",
    972					mft_no);
    973			atomic_dec(&ni->count);
    974			iput(vi);
    975			return false;
    976		}
    977		ntfs_debug("Inode 0x%lx is not dirty.", mft_no);
    978		/* The inode is not dirty, try to take the mft record lock. */
    979		if (unlikely(!mutex_trylock(&ni->mrec_lock))) {
    980			ntfs_debug("Mft record 0x%lx is already locked, do "
    981					"not write it.", mft_no);
    982			atomic_dec(&ni->count);
    983			iput(vi);
    984			return false;
    985		}
    986		ntfs_debug("Managed to lock mft record 0x%lx, write it.",
    987				mft_no);
    988		/*
    989		 * The write has to occur while we hold the mft record lock so
    990		 * return the locked ntfs inode.
    991		 */
    992		*locked_ni = ni;
    993		return true;
    994	}
    995	ntfs_debug("Inode 0x%lx is not in icache.", mft_no);
    996	/* The inode is not in icache. */
    997	/* Write the record if it is not a mft record (type "FILE"). */
    998	if (!ntfs_is_mft_record(m->magic)) {
    999		ntfs_debug("Mft record 0x%lx is not a FILE record, write it.",
   1000				mft_no);
   1001		return true;
   1002	}
   1003	/* Write the mft record if it is a base inode. */
   1004	if (!m->base_mft_record) {
   1005		ntfs_debug("Mft record 0x%lx is a base record, write it.",
   1006				mft_no);
   1007		return true;
   1008	}
   1009	/*
   1010	 * This is an extent mft record.  Check if the inode corresponding to
   1011	 * its base mft record is in icache and obtain a reference to it if it
   1012	 * is.
   1013	 */
   1014	na.mft_no = MREF_LE(m->base_mft_record);
   1015	ntfs_debug("Mft record 0x%lx is an extent record.  Looking for base "
   1016			"inode 0x%lx in icache.", mft_no, na.mft_no);
   1017	if (!na.mft_no) {
   1018		/* Balance the below iput(). */
   1019		vi = igrab(mft_vi);
   1020		BUG_ON(vi != mft_vi);
   1021	} else
   1022		vi = ilookup5_nowait(sb, na.mft_no, ntfs_test_inode,
   1023				&na);
   1024	if (!vi) {
   1025		/*
   1026		 * The base inode is not in icache, write this extent mft
   1027		 * record.
   1028		 */
   1029		ntfs_debug("Base inode 0x%lx is not in icache, write the "
   1030				"extent record.", na.mft_no);
   1031		return true;
   1032	}
   1033	ntfs_debug("Base inode 0x%lx is in icache.", na.mft_no);
   1034	/*
   1035	 * The base inode is in icache.  Check if it has the extent inode
   1036	 * corresponding to this extent mft record attached.
   1037	 */
   1038	ni = NTFS_I(vi);
   1039	mutex_lock(&ni->extent_lock);
   1040	if (ni->nr_extents <= 0) {
   1041		/*
   1042		 * The base inode has no attached extent inodes, write this
   1043		 * extent mft record.
   1044		 */
   1045		mutex_unlock(&ni->extent_lock);
   1046		iput(vi);
   1047		ntfs_debug("Base inode 0x%lx has no attached extent inodes, "
   1048				"write the extent record.", na.mft_no);
   1049		return true;
   1050	}
   1051	/* Iterate over the attached extent inodes. */
   1052	extent_nis = ni->ext.extent_ntfs_inos;
   1053	for (eni = NULL, i = 0; i < ni->nr_extents; ++i) {
   1054		if (mft_no == extent_nis[i]->mft_no) {
   1055			/*
   1056			 * Found the extent inode corresponding to this extent
   1057			 * mft record.
   1058			 */
   1059			eni = extent_nis[i];
   1060			break;
   1061		}
   1062	}
   1063	/*
   1064	 * If the extent inode was not attached to the base inode, write this
   1065	 * extent mft record.
   1066	 */
   1067	if (!eni) {
   1068		mutex_unlock(&ni->extent_lock);
   1069		iput(vi);
   1070		ntfs_debug("Extent inode 0x%lx is not attached to its base "
   1071				"inode 0x%lx, write the extent record.",
   1072				mft_no, na.mft_no);
   1073		return true;
   1074	}
   1075	ntfs_debug("Extent inode 0x%lx is attached to its base inode 0x%lx.",
   1076			mft_no, na.mft_no);
   1077	/* Take a reference to the extent ntfs inode. */
   1078	atomic_inc(&eni->count);
   1079	mutex_unlock(&ni->extent_lock);
   1080	/*
   1081	 * Found the extent inode coresponding to this extent mft record.
   1082	 * Try to take the mft record lock.
   1083	 */
   1084	if (unlikely(!mutex_trylock(&eni->mrec_lock))) {
   1085		atomic_dec(&eni->count);
   1086		iput(vi);
   1087		ntfs_debug("Extent mft record 0x%lx is already locked, do "
   1088				"not write it.", mft_no);
   1089		return false;
   1090	}
   1091	ntfs_debug("Managed to lock extent mft record 0x%lx, write it.",
   1092			mft_no);
   1093	if (NInoTestClearDirty(eni))
   1094		ntfs_debug("Extent inode 0x%lx is dirty, marking it clean.",
   1095				mft_no);
   1096	/*
   1097	 * The write has to occur while we hold the mft record lock so return
   1098	 * the locked extent ntfs inode.
   1099	 */
   1100	*locked_ni = eni;
   1101	return true;
   1102}
   1103
   1104static const char *es = "  Leaving inconsistent metadata.  Unmount and run "
   1105		"chkdsk.";
   1106
   1107/**
   1108 * ntfs_mft_bitmap_find_and_alloc_free_rec_nolock - see name
   1109 * @vol:	volume on which to search for a free mft record
   1110 * @base_ni:	open base inode if allocating an extent mft record or NULL
   1111 *
   1112 * Search for a free mft record in the mft bitmap attribute on the ntfs volume
   1113 * @vol.
   1114 *
   1115 * If @base_ni is NULL start the search at the default allocator position.
   1116 *
   1117 * If @base_ni is not NULL start the search at the mft record after the base
   1118 * mft record @base_ni.
   1119 *
   1120 * Return the free mft record on success and -errno on error.  An error code of
   1121 * -ENOSPC means that there are no free mft records in the currently
   1122 * initialized mft bitmap.
   1123 *
   1124 * Locking: Caller must hold vol->mftbmp_lock for writing.
   1125 */
   1126static int ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(ntfs_volume *vol,
   1127		ntfs_inode *base_ni)
   1128{
   1129	s64 pass_end, ll, data_pos, pass_start, ofs, bit;
   1130	unsigned long flags;
   1131	struct address_space *mftbmp_mapping;
   1132	u8 *buf, *byte;
   1133	struct page *page;
   1134	unsigned int page_ofs, size;
   1135	u8 pass, b;
   1136
   1137	ntfs_debug("Searching for free mft record in the currently "
   1138			"initialized mft bitmap.");
   1139	mftbmp_mapping = vol->mftbmp_ino->i_mapping;
   1140	/*
   1141	 * Set the end of the pass making sure we do not overflow the mft
   1142	 * bitmap.
   1143	 */
   1144	read_lock_irqsave(&NTFS_I(vol->mft_ino)->size_lock, flags);
   1145	pass_end = NTFS_I(vol->mft_ino)->allocated_size >>
   1146			vol->mft_record_size_bits;
   1147	read_unlock_irqrestore(&NTFS_I(vol->mft_ino)->size_lock, flags);
   1148	read_lock_irqsave(&NTFS_I(vol->mftbmp_ino)->size_lock, flags);
   1149	ll = NTFS_I(vol->mftbmp_ino)->initialized_size << 3;
   1150	read_unlock_irqrestore(&NTFS_I(vol->mftbmp_ino)->size_lock, flags);
   1151	if (pass_end > ll)
   1152		pass_end = ll;
   1153	pass = 1;
   1154	if (!base_ni)
   1155		data_pos = vol->mft_data_pos;
   1156	else
   1157		data_pos = base_ni->mft_no + 1;
   1158	if (data_pos < 24)
   1159		data_pos = 24;
   1160	if (data_pos >= pass_end) {
   1161		data_pos = 24;
   1162		pass = 2;
   1163		/* This happens on a freshly formatted volume. */
   1164		if (data_pos >= pass_end)
   1165			return -ENOSPC;
   1166	}
   1167	pass_start = data_pos;
   1168	ntfs_debug("Starting bitmap search: pass %u, pass_start 0x%llx, "
   1169			"pass_end 0x%llx, data_pos 0x%llx.", pass,
   1170			(long long)pass_start, (long long)pass_end,
   1171			(long long)data_pos);
   1172	/* Loop until a free mft record is found. */
   1173	for (; pass <= 2;) {
   1174		/* Cap size to pass_end. */
   1175		ofs = data_pos >> 3;
   1176		page_ofs = ofs & ~PAGE_MASK;
   1177		size = PAGE_SIZE - page_ofs;
   1178		ll = ((pass_end + 7) >> 3) - ofs;
   1179		if (size > ll)
   1180			size = ll;
   1181		size <<= 3;
   1182		/*
   1183		 * If we are still within the active pass, search the next page
   1184		 * for a zero bit.
   1185		 */
   1186		if (size) {
   1187			page = ntfs_map_page(mftbmp_mapping,
   1188					ofs >> PAGE_SHIFT);
   1189			if (IS_ERR(page)) {
   1190				ntfs_error(vol->sb, "Failed to read mft "
   1191						"bitmap, aborting.");
   1192				return PTR_ERR(page);
   1193			}
   1194			buf = (u8*)page_address(page) + page_ofs;
   1195			bit = data_pos & 7;
   1196			data_pos &= ~7ull;
   1197			ntfs_debug("Before inner for loop: size 0x%x, "
   1198					"data_pos 0x%llx, bit 0x%llx", size,
   1199					(long long)data_pos, (long long)bit);
   1200			for (; bit < size && data_pos + bit < pass_end;
   1201					bit &= ~7ull, bit += 8) {
   1202				byte = buf + (bit >> 3);
   1203				if (*byte == 0xff)
   1204					continue;
   1205				b = ffz((unsigned long)*byte);
   1206				if (b < 8 && b >= (bit & 7)) {
   1207					ll = data_pos + (bit & ~7ull) + b;
   1208					if (unlikely(ll > (1ll << 32))) {
   1209						ntfs_unmap_page(page);
   1210						return -ENOSPC;
   1211					}
   1212					*byte |= 1 << b;
   1213					flush_dcache_page(page);
   1214					set_page_dirty(page);
   1215					ntfs_unmap_page(page);
   1216					ntfs_debug("Done.  (Found and "
   1217							"allocated mft record "
   1218							"0x%llx.)",
   1219							(long long)ll);
   1220					return ll;
   1221				}
   1222			}
   1223			ntfs_debug("After inner for loop: size 0x%x, "
   1224					"data_pos 0x%llx, bit 0x%llx", size,
   1225					(long long)data_pos, (long long)bit);
   1226			data_pos += size;
   1227			ntfs_unmap_page(page);
   1228			/*
   1229			 * If the end of the pass has not been reached yet,
   1230			 * continue searching the mft bitmap for a zero bit.
   1231			 */
   1232			if (data_pos < pass_end)
   1233				continue;
   1234		}
   1235		/* Do the next pass. */
   1236		if (++pass == 2) {
   1237			/*
   1238			 * Starting the second pass, in which we scan the first
   1239			 * part of the zone which we omitted earlier.
   1240			 */
   1241			pass_end = pass_start;
   1242			data_pos = pass_start = 24;
   1243			ntfs_debug("pass %i, pass_start 0x%llx, pass_end "
   1244					"0x%llx.", pass, (long long)pass_start,
   1245					(long long)pass_end);
   1246			if (data_pos >= pass_end)
   1247				break;
   1248		}
   1249	}
   1250	/* No free mft records in currently initialized mft bitmap. */
   1251	ntfs_debug("Done.  (No free mft records left in currently initialized "
   1252			"mft bitmap.)");
   1253	return -ENOSPC;
   1254}
   1255
   1256/**
   1257 * ntfs_mft_bitmap_extend_allocation_nolock - extend mft bitmap by a cluster
   1258 * @vol:	volume on which to extend the mft bitmap attribute
   1259 *
   1260 * Extend the mft bitmap attribute on the ntfs volume @vol by one cluster.
   1261 *
   1262 * Note: Only changes allocated_size, i.e. does not touch initialized_size or
   1263 * data_size.
   1264 *
   1265 * Return 0 on success and -errno on error.
   1266 *
   1267 * Locking: - Caller must hold vol->mftbmp_lock for writing.
   1268 *	    - This function takes NTFS_I(vol->mftbmp_ino)->runlist.lock for
   1269 *	      writing and releases it before returning.
   1270 *	    - This function takes vol->lcnbmp_lock for writing and releases it
   1271 *	      before returning.
   1272 */
   1273static int ntfs_mft_bitmap_extend_allocation_nolock(ntfs_volume *vol)
   1274{
   1275	LCN lcn;
   1276	s64 ll;
   1277	unsigned long flags;
   1278	struct page *page;
   1279	ntfs_inode *mft_ni, *mftbmp_ni;
   1280	runlist_element *rl, *rl2 = NULL;
   1281	ntfs_attr_search_ctx *ctx = NULL;
   1282	MFT_RECORD *mrec;
   1283	ATTR_RECORD *a = NULL;
   1284	int ret, mp_size;
   1285	u32 old_alen = 0;
   1286	u8 *b, tb;
   1287	struct {
   1288		u8 added_cluster:1;
   1289		u8 added_run:1;
   1290		u8 mp_rebuilt:1;
   1291	} status = { 0, 0, 0 };
   1292
   1293	ntfs_debug("Extending mft bitmap allocation.");
   1294	mft_ni = NTFS_I(vol->mft_ino);
   1295	mftbmp_ni = NTFS_I(vol->mftbmp_ino);
   1296	/*
   1297	 * Determine the last lcn of the mft bitmap.  The allocated size of the
   1298	 * mft bitmap cannot be zero so we are ok to do this.
   1299	 */
   1300	down_write(&mftbmp_ni->runlist.lock);
   1301	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
   1302	ll = mftbmp_ni->allocated_size;
   1303	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
   1304	rl = ntfs_attr_find_vcn_nolock(mftbmp_ni,
   1305			(ll - 1) >> vol->cluster_size_bits, NULL);
   1306	if (IS_ERR(rl) || unlikely(!rl->length || rl->lcn < 0)) {
   1307		up_write(&mftbmp_ni->runlist.lock);
   1308		ntfs_error(vol->sb, "Failed to determine last allocated "
   1309				"cluster of mft bitmap attribute.");
   1310		if (!IS_ERR(rl))
   1311			ret = -EIO;
   1312		else
   1313			ret = PTR_ERR(rl);
   1314		return ret;
   1315	}
   1316	lcn = rl->lcn + rl->length;
   1317	ntfs_debug("Last lcn of mft bitmap attribute is 0x%llx.",
   1318			(long long)lcn);
   1319	/*
   1320	 * Attempt to get the cluster following the last allocated cluster by
   1321	 * hand as it may be in the MFT zone so the allocator would not give it
   1322	 * to us.
   1323	 */
   1324	ll = lcn >> 3;
   1325	page = ntfs_map_page(vol->lcnbmp_ino->i_mapping,
   1326			ll >> PAGE_SHIFT);
   1327	if (IS_ERR(page)) {
   1328		up_write(&mftbmp_ni->runlist.lock);
   1329		ntfs_error(vol->sb, "Failed to read from lcn bitmap.");
   1330		return PTR_ERR(page);
   1331	}
   1332	b = (u8*)page_address(page) + (ll & ~PAGE_MASK);
   1333	tb = 1 << (lcn & 7ull);
   1334	down_write(&vol->lcnbmp_lock);
   1335	if (*b != 0xff && !(*b & tb)) {
   1336		/* Next cluster is free, allocate it. */
   1337		*b |= tb;
   1338		flush_dcache_page(page);
   1339		set_page_dirty(page);
   1340		up_write(&vol->lcnbmp_lock);
   1341		ntfs_unmap_page(page);
   1342		/* Update the mft bitmap runlist. */
   1343		rl->length++;
   1344		rl[1].vcn++;
   1345		status.added_cluster = 1;
   1346		ntfs_debug("Appending one cluster to mft bitmap.");
   1347	} else {
   1348		up_write(&vol->lcnbmp_lock);
   1349		ntfs_unmap_page(page);
   1350		/* Allocate a cluster from the DATA_ZONE. */
   1351		rl2 = ntfs_cluster_alloc(vol, rl[1].vcn, 1, lcn, DATA_ZONE,
   1352				true);
   1353		if (IS_ERR(rl2)) {
   1354			up_write(&mftbmp_ni->runlist.lock);
   1355			ntfs_error(vol->sb, "Failed to allocate a cluster for "
   1356					"the mft bitmap.");
   1357			return PTR_ERR(rl2);
   1358		}
   1359		rl = ntfs_runlists_merge(mftbmp_ni->runlist.rl, rl2);
   1360		if (IS_ERR(rl)) {
   1361			up_write(&mftbmp_ni->runlist.lock);
   1362			ntfs_error(vol->sb, "Failed to merge runlists for mft "
   1363					"bitmap.");
   1364			if (ntfs_cluster_free_from_rl(vol, rl2)) {
   1365				ntfs_error(vol->sb, "Failed to deallocate "
   1366						"allocated cluster.%s", es);
   1367				NVolSetErrors(vol);
   1368			}
   1369			ntfs_free(rl2);
   1370			return PTR_ERR(rl);
   1371		}
   1372		mftbmp_ni->runlist.rl = rl;
   1373		status.added_run = 1;
   1374		ntfs_debug("Adding one run to mft bitmap.");
   1375		/* Find the last run in the new runlist. */
   1376		for (; rl[1].length; rl++)
   1377			;
   1378	}
   1379	/*
   1380	 * Update the attribute record as well.  Note: @rl is the last
   1381	 * (non-terminator) runlist element of mft bitmap.
   1382	 */
   1383	mrec = map_mft_record(mft_ni);
   1384	if (IS_ERR(mrec)) {
   1385		ntfs_error(vol->sb, "Failed to map mft record.");
   1386		ret = PTR_ERR(mrec);
   1387		goto undo_alloc;
   1388	}
   1389	ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
   1390	if (unlikely(!ctx)) {
   1391		ntfs_error(vol->sb, "Failed to get search context.");
   1392		ret = -ENOMEM;
   1393		goto undo_alloc;
   1394	}
   1395	ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
   1396			mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL,
   1397			0, ctx);
   1398	if (unlikely(ret)) {
   1399		ntfs_error(vol->sb, "Failed to find last attribute extent of "
   1400				"mft bitmap attribute.");
   1401		if (ret == -ENOENT)
   1402			ret = -EIO;
   1403		goto undo_alloc;
   1404	}
   1405	a = ctx->attr;
   1406	ll = sle64_to_cpu(a->data.non_resident.lowest_vcn);
   1407	/* Search back for the previous last allocated cluster of mft bitmap. */
   1408	for (rl2 = rl; rl2 > mftbmp_ni->runlist.rl; rl2--) {
   1409		if (ll >= rl2->vcn)
   1410			break;
   1411	}
   1412	BUG_ON(ll < rl2->vcn);
   1413	BUG_ON(ll >= rl2->vcn + rl2->length);
   1414	/* Get the size for the new mapping pairs array for this extent. */
   1415	mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1);
   1416	if (unlikely(mp_size <= 0)) {
   1417		ntfs_error(vol->sb, "Get size for mapping pairs failed for "
   1418				"mft bitmap attribute extent.");
   1419		ret = mp_size;
   1420		if (!ret)
   1421			ret = -EIO;
   1422		goto undo_alloc;
   1423	}
   1424	/* Expand the attribute record if necessary. */
   1425	old_alen = le32_to_cpu(a->length);
   1426	ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size +
   1427			le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
   1428	if (unlikely(ret)) {
   1429		if (ret != -ENOSPC) {
   1430			ntfs_error(vol->sb, "Failed to resize attribute "
   1431					"record for mft bitmap attribute.");
   1432			goto undo_alloc;
   1433		}
   1434		// TODO: Deal with this by moving this extent to a new mft
   1435		// record or by starting a new extent in a new mft record or by
   1436		// moving other attributes out of this mft record.
   1437		// Note: It will need to be a special mft record and if none of
   1438		// those are available it gets rather complicated...
   1439		ntfs_error(vol->sb, "Not enough space in this mft record to "
   1440				"accommodate extended mft bitmap attribute "
   1441				"extent.  Cannot handle this yet.");
   1442		ret = -EOPNOTSUPP;
   1443		goto undo_alloc;
   1444	}
   1445	status.mp_rebuilt = 1;
   1446	/* Generate the mapping pairs array directly into the attr record. */
   1447	ret = ntfs_mapping_pairs_build(vol, (u8*)a +
   1448			le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
   1449			mp_size, rl2, ll, -1, NULL);
   1450	if (unlikely(ret)) {
   1451		ntfs_error(vol->sb, "Failed to build mapping pairs array for "
   1452				"mft bitmap attribute.");
   1453		goto undo_alloc;
   1454	}
   1455	/* Update the highest_vcn. */
   1456	a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1);
   1457	/*
   1458	 * We now have extended the mft bitmap allocated_size by one cluster.
   1459	 * Reflect this in the ntfs_inode structure and the attribute record.
   1460	 */
   1461	if (a->data.non_resident.lowest_vcn) {
   1462		/*
   1463		 * We are not in the first attribute extent, switch to it, but
   1464		 * first ensure the changes will make it to disk later.
   1465		 */
   1466		flush_dcache_mft_record_page(ctx->ntfs_ino);
   1467		mark_mft_record_dirty(ctx->ntfs_ino);
   1468		ntfs_attr_reinit_search_ctx(ctx);
   1469		ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
   1470				mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL,
   1471				0, ctx);
   1472		if (unlikely(ret)) {
   1473			ntfs_error(vol->sb, "Failed to find first attribute "
   1474					"extent of mft bitmap attribute.");
   1475			goto restore_undo_alloc;
   1476		}
   1477		a = ctx->attr;
   1478	}
   1479	write_lock_irqsave(&mftbmp_ni->size_lock, flags);
   1480	mftbmp_ni->allocated_size += vol->cluster_size;
   1481	a->data.non_resident.allocated_size =
   1482			cpu_to_sle64(mftbmp_ni->allocated_size);
   1483	write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
   1484	/* Ensure the changes make it to disk. */
   1485	flush_dcache_mft_record_page(ctx->ntfs_ino);
   1486	mark_mft_record_dirty(ctx->ntfs_ino);
   1487	ntfs_attr_put_search_ctx(ctx);
   1488	unmap_mft_record(mft_ni);
   1489	up_write(&mftbmp_ni->runlist.lock);
   1490	ntfs_debug("Done.");
   1491	return 0;
   1492restore_undo_alloc:
   1493	ntfs_attr_reinit_search_ctx(ctx);
   1494	if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
   1495			mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL,
   1496			0, ctx)) {
   1497		ntfs_error(vol->sb, "Failed to find last attribute extent of "
   1498				"mft bitmap attribute.%s", es);
   1499		write_lock_irqsave(&mftbmp_ni->size_lock, flags);
   1500		mftbmp_ni->allocated_size += vol->cluster_size;
   1501		write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
   1502		ntfs_attr_put_search_ctx(ctx);
   1503		unmap_mft_record(mft_ni);
   1504		up_write(&mftbmp_ni->runlist.lock);
   1505		/*
   1506		 * The only thing that is now wrong is ->allocated_size of the
   1507		 * base attribute extent which chkdsk should be able to fix.
   1508		 */
   1509		NVolSetErrors(vol);
   1510		return ret;
   1511	}
   1512	a = ctx->attr;
   1513	a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 2);
   1514undo_alloc:
   1515	if (status.added_cluster) {
   1516		/* Truncate the last run in the runlist by one cluster. */
   1517		rl->length--;
   1518		rl[1].vcn--;
   1519	} else if (status.added_run) {
   1520		lcn = rl->lcn;
   1521		/* Remove the last run from the runlist. */
   1522		rl->lcn = rl[1].lcn;
   1523		rl->length = 0;
   1524	}
   1525	/* Deallocate the cluster. */
   1526	down_write(&vol->lcnbmp_lock);
   1527	if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
   1528		ntfs_error(vol->sb, "Failed to free allocated cluster.%s", es);
   1529		NVolSetErrors(vol);
   1530	}
   1531	up_write(&vol->lcnbmp_lock);
   1532	if (status.mp_rebuilt) {
   1533		if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
   1534				a->data.non_resident.mapping_pairs_offset),
   1535				old_alen - le16_to_cpu(
   1536				a->data.non_resident.mapping_pairs_offset),
   1537				rl2, ll, -1, NULL)) {
   1538			ntfs_error(vol->sb, "Failed to restore mapping pairs "
   1539					"array.%s", es);
   1540			NVolSetErrors(vol);
   1541		}
   1542		if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) {
   1543			ntfs_error(vol->sb, "Failed to restore attribute "
   1544					"record.%s", es);
   1545			NVolSetErrors(vol);
   1546		}
   1547		flush_dcache_mft_record_page(ctx->ntfs_ino);
   1548		mark_mft_record_dirty(ctx->ntfs_ino);
   1549	}
   1550	if (ctx)
   1551		ntfs_attr_put_search_ctx(ctx);
   1552	if (!IS_ERR(mrec))
   1553		unmap_mft_record(mft_ni);
   1554	up_write(&mftbmp_ni->runlist.lock);
   1555	return ret;
   1556}
   1557
   1558/**
   1559 * ntfs_mft_bitmap_extend_initialized_nolock - extend mftbmp initialized data
   1560 * @vol:	volume on which to extend the mft bitmap attribute
   1561 *
   1562 * Extend the initialized portion of the mft bitmap attribute on the ntfs
   1563 * volume @vol by 8 bytes.
   1564 *
   1565 * Note:  Only changes initialized_size and data_size, i.e. requires that
   1566 * allocated_size is big enough to fit the new initialized_size.
   1567 *
   1568 * Return 0 on success and -error on error.
   1569 *
   1570 * Locking: Caller must hold vol->mftbmp_lock for writing.
   1571 */
   1572static int ntfs_mft_bitmap_extend_initialized_nolock(ntfs_volume *vol)
   1573{
   1574	s64 old_data_size, old_initialized_size;
   1575	unsigned long flags;
   1576	struct inode *mftbmp_vi;
   1577	ntfs_inode *mft_ni, *mftbmp_ni;
   1578	ntfs_attr_search_ctx *ctx;
   1579	MFT_RECORD *mrec;
   1580	ATTR_RECORD *a;
   1581	int ret;
   1582
   1583	ntfs_debug("Extending mft bitmap initiailized (and data) size.");
   1584	mft_ni = NTFS_I(vol->mft_ino);
   1585	mftbmp_vi = vol->mftbmp_ino;
   1586	mftbmp_ni = NTFS_I(mftbmp_vi);
   1587	/* Get the attribute record. */
   1588	mrec = map_mft_record(mft_ni);
   1589	if (IS_ERR(mrec)) {
   1590		ntfs_error(vol->sb, "Failed to map mft record.");
   1591		return PTR_ERR(mrec);
   1592	}
   1593	ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
   1594	if (unlikely(!ctx)) {
   1595		ntfs_error(vol->sb, "Failed to get search context.");
   1596		ret = -ENOMEM;
   1597		goto unm_err_out;
   1598	}
   1599	ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
   1600			mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx);
   1601	if (unlikely(ret)) {
   1602		ntfs_error(vol->sb, "Failed to find first attribute extent of "
   1603				"mft bitmap attribute.");
   1604		if (ret == -ENOENT)
   1605			ret = -EIO;
   1606		goto put_err_out;
   1607	}
   1608	a = ctx->attr;
   1609	write_lock_irqsave(&mftbmp_ni->size_lock, flags);
   1610	old_data_size = i_size_read(mftbmp_vi);
   1611	old_initialized_size = mftbmp_ni->initialized_size;
   1612	/*
   1613	 * We can simply update the initialized_size before filling the space
   1614	 * with zeroes because the caller is holding the mft bitmap lock for
   1615	 * writing which ensures that no one else is trying to access the data.
   1616	 */
   1617	mftbmp_ni->initialized_size += 8;
   1618	a->data.non_resident.initialized_size =
   1619			cpu_to_sle64(mftbmp_ni->initialized_size);
   1620	if (mftbmp_ni->initialized_size > old_data_size) {
   1621		i_size_write(mftbmp_vi, mftbmp_ni->initialized_size);
   1622		a->data.non_resident.data_size =
   1623				cpu_to_sle64(mftbmp_ni->initialized_size);
   1624	}
   1625	write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
   1626	/* Ensure the changes make it to disk. */
   1627	flush_dcache_mft_record_page(ctx->ntfs_ino);
   1628	mark_mft_record_dirty(ctx->ntfs_ino);
   1629	ntfs_attr_put_search_ctx(ctx);
   1630	unmap_mft_record(mft_ni);
   1631	/* Initialize the mft bitmap attribute value with zeroes. */
   1632	ret = ntfs_attr_set(mftbmp_ni, old_initialized_size, 8, 0);
   1633	if (likely(!ret)) {
   1634		ntfs_debug("Done.  (Wrote eight initialized bytes to mft "
   1635				"bitmap.");
   1636		return 0;
   1637	}
   1638	ntfs_error(vol->sb, "Failed to write to mft bitmap.");
   1639	/* Try to recover from the error. */
   1640	mrec = map_mft_record(mft_ni);
   1641	if (IS_ERR(mrec)) {
   1642		ntfs_error(vol->sb, "Failed to map mft record.%s", es);
   1643		NVolSetErrors(vol);
   1644		return ret;
   1645	}
   1646	ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
   1647	if (unlikely(!ctx)) {
   1648		ntfs_error(vol->sb, "Failed to get search context.%s", es);
   1649		NVolSetErrors(vol);
   1650		goto unm_err_out;
   1651	}
   1652	if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
   1653			mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx)) {
   1654		ntfs_error(vol->sb, "Failed to find first attribute extent of "
   1655				"mft bitmap attribute.%s", es);
   1656		NVolSetErrors(vol);
   1657put_err_out:
   1658		ntfs_attr_put_search_ctx(ctx);
   1659unm_err_out:
   1660		unmap_mft_record(mft_ni);
   1661		goto err_out;
   1662	}
   1663	a = ctx->attr;
   1664	write_lock_irqsave(&mftbmp_ni->size_lock, flags);
   1665	mftbmp_ni->initialized_size = old_initialized_size;
   1666	a->data.non_resident.initialized_size =
   1667			cpu_to_sle64(old_initialized_size);
   1668	if (i_size_read(mftbmp_vi) != old_data_size) {
   1669		i_size_write(mftbmp_vi, old_data_size);
   1670		a->data.non_resident.data_size = cpu_to_sle64(old_data_size);
   1671	}
   1672	write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
   1673	flush_dcache_mft_record_page(ctx->ntfs_ino);
   1674	mark_mft_record_dirty(ctx->ntfs_ino);
   1675	ntfs_attr_put_search_ctx(ctx);
   1676	unmap_mft_record(mft_ni);
   1677#ifdef DEBUG
   1678	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
   1679	ntfs_debug("Restored status of mftbmp: allocated_size 0x%llx, "
   1680			"data_size 0x%llx, initialized_size 0x%llx.",
   1681			(long long)mftbmp_ni->allocated_size,
   1682			(long long)i_size_read(mftbmp_vi),
   1683			(long long)mftbmp_ni->initialized_size);
   1684	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
   1685#endif /* DEBUG */
   1686err_out:
   1687	return ret;
   1688}
   1689
   1690/**
   1691 * ntfs_mft_data_extend_allocation_nolock - extend mft data attribute
   1692 * @vol:	volume on which to extend the mft data attribute
   1693 *
   1694 * Extend the mft data attribute on the ntfs volume @vol by 16 mft records
   1695 * worth of clusters or if not enough space for this by one mft record worth
   1696 * of clusters.
   1697 *
   1698 * Note:  Only changes allocated_size, i.e. does not touch initialized_size or
   1699 * data_size.
   1700 *
   1701 * Return 0 on success and -errno on error.
   1702 *
   1703 * Locking: - Caller must hold vol->mftbmp_lock for writing.
   1704 *	    - This function takes NTFS_I(vol->mft_ino)->runlist.lock for
   1705 *	      writing and releases it before returning.
   1706 *	    - This function calls functions which take vol->lcnbmp_lock for
   1707 *	      writing and release it before returning.
   1708 */
   1709static int ntfs_mft_data_extend_allocation_nolock(ntfs_volume *vol)
   1710{
   1711	LCN lcn;
   1712	VCN old_last_vcn;
   1713	s64 min_nr, nr, ll;
   1714	unsigned long flags;
   1715	ntfs_inode *mft_ni;
   1716	runlist_element *rl, *rl2;
   1717	ntfs_attr_search_ctx *ctx = NULL;
   1718	MFT_RECORD *mrec;
   1719	ATTR_RECORD *a = NULL;
   1720	int ret, mp_size;
   1721	u32 old_alen = 0;
   1722	bool mp_rebuilt = false;
   1723
   1724	ntfs_debug("Extending mft data allocation.");
   1725	mft_ni = NTFS_I(vol->mft_ino);
   1726	/*
   1727	 * Determine the preferred allocation location, i.e. the last lcn of
   1728	 * the mft data attribute.  The allocated size of the mft data
   1729	 * attribute cannot be zero so we are ok to do this.
   1730	 */
   1731	down_write(&mft_ni->runlist.lock);
   1732	read_lock_irqsave(&mft_ni->size_lock, flags);
   1733	ll = mft_ni->allocated_size;
   1734	read_unlock_irqrestore(&mft_ni->size_lock, flags);
   1735	rl = ntfs_attr_find_vcn_nolock(mft_ni,
   1736			(ll - 1) >> vol->cluster_size_bits, NULL);
   1737	if (IS_ERR(rl) || unlikely(!rl->length || rl->lcn < 0)) {
   1738		up_write(&mft_ni->runlist.lock);
   1739		ntfs_error(vol->sb, "Failed to determine last allocated "
   1740				"cluster of mft data attribute.");
   1741		if (!IS_ERR(rl))
   1742			ret = -EIO;
   1743		else
   1744			ret = PTR_ERR(rl);
   1745		return ret;
   1746	}
   1747	lcn = rl->lcn + rl->length;
   1748	ntfs_debug("Last lcn of mft data attribute is 0x%llx.", (long long)lcn);
   1749	/* Minimum allocation is one mft record worth of clusters. */
   1750	min_nr = vol->mft_record_size >> vol->cluster_size_bits;
   1751	if (!min_nr)
   1752		min_nr = 1;
   1753	/* Want to allocate 16 mft records worth of clusters. */
   1754	nr = vol->mft_record_size << 4 >> vol->cluster_size_bits;
   1755	if (!nr)
   1756		nr = min_nr;
   1757	/* Ensure we do not go above 2^32-1 mft records. */
   1758	read_lock_irqsave(&mft_ni->size_lock, flags);
   1759	ll = mft_ni->allocated_size;
   1760	read_unlock_irqrestore(&mft_ni->size_lock, flags);
   1761	if (unlikely((ll + (nr << vol->cluster_size_bits)) >>
   1762			vol->mft_record_size_bits >= (1ll << 32))) {
   1763		nr = min_nr;
   1764		if (unlikely((ll + (nr << vol->cluster_size_bits)) >>
   1765				vol->mft_record_size_bits >= (1ll << 32))) {
   1766			ntfs_warning(vol->sb, "Cannot allocate mft record "
   1767					"because the maximum number of inodes "
   1768					"(2^32) has already been reached.");
   1769			up_write(&mft_ni->runlist.lock);
   1770			return -ENOSPC;
   1771		}
   1772	}
   1773	ntfs_debug("Trying mft data allocation with %s cluster count %lli.",
   1774			nr > min_nr ? "default" : "minimal", (long long)nr);
   1775	old_last_vcn = rl[1].vcn;
   1776	do {
   1777		rl2 = ntfs_cluster_alloc(vol, old_last_vcn, nr, lcn, MFT_ZONE,
   1778				true);
   1779		if (!IS_ERR(rl2))
   1780			break;
   1781		if (PTR_ERR(rl2) != -ENOSPC || nr == min_nr) {
   1782			ntfs_error(vol->sb, "Failed to allocate the minimal "
   1783					"number of clusters (%lli) for the "
   1784					"mft data attribute.", (long long)nr);
   1785			up_write(&mft_ni->runlist.lock);
   1786			return PTR_ERR(rl2);
   1787		}
   1788		/*
   1789		 * There is not enough space to do the allocation, but there
   1790		 * might be enough space to do a minimal allocation so try that
   1791		 * before failing.
   1792		 */
   1793		nr = min_nr;
   1794		ntfs_debug("Retrying mft data allocation with minimal cluster "
   1795				"count %lli.", (long long)nr);
   1796	} while (1);
   1797	rl = ntfs_runlists_merge(mft_ni->runlist.rl, rl2);
   1798	if (IS_ERR(rl)) {
   1799		up_write(&mft_ni->runlist.lock);
   1800		ntfs_error(vol->sb, "Failed to merge runlists for mft data "
   1801				"attribute.");
   1802		if (ntfs_cluster_free_from_rl(vol, rl2)) {
   1803			ntfs_error(vol->sb, "Failed to deallocate clusters "
   1804					"from the mft data attribute.%s", es);
   1805			NVolSetErrors(vol);
   1806		}
   1807		ntfs_free(rl2);
   1808		return PTR_ERR(rl);
   1809	}
   1810	mft_ni->runlist.rl = rl;
   1811	ntfs_debug("Allocated %lli clusters.", (long long)nr);
   1812	/* Find the last run in the new runlist. */
   1813	for (; rl[1].length; rl++)
   1814		;
   1815	/* Update the attribute record as well. */
   1816	mrec = map_mft_record(mft_ni);
   1817	if (IS_ERR(mrec)) {
   1818		ntfs_error(vol->sb, "Failed to map mft record.");
   1819		ret = PTR_ERR(mrec);
   1820		goto undo_alloc;
   1821	}
   1822	ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
   1823	if (unlikely(!ctx)) {
   1824		ntfs_error(vol->sb, "Failed to get search context.");
   1825		ret = -ENOMEM;
   1826		goto undo_alloc;
   1827	}
   1828	ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
   1829			CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx);
   1830	if (unlikely(ret)) {
   1831		ntfs_error(vol->sb, "Failed to find last attribute extent of "
   1832				"mft data attribute.");
   1833		if (ret == -ENOENT)
   1834			ret = -EIO;
   1835		goto undo_alloc;
   1836	}
   1837	a = ctx->attr;
   1838	ll = sle64_to_cpu(a->data.non_resident.lowest_vcn);
   1839	/* Search back for the previous last allocated cluster of mft bitmap. */
   1840	for (rl2 = rl; rl2 > mft_ni->runlist.rl; rl2--) {
   1841		if (ll >= rl2->vcn)
   1842			break;
   1843	}
   1844	BUG_ON(ll < rl2->vcn);
   1845	BUG_ON(ll >= rl2->vcn + rl2->length);
   1846	/* Get the size for the new mapping pairs array for this extent. */
   1847	mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1);
   1848	if (unlikely(mp_size <= 0)) {
   1849		ntfs_error(vol->sb, "Get size for mapping pairs failed for "
   1850				"mft data attribute extent.");
   1851		ret = mp_size;
   1852		if (!ret)
   1853			ret = -EIO;
   1854		goto undo_alloc;
   1855	}
   1856	/* Expand the attribute record if necessary. */
   1857	old_alen = le32_to_cpu(a->length);
   1858	ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size +
   1859			le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
   1860	if (unlikely(ret)) {
   1861		if (ret != -ENOSPC) {
   1862			ntfs_error(vol->sb, "Failed to resize attribute "
   1863					"record for mft data attribute.");
   1864			goto undo_alloc;
   1865		}
   1866		// TODO: Deal with this by moving this extent to a new mft
   1867		// record or by starting a new extent in a new mft record or by
   1868		// moving other attributes out of this mft record.
   1869		// Note: Use the special reserved mft records and ensure that
   1870		// this extent is not required to find the mft record in
   1871		// question.  If no free special records left we would need to
   1872		// move an existing record away, insert ours in its place, and
   1873		// then place the moved record into the newly allocated space
   1874		// and we would then need to update all references to this mft
   1875		// record appropriately.  This is rather complicated...
   1876		ntfs_error(vol->sb, "Not enough space in this mft record to "
   1877				"accommodate extended mft data attribute "
   1878				"extent.  Cannot handle this yet.");
   1879		ret = -EOPNOTSUPP;
   1880		goto undo_alloc;
   1881	}
   1882	mp_rebuilt = true;
   1883	/* Generate the mapping pairs array directly into the attr record. */
   1884	ret = ntfs_mapping_pairs_build(vol, (u8*)a +
   1885			le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
   1886			mp_size, rl2, ll, -1, NULL);
   1887	if (unlikely(ret)) {
   1888		ntfs_error(vol->sb, "Failed to build mapping pairs array of "
   1889				"mft data attribute.");
   1890		goto undo_alloc;
   1891	}
   1892	/* Update the highest_vcn. */
   1893	a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1);
   1894	/*
   1895	 * We now have extended the mft data allocated_size by nr clusters.
   1896	 * Reflect this in the ntfs_inode structure and the attribute record.
   1897	 * @rl is the last (non-terminator) runlist element of mft data
   1898	 * attribute.
   1899	 */
   1900	if (a->data.non_resident.lowest_vcn) {
   1901		/*
   1902		 * We are not in the first attribute extent, switch to it, but
   1903		 * first ensure the changes will make it to disk later.
   1904		 */
   1905		flush_dcache_mft_record_page(ctx->ntfs_ino);
   1906		mark_mft_record_dirty(ctx->ntfs_ino);
   1907		ntfs_attr_reinit_search_ctx(ctx);
   1908		ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name,
   1909				mft_ni->name_len, CASE_SENSITIVE, 0, NULL, 0,
   1910				ctx);
   1911		if (unlikely(ret)) {
   1912			ntfs_error(vol->sb, "Failed to find first attribute "
   1913					"extent of mft data attribute.");
   1914			goto restore_undo_alloc;
   1915		}
   1916		a = ctx->attr;
   1917	}
   1918	write_lock_irqsave(&mft_ni->size_lock, flags);
   1919	mft_ni->allocated_size += nr << vol->cluster_size_bits;
   1920	a->data.non_resident.allocated_size =
   1921			cpu_to_sle64(mft_ni->allocated_size);
   1922	write_unlock_irqrestore(&mft_ni->size_lock, flags);
   1923	/* Ensure the changes make it to disk. */
   1924	flush_dcache_mft_record_page(ctx->ntfs_ino);
   1925	mark_mft_record_dirty(ctx->ntfs_ino);
   1926	ntfs_attr_put_search_ctx(ctx);
   1927	unmap_mft_record(mft_ni);
   1928	up_write(&mft_ni->runlist.lock);
   1929	ntfs_debug("Done.");
   1930	return 0;
   1931restore_undo_alloc:
   1932	ntfs_attr_reinit_search_ctx(ctx);
   1933	if (ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
   1934			CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx)) {
   1935		ntfs_error(vol->sb, "Failed to find last attribute extent of "
   1936				"mft data attribute.%s", es);
   1937		write_lock_irqsave(&mft_ni->size_lock, flags);
   1938		mft_ni->allocated_size += nr << vol->cluster_size_bits;
   1939		write_unlock_irqrestore(&mft_ni->size_lock, flags);
   1940		ntfs_attr_put_search_ctx(ctx);
   1941		unmap_mft_record(mft_ni);
   1942		up_write(&mft_ni->runlist.lock);
   1943		/*
   1944		 * The only thing that is now wrong is ->allocated_size of the
   1945		 * base attribute extent which chkdsk should be able to fix.
   1946		 */
   1947		NVolSetErrors(vol);
   1948		return ret;
   1949	}
   1950	ctx->attr->data.non_resident.highest_vcn =
   1951			cpu_to_sle64(old_last_vcn - 1);
   1952undo_alloc:
   1953	if (ntfs_cluster_free(mft_ni, old_last_vcn, -1, ctx) < 0) {
   1954		ntfs_error(vol->sb, "Failed to free clusters from mft data "
   1955				"attribute.%s", es);
   1956		NVolSetErrors(vol);
   1957	}
   1958	a = ctx->attr;
   1959	if (ntfs_rl_truncate_nolock(vol, &mft_ni->runlist, old_last_vcn)) {
   1960		ntfs_error(vol->sb, "Failed to truncate mft data attribute "
   1961				"runlist.%s", es);
   1962		NVolSetErrors(vol);
   1963	}
   1964	if (mp_rebuilt && !IS_ERR(ctx->mrec)) {
   1965		if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
   1966				a->data.non_resident.mapping_pairs_offset),
   1967				old_alen - le16_to_cpu(
   1968				a->data.non_resident.mapping_pairs_offset),
   1969				rl2, ll, -1, NULL)) {
   1970			ntfs_error(vol->sb, "Failed to restore mapping pairs "
   1971					"array.%s", es);
   1972			NVolSetErrors(vol);
   1973		}
   1974		if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) {
   1975			ntfs_error(vol->sb, "Failed to restore attribute "
   1976					"record.%s", es);
   1977			NVolSetErrors(vol);
   1978		}
   1979		flush_dcache_mft_record_page(ctx->ntfs_ino);
   1980		mark_mft_record_dirty(ctx->ntfs_ino);
   1981	} else if (IS_ERR(ctx->mrec)) {
   1982		ntfs_error(vol->sb, "Failed to restore attribute search "
   1983				"context.%s", es);
   1984		NVolSetErrors(vol);
   1985	}
   1986	if (ctx)
   1987		ntfs_attr_put_search_ctx(ctx);
   1988	if (!IS_ERR(mrec))
   1989		unmap_mft_record(mft_ni);
   1990	up_write(&mft_ni->runlist.lock);
   1991	return ret;
   1992}
   1993
   1994/**
   1995 * ntfs_mft_record_layout - layout an mft record into a memory buffer
   1996 * @vol:	volume to which the mft record will belong
   1997 * @mft_no:	mft reference specifying the mft record number
   1998 * @m:		destination buffer of size >= @vol->mft_record_size bytes
   1999 *
   2000 * Layout an empty, unused mft record with the mft record number @mft_no into
   2001 * the buffer @m.  The volume @vol is needed because the mft record structure
   2002 * was modified in NTFS 3.1 so we need to know which volume version this mft
   2003 * record will be used on.
   2004 *
   2005 * Return 0 on success and -errno on error.
   2006 */
   2007static int ntfs_mft_record_layout(const ntfs_volume *vol, const s64 mft_no,
   2008		MFT_RECORD *m)
   2009{
   2010	ATTR_RECORD *a;
   2011
   2012	ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no);
   2013	if (mft_no >= (1ll << 32)) {
   2014		ntfs_error(vol->sb, "Mft record number 0x%llx exceeds "
   2015				"maximum of 2^32.", (long long)mft_no);
   2016		return -ERANGE;
   2017	}
   2018	/* Start by clearing the whole mft record to gives us a clean slate. */
   2019	memset(m, 0, vol->mft_record_size);
   2020	/* Aligned to 2-byte boundary. */
   2021	if (vol->major_ver < 3 || (vol->major_ver == 3 && !vol->minor_ver))
   2022		m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD_OLD) + 1) & ~1);
   2023	else {
   2024		m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD) + 1) & ~1);
   2025		/*
   2026		 * Set the NTFS 3.1+ specific fields while we know that the
   2027		 * volume version is 3.1+.
   2028		 */
   2029		m->reserved = 0;
   2030		m->mft_record_number = cpu_to_le32((u32)mft_no);
   2031	}
   2032	m->magic = magic_FILE;
   2033	if (vol->mft_record_size >= NTFS_BLOCK_SIZE)
   2034		m->usa_count = cpu_to_le16(vol->mft_record_size /
   2035				NTFS_BLOCK_SIZE + 1);
   2036	else {
   2037		m->usa_count = cpu_to_le16(1);
   2038		ntfs_warning(vol->sb, "Sector size is bigger than mft record "
   2039				"size.  Setting usa_count to 1.  If chkdsk "
   2040				"reports this as corruption, please email "
   2041				"linux-ntfs-dev@lists.sourceforge.net stating "
   2042				"that you saw this message and that the "
   2043				"modified filesystem created was corrupt.  "
   2044				"Thank you.");
   2045	}
   2046	/* Set the update sequence number to 1. */
   2047	*(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = cpu_to_le16(1);
   2048	m->lsn = 0;
   2049	m->sequence_number = cpu_to_le16(1);
   2050	m->link_count = 0;
   2051	/*
   2052	 * Place the attributes straight after the update sequence array,
   2053	 * aligned to 8-byte boundary.
   2054	 */
   2055	m->attrs_offset = cpu_to_le16((le16_to_cpu(m->usa_ofs) +
   2056			(le16_to_cpu(m->usa_count) << 1) + 7) & ~7);
   2057	m->flags = 0;
   2058	/*
   2059	 * Using attrs_offset plus eight bytes (for the termination attribute).
   2060	 * attrs_offset is already aligned to 8-byte boundary, so no need to
   2061	 * align again.
   2062	 */
   2063	m->bytes_in_use = cpu_to_le32(le16_to_cpu(m->attrs_offset) + 8);
   2064	m->bytes_allocated = cpu_to_le32(vol->mft_record_size);
   2065	m->base_mft_record = 0;
   2066	m->next_attr_instance = 0;
   2067	/* Add the termination attribute. */
   2068	a = (ATTR_RECORD*)((u8*)m + le16_to_cpu(m->attrs_offset));
   2069	a->type = AT_END;
   2070	a->length = 0;
   2071	ntfs_debug("Done.");
   2072	return 0;
   2073}
   2074
   2075/**
   2076 * ntfs_mft_record_format - format an mft record on an ntfs volume
   2077 * @vol:	volume on which to format the mft record
   2078 * @mft_no:	mft record number to format
   2079 *
   2080 * Format the mft record @mft_no in $MFT/$DATA, i.e. lay out an empty, unused
   2081 * mft record into the appropriate place of the mft data attribute.  This is
   2082 * used when extending the mft data attribute.
   2083 *
   2084 * Return 0 on success and -errno on error.
   2085 */
   2086static int ntfs_mft_record_format(const ntfs_volume *vol, const s64 mft_no)
   2087{
   2088	loff_t i_size;
   2089	struct inode *mft_vi = vol->mft_ino;
   2090	struct page *page;
   2091	MFT_RECORD *m;
   2092	pgoff_t index, end_index;
   2093	unsigned int ofs;
   2094	int err;
   2095
   2096	ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no);
   2097	/*
   2098	 * The index into the page cache and the offset within the page cache
   2099	 * page of the wanted mft record.
   2100	 */
   2101	index = mft_no << vol->mft_record_size_bits >> PAGE_SHIFT;
   2102	ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_MASK;
   2103	/* The maximum valid index into the page cache for $MFT's data. */
   2104	i_size = i_size_read(mft_vi);
   2105	end_index = i_size >> PAGE_SHIFT;
   2106	if (unlikely(index >= end_index)) {
   2107		if (unlikely(index > end_index || ofs + vol->mft_record_size >=
   2108				(i_size & ~PAGE_MASK))) {
   2109			ntfs_error(vol->sb, "Tried to format non-existing mft "
   2110					"record 0x%llx.", (long long)mft_no);
   2111			return -ENOENT;
   2112		}
   2113	}
   2114	/* Read, map, and pin the page containing the mft record. */
   2115	page = ntfs_map_page(mft_vi->i_mapping, index);
   2116	if (IS_ERR(page)) {
   2117		ntfs_error(vol->sb, "Failed to map page containing mft record "
   2118				"to format 0x%llx.", (long long)mft_no);
   2119		return PTR_ERR(page);
   2120	}
   2121	lock_page(page);
   2122	BUG_ON(!PageUptodate(page));
   2123	ClearPageUptodate(page);
   2124	m = (MFT_RECORD*)((u8*)page_address(page) + ofs);
   2125	err = ntfs_mft_record_layout(vol, mft_no, m);
   2126	if (unlikely(err)) {
   2127		ntfs_error(vol->sb, "Failed to layout mft record 0x%llx.",
   2128				(long long)mft_no);
   2129		SetPageUptodate(page);
   2130		unlock_page(page);
   2131		ntfs_unmap_page(page);
   2132		return err;
   2133	}
   2134	flush_dcache_page(page);
   2135	SetPageUptodate(page);
   2136	unlock_page(page);
   2137	/*
   2138	 * Make sure the mft record is written out to disk.  We could use
   2139	 * ilookup5() to check if an inode is in icache and so on but this is
   2140	 * unnecessary as ntfs_writepage() will write the dirty record anyway.
   2141	 */
   2142	mark_ntfs_record_dirty(page, ofs);
   2143	ntfs_unmap_page(page);
   2144	ntfs_debug("Done.");
   2145	return 0;
   2146}
   2147
   2148/**
   2149 * ntfs_mft_record_alloc - allocate an mft record on an ntfs volume
   2150 * @vol:	[IN]  volume on which to allocate the mft record
   2151 * @mode:	[IN]  mode if want a file or directory, i.e. base inode or 0
   2152 * @base_ni:	[IN]  open base inode if allocating an extent mft record or NULL
   2153 * @mrec:	[OUT] on successful return this is the mapped mft record
   2154 *
   2155 * Allocate an mft record in $MFT/$DATA of an open ntfs volume @vol.
   2156 *
   2157 * If @base_ni is NULL make the mft record a base mft record, i.e. a file or
   2158 * direvctory inode, and allocate it at the default allocator position.  In
   2159 * this case @mode is the file mode as given to us by the caller.  We in
   2160 * particular use @mode to distinguish whether a file or a directory is being
   2161 * created (S_IFDIR(mode) and S_IFREG(mode), respectively).
   2162 *
   2163 * If @base_ni is not NULL make the allocated mft record an extent record,
   2164 * allocate it starting at the mft record after the base mft record and attach
   2165 * the allocated and opened ntfs inode to the base inode @base_ni.  In this
   2166 * case @mode must be 0 as it is meaningless for extent inodes.
   2167 *
   2168 * You need to check the return value with IS_ERR().  If false, the function
   2169 * was successful and the return value is the now opened ntfs inode of the
   2170 * allocated mft record.  *@mrec is then set to the allocated, mapped, pinned,
   2171 * and locked mft record.  If IS_ERR() is true, the function failed and the
   2172 * error code is obtained from PTR_ERR(return value).  *@mrec is undefined in
   2173 * this case.
   2174 *
   2175 * Allocation strategy:
   2176 *
   2177 * To find a free mft record, we scan the mft bitmap for a zero bit.  To
   2178 * optimize this we start scanning at the place specified by @base_ni or if
   2179 * @base_ni is NULL we start where we last stopped and we perform wrap around
   2180 * when we reach the end.  Note, we do not try to allocate mft records below
   2181 * number 24 because numbers 0 to 15 are the defined system files anyway and 16
   2182 * to 24 are special in that they are used for storing extension mft records
   2183 * for the $DATA attribute of $MFT.  This is required to avoid the possibility
   2184 * of creating a runlist with a circular dependency which once written to disk
   2185 * can never be read in again.  Windows will only use records 16 to 24 for
   2186 * normal files if the volume is completely out of space.  We never use them
   2187 * which means that when the volume is really out of space we cannot create any
   2188 * more files while Windows can still create up to 8 small files.  We can start
   2189 * doing this at some later time, it does not matter much for now.
   2190 *
   2191 * When scanning the mft bitmap, we only search up to the last allocated mft
   2192 * record.  If there are no free records left in the range 24 to number of
   2193 * allocated mft records, then we extend the $MFT/$DATA attribute in order to
   2194 * create free mft records.  We extend the allocated size of $MFT/$DATA by 16
   2195 * records at a time or one cluster, if cluster size is above 16kiB.  If there
   2196 * is not sufficient space to do this, we try to extend by a single mft record
   2197 * or one cluster, if cluster size is above the mft record size.
   2198 *
   2199 * No matter how many mft records we allocate, we initialize only the first
   2200 * allocated mft record, incrementing mft data size and initialized size
   2201 * accordingly, open an ntfs_inode for it and return it to the caller, unless
   2202 * there are less than 24 mft records, in which case we allocate and initialize
   2203 * mft records until we reach record 24 which we consider as the first free mft
   2204 * record for use by normal files.
   2205 *
   2206 * If during any stage we overflow the initialized data in the mft bitmap, we
   2207 * extend the initialized size (and data size) by 8 bytes, allocating another
   2208 * cluster if required.  The bitmap data size has to be at least equal to the
   2209 * number of mft records in the mft, but it can be bigger, in which case the
   2210 * superflous bits are padded with zeroes.
   2211 *
   2212 * Thus, when we return successfully (IS_ERR() is false), we will have:
   2213 *	- initialized / extended the mft bitmap if necessary,
   2214 *	- initialized / extended the mft data if necessary,
   2215 *	- set the bit corresponding to the mft record being allocated in the
   2216 *	  mft bitmap,
   2217 *	- opened an ntfs_inode for the allocated mft record, and we will have
   2218 *	- returned the ntfs_inode as well as the allocated mapped, pinned, and
   2219 *	  locked mft record.
   2220 *
   2221 * On error, the volume will be left in a consistent state and no record will
   2222 * be allocated.  If rolling back a partial operation fails, we may leave some
   2223 * inconsistent metadata in which case we set NVolErrors() so the volume is
   2224 * left dirty when unmounted.
   2225 *
   2226 * Note, this function cannot make use of most of the normal functions, like
   2227 * for example for attribute resizing, etc, because when the run list overflows
   2228 * the base mft record and an attribute list is used, it is very important that
   2229 * the extension mft records used to store the $DATA attribute of $MFT can be
   2230 * reached without having to read the information contained inside them, as
   2231 * this would make it impossible to find them in the first place after the
   2232 * volume is unmounted.  $MFT/$BITMAP probably does not need to follow this
   2233 * rule because the bitmap is not essential for finding the mft records, but on
   2234 * the other hand, handling the bitmap in this special way would make life
   2235 * easier because otherwise there might be circular invocations of functions
   2236 * when reading the bitmap.
   2237 */
   2238ntfs_inode *ntfs_mft_record_alloc(ntfs_volume *vol, const int mode,
   2239		ntfs_inode *base_ni, MFT_RECORD **mrec)
   2240{
   2241	s64 ll, bit, old_data_initialized, old_data_size;
   2242	unsigned long flags;
   2243	struct inode *vi;
   2244	struct page *page;
   2245	ntfs_inode *mft_ni, *mftbmp_ni, *ni;
   2246	ntfs_attr_search_ctx *ctx;
   2247	MFT_RECORD *m;
   2248	ATTR_RECORD *a;
   2249	pgoff_t index;
   2250	unsigned int ofs;
   2251	int err;
   2252	le16 seq_no, usn;
   2253	bool record_formatted = false;
   2254
   2255	if (base_ni) {
   2256		ntfs_debug("Entering (allocating an extent mft record for "
   2257				"base mft record 0x%llx).",
   2258				(long long)base_ni->mft_no);
   2259		/* @mode and @base_ni are mutually exclusive. */
   2260		BUG_ON(mode);
   2261	} else
   2262		ntfs_debug("Entering (allocating a base mft record).");
   2263	if (mode) {
   2264		/* @mode and @base_ni are mutually exclusive. */
   2265		BUG_ON(base_ni);
   2266		/* We only support creation of normal files and directories. */
   2267		if (!S_ISREG(mode) && !S_ISDIR(mode))
   2268			return ERR_PTR(-EOPNOTSUPP);
   2269	}
   2270	BUG_ON(!mrec);
   2271	mft_ni = NTFS_I(vol->mft_ino);
   2272	mftbmp_ni = NTFS_I(vol->mftbmp_ino);
   2273	down_write(&vol->mftbmp_lock);
   2274	bit = ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(vol, base_ni);
   2275	if (bit >= 0) {
   2276		ntfs_debug("Found and allocated free record (#1), bit 0x%llx.",
   2277				(long long)bit);
   2278		goto have_alloc_rec;
   2279	}
   2280	if (bit != -ENOSPC) {
   2281		up_write(&vol->mftbmp_lock);
   2282		return ERR_PTR(bit);
   2283	}
   2284	/*
   2285	 * No free mft records left.  If the mft bitmap already covers more
   2286	 * than the currently used mft records, the next records are all free,
   2287	 * so we can simply allocate the first unused mft record.
   2288	 * Note: We also have to make sure that the mft bitmap at least covers
   2289	 * the first 24 mft records as they are special and whilst they may not
   2290	 * be in use, we do not allocate from them.
   2291	 */
   2292	read_lock_irqsave(&mft_ni->size_lock, flags);
   2293	ll = mft_ni->initialized_size >> vol->mft_record_size_bits;
   2294	read_unlock_irqrestore(&mft_ni->size_lock, flags);
   2295	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
   2296	old_data_initialized = mftbmp_ni->initialized_size;
   2297	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
   2298	if (old_data_initialized << 3 > ll && old_data_initialized > 3) {
   2299		bit = ll;
   2300		if (bit < 24)
   2301			bit = 24;
   2302		if (unlikely(bit >= (1ll << 32)))
   2303			goto max_err_out;
   2304		ntfs_debug("Found free record (#2), bit 0x%llx.",
   2305				(long long)bit);
   2306		goto found_free_rec;
   2307	}
   2308	/*
   2309	 * The mft bitmap needs to be expanded until it covers the first unused
   2310	 * mft record that we can allocate.
   2311	 * Note: The smallest mft record we allocate is mft record 24.
   2312	 */
   2313	bit = old_data_initialized << 3;
   2314	if (unlikely(bit >= (1ll << 32)))
   2315		goto max_err_out;
   2316	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
   2317	old_data_size = mftbmp_ni->allocated_size;
   2318	ntfs_debug("Status of mftbmp before extension: allocated_size 0x%llx, "
   2319			"data_size 0x%llx, initialized_size 0x%llx.",
   2320			(long long)old_data_size,
   2321			(long long)i_size_read(vol->mftbmp_ino),
   2322			(long long)old_data_initialized);
   2323	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
   2324	if (old_data_initialized + 8 > old_data_size) {
   2325		/* Need to extend bitmap by one more cluster. */
   2326		ntfs_debug("mftbmp: initialized_size + 8 > allocated_size.");
   2327		err = ntfs_mft_bitmap_extend_allocation_nolock(vol);
   2328		if (unlikely(err)) {
   2329			up_write(&vol->mftbmp_lock);
   2330			goto err_out;
   2331		}
   2332#ifdef DEBUG
   2333		read_lock_irqsave(&mftbmp_ni->size_lock, flags);
   2334		ntfs_debug("Status of mftbmp after allocation extension: "
   2335				"allocated_size 0x%llx, data_size 0x%llx, "
   2336				"initialized_size 0x%llx.",
   2337				(long long)mftbmp_ni->allocated_size,
   2338				(long long)i_size_read(vol->mftbmp_ino),
   2339				(long long)mftbmp_ni->initialized_size);
   2340		read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
   2341#endif /* DEBUG */
   2342	}
   2343	/*
   2344	 * We now have sufficient allocated space, extend the initialized_size
   2345	 * as well as the data_size if necessary and fill the new space with
   2346	 * zeroes.
   2347	 */
   2348	err = ntfs_mft_bitmap_extend_initialized_nolock(vol);
   2349	if (unlikely(err)) {
   2350		up_write(&vol->mftbmp_lock);
   2351		goto err_out;
   2352	}
   2353#ifdef DEBUG
   2354	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
   2355	ntfs_debug("Status of mftbmp after initialized extension: "
   2356			"allocated_size 0x%llx, data_size 0x%llx, "
   2357			"initialized_size 0x%llx.",
   2358			(long long)mftbmp_ni->allocated_size,
   2359			(long long)i_size_read(vol->mftbmp_ino),
   2360			(long long)mftbmp_ni->initialized_size);
   2361	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
   2362#endif /* DEBUG */
   2363	ntfs_debug("Found free record (#3), bit 0x%llx.", (long long)bit);
   2364found_free_rec:
   2365	/* @bit is the found free mft record, allocate it in the mft bitmap. */
   2366	ntfs_debug("At found_free_rec.");
   2367	err = ntfs_bitmap_set_bit(vol->mftbmp_ino, bit);
   2368	if (unlikely(err)) {
   2369		ntfs_error(vol->sb, "Failed to allocate bit in mft bitmap.");
   2370		up_write(&vol->mftbmp_lock);
   2371		goto err_out;
   2372	}
   2373	ntfs_debug("Set bit 0x%llx in mft bitmap.", (long long)bit);
   2374have_alloc_rec:
   2375	/*
   2376	 * The mft bitmap is now uptodate.  Deal with mft data attribute now.
   2377	 * Note, we keep hold of the mft bitmap lock for writing until all
   2378	 * modifications to the mft data attribute are complete, too, as they
   2379	 * will impact decisions for mft bitmap and mft record allocation done
   2380	 * by a parallel allocation and if the lock is not maintained a
   2381	 * parallel allocation could allocate the same mft record as this one.
   2382	 */
   2383	ll = (bit + 1) << vol->mft_record_size_bits;
   2384	read_lock_irqsave(&mft_ni->size_lock, flags);
   2385	old_data_initialized = mft_ni->initialized_size;
   2386	read_unlock_irqrestore(&mft_ni->size_lock, flags);
   2387	if (ll <= old_data_initialized) {
   2388		ntfs_debug("Allocated mft record already initialized.");
   2389		goto mft_rec_already_initialized;
   2390	}
   2391	ntfs_debug("Initializing allocated mft record.");
   2392	/*
   2393	 * The mft record is outside the initialized data.  Extend the mft data
   2394	 * attribute until it covers the allocated record.  The loop is only
   2395	 * actually traversed more than once when a freshly formatted volume is
   2396	 * first written to so it optimizes away nicely in the common case.
   2397	 */
   2398	read_lock_irqsave(&mft_ni->size_lock, flags);
   2399	ntfs_debug("Status of mft data before extension: "
   2400			"allocated_size 0x%llx, data_size 0x%llx, "
   2401			"initialized_size 0x%llx.",
   2402			(long long)mft_ni->allocated_size,
   2403			(long long)i_size_read(vol->mft_ino),
   2404			(long long)mft_ni->initialized_size);
   2405	while (ll > mft_ni->allocated_size) {
   2406		read_unlock_irqrestore(&mft_ni->size_lock, flags);
   2407		err = ntfs_mft_data_extend_allocation_nolock(vol);
   2408		if (unlikely(err)) {
   2409			ntfs_error(vol->sb, "Failed to extend mft data "
   2410					"allocation.");
   2411			goto undo_mftbmp_alloc_nolock;
   2412		}
   2413		read_lock_irqsave(&mft_ni->size_lock, flags);
   2414		ntfs_debug("Status of mft data after allocation extension: "
   2415				"allocated_size 0x%llx, data_size 0x%llx, "
   2416				"initialized_size 0x%llx.",
   2417				(long long)mft_ni->allocated_size,
   2418				(long long)i_size_read(vol->mft_ino),
   2419				(long long)mft_ni->initialized_size);
   2420	}
   2421	read_unlock_irqrestore(&mft_ni->size_lock, flags);
   2422	/*
   2423	 * Extend mft data initialized size (and data size of course) to reach
   2424	 * the allocated mft record, formatting the mft records allong the way.
   2425	 * Note: We only modify the ntfs_inode structure as that is all that is
   2426	 * needed by ntfs_mft_record_format().  We will update the attribute
   2427	 * record itself in one fell swoop later on.
   2428	 */
   2429	write_lock_irqsave(&mft_ni->size_lock, flags);
   2430	old_data_initialized = mft_ni->initialized_size;
   2431	old_data_size = vol->mft_ino->i_size;
   2432	while (ll > mft_ni->initialized_size) {
   2433		s64 new_initialized_size, mft_no;
   2434		
   2435		new_initialized_size = mft_ni->initialized_size +
   2436				vol->mft_record_size;
   2437		mft_no = mft_ni->initialized_size >> vol->mft_record_size_bits;
   2438		if (new_initialized_size > i_size_read(vol->mft_ino))
   2439			i_size_write(vol->mft_ino, new_initialized_size);
   2440		write_unlock_irqrestore(&mft_ni->size_lock, flags);
   2441		ntfs_debug("Initializing mft record 0x%llx.",
   2442				(long long)mft_no);
   2443		err = ntfs_mft_record_format(vol, mft_no);
   2444		if (unlikely(err)) {
   2445			ntfs_error(vol->sb, "Failed to format mft record.");
   2446			goto undo_data_init;
   2447		}
   2448		write_lock_irqsave(&mft_ni->size_lock, flags);
   2449		mft_ni->initialized_size = new_initialized_size;
   2450	}
   2451	write_unlock_irqrestore(&mft_ni->size_lock, flags);
   2452	record_formatted = true;
   2453	/* Update the mft data attribute record to reflect the new sizes. */
   2454	m = map_mft_record(mft_ni);
   2455	if (IS_ERR(m)) {
   2456		ntfs_error(vol->sb, "Failed to map mft record.");
   2457		err = PTR_ERR(m);
   2458		goto undo_data_init;
   2459	}
   2460	ctx = ntfs_attr_get_search_ctx(mft_ni, m);
   2461	if (unlikely(!ctx)) {
   2462		ntfs_error(vol->sb, "Failed to get search context.");
   2463		err = -ENOMEM;
   2464		unmap_mft_record(mft_ni);
   2465		goto undo_data_init;
   2466	}
   2467	err = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
   2468			CASE_SENSITIVE, 0, NULL, 0, ctx);
   2469	if (unlikely(err)) {
   2470		ntfs_error(vol->sb, "Failed to find first attribute extent of "
   2471				"mft data attribute.");
   2472		ntfs_attr_put_search_ctx(ctx);
   2473		unmap_mft_record(mft_ni);
   2474		goto undo_data_init;
   2475	}
   2476	a = ctx->attr;
   2477	read_lock_irqsave(&mft_ni->size_lock, flags);
   2478	a->data.non_resident.initialized_size =
   2479			cpu_to_sle64(mft_ni->initialized_size);
   2480	a->data.non_resident.data_size =
   2481			cpu_to_sle64(i_size_read(vol->mft_ino));
   2482	read_unlock_irqrestore(&mft_ni->size_lock, flags);
   2483	/* Ensure the changes make it to disk. */
   2484	flush_dcache_mft_record_page(ctx->ntfs_ino);
   2485	mark_mft_record_dirty(ctx->ntfs_ino);
   2486	ntfs_attr_put_search_ctx(ctx);
   2487	unmap_mft_record(mft_ni);
   2488	read_lock_irqsave(&mft_ni->size_lock, flags);
   2489	ntfs_debug("Status of mft data after mft record initialization: "
   2490			"allocated_size 0x%llx, data_size 0x%llx, "
   2491			"initialized_size 0x%llx.",
   2492			(long long)mft_ni->allocated_size,
   2493			(long long)i_size_read(vol->mft_ino),
   2494			(long long)mft_ni->initialized_size);
   2495	BUG_ON(i_size_read(vol->mft_ino) > mft_ni->allocated_size);
   2496	BUG_ON(mft_ni->initialized_size > i_size_read(vol->mft_ino));
   2497	read_unlock_irqrestore(&mft_ni->size_lock, flags);
   2498mft_rec_already_initialized:
   2499	/*
   2500	 * We can finally drop the mft bitmap lock as the mft data attribute
   2501	 * has been fully updated.  The only disparity left is that the
   2502	 * allocated mft record still needs to be marked as in use to match the
   2503	 * set bit in the mft bitmap but this is actually not a problem since
   2504	 * this mft record is not referenced from anywhere yet and the fact
   2505	 * that it is allocated in the mft bitmap means that no-one will try to
   2506	 * allocate it either.
   2507	 */
   2508	up_write(&vol->mftbmp_lock);
   2509	/*
   2510	 * We now have allocated and initialized the mft record.  Calculate the
   2511	 * index of and the offset within the page cache page the record is in.
   2512	 */
   2513	index = bit << vol->mft_record_size_bits >> PAGE_SHIFT;
   2514	ofs = (bit << vol->mft_record_size_bits) & ~PAGE_MASK;
   2515	/* Read, map, and pin the page containing the mft record. */
   2516	page = ntfs_map_page(vol->mft_ino->i_mapping, index);
   2517	if (IS_ERR(page)) {
   2518		ntfs_error(vol->sb, "Failed to map page containing allocated "
   2519				"mft record 0x%llx.", (long long)bit);
   2520		err = PTR_ERR(page);
   2521		goto undo_mftbmp_alloc;
   2522	}
   2523	lock_page(page);
   2524	BUG_ON(!PageUptodate(page));
   2525	ClearPageUptodate(page);
   2526	m = (MFT_RECORD*)((u8*)page_address(page) + ofs);
   2527	/* If we just formatted the mft record no need to do it again. */
   2528	if (!record_formatted) {
   2529		/* Sanity check that the mft record is really not in use. */
   2530		if (ntfs_is_file_record(m->magic) &&
   2531				(m->flags & MFT_RECORD_IN_USE)) {
   2532			ntfs_error(vol->sb, "Mft record 0x%llx was marked "
   2533					"free in mft bitmap but is marked "
   2534					"used itself.  Corrupt filesystem.  "
   2535					"Unmount and run chkdsk.",
   2536					(long long)bit);
   2537			err = -EIO;
   2538			SetPageUptodate(page);
   2539			unlock_page(page);
   2540			ntfs_unmap_page(page);
   2541			NVolSetErrors(vol);
   2542			goto undo_mftbmp_alloc;
   2543		}
   2544		/*
   2545		 * We need to (re-)format the mft record, preserving the
   2546		 * sequence number if it is not zero as well as the update
   2547		 * sequence number if it is not zero or -1 (0xffff).  This
   2548		 * means we do not need to care whether or not something went
   2549		 * wrong with the previous mft record.
   2550		 */
   2551		seq_no = m->sequence_number;
   2552		usn = *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs));
   2553		err = ntfs_mft_record_layout(vol, bit, m);
   2554		if (unlikely(err)) {
   2555			ntfs_error(vol->sb, "Failed to layout allocated mft "
   2556					"record 0x%llx.", (long long)bit);
   2557			SetPageUptodate(page);
   2558			unlock_page(page);
   2559			ntfs_unmap_page(page);
   2560			goto undo_mftbmp_alloc;
   2561		}
   2562		if (seq_no)
   2563			m->sequence_number = seq_no;
   2564		if (usn && le16_to_cpu(usn) != 0xffff)
   2565			*(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = usn;
   2566	}
   2567	/* Set the mft record itself in use. */
   2568	m->flags |= MFT_RECORD_IN_USE;
   2569	if (S_ISDIR(mode))
   2570		m->flags |= MFT_RECORD_IS_DIRECTORY;
   2571	flush_dcache_page(page);
   2572	SetPageUptodate(page);
   2573	if (base_ni) {
   2574		MFT_RECORD *m_tmp;
   2575
   2576		/*
   2577		 * Setup the base mft record in the extent mft record.  This
   2578		 * completes initialization of the allocated extent mft record
   2579		 * and we can simply use it with map_extent_mft_record().
   2580		 */
   2581		m->base_mft_record = MK_LE_MREF(base_ni->mft_no,
   2582				base_ni->seq_no);
   2583		/*
   2584		 * Allocate an extent inode structure for the new mft record,
   2585		 * attach it to the base inode @base_ni and map, pin, and lock
   2586		 * its, i.e. the allocated, mft record.
   2587		 */
   2588		m_tmp = map_extent_mft_record(base_ni, bit, &ni);
   2589		if (IS_ERR(m_tmp)) {
   2590			ntfs_error(vol->sb, "Failed to map allocated extent "
   2591					"mft record 0x%llx.", (long long)bit);
   2592			err = PTR_ERR(m_tmp);
   2593			/* Set the mft record itself not in use. */
   2594			m->flags &= cpu_to_le16(
   2595					~le16_to_cpu(MFT_RECORD_IN_USE));
   2596			flush_dcache_page(page);
   2597			/* Make sure the mft record is written out to disk. */
   2598			mark_ntfs_record_dirty(page, ofs);
   2599			unlock_page(page);
   2600			ntfs_unmap_page(page);
   2601			goto undo_mftbmp_alloc;
   2602		}
   2603		BUG_ON(m != m_tmp);
   2604		/*
   2605		 * Make sure the allocated mft record is written out to disk.
   2606		 * No need to set the inode dirty because the caller is going
   2607		 * to do that anyway after finishing with the new extent mft
   2608		 * record (e.g. at a minimum a new attribute will be added to
   2609		 * the mft record.
   2610		 */
   2611		mark_ntfs_record_dirty(page, ofs);
   2612		unlock_page(page);
   2613		/*
   2614		 * Need to unmap the page since map_extent_mft_record() mapped
   2615		 * it as well so we have it mapped twice at the moment.
   2616		 */
   2617		ntfs_unmap_page(page);
   2618	} else {
   2619		/*
   2620		 * Allocate a new VFS inode and set it up.  NOTE: @vi->i_nlink
   2621		 * is set to 1 but the mft record->link_count is 0.  The caller
   2622		 * needs to bear this in mind.
   2623		 */
   2624		vi = new_inode(vol->sb);
   2625		if (unlikely(!vi)) {
   2626			err = -ENOMEM;
   2627			/* Set the mft record itself not in use. */
   2628			m->flags &= cpu_to_le16(
   2629					~le16_to_cpu(MFT_RECORD_IN_USE));
   2630			flush_dcache_page(page);
   2631			/* Make sure the mft record is written out to disk. */
   2632			mark_ntfs_record_dirty(page, ofs);
   2633			unlock_page(page);
   2634			ntfs_unmap_page(page);
   2635			goto undo_mftbmp_alloc;
   2636		}
   2637		vi->i_ino = bit;
   2638
   2639		/* The owner and group come from the ntfs volume. */
   2640		vi->i_uid = vol->uid;
   2641		vi->i_gid = vol->gid;
   2642
   2643		/* Initialize the ntfs specific part of @vi. */
   2644		ntfs_init_big_inode(vi);
   2645		ni = NTFS_I(vi);
   2646		/*
   2647		 * Set the appropriate mode, attribute type, and name.  For
   2648		 * directories, also setup the index values to the defaults.
   2649		 */
   2650		if (S_ISDIR(mode)) {
   2651			vi->i_mode = S_IFDIR | S_IRWXUGO;
   2652			vi->i_mode &= ~vol->dmask;
   2653
   2654			NInoSetMstProtected(ni);
   2655			ni->type = AT_INDEX_ALLOCATION;
   2656			ni->name = I30;
   2657			ni->name_len = 4;
   2658
   2659			ni->itype.index.block_size = 4096;
   2660			ni->itype.index.block_size_bits = ntfs_ffs(4096) - 1;
   2661			ni->itype.index.collation_rule = COLLATION_FILE_NAME;
   2662			if (vol->cluster_size <= ni->itype.index.block_size) {
   2663				ni->itype.index.vcn_size = vol->cluster_size;
   2664				ni->itype.index.vcn_size_bits =
   2665						vol->cluster_size_bits;
   2666			} else {
   2667				ni->itype.index.vcn_size = vol->sector_size;
   2668				ni->itype.index.vcn_size_bits =
   2669						vol->sector_size_bits;
   2670			}
   2671		} else {
   2672			vi->i_mode = S_IFREG | S_IRWXUGO;
   2673			vi->i_mode &= ~vol->fmask;
   2674
   2675			ni->type = AT_DATA;
   2676			ni->name = NULL;
   2677			ni->name_len = 0;
   2678		}
   2679		if (IS_RDONLY(vi))
   2680			vi->i_mode &= ~S_IWUGO;
   2681
   2682		/* Set the inode times to the current time. */
   2683		vi->i_atime = vi->i_mtime = vi->i_ctime =
   2684			current_time(vi);
   2685		/*
   2686		 * Set the file size to 0, the ntfs inode sizes are set to 0 by
   2687		 * the call to ntfs_init_big_inode() below.
   2688		 */
   2689		vi->i_size = 0;
   2690		vi->i_blocks = 0;
   2691
   2692		/* Set the sequence number. */
   2693		vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
   2694		/*
   2695		 * Manually map, pin, and lock the mft record as we already
   2696		 * have its page mapped and it is very easy to do.
   2697		 */
   2698		atomic_inc(&ni->count);
   2699		mutex_lock(&ni->mrec_lock);
   2700		ni->page = page;
   2701		ni->page_ofs = ofs;
   2702		/*
   2703		 * Make sure the allocated mft record is written out to disk.
   2704		 * NOTE: We do not set the ntfs inode dirty because this would
   2705		 * fail in ntfs_write_inode() because the inode does not have a
   2706		 * standard information attribute yet.  Also, there is no need
   2707		 * to set the inode dirty because the caller is going to do
   2708		 * that anyway after finishing with the new mft record (e.g. at
   2709		 * a minimum some new attributes will be added to the mft
   2710		 * record.
   2711		 */
   2712		mark_ntfs_record_dirty(page, ofs);
   2713		unlock_page(page);
   2714
   2715		/* Add the inode to the inode hash for the superblock. */
   2716		insert_inode_hash(vi);
   2717
   2718		/* Update the default mft allocation position. */
   2719		vol->mft_data_pos = bit + 1;
   2720	}
   2721	/*
   2722	 * Return the opened, allocated inode of the allocated mft record as
   2723	 * well as the mapped, pinned, and locked mft record.
   2724	 */
   2725	ntfs_debug("Returning opened, allocated %sinode 0x%llx.",
   2726			base_ni ? "extent " : "", (long long)bit);
   2727	*mrec = m;
   2728	return ni;
   2729undo_data_init:
   2730	write_lock_irqsave(&mft_ni->size_lock, flags);
   2731	mft_ni->initialized_size = old_data_initialized;
   2732	i_size_write(vol->mft_ino, old_data_size);
   2733	write_unlock_irqrestore(&mft_ni->size_lock, flags);
   2734	goto undo_mftbmp_alloc_nolock;
   2735undo_mftbmp_alloc:
   2736	down_write(&vol->mftbmp_lock);
   2737undo_mftbmp_alloc_nolock:
   2738	if (ntfs_bitmap_clear_bit(vol->mftbmp_ino, bit)) {
   2739		ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es);
   2740		NVolSetErrors(vol);
   2741	}
   2742	up_write(&vol->mftbmp_lock);
   2743err_out:
   2744	return ERR_PTR(err);
   2745max_err_out:
   2746	ntfs_warning(vol->sb, "Cannot allocate mft record because the maximum "
   2747			"number of inodes (2^32) has already been reached.");
   2748	up_write(&vol->mftbmp_lock);
   2749	return ERR_PTR(-ENOSPC);
   2750}
   2751
   2752/**
   2753 * ntfs_extent_mft_record_free - free an extent mft record on an ntfs volume
   2754 * @ni:		ntfs inode of the mapped extent mft record to free
   2755 * @m:		mapped extent mft record of the ntfs inode @ni
   2756 *
   2757 * Free the mapped extent mft record @m of the extent ntfs inode @ni.
   2758 *
   2759 * Note that this function unmaps the mft record and closes and destroys @ni
   2760 * internally and hence you cannot use either @ni nor @m any more after this
   2761 * function returns success.
   2762 *
   2763 * On success return 0 and on error return -errno.  @ni and @m are still valid
   2764 * in this case and have not been freed.
   2765 *
   2766 * For some errors an error message is displayed and the success code 0 is
   2767 * returned and the volume is then left dirty on umount.  This makes sense in
   2768 * case we could not rollback the changes that were already done since the
   2769 * caller no longer wants to reference this mft record so it does not matter to
   2770 * the caller if something is wrong with it as long as it is properly detached
   2771 * from the base inode.
   2772 */
   2773int ntfs_extent_mft_record_free(ntfs_inode *ni, MFT_RECORD *m)
   2774{
   2775	unsigned long mft_no = ni->mft_no;
   2776	ntfs_volume *vol = ni->vol;
   2777	ntfs_inode *base_ni;
   2778	ntfs_inode **extent_nis;
   2779	int i, err;
   2780	le16 old_seq_no;
   2781	u16 seq_no;
   2782	
   2783	BUG_ON(NInoAttr(ni));
   2784	BUG_ON(ni->nr_extents != -1);
   2785
   2786	mutex_lock(&ni->extent_lock);
   2787	base_ni = ni->ext.base_ntfs_ino;
   2788	mutex_unlock(&ni->extent_lock);
   2789
   2790	BUG_ON(base_ni->nr_extents <= 0);
   2791
   2792	ntfs_debug("Entering for extent inode 0x%lx, base inode 0x%lx.\n",
   2793			mft_no, base_ni->mft_no);
   2794
   2795	mutex_lock(&base_ni->extent_lock);
   2796
   2797	/* Make sure we are holding the only reference to the extent inode. */
   2798	if (atomic_read(&ni->count) > 2) {
   2799		ntfs_error(vol->sb, "Tried to free busy extent inode 0x%lx, "
   2800				"not freeing.", base_ni->mft_no);
   2801		mutex_unlock(&base_ni->extent_lock);
   2802		return -EBUSY;
   2803	}
   2804
   2805	/* Dissociate the ntfs inode from the base inode. */
   2806	extent_nis = base_ni->ext.extent_ntfs_inos;
   2807	err = -ENOENT;
   2808	for (i = 0; i < base_ni->nr_extents; i++) {
   2809		if (ni != extent_nis[i])
   2810			continue;
   2811		extent_nis += i;
   2812		base_ni->nr_extents--;
   2813		memmove(extent_nis, extent_nis + 1, (base_ni->nr_extents - i) *
   2814				sizeof(ntfs_inode*));
   2815		err = 0;
   2816		break;
   2817	}
   2818
   2819	mutex_unlock(&base_ni->extent_lock);
   2820
   2821	if (unlikely(err)) {
   2822		ntfs_error(vol->sb, "Extent inode 0x%lx is not attached to "
   2823				"its base inode 0x%lx.", mft_no,
   2824				base_ni->mft_no);
   2825		BUG();
   2826	}
   2827
   2828	/*
   2829	 * The extent inode is no longer attached to the base inode so no one
   2830	 * can get a reference to it any more.
   2831	 */
   2832
   2833	/* Mark the mft record as not in use. */
   2834	m->flags &= ~MFT_RECORD_IN_USE;
   2835
   2836	/* Increment the sequence number, skipping zero, if it is not zero. */
   2837	old_seq_no = m->sequence_number;
   2838	seq_no = le16_to_cpu(old_seq_no);
   2839	if (seq_no == 0xffff)
   2840		seq_no = 1;
   2841	else if (seq_no)
   2842		seq_no++;
   2843	m->sequence_number = cpu_to_le16(seq_no);
   2844
   2845	/*
   2846	 * Set the ntfs inode dirty and write it out.  We do not need to worry
   2847	 * about the base inode here since whatever caused the extent mft
   2848	 * record to be freed is guaranteed to do it already.
   2849	 */
   2850	NInoSetDirty(ni);
   2851	err = write_mft_record(ni, m, 0);
   2852	if (unlikely(err)) {
   2853		ntfs_error(vol->sb, "Failed to write mft record 0x%lx, not "
   2854				"freeing.", mft_no);
   2855		goto rollback;
   2856	}
   2857rollback_error:
   2858	/* Unmap and throw away the now freed extent inode. */
   2859	unmap_extent_mft_record(ni);
   2860	ntfs_clear_extent_inode(ni);
   2861
   2862	/* Clear the bit in the $MFT/$BITMAP corresponding to this record. */
   2863	down_write(&vol->mftbmp_lock);
   2864	err = ntfs_bitmap_clear_bit(vol->mftbmp_ino, mft_no);
   2865	up_write(&vol->mftbmp_lock);
   2866	if (unlikely(err)) {
   2867		/*
   2868		 * The extent inode is gone but we failed to deallocate it in
   2869		 * the mft bitmap.  Just emit a warning and leave the volume
   2870		 * dirty on umount.
   2871		 */
   2872		ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es);
   2873		NVolSetErrors(vol);
   2874	}
   2875	return 0;
   2876rollback:
   2877	/* Rollback what we did... */
   2878	mutex_lock(&base_ni->extent_lock);
   2879	extent_nis = base_ni->ext.extent_ntfs_inos;
   2880	if (!(base_ni->nr_extents & 3)) {
   2881		int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode*);
   2882
   2883		extent_nis = kmalloc(new_size, GFP_NOFS);
   2884		if (unlikely(!extent_nis)) {
   2885			ntfs_error(vol->sb, "Failed to allocate internal "
   2886					"buffer during rollback.%s", es);
   2887			mutex_unlock(&base_ni->extent_lock);
   2888			NVolSetErrors(vol);
   2889			goto rollback_error;
   2890		}
   2891		if (base_ni->nr_extents) {
   2892			BUG_ON(!base_ni->ext.extent_ntfs_inos);
   2893			memcpy(extent_nis, base_ni->ext.extent_ntfs_inos,
   2894					new_size - 4 * sizeof(ntfs_inode*));
   2895			kfree(base_ni->ext.extent_ntfs_inos);
   2896		}
   2897		base_ni->ext.extent_ntfs_inos = extent_nis;
   2898	}
   2899	m->flags |= MFT_RECORD_IN_USE;
   2900	m->sequence_number = old_seq_no;
   2901	extent_nis[base_ni->nr_extents++] = ni;
   2902	mutex_unlock(&base_ni->extent_lock);
   2903	mark_mft_record_dirty(ni);
   2904	return err;
   2905}
   2906#endif /* NTFS_RW */