cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

frecord.c (73235B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 *
      4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
      5 *
      6 */
      7
      8#include <linux/fiemap.h>
      9#include <linux/fs.h>
     10#include <linux/vmalloc.h>
     11
     12#include "debug.h"
     13#include "ntfs.h"
     14#include "ntfs_fs.h"
     15#ifdef CONFIG_NTFS3_LZX_XPRESS
     16#include "lib/lib.h"
     17#endif
     18
     19static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree,
     20				   CLST ino, struct rb_node *ins)
     21{
     22	struct rb_node **p = &tree->rb_node;
     23	struct rb_node *pr = NULL;
     24
     25	while (*p) {
     26		struct mft_inode *mi;
     27
     28		pr = *p;
     29		mi = rb_entry(pr, struct mft_inode, node);
     30		if (mi->rno > ino)
     31			p = &pr->rb_left;
     32		else if (mi->rno < ino)
     33			p = &pr->rb_right;
     34		else
     35			return mi;
     36	}
     37
     38	if (!ins)
     39		return NULL;
     40
     41	rb_link_node(ins, pr, p);
     42	rb_insert_color(ins, tree);
     43	return rb_entry(ins, struct mft_inode, node);
     44}
     45
     46/*
     47 * ni_find_mi - Find mft_inode by record number.
     48 */
     49static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno)
     50{
     51	return ni_ins_mi(ni, &ni->mi_tree, rno, NULL);
     52}
     53
     54/*
     55 * ni_add_mi - Add new mft_inode into ntfs_inode.
     56 */
     57static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi)
     58{
     59	ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node);
     60}
     61
     62/*
     63 * ni_remove_mi - Remove mft_inode from ntfs_inode.
     64 */
     65void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi)
     66{
     67	rb_erase(&mi->node, &ni->mi_tree);
     68}
     69
     70/*
     71 * ni_std - Return: Pointer into std_info from primary record.
     72 */
     73struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni)
     74{
     75	const struct ATTRIB *attr;
     76
     77	attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
     78	return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO))
     79		    : NULL;
     80}
     81
     82/*
     83 * ni_std5
     84 *
     85 * Return: Pointer into std_info from primary record.
     86 */
     87struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni)
     88{
     89	const struct ATTRIB *attr;
     90
     91	attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
     92
     93	return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5))
     94		    : NULL;
     95}
     96
     97/*
     98 * ni_clear - Clear resources allocated by ntfs_inode.
     99 */
    100void ni_clear(struct ntfs_inode *ni)
    101{
    102	struct rb_node *node;
    103
    104	if (!ni->vfs_inode.i_nlink && is_rec_inuse(ni->mi.mrec))
    105		ni_delete_all(ni);
    106
    107	al_destroy(ni);
    108
    109	for (node = rb_first(&ni->mi_tree); node;) {
    110		struct rb_node *next = rb_next(node);
    111		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
    112
    113		rb_erase(node, &ni->mi_tree);
    114		mi_put(mi);
    115		node = next;
    116	}
    117
    118	/* Bad inode always has mode == S_IFREG. */
    119	if (ni->ni_flags & NI_FLAG_DIR)
    120		indx_clear(&ni->dir);
    121	else {
    122		run_close(&ni->file.run);
    123#ifdef CONFIG_NTFS3_LZX_XPRESS
    124		if (ni->file.offs_page) {
    125			/* On-demand allocated page for offsets. */
    126			put_page(ni->file.offs_page);
    127			ni->file.offs_page = NULL;
    128		}
    129#endif
    130	}
    131
    132	mi_clear(&ni->mi);
    133}
    134
    135/*
    136 * ni_load_mi_ex - Find mft_inode by record number.
    137 */
    138int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
    139{
    140	int err;
    141	struct mft_inode *r;
    142
    143	r = ni_find_mi(ni, rno);
    144	if (r)
    145		goto out;
    146
    147	err = mi_get(ni->mi.sbi, rno, &r);
    148	if (err)
    149		return err;
    150
    151	ni_add_mi(ni, r);
    152
    153out:
    154	if (mi)
    155		*mi = r;
    156	return 0;
    157}
    158
    159/*
    160 * ni_load_mi - Load mft_inode corresponded list_entry.
    161 */
    162int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le,
    163	       struct mft_inode **mi)
    164{
    165	CLST rno;
    166
    167	if (!le) {
    168		*mi = &ni->mi;
    169		return 0;
    170	}
    171
    172	rno = ino_get(&le->ref);
    173	if (rno == ni->mi.rno) {
    174		*mi = &ni->mi;
    175		return 0;
    176	}
    177	return ni_load_mi_ex(ni, rno, mi);
    178}
    179
    180/*
    181 * ni_find_attr
    182 *
    183 * Return: Attribute and record this attribute belongs to.
    184 */
    185struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr,
    186			    struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type,
    187			    const __le16 *name, u8 name_len, const CLST *vcn,
    188			    struct mft_inode **mi)
    189{
    190	struct ATTR_LIST_ENTRY *le;
    191	struct mft_inode *m;
    192
    193	if (!ni->attr_list.size ||
    194	    (!name_len && (type == ATTR_LIST || type == ATTR_STD))) {
    195		if (le_o)
    196			*le_o = NULL;
    197		if (mi)
    198			*mi = &ni->mi;
    199
    200		/* Look for required attribute in primary record. */
    201		return mi_find_attr(&ni->mi, attr, type, name, name_len, NULL);
    202	}
    203
    204	/* First look for list entry of required type. */
    205	le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn);
    206	if (!le)
    207		return NULL;
    208
    209	if (le_o)
    210		*le_o = le;
    211
    212	/* Load record that contains this attribute. */
    213	if (ni_load_mi(ni, le, &m))
    214		return NULL;
    215
    216	/* Look for required attribute. */
    217	attr = mi_find_attr(m, NULL, type, name, name_len, &le->id);
    218
    219	if (!attr)
    220		goto out;
    221
    222	if (!attr->non_res) {
    223		if (vcn && *vcn)
    224			goto out;
    225	} else if (!vcn) {
    226		if (attr->nres.svcn)
    227			goto out;
    228	} else if (le64_to_cpu(attr->nres.svcn) > *vcn ||
    229		   *vcn > le64_to_cpu(attr->nres.evcn)) {
    230		goto out;
    231	}
    232
    233	if (mi)
    234		*mi = m;
    235	return attr;
    236
    237out:
    238	ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
    239	return NULL;
    240}
    241
    242/*
    243 * ni_enum_attr_ex - Enumerates attributes in ntfs_inode.
    244 */
    245struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr,
    246			       struct ATTR_LIST_ENTRY **le,
    247			       struct mft_inode **mi)
    248{
    249	struct mft_inode *mi2;
    250	struct ATTR_LIST_ENTRY *le2;
    251
    252	/* Do we have an attribute list? */
    253	if (!ni->attr_list.size) {
    254		*le = NULL;
    255		if (mi)
    256			*mi = &ni->mi;
    257		/* Enum attributes in primary record. */
    258		return mi_enum_attr(&ni->mi, attr);
    259	}
    260
    261	/* Get next list entry. */
    262	le2 = *le = al_enumerate(ni, attr ? *le : NULL);
    263	if (!le2)
    264		return NULL;
    265
    266	/* Load record that contains the required attribute. */
    267	if (ni_load_mi(ni, le2, &mi2))
    268		return NULL;
    269
    270	if (mi)
    271		*mi = mi2;
    272
    273	/* Find attribute in loaded record. */
    274	return rec_find_attr_le(mi2, le2);
    275}
    276
    277/*
    278 * ni_load_attr - Load attribute that contains given VCN.
    279 */
    280struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
    281			    const __le16 *name, u8 name_len, CLST vcn,
    282			    struct mft_inode **pmi)
    283{
    284	struct ATTR_LIST_ENTRY *le;
    285	struct ATTRIB *attr;
    286	struct mft_inode *mi;
    287	struct ATTR_LIST_ENTRY *next;
    288
    289	if (!ni->attr_list.size) {
    290		if (pmi)
    291			*pmi = &ni->mi;
    292		return mi_find_attr(&ni->mi, NULL, type, name, name_len, NULL);
    293	}
    294
    295	le = al_find_ex(ni, NULL, type, name, name_len, NULL);
    296	if (!le)
    297		return NULL;
    298
    299	/*
    300	 * Unfortunately ATTR_LIST_ENTRY contains only start VCN.
    301	 * So to find the ATTRIB segment that contains 'vcn' we should
    302	 * enumerate some entries.
    303	 */
    304	if (vcn) {
    305		for (;; le = next) {
    306			next = al_find_ex(ni, le, type, name, name_len, NULL);
    307			if (!next || le64_to_cpu(next->vcn) > vcn)
    308				break;
    309		}
    310	}
    311
    312	if (ni_load_mi(ni, le, &mi))
    313		return NULL;
    314
    315	if (pmi)
    316		*pmi = mi;
    317
    318	attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id);
    319	if (!attr)
    320		return NULL;
    321
    322	if (!attr->non_res)
    323		return attr;
    324
    325	if (le64_to_cpu(attr->nres.svcn) <= vcn &&
    326	    vcn <= le64_to_cpu(attr->nres.evcn))
    327		return attr;
    328
    329	return NULL;
    330}
    331
    332/*
    333 * ni_load_all_mi - Load all subrecords.
    334 */
    335int ni_load_all_mi(struct ntfs_inode *ni)
    336{
    337	int err;
    338	struct ATTR_LIST_ENTRY *le;
    339
    340	if (!ni->attr_list.size)
    341		return 0;
    342
    343	le = NULL;
    344
    345	while ((le = al_enumerate(ni, le))) {
    346		CLST rno = ino_get(&le->ref);
    347
    348		if (rno == ni->mi.rno)
    349			continue;
    350
    351		err = ni_load_mi_ex(ni, rno, NULL);
    352		if (err)
    353			return err;
    354	}
    355
    356	return 0;
    357}
    358
    359/*
    360 * ni_add_subrecord - Allocate + format + attach a new subrecord.
    361 */
    362bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
    363{
    364	struct mft_inode *m;
    365
    366	m = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
    367	if (!m)
    368		return false;
    369
    370	if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) {
    371		mi_put(m);
    372		return false;
    373	}
    374
    375	mi_get_ref(&ni->mi, &m->mrec->parent_ref);
    376
    377	ni_add_mi(ni, m);
    378	*mi = m;
    379	return true;
    380}
    381
    382/*
    383 * ni_remove_attr - Remove all attributes for the given type/name/id.
    384 */
    385int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
    386		   const __le16 *name, size_t name_len, bool base_only,
    387		   const __le16 *id)
    388{
    389	int err;
    390	struct ATTRIB *attr;
    391	struct ATTR_LIST_ENTRY *le;
    392	struct mft_inode *mi;
    393	u32 type_in;
    394	int diff;
    395
    396	if (base_only || type == ATTR_LIST || !ni->attr_list.size) {
    397		attr = mi_find_attr(&ni->mi, NULL, type, name, name_len, id);
    398		if (!attr)
    399			return -ENOENT;
    400
    401		mi_remove_attr(ni, &ni->mi, attr);
    402		return 0;
    403	}
    404
    405	type_in = le32_to_cpu(type);
    406	le = NULL;
    407
    408	for (;;) {
    409		le = al_enumerate(ni, le);
    410		if (!le)
    411			return 0;
    412
    413next_le2:
    414		diff = le32_to_cpu(le->type) - type_in;
    415		if (diff < 0)
    416			continue;
    417
    418		if (diff > 0)
    419			return 0;
    420
    421		if (le->name_len != name_len)
    422			continue;
    423
    424		if (name_len &&
    425		    memcmp(le_name(le), name, name_len * sizeof(short)))
    426			continue;
    427
    428		if (id && le->id != *id)
    429			continue;
    430		err = ni_load_mi(ni, le, &mi);
    431		if (err)
    432			return err;
    433
    434		al_remove_le(ni, le);
    435
    436		attr = mi_find_attr(mi, NULL, type, name, name_len, id);
    437		if (!attr)
    438			return -ENOENT;
    439
    440		mi_remove_attr(ni, mi, attr);
    441
    442		if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size)
    443			return 0;
    444		goto next_le2;
    445	}
    446}
    447
    448/*
    449 * ni_ins_new_attr - Insert the attribute into record.
    450 *
    451 * Return: Not full constructed attribute or NULL if not possible to create.
    452 */
    453static struct ATTRIB *
    454ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi,
    455		struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type,
    456		const __le16 *name, u8 name_len, u32 asize, u16 name_off,
    457		CLST svcn, struct ATTR_LIST_ENTRY **ins_le)
    458{
    459	int err;
    460	struct ATTRIB *attr;
    461	bool le_added = false;
    462	struct MFT_REF ref;
    463
    464	mi_get_ref(mi, &ref);
    465
    466	if (type != ATTR_LIST && !le && ni->attr_list.size) {
    467		err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1),
    468				&ref, &le);
    469		if (err) {
    470			/* No memory or no space. */
    471			return NULL;
    472		}
    473		le_added = true;
    474
    475		/*
    476		 * al_add_le -> attr_set_size (list) -> ni_expand_list
    477		 * which moves some attributes out of primary record
    478		 * this means that name may point into moved memory
    479		 * reinit 'name' from le.
    480		 */
    481		name = le->name;
    482	}
    483
    484	attr = mi_insert_attr(mi, type, name, name_len, asize, name_off);
    485	if (!attr) {
    486		if (le_added)
    487			al_remove_le(ni, le);
    488		return NULL;
    489	}
    490
    491	if (type == ATTR_LIST) {
    492		/* Attr list is not in list entry array. */
    493		goto out;
    494	}
    495
    496	if (!le)
    497		goto out;
    498
    499	/* Update ATTRIB Id and record reference. */
    500	le->id = attr->id;
    501	ni->attr_list.dirty = true;
    502	le->ref = ref;
    503
    504out:
    505	if (ins_le)
    506		*ins_le = le;
    507	return attr;
    508}
    509
    510/*
    511 * ni_repack
    512 *
    513 * Random write access to sparsed or compressed file may result to
    514 * not optimized packed runs.
    515 * Here is the place to optimize it.
    516 */
    517static int ni_repack(struct ntfs_inode *ni)
    518{
    519	int err = 0;
    520	struct ntfs_sb_info *sbi = ni->mi.sbi;
    521	struct mft_inode *mi, *mi_p = NULL;
    522	struct ATTRIB *attr = NULL, *attr_p;
    523	struct ATTR_LIST_ENTRY *le = NULL, *le_p;
    524	CLST alloc = 0;
    525	u8 cluster_bits = sbi->cluster_bits;
    526	CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn;
    527	u32 roff, rs = sbi->record_size;
    528	struct runs_tree run;
    529
    530	run_init(&run);
    531
    532	while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) {
    533		if (!attr->non_res)
    534			continue;
    535
    536		svcn = le64_to_cpu(attr->nres.svcn);
    537		if (svcn != le64_to_cpu(le->vcn)) {
    538			err = -EINVAL;
    539			break;
    540		}
    541
    542		if (!svcn) {
    543			alloc = le64_to_cpu(attr->nres.alloc_size) >>
    544				cluster_bits;
    545			mi_p = NULL;
    546		} else if (svcn != evcn + 1) {
    547			err = -EINVAL;
    548			break;
    549		}
    550
    551		evcn = le64_to_cpu(attr->nres.evcn);
    552
    553		if (svcn > evcn + 1) {
    554			err = -EINVAL;
    555			break;
    556		}
    557
    558		if (!mi_p) {
    559			/* Do not try if not enogh free space. */
    560			if (le32_to_cpu(mi->mrec->used) + 8 >= rs)
    561				continue;
    562
    563			/* Do not try if last attribute segment. */
    564			if (evcn + 1 == alloc)
    565				continue;
    566			run_close(&run);
    567		}
    568
    569		roff = le16_to_cpu(attr->nres.run_off);
    570		err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn,
    571				 Add2Ptr(attr, roff),
    572				 le32_to_cpu(attr->size) - roff);
    573		if (err < 0)
    574			break;
    575
    576		if (!mi_p) {
    577			mi_p = mi;
    578			attr_p = attr;
    579			svcn_p = svcn;
    580			evcn_p = evcn;
    581			le_p = le;
    582			err = 0;
    583			continue;
    584		}
    585
    586		/*
    587		 * Run contains data from two records: mi_p and mi
    588		 * Try to pack in one.
    589		 */
    590		err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p);
    591		if (err)
    592			break;
    593
    594		next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1;
    595
    596		if (next_svcn >= evcn + 1) {
    597			/* We can remove this attribute segment. */
    598			al_remove_le(ni, le);
    599			mi_remove_attr(NULL, mi, attr);
    600			le = le_p;
    601			continue;
    602		}
    603
    604		attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn);
    605		mi->dirty = true;
    606		ni->attr_list.dirty = true;
    607
    608		if (evcn + 1 == alloc) {
    609			err = mi_pack_runs(mi, attr, &run,
    610					   evcn + 1 - next_svcn);
    611			if (err)
    612				break;
    613			mi_p = NULL;
    614		} else {
    615			mi_p = mi;
    616			attr_p = attr;
    617			svcn_p = next_svcn;
    618			evcn_p = evcn;
    619			le_p = le;
    620			run_truncate_head(&run, next_svcn);
    621		}
    622	}
    623
    624	if (err) {
    625		ntfs_inode_warn(&ni->vfs_inode, "repack problem");
    626		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
    627
    628		/* Pack loaded but not packed runs. */
    629		if (mi_p)
    630			mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p);
    631	}
    632
    633	run_close(&run);
    634	return err;
    635}
    636
    637/*
    638 * ni_try_remove_attr_list
    639 *
    640 * Can we remove attribute list?
    641 * Check the case when primary record contains enough space for all attributes.
    642 */
    643static int ni_try_remove_attr_list(struct ntfs_inode *ni)
    644{
    645	int err = 0;
    646	struct ntfs_sb_info *sbi = ni->mi.sbi;
    647	struct ATTRIB *attr, *attr_list, *attr_ins;
    648	struct ATTR_LIST_ENTRY *le;
    649	struct mft_inode *mi;
    650	u32 asize, free;
    651	struct MFT_REF ref;
    652	__le16 id;
    653
    654	if (!ni->attr_list.dirty)
    655		return 0;
    656
    657	err = ni_repack(ni);
    658	if (err)
    659		return err;
    660
    661	attr_list = mi_find_attr(&ni->mi, NULL, ATTR_LIST, NULL, 0, NULL);
    662	if (!attr_list)
    663		return 0;
    664
    665	asize = le32_to_cpu(attr_list->size);
    666
    667	/* Free space in primary record without attribute list. */
    668	free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize;
    669	mi_get_ref(&ni->mi, &ref);
    670
    671	le = NULL;
    672	while ((le = al_enumerate(ni, le))) {
    673		if (!memcmp(&le->ref, &ref, sizeof(ref)))
    674			continue;
    675
    676		if (le->vcn)
    677			return 0;
    678
    679		mi = ni_find_mi(ni, ino_get(&le->ref));
    680		if (!mi)
    681			return 0;
    682
    683		attr = mi_find_attr(mi, NULL, le->type, le_name(le),
    684				    le->name_len, &le->id);
    685		if (!attr)
    686			return 0;
    687
    688		asize = le32_to_cpu(attr->size);
    689		if (asize > free)
    690			return 0;
    691
    692		free -= asize;
    693	}
    694
    695	/* It seems that attribute list can be removed from primary record. */
    696	mi_remove_attr(NULL, &ni->mi, attr_list);
    697
    698	/*
    699	 * Repeat the cycle above and move all attributes to primary record.
    700	 * It should be success!
    701	 */
    702	le = NULL;
    703	while ((le = al_enumerate(ni, le))) {
    704		if (!memcmp(&le->ref, &ref, sizeof(ref)))
    705			continue;
    706
    707		mi = ni_find_mi(ni, ino_get(&le->ref));
    708		if (!mi) {
    709			/* Should never happened, 'cause already checked. */
    710			goto bad;
    711		}
    712
    713		attr = mi_find_attr(mi, NULL, le->type, le_name(le),
    714				    le->name_len, &le->id);
    715		if (!attr) {
    716			/* Should never happened, 'cause already checked. */
    717			goto bad;
    718		}
    719		asize = le32_to_cpu(attr->size);
    720
    721		/* Insert into primary record. */
    722		attr_ins = mi_insert_attr(&ni->mi, le->type, le_name(le),
    723					  le->name_len, asize,
    724					  le16_to_cpu(attr->name_off));
    725		if (!attr_ins) {
    726			/*
    727			 * Internal error.
    728			 * Either no space in primary record (already checked).
    729			 * Either tried to insert another
    730			 * non indexed attribute (logic error).
    731			 */
    732			goto bad;
    733		}
    734
    735		/* Copy all except id. */
    736		id = attr_ins->id;
    737		memcpy(attr_ins, attr, asize);
    738		attr_ins->id = id;
    739
    740		/* Remove from original record. */
    741		mi_remove_attr(NULL, mi, attr);
    742	}
    743
    744	run_deallocate(sbi, &ni->attr_list.run, true);
    745	run_close(&ni->attr_list.run);
    746	ni->attr_list.size = 0;
    747	kfree(ni->attr_list.le);
    748	ni->attr_list.le = NULL;
    749	ni->attr_list.dirty = false;
    750
    751	return 0;
    752bad:
    753	ntfs_inode_err(&ni->vfs_inode, "Internal error");
    754	make_bad_inode(&ni->vfs_inode);
    755	return -EINVAL;
    756}
    757
    758/*
    759 * ni_create_attr_list - Generates an attribute list for this primary record.
    760 */
    761int ni_create_attr_list(struct ntfs_inode *ni)
    762{
    763	struct ntfs_sb_info *sbi = ni->mi.sbi;
    764	int err;
    765	u32 lsize;
    766	struct ATTRIB *attr;
    767	struct ATTRIB *arr_move[7];
    768	struct ATTR_LIST_ENTRY *le, *le_b[7];
    769	struct MFT_REC *rec;
    770	bool is_mft;
    771	CLST rno = 0;
    772	struct mft_inode *mi;
    773	u32 free_b, nb, to_free, rs;
    774	u16 sz;
    775
    776	is_mft = ni->mi.rno == MFT_REC_MFT;
    777	rec = ni->mi.mrec;
    778	rs = sbi->record_size;
    779
    780	/*
    781	 * Skip estimating exact memory requirement.
    782	 * Looks like one record_size is always enough.
    783	 */
    784	le = kmalloc(al_aligned(rs), GFP_NOFS);
    785	if (!le) {
    786		err = -ENOMEM;
    787		goto out;
    788	}
    789
    790	mi_get_ref(&ni->mi, &le->ref);
    791	ni->attr_list.le = le;
    792
    793	attr = NULL;
    794	nb = 0;
    795	free_b = 0;
    796	attr = NULL;
    797
    798	for (; (attr = mi_enum_attr(&ni->mi, attr)); le = Add2Ptr(le, sz)) {
    799		sz = le_size(attr->name_len);
    800		le->type = attr->type;
    801		le->size = cpu_to_le16(sz);
    802		le->name_len = attr->name_len;
    803		le->name_off = offsetof(struct ATTR_LIST_ENTRY, name);
    804		le->vcn = 0;
    805		if (le != ni->attr_list.le)
    806			le->ref = ni->attr_list.le->ref;
    807		le->id = attr->id;
    808
    809		if (attr->name_len)
    810			memcpy(le->name, attr_name(attr),
    811			       sizeof(short) * attr->name_len);
    812		else if (attr->type == ATTR_STD)
    813			continue;
    814		else if (attr->type == ATTR_LIST)
    815			continue;
    816		else if (is_mft && attr->type == ATTR_DATA)
    817			continue;
    818
    819		if (!nb || nb < ARRAY_SIZE(arr_move)) {
    820			le_b[nb] = le;
    821			arr_move[nb++] = attr;
    822			free_b += le32_to_cpu(attr->size);
    823		}
    824	}
    825
    826	lsize = PtrOffset(ni->attr_list.le, le);
    827	ni->attr_list.size = lsize;
    828
    829	to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT;
    830	if (to_free <= rs) {
    831		to_free = 0;
    832	} else {
    833		to_free -= rs;
    834
    835		if (to_free > free_b) {
    836			err = -EINVAL;
    837			goto out1;
    838		}
    839	}
    840
    841	/* Allocate child MFT. */
    842	err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi);
    843	if (err)
    844		goto out1;
    845
    846	/* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */
    847	while (to_free > 0) {
    848		struct ATTRIB *b = arr_move[--nb];
    849		u32 asize = le32_to_cpu(b->size);
    850		u16 name_off = le16_to_cpu(b->name_off);
    851
    852		attr = mi_insert_attr(mi, b->type, Add2Ptr(b, name_off),
    853				      b->name_len, asize, name_off);
    854		WARN_ON(!attr);
    855
    856		mi_get_ref(mi, &le_b[nb]->ref);
    857		le_b[nb]->id = attr->id;
    858
    859		/* Copy all except id. */
    860		memcpy(attr, b, asize);
    861		attr->id = le_b[nb]->id;
    862
    863		/* Remove from primary record. */
    864		WARN_ON(!mi_remove_attr(NULL, &ni->mi, b));
    865
    866		if (to_free <= asize)
    867			break;
    868		to_free -= asize;
    869		WARN_ON(!nb);
    870	}
    871
    872	attr = mi_insert_attr(&ni->mi, ATTR_LIST, NULL, 0,
    873			      lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT);
    874	WARN_ON(!attr);
    875
    876	attr->non_res = 0;
    877	attr->flags = 0;
    878	attr->res.data_size = cpu_to_le32(lsize);
    879	attr->res.data_off = SIZEOF_RESIDENT_LE;
    880	attr->res.flags = 0;
    881	attr->res.res = 0;
    882
    883	memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize);
    884
    885	ni->attr_list.dirty = false;
    886
    887	mark_inode_dirty(&ni->vfs_inode);
    888	goto out;
    889
    890out1:
    891	kfree(ni->attr_list.le);
    892	ni->attr_list.le = NULL;
    893	ni->attr_list.size = 0;
    894
    895out:
    896	return err;
    897}
    898
    899/*
    900 * ni_ins_attr_ext - Add an external attribute to the ntfs_inode.
    901 */
    902static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le,
    903			   enum ATTR_TYPE type, const __le16 *name, u8 name_len,
    904			   u32 asize, CLST svcn, u16 name_off, bool force_ext,
    905			   struct ATTRIB **ins_attr, struct mft_inode **ins_mi,
    906			   struct ATTR_LIST_ENTRY **ins_le)
    907{
    908	struct ATTRIB *attr;
    909	struct mft_inode *mi;
    910	CLST rno;
    911	u64 vbo;
    912	struct rb_node *node;
    913	int err;
    914	bool is_mft, is_mft_data;
    915	struct ntfs_sb_info *sbi = ni->mi.sbi;
    916
    917	is_mft = ni->mi.rno == MFT_REC_MFT;
    918	is_mft_data = is_mft && type == ATTR_DATA && !name_len;
    919
    920	if (asize > sbi->max_bytes_per_attr) {
    921		err = -EINVAL;
    922		goto out;
    923	}
    924
    925	/*
    926	 * Standard information and attr_list cannot be made external.
    927	 * The Log File cannot have any external attributes.
    928	 */
    929	if (type == ATTR_STD || type == ATTR_LIST ||
    930	    ni->mi.rno == MFT_REC_LOG) {
    931		err = -EINVAL;
    932		goto out;
    933	}
    934
    935	/* Create attribute list if it is not already existed. */
    936	if (!ni->attr_list.size) {
    937		err = ni_create_attr_list(ni);
    938		if (err)
    939			goto out;
    940	}
    941
    942	vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0;
    943
    944	if (force_ext)
    945		goto insert_ext;
    946
    947	/* Load all subrecords into memory. */
    948	err = ni_load_all_mi(ni);
    949	if (err)
    950		goto out;
    951
    952	/* Check each of loaded subrecord. */
    953	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
    954		mi = rb_entry(node, struct mft_inode, node);
    955
    956		if (is_mft_data &&
    957		    (mi_enum_attr(mi, NULL) ||
    958		     vbo <= ((u64)mi->rno << sbi->record_bits))) {
    959			/* We can't accept this record 'cause MFT's bootstrapping. */
    960			continue;
    961		}
    962		if (is_mft &&
    963		    mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, NULL)) {
    964			/*
    965			 * This child record already has a ATTR_DATA.
    966			 * So it can't accept any other records.
    967			 */
    968			continue;
    969		}
    970
    971		if ((type != ATTR_NAME || name_len) &&
    972		    mi_find_attr(mi, NULL, type, name, name_len, NULL)) {
    973			/* Only indexed attributes can share same record. */
    974			continue;
    975		}
    976
    977		/*
    978		 * Do not try to insert this attribute
    979		 * if there is no room in record.
    980		 */
    981		if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size)
    982			continue;
    983
    984		/* Try to insert attribute into this subrecord. */
    985		attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
    986				       name_off, svcn, ins_le);
    987		if (!attr)
    988			continue;
    989
    990		if (ins_attr)
    991			*ins_attr = attr;
    992		if (ins_mi)
    993			*ins_mi = mi;
    994		return 0;
    995	}
    996
    997insert_ext:
    998	/* We have to allocate a new child subrecord. */
    999	err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi);
   1000	if (err)
   1001		goto out;
   1002
   1003	if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) {
   1004		err = -EINVAL;
   1005		goto out1;
   1006	}
   1007
   1008	attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
   1009			       name_off, svcn, ins_le);
   1010	if (!attr)
   1011		goto out2;
   1012
   1013	if (ins_attr)
   1014		*ins_attr = attr;
   1015	if (ins_mi)
   1016		*ins_mi = mi;
   1017
   1018	return 0;
   1019
   1020out2:
   1021	ni_remove_mi(ni, mi);
   1022	mi_put(mi);
   1023	err = -EINVAL;
   1024
   1025out1:
   1026	ntfs_mark_rec_free(sbi, rno);
   1027
   1028out:
   1029	return err;
   1030}
   1031
   1032/*
   1033 * ni_insert_attr - Insert an attribute into the file.
   1034 *
   1035 * If the primary record has room, it will just insert the attribute.
   1036 * If not, it may make the attribute external.
   1037 * For $MFT::Data it may make room for the attribute by
   1038 * making other attributes external.
   1039 *
   1040 * NOTE:
   1041 * The ATTR_LIST and ATTR_STD cannot be made external.
   1042 * This function does not fill new attribute full.
   1043 * It only fills 'size'/'type'/'id'/'name_len' fields.
   1044 */
   1045static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
   1046			  const __le16 *name, u8 name_len, u32 asize,
   1047			  u16 name_off, CLST svcn, struct ATTRIB **ins_attr,
   1048			  struct mft_inode **ins_mi,
   1049			  struct ATTR_LIST_ENTRY **ins_le)
   1050{
   1051	struct ntfs_sb_info *sbi = ni->mi.sbi;
   1052	int err;
   1053	struct ATTRIB *attr, *eattr;
   1054	struct MFT_REC *rec;
   1055	bool is_mft;
   1056	struct ATTR_LIST_ENTRY *le;
   1057	u32 list_reserve, max_free, free, used, t32;
   1058	__le16 id;
   1059	u16 t16;
   1060
   1061	is_mft = ni->mi.rno == MFT_REC_MFT;
   1062	rec = ni->mi.mrec;
   1063
   1064	list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32));
   1065	used = le32_to_cpu(rec->used);
   1066	free = sbi->record_size - used;
   1067
   1068	if (is_mft && type != ATTR_LIST) {
   1069		/* Reserve space for the ATTRIB list. */
   1070		if (free < list_reserve)
   1071			free = 0;
   1072		else
   1073			free -= list_reserve;
   1074	}
   1075
   1076	if (asize <= free) {
   1077		attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len,
   1078				       asize, name_off, svcn, ins_le);
   1079		if (attr) {
   1080			if (ins_attr)
   1081				*ins_attr = attr;
   1082			if (ins_mi)
   1083				*ins_mi = &ni->mi;
   1084			err = 0;
   1085			goto out;
   1086		}
   1087	}
   1088
   1089	if (!is_mft || type != ATTR_DATA || svcn) {
   1090		/* This ATTRIB will be external. */
   1091		err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize,
   1092				      svcn, name_off, false, ins_attr, ins_mi,
   1093				      ins_le);
   1094		goto out;
   1095	}
   1096
   1097	/*
   1098	 * Here we have: "is_mft && type == ATTR_DATA && !svcn"
   1099	 *
   1100	 * The first chunk of the $MFT::Data ATTRIB must be the base record.
   1101	 * Evict as many other attributes as possible.
   1102	 */
   1103	max_free = free;
   1104
   1105	/* Estimate the result of moving all possible attributes away. */
   1106	attr = NULL;
   1107
   1108	while ((attr = mi_enum_attr(&ni->mi, attr))) {
   1109		if (attr->type == ATTR_STD)
   1110			continue;
   1111		if (attr->type == ATTR_LIST)
   1112			continue;
   1113		max_free += le32_to_cpu(attr->size);
   1114	}
   1115
   1116	if (max_free < asize + list_reserve) {
   1117		/* Impossible to insert this attribute into primary record. */
   1118		err = -EINVAL;
   1119		goto out;
   1120	}
   1121
   1122	/* Start real attribute moving. */
   1123	attr = NULL;
   1124
   1125	for (;;) {
   1126		attr = mi_enum_attr(&ni->mi, attr);
   1127		if (!attr) {
   1128			/* We should never be here 'cause we have already check this case. */
   1129			err = -EINVAL;
   1130			goto out;
   1131		}
   1132
   1133		/* Skip attributes that MUST be primary record. */
   1134		if (attr->type == ATTR_STD || attr->type == ATTR_LIST)
   1135			continue;
   1136
   1137		le = NULL;
   1138		if (ni->attr_list.size) {
   1139			le = al_find_le(ni, NULL, attr);
   1140			if (!le) {
   1141				/* Really this is a serious bug. */
   1142				err = -EINVAL;
   1143				goto out;
   1144			}
   1145		}
   1146
   1147		t32 = le32_to_cpu(attr->size);
   1148		t16 = le16_to_cpu(attr->name_off);
   1149		err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16),
   1150				      attr->name_len, t32, attr_svcn(attr), t16,
   1151				      false, &eattr, NULL, NULL);
   1152		if (err)
   1153			return err;
   1154
   1155		id = eattr->id;
   1156		memcpy(eattr, attr, t32);
   1157		eattr->id = id;
   1158
   1159		/* Remove from primary record. */
   1160		mi_remove_attr(NULL, &ni->mi, attr);
   1161
   1162		/* attr now points to next attribute. */
   1163		if (attr->type == ATTR_END)
   1164			goto out;
   1165	}
   1166	while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used))
   1167		;
   1168
   1169	attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize,
   1170			       name_off, svcn, ins_le);
   1171	if (!attr) {
   1172		err = -EINVAL;
   1173		goto out;
   1174	}
   1175
   1176	if (ins_attr)
   1177		*ins_attr = attr;
   1178	if (ins_mi)
   1179		*ins_mi = &ni->mi;
   1180
   1181out:
   1182	return err;
   1183}
   1184
   1185/* ni_expand_mft_list - Split ATTR_DATA of $MFT. */
   1186static int ni_expand_mft_list(struct ntfs_inode *ni)
   1187{
   1188	int err = 0;
   1189	struct runs_tree *run = &ni->file.run;
   1190	u32 asize, run_size, done = 0;
   1191	struct ATTRIB *attr;
   1192	struct rb_node *node;
   1193	CLST mft_min, mft_new, svcn, evcn, plen;
   1194	struct mft_inode *mi, *mi_min, *mi_new;
   1195	struct ntfs_sb_info *sbi = ni->mi.sbi;
   1196
   1197	/* Find the nearest MFT. */
   1198	mft_min = 0;
   1199	mft_new = 0;
   1200	mi_min = NULL;
   1201
   1202	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
   1203		mi = rb_entry(node, struct mft_inode, node);
   1204
   1205		attr = mi_enum_attr(mi, NULL);
   1206
   1207		if (!attr) {
   1208			mft_min = mi->rno;
   1209			mi_min = mi;
   1210			break;
   1211		}
   1212	}
   1213
   1214	if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) {
   1215		mft_new = 0;
   1216		/* Really this is not critical. */
   1217	} else if (mft_min > mft_new) {
   1218		mft_min = mft_new;
   1219		mi_min = mi_new;
   1220	} else {
   1221		ntfs_mark_rec_free(sbi, mft_new);
   1222		mft_new = 0;
   1223		ni_remove_mi(ni, mi_new);
   1224	}
   1225
   1226	attr = mi_find_attr(&ni->mi, NULL, ATTR_DATA, NULL, 0, NULL);
   1227	if (!attr) {
   1228		err = -EINVAL;
   1229		goto out;
   1230	}
   1231
   1232	asize = le32_to_cpu(attr->size);
   1233
   1234	evcn = le64_to_cpu(attr->nres.evcn);
   1235	svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits);
   1236	if (evcn + 1 >= svcn) {
   1237		err = -EINVAL;
   1238		goto out;
   1239	}
   1240
   1241	/*
   1242	 * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn].
   1243	 *
   1244	 * Update first part of ATTR_DATA in 'primary MFT.
   1245	 */
   1246	err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
   1247		       asize - SIZEOF_NONRESIDENT, &plen);
   1248	if (err < 0)
   1249		goto out;
   1250
   1251	run_size = ALIGN(err, 8);
   1252	err = 0;
   1253
   1254	if (plen < svcn) {
   1255		err = -EINVAL;
   1256		goto out;
   1257	}
   1258
   1259	attr->nres.evcn = cpu_to_le64(svcn - 1);
   1260	attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT);
   1261	/* 'done' - How many bytes of primary MFT becomes free. */
   1262	done = asize - run_size - SIZEOF_NONRESIDENT;
   1263	le32_sub_cpu(&ni->mi.mrec->used, done);
   1264
   1265	/* Estimate the size of second part: run_buf=NULL. */
   1266	err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size,
   1267		       &plen);
   1268	if (err < 0)
   1269		goto out;
   1270
   1271	run_size = ALIGN(err, 8);
   1272	err = 0;
   1273
   1274	if (plen < evcn + 1 - svcn) {
   1275		err = -EINVAL;
   1276		goto out;
   1277	}
   1278
   1279	/*
   1280	 * This function may implicitly call expand attr_list.
   1281	 * Insert second part of ATTR_DATA in 'mi_min'.
   1282	 */
   1283	attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0,
   1284			       SIZEOF_NONRESIDENT + run_size,
   1285			       SIZEOF_NONRESIDENT, svcn, NULL);
   1286	if (!attr) {
   1287		err = -EINVAL;
   1288		goto out;
   1289	}
   1290
   1291	attr->non_res = 1;
   1292	attr->name_off = SIZEOF_NONRESIDENT_LE;
   1293	attr->flags = 0;
   1294
   1295	run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
   1296		 run_size, &plen);
   1297
   1298	attr->nres.svcn = cpu_to_le64(svcn);
   1299	attr->nres.evcn = cpu_to_le64(evcn);
   1300	attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT);
   1301
   1302out:
   1303	if (mft_new) {
   1304		ntfs_mark_rec_free(sbi, mft_new);
   1305		ni_remove_mi(ni, mi_new);
   1306	}
   1307
   1308	return !err && !done ? -EOPNOTSUPP : err;
   1309}
   1310
   1311/*
   1312 * ni_expand_list - Move all possible attributes out of primary record.
   1313 */
   1314int ni_expand_list(struct ntfs_inode *ni)
   1315{
   1316	int err = 0;
   1317	u32 asize, done = 0;
   1318	struct ATTRIB *attr, *ins_attr;
   1319	struct ATTR_LIST_ENTRY *le;
   1320	bool is_mft = ni->mi.rno == MFT_REC_MFT;
   1321	struct MFT_REF ref;
   1322
   1323	mi_get_ref(&ni->mi, &ref);
   1324	le = NULL;
   1325
   1326	while ((le = al_enumerate(ni, le))) {
   1327		if (le->type == ATTR_STD)
   1328			continue;
   1329
   1330		if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF)))
   1331			continue;
   1332
   1333		if (is_mft && le->type == ATTR_DATA)
   1334			continue;
   1335
   1336		/* Find attribute in primary record. */
   1337		attr = rec_find_attr_le(&ni->mi, le);
   1338		if (!attr) {
   1339			err = -EINVAL;
   1340			goto out;
   1341		}
   1342
   1343		asize = le32_to_cpu(attr->size);
   1344
   1345		/* Always insert into new record to avoid collisions (deep recursive). */
   1346		err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr),
   1347				      attr->name_len, asize, attr_svcn(attr),
   1348				      le16_to_cpu(attr->name_off), true,
   1349				      &ins_attr, NULL, NULL);
   1350
   1351		if (err)
   1352			goto out;
   1353
   1354		memcpy(ins_attr, attr, asize);
   1355		ins_attr->id = le->id;
   1356		/* Remove from primary record. */
   1357		mi_remove_attr(NULL, &ni->mi, attr);
   1358
   1359		done += asize;
   1360		goto out;
   1361	}
   1362
   1363	if (!is_mft) {
   1364		err = -EFBIG; /* Attr list is too big(?) */
   1365		goto out;
   1366	}
   1367
   1368	/* Split MFT data as much as possible. */
   1369	err = ni_expand_mft_list(ni);
   1370	if (err)
   1371		goto out;
   1372
   1373out:
   1374	return !err && !done ? -EOPNOTSUPP : err;
   1375}
   1376
   1377/*
   1378 * ni_insert_nonresident - Insert new nonresident attribute.
   1379 */
   1380int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type,
   1381			  const __le16 *name, u8 name_len,
   1382			  const struct runs_tree *run, CLST svcn, CLST len,
   1383			  __le16 flags, struct ATTRIB **new_attr,
   1384			  struct mft_inode **mi)
   1385{
   1386	int err;
   1387	CLST plen;
   1388	struct ATTRIB *attr;
   1389	bool is_ext =
   1390		(flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) && !svcn;
   1391	u32 name_size = ALIGN(name_len * sizeof(short), 8);
   1392	u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT;
   1393	u32 run_off = name_off + name_size;
   1394	u32 run_size, asize;
   1395	struct ntfs_sb_info *sbi = ni->mi.sbi;
   1396
   1397	err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off,
   1398		       &plen);
   1399	if (err < 0)
   1400		goto out;
   1401
   1402	run_size = ALIGN(err, 8);
   1403
   1404	if (plen < len) {
   1405		err = -EINVAL;
   1406		goto out;
   1407	}
   1408
   1409	asize = run_off + run_size;
   1410
   1411	if (asize > sbi->max_bytes_per_attr) {
   1412		err = -EINVAL;
   1413		goto out;
   1414	}
   1415
   1416	err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn,
   1417			     &attr, mi, NULL);
   1418
   1419	if (err)
   1420		goto out;
   1421
   1422	attr->non_res = 1;
   1423	attr->name_off = cpu_to_le16(name_off);
   1424	attr->flags = flags;
   1425
   1426	run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen);
   1427
   1428	attr->nres.svcn = cpu_to_le64(svcn);
   1429	attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1);
   1430
   1431	err = 0;
   1432	if (new_attr)
   1433		*new_attr = attr;
   1434
   1435	*(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off);
   1436
   1437	attr->nres.alloc_size =
   1438		svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits);
   1439	attr->nres.data_size = attr->nres.alloc_size;
   1440	attr->nres.valid_size = attr->nres.alloc_size;
   1441
   1442	if (is_ext) {
   1443		if (flags & ATTR_FLAG_COMPRESSED)
   1444			attr->nres.c_unit = COMPRESSION_UNIT;
   1445		attr->nres.total_size = attr->nres.alloc_size;
   1446	}
   1447
   1448out:
   1449	return err;
   1450}
   1451
   1452/*
   1453 * ni_insert_resident - Inserts new resident attribute.
   1454 */
   1455int ni_insert_resident(struct ntfs_inode *ni, u32 data_size,
   1456		       enum ATTR_TYPE type, const __le16 *name, u8 name_len,
   1457		       struct ATTRIB **new_attr, struct mft_inode **mi,
   1458		       struct ATTR_LIST_ENTRY **le)
   1459{
   1460	int err;
   1461	u32 name_size = ALIGN(name_len * sizeof(short), 8);
   1462	u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8);
   1463	struct ATTRIB *attr;
   1464
   1465	err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT,
   1466			     0, &attr, mi, le);
   1467	if (err)
   1468		return err;
   1469
   1470	attr->non_res = 0;
   1471	attr->flags = 0;
   1472
   1473	attr->res.data_size = cpu_to_le32(data_size);
   1474	attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size);
   1475	if (type == ATTR_NAME) {
   1476		attr->res.flags = RESIDENT_FLAG_INDEXED;
   1477
   1478		/* is_attr_indexed(attr)) == true */
   1479		le16_add_cpu(&ni->mi.mrec->hard_links, 1);
   1480		ni->mi.dirty = true;
   1481	}
   1482	attr->res.res = 0;
   1483
   1484	if (new_attr)
   1485		*new_attr = attr;
   1486
   1487	return 0;
   1488}
   1489
   1490/*
   1491 * ni_remove_attr_le - Remove attribute from record.
   1492 */
   1493void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr,
   1494		       struct mft_inode *mi, struct ATTR_LIST_ENTRY *le)
   1495{
   1496	mi_remove_attr(ni, mi, attr);
   1497
   1498	if (le)
   1499		al_remove_le(ni, le);
   1500}
   1501
   1502/*
   1503 * ni_delete_all - Remove all attributes and frees allocates space.
   1504 *
   1505 * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links).
   1506 */
   1507int ni_delete_all(struct ntfs_inode *ni)
   1508{
   1509	int err;
   1510	struct ATTR_LIST_ENTRY *le = NULL;
   1511	struct ATTRIB *attr = NULL;
   1512	struct rb_node *node;
   1513	u16 roff;
   1514	u32 asize;
   1515	CLST svcn, evcn;
   1516	struct ntfs_sb_info *sbi = ni->mi.sbi;
   1517	bool nt3 = is_ntfs3(sbi);
   1518	struct MFT_REF ref;
   1519
   1520	while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
   1521		if (!nt3 || attr->name_len) {
   1522			;
   1523		} else if (attr->type == ATTR_REPARSE) {
   1524			mi_get_ref(&ni->mi, &ref);
   1525			ntfs_remove_reparse(sbi, 0, &ref);
   1526		} else if (attr->type == ATTR_ID && !attr->non_res &&
   1527			   le32_to_cpu(attr->res.data_size) >=
   1528				   sizeof(struct GUID)) {
   1529			ntfs_objid_remove(sbi, resident_data(attr));
   1530		}
   1531
   1532		if (!attr->non_res)
   1533			continue;
   1534
   1535		svcn = le64_to_cpu(attr->nres.svcn);
   1536		evcn = le64_to_cpu(attr->nres.evcn);
   1537
   1538		if (evcn + 1 <= svcn)
   1539			continue;
   1540
   1541		asize = le32_to_cpu(attr->size);
   1542		roff = le16_to_cpu(attr->nres.run_off);
   1543
   1544		/* run==1 means unpack and deallocate. */
   1545		run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
   1546			      Add2Ptr(attr, roff), asize - roff);
   1547	}
   1548
   1549	if (ni->attr_list.size) {
   1550		run_deallocate(ni->mi.sbi, &ni->attr_list.run, true);
   1551		al_destroy(ni);
   1552	}
   1553
   1554	/* Free all subrecords. */
   1555	for (node = rb_first(&ni->mi_tree); node;) {
   1556		struct rb_node *next = rb_next(node);
   1557		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
   1558
   1559		clear_rec_inuse(mi->mrec);
   1560		mi->dirty = true;
   1561		mi_write(mi, 0);
   1562
   1563		ntfs_mark_rec_free(sbi, mi->rno);
   1564		ni_remove_mi(ni, mi);
   1565		mi_put(mi);
   1566		node = next;
   1567	}
   1568
   1569	/* Free base record. */
   1570	clear_rec_inuse(ni->mi.mrec);
   1571	ni->mi.dirty = true;
   1572	err = mi_write(&ni->mi, 0);
   1573
   1574	ntfs_mark_rec_free(sbi, ni->mi.rno);
   1575
   1576	return err;
   1577}
   1578
   1579/* ni_fname_name
   1580 *
   1581 * Return: File name attribute by its value.
   1582 */
   1583struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni,
   1584				     const struct cpu_str *uni,
   1585				     const struct MFT_REF *home_dir,
   1586				     struct mft_inode **mi,
   1587				     struct ATTR_LIST_ENTRY **le)
   1588{
   1589	struct ATTRIB *attr = NULL;
   1590	struct ATTR_FILE_NAME *fname;
   1591
   1592	*le = NULL;
   1593
   1594	/* Enumerate all names. */
   1595next:
   1596	attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
   1597	if (!attr)
   1598		return NULL;
   1599
   1600	fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
   1601	if (!fname)
   1602		goto next;
   1603
   1604	if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir)))
   1605		goto next;
   1606
   1607	if (!uni)
   1608		goto next;
   1609
   1610	if (uni->len != fname->name_len)
   1611		goto next;
   1612
   1613	if (ntfs_cmp_names_cpu(uni, (struct le_str *)&fname->name_len, NULL,
   1614			       false))
   1615		goto next;
   1616
   1617	return fname;
   1618}
   1619
   1620/*
   1621 * ni_fname_type
   1622 *
   1623 * Return: File name attribute with given type.
   1624 */
   1625struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type,
   1626				     struct mft_inode **mi,
   1627				     struct ATTR_LIST_ENTRY **le)
   1628{
   1629	struct ATTRIB *attr = NULL;
   1630	struct ATTR_FILE_NAME *fname;
   1631
   1632	*le = NULL;
   1633
   1634	if (name_type == FILE_NAME_POSIX)
   1635		return NULL;
   1636
   1637	/* Enumerate all names. */
   1638	for (;;) {
   1639		attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
   1640		if (!attr)
   1641			return NULL;
   1642
   1643		fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
   1644		if (fname && name_type == fname->type)
   1645			return fname;
   1646	}
   1647}
   1648
   1649/*
   1650 * ni_new_attr_flags
   1651 *
   1652 * Process compressed/sparsed in special way.
   1653 * NOTE: You need to set ni->std_fa = new_fa
   1654 * after this function to keep internal structures in consistency.
   1655 */
   1656int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa)
   1657{
   1658	struct ATTRIB *attr;
   1659	struct mft_inode *mi;
   1660	__le16 new_aflags;
   1661	u32 new_asize;
   1662
   1663	attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
   1664	if (!attr)
   1665		return -EINVAL;
   1666
   1667	new_aflags = attr->flags;
   1668
   1669	if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE)
   1670		new_aflags |= ATTR_FLAG_SPARSED;
   1671	else
   1672		new_aflags &= ~ATTR_FLAG_SPARSED;
   1673
   1674	if (new_fa & FILE_ATTRIBUTE_COMPRESSED)
   1675		new_aflags |= ATTR_FLAG_COMPRESSED;
   1676	else
   1677		new_aflags &= ~ATTR_FLAG_COMPRESSED;
   1678
   1679	if (new_aflags == attr->flags)
   1680		return 0;
   1681
   1682	if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ==
   1683	    (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) {
   1684		ntfs_inode_warn(&ni->vfs_inode,
   1685				"file can't be sparsed and compressed");
   1686		return -EOPNOTSUPP;
   1687	}
   1688
   1689	if (!attr->non_res)
   1690		goto out;
   1691
   1692	if (attr->nres.data_size) {
   1693		ntfs_inode_warn(
   1694			&ni->vfs_inode,
   1695			"one can change sparsed/compressed only for empty files");
   1696		return -EOPNOTSUPP;
   1697	}
   1698
   1699	/* Resize nonresident empty attribute in-place only. */
   1700	new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED))
   1701			    ? (SIZEOF_NONRESIDENT_EX + 8)
   1702			    : (SIZEOF_NONRESIDENT + 8);
   1703
   1704	if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size)))
   1705		return -EOPNOTSUPP;
   1706
   1707	if (new_aflags & ATTR_FLAG_SPARSED) {
   1708		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
   1709		/* Windows uses 16 clusters per frame but supports one cluster per frame too. */
   1710		attr->nres.c_unit = 0;
   1711		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
   1712	} else if (new_aflags & ATTR_FLAG_COMPRESSED) {
   1713		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
   1714		/* The only allowed: 16 clusters per frame. */
   1715		attr->nres.c_unit = NTFS_LZNT_CUNIT;
   1716		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr;
   1717	} else {
   1718		attr->name_off = SIZEOF_NONRESIDENT_LE;
   1719		/* Normal files. */
   1720		attr->nres.c_unit = 0;
   1721		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
   1722	}
   1723	attr->nres.run_off = attr->name_off;
   1724out:
   1725	attr->flags = new_aflags;
   1726	mi->dirty = true;
   1727
   1728	return 0;
   1729}
   1730
   1731/*
   1732 * ni_parse_reparse
   1733 *
   1734 * buffer - memory for reparse buffer header
   1735 */
   1736enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr,
   1737				   struct REPARSE_DATA_BUFFER *buffer)
   1738{
   1739	const struct REPARSE_DATA_BUFFER *rp = NULL;
   1740	u8 bits;
   1741	u16 len;
   1742	typeof(rp->CompressReparseBuffer) *cmpr;
   1743
   1744	/* Try to estimate reparse point. */
   1745	if (!attr->non_res) {
   1746		rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER));
   1747	} else if (le64_to_cpu(attr->nres.data_size) >=
   1748		   sizeof(struct REPARSE_DATA_BUFFER)) {
   1749		struct runs_tree run;
   1750
   1751		run_init(&run);
   1752
   1753		if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) &&
   1754		    !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer,
   1755				      sizeof(struct REPARSE_DATA_BUFFER),
   1756				      NULL)) {
   1757			rp = buffer;
   1758		}
   1759
   1760		run_close(&run);
   1761	}
   1762
   1763	if (!rp)
   1764		return REPARSE_NONE;
   1765
   1766	len = le16_to_cpu(rp->ReparseDataLength);
   1767	switch (rp->ReparseTag) {
   1768	case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK):
   1769		break; /* Symbolic link. */
   1770	case IO_REPARSE_TAG_MOUNT_POINT:
   1771		break; /* Mount points and junctions. */
   1772	case IO_REPARSE_TAG_SYMLINK:
   1773		break;
   1774	case IO_REPARSE_TAG_COMPRESS:
   1775		/*
   1776		 * WOF - Windows Overlay Filter - Used to compress files with
   1777		 * LZX/Xpress.
   1778		 *
   1779		 * Unlike native NTFS file compression, the Windows
   1780		 * Overlay Filter supports only read operations. This means
   1781		 * that it doesn't need to sector-align each compressed chunk,
   1782		 * so the compressed data can be packed more tightly together.
   1783		 * If you open the file for writing, the WOF just decompresses
   1784		 * the entire file, turning it back into a plain file.
   1785		 *
   1786		 * Ntfs3 driver decompresses the entire file only on write or
   1787		 * change size requests.
   1788		 */
   1789
   1790		cmpr = &rp->CompressReparseBuffer;
   1791		if (len < sizeof(*cmpr) ||
   1792		    cmpr->WofVersion != WOF_CURRENT_VERSION ||
   1793		    cmpr->WofProvider != WOF_PROVIDER_SYSTEM ||
   1794		    cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) {
   1795			return REPARSE_NONE;
   1796		}
   1797
   1798		switch (cmpr->CompressionFormat) {
   1799		case WOF_COMPRESSION_XPRESS4K:
   1800			bits = 0xc; // 4k
   1801			break;
   1802		case WOF_COMPRESSION_XPRESS8K:
   1803			bits = 0xd; // 8k
   1804			break;
   1805		case WOF_COMPRESSION_XPRESS16K:
   1806			bits = 0xe; // 16k
   1807			break;
   1808		case WOF_COMPRESSION_LZX32K:
   1809			bits = 0xf; // 32k
   1810			break;
   1811		default:
   1812			bits = 0x10; // 64k
   1813			break;
   1814		}
   1815		ni_set_ext_compress_bits(ni, bits);
   1816		return REPARSE_COMPRESSED;
   1817
   1818	case IO_REPARSE_TAG_DEDUP:
   1819		ni->ni_flags |= NI_FLAG_DEDUPLICATED;
   1820		return REPARSE_DEDUPLICATED;
   1821
   1822	default:
   1823		if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE)
   1824			break;
   1825
   1826		return REPARSE_NONE;
   1827	}
   1828
   1829	if (buffer != rp)
   1830		memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER));
   1831
   1832	/* Looks like normal symlink. */
   1833	return REPARSE_LINK;
   1834}
   1835
   1836/*
   1837 * ni_fiemap - Helper for file_fiemap().
   1838 *
   1839 * Assumed ni_lock.
   1840 * TODO: Less aggressive locks.
   1841 */
   1842int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo,
   1843	      __u64 vbo, __u64 len)
   1844{
   1845	int err = 0;
   1846	struct ntfs_sb_info *sbi = ni->mi.sbi;
   1847	u8 cluster_bits = sbi->cluster_bits;
   1848	struct runs_tree *run;
   1849	struct rw_semaphore *run_lock;
   1850	struct ATTRIB *attr;
   1851	CLST vcn = vbo >> cluster_bits;
   1852	CLST lcn, clen;
   1853	u64 valid = ni->i_valid;
   1854	u64 lbo, bytes;
   1855	u64 end, alloc_size;
   1856	size_t idx = -1;
   1857	u32 flags;
   1858	bool ok;
   1859
   1860	if (S_ISDIR(ni->vfs_inode.i_mode)) {
   1861		run = &ni->dir.alloc_run;
   1862		attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME,
   1863				    ARRAY_SIZE(I30_NAME), NULL, NULL);
   1864		run_lock = &ni->dir.run_lock;
   1865	} else {
   1866		run = &ni->file.run;
   1867		attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL,
   1868				    NULL);
   1869		if (!attr) {
   1870			err = -EINVAL;
   1871			goto out;
   1872		}
   1873		if (is_attr_compressed(attr)) {
   1874			/* Unfortunately cp -r incorrectly treats compressed clusters. */
   1875			err = -EOPNOTSUPP;
   1876			ntfs_inode_warn(
   1877				&ni->vfs_inode,
   1878				"fiemap is not supported for compressed file (cp -r)");
   1879			goto out;
   1880		}
   1881		run_lock = &ni->file.run_lock;
   1882	}
   1883
   1884	if (!attr || !attr->non_res) {
   1885		err = fiemap_fill_next_extent(
   1886			fieinfo, 0, 0,
   1887			attr ? le32_to_cpu(attr->res.data_size) : 0,
   1888			FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST |
   1889				FIEMAP_EXTENT_MERGED);
   1890		goto out;
   1891	}
   1892
   1893	end = vbo + len;
   1894	alloc_size = le64_to_cpu(attr->nres.alloc_size);
   1895	if (end > alloc_size)
   1896		end = alloc_size;
   1897
   1898	down_read(run_lock);
   1899
   1900	while (vbo < end) {
   1901		if (idx == -1) {
   1902			ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
   1903		} else {
   1904			CLST vcn_next = vcn;
   1905
   1906			ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) &&
   1907			     vcn == vcn_next;
   1908			if (!ok)
   1909				vcn = vcn_next;
   1910		}
   1911
   1912		if (!ok) {
   1913			up_read(run_lock);
   1914			down_write(run_lock);
   1915
   1916			err = attr_load_runs_vcn(ni, attr->type,
   1917						 attr_name(attr),
   1918						 attr->name_len, run, vcn);
   1919
   1920			up_write(run_lock);
   1921			down_read(run_lock);
   1922
   1923			if (err)
   1924				break;
   1925
   1926			ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
   1927
   1928			if (!ok) {
   1929				err = -EINVAL;
   1930				break;
   1931			}
   1932		}
   1933
   1934		if (!clen) {
   1935			err = -EINVAL; // ?
   1936			break;
   1937		}
   1938
   1939		if (lcn == SPARSE_LCN) {
   1940			vcn += clen;
   1941			vbo = (u64)vcn << cluster_bits;
   1942			continue;
   1943		}
   1944
   1945		flags = FIEMAP_EXTENT_MERGED;
   1946		if (S_ISDIR(ni->vfs_inode.i_mode)) {
   1947			;
   1948		} else if (is_attr_compressed(attr)) {
   1949			CLST clst_data;
   1950
   1951			err = attr_is_frame_compressed(
   1952				ni, attr, vcn >> attr->nres.c_unit, &clst_data);
   1953			if (err)
   1954				break;
   1955			if (clst_data < NTFS_LZNT_CLUSTERS)
   1956				flags |= FIEMAP_EXTENT_ENCODED;
   1957		} else if (is_attr_encrypted(attr)) {
   1958			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
   1959		}
   1960
   1961		vbo = (u64)vcn << cluster_bits;
   1962		bytes = (u64)clen << cluster_bits;
   1963		lbo = (u64)lcn << cluster_bits;
   1964
   1965		vcn += clen;
   1966
   1967		if (vbo + bytes >= end)
   1968			bytes = end - vbo;
   1969
   1970		if (vbo + bytes <= valid) {
   1971			;
   1972		} else if (vbo >= valid) {
   1973			flags |= FIEMAP_EXTENT_UNWRITTEN;
   1974		} else {
   1975			/* vbo < valid && valid < vbo + bytes */
   1976			u64 dlen = valid - vbo;
   1977
   1978			if (vbo + dlen >= end)
   1979				flags |= FIEMAP_EXTENT_LAST;
   1980
   1981			err = fiemap_fill_next_extent(fieinfo, vbo, lbo, dlen,
   1982						      flags);
   1983			if (err < 0)
   1984				break;
   1985			if (err == 1) {
   1986				err = 0;
   1987				break;
   1988			}
   1989
   1990			vbo = valid;
   1991			bytes -= dlen;
   1992			if (!bytes)
   1993				continue;
   1994
   1995			lbo += dlen;
   1996			flags |= FIEMAP_EXTENT_UNWRITTEN;
   1997		}
   1998
   1999		if (vbo + bytes >= end)
   2000			flags |= FIEMAP_EXTENT_LAST;
   2001
   2002		err = fiemap_fill_next_extent(fieinfo, vbo, lbo, bytes, flags);
   2003		if (err < 0)
   2004			break;
   2005		if (err == 1) {
   2006			err = 0;
   2007			break;
   2008		}
   2009
   2010		vbo += bytes;
   2011	}
   2012
   2013	up_read(run_lock);
   2014
   2015out:
   2016	return err;
   2017}
   2018
   2019/*
   2020 * ni_readpage_cmpr
   2021 *
   2022 * When decompressing, we typically obtain more than one page per reference.
   2023 * We inject the additional pages into the page cache.
   2024 */
   2025int ni_readpage_cmpr(struct ntfs_inode *ni, struct page *page)
   2026{
   2027	int err;
   2028	struct ntfs_sb_info *sbi = ni->mi.sbi;
   2029	struct address_space *mapping = page->mapping;
   2030	pgoff_t index = page->index;
   2031	u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT;
   2032	struct page **pages = NULL; /* Array of at most 16 pages. stack? */
   2033	u8 frame_bits;
   2034	CLST frame;
   2035	u32 i, idx, frame_size, pages_per_frame;
   2036	gfp_t gfp_mask;
   2037	struct page *pg;
   2038
   2039	if (vbo >= ni->vfs_inode.i_size) {
   2040		SetPageUptodate(page);
   2041		err = 0;
   2042		goto out;
   2043	}
   2044
   2045	if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
   2046		/* Xpress or LZX. */
   2047		frame_bits = ni_ext_compress_bits(ni);
   2048	} else {
   2049		/* LZNT compression. */
   2050		frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
   2051	}
   2052	frame_size = 1u << frame_bits;
   2053	frame = vbo >> frame_bits;
   2054	frame_vbo = (u64)frame << frame_bits;
   2055	idx = (vbo - frame_vbo) >> PAGE_SHIFT;
   2056
   2057	pages_per_frame = frame_size >> PAGE_SHIFT;
   2058	pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
   2059	if (!pages) {
   2060		err = -ENOMEM;
   2061		goto out;
   2062	}
   2063
   2064	pages[idx] = page;
   2065	index = frame_vbo >> PAGE_SHIFT;
   2066	gfp_mask = mapping_gfp_mask(mapping);
   2067
   2068	for (i = 0; i < pages_per_frame; i++, index++) {
   2069		if (i == idx)
   2070			continue;
   2071
   2072		pg = find_or_create_page(mapping, index, gfp_mask);
   2073		if (!pg) {
   2074			err = -ENOMEM;
   2075			goto out1;
   2076		}
   2077		pages[i] = pg;
   2078	}
   2079
   2080	err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame);
   2081
   2082out1:
   2083	if (err)
   2084		SetPageError(page);
   2085
   2086	for (i = 0; i < pages_per_frame; i++) {
   2087		pg = pages[i];
   2088		if (i == idx)
   2089			continue;
   2090		unlock_page(pg);
   2091		put_page(pg);
   2092	}
   2093
   2094out:
   2095	/* At this point, err contains 0 or -EIO depending on the "critical" page. */
   2096	kfree(pages);
   2097	unlock_page(page);
   2098
   2099	return err;
   2100}
   2101
   2102#ifdef CONFIG_NTFS3_LZX_XPRESS
   2103/*
   2104 * ni_decompress_file - Decompress LZX/Xpress compressed file.
   2105 *
   2106 * Remove ATTR_DATA::WofCompressedData.
   2107 * Remove ATTR_REPARSE.
   2108 */
   2109int ni_decompress_file(struct ntfs_inode *ni)
   2110{
   2111	struct ntfs_sb_info *sbi = ni->mi.sbi;
   2112	struct inode *inode = &ni->vfs_inode;
   2113	loff_t i_size = inode->i_size;
   2114	struct address_space *mapping = inode->i_mapping;
   2115	gfp_t gfp_mask = mapping_gfp_mask(mapping);
   2116	struct page **pages = NULL;
   2117	struct ATTR_LIST_ENTRY *le;
   2118	struct ATTRIB *attr;
   2119	CLST vcn, cend, lcn, clen, end;
   2120	pgoff_t index;
   2121	u64 vbo;
   2122	u8 frame_bits;
   2123	u32 i, frame_size, pages_per_frame, bytes;
   2124	struct mft_inode *mi;
   2125	int err;
   2126
   2127	/* Clusters for decompressed data. */
   2128	cend = bytes_to_cluster(sbi, i_size);
   2129
   2130	if (!i_size)
   2131		goto remove_wof;
   2132
   2133	/* Check in advance. */
   2134	if (cend > wnd_zeroes(&sbi->used.bitmap)) {
   2135		err = -ENOSPC;
   2136		goto out;
   2137	}
   2138
   2139	frame_bits = ni_ext_compress_bits(ni);
   2140	frame_size = 1u << frame_bits;
   2141	pages_per_frame = frame_size >> PAGE_SHIFT;
   2142	pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
   2143	if (!pages) {
   2144		err = -ENOMEM;
   2145		goto out;
   2146	}
   2147
   2148	/*
   2149	 * Step 1: Decompress data and copy to new allocated clusters.
   2150	 */
   2151	index = 0;
   2152	for (vbo = 0; vbo < i_size; vbo += bytes) {
   2153		u32 nr_pages;
   2154		bool new;
   2155
   2156		if (vbo + frame_size > i_size) {
   2157			bytes = i_size - vbo;
   2158			nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT;
   2159		} else {
   2160			nr_pages = pages_per_frame;
   2161			bytes = frame_size;
   2162		}
   2163
   2164		end = bytes_to_cluster(sbi, vbo + bytes);
   2165
   2166		for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) {
   2167			err = attr_data_get_block(ni, vcn, cend - vcn, &lcn,
   2168						  &clen, &new);
   2169			if (err)
   2170				goto out;
   2171		}
   2172
   2173		for (i = 0; i < pages_per_frame; i++, index++) {
   2174			struct page *pg;
   2175
   2176			pg = find_or_create_page(mapping, index, gfp_mask);
   2177			if (!pg) {
   2178				while (i--) {
   2179					unlock_page(pages[i]);
   2180					put_page(pages[i]);
   2181				}
   2182				err = -ENOMEM;
   2183				goto out;
   2184			}
   2185			pages[i] = pg;
   2186		}
   2187
   2188		err = ni_read_frame(ni, vbo, pages, pages_per_frame);
   2189
   2190		if (!err) {
   2191			down_read(&ni->file.run_lock);
   2192			err = ntfs_bio_pages(sbi, &ni->file.run, pages,
   2193					     nr_pages, vbo, bytes,
   2194					     REQ_OP_WRITE);
   2195			up_read(&ni->file.run_lock);
   2196		}
   2197
   2198		for (i = 0; i < pages_per_frame; i++) {
   2199			unlock_page(pages[i]);
   2200			put_page(pages[i]);
   2201		}
   2202
   2203		if (err)
   2204			goto out;
   2205
   2206		cond_resched();
   2207	}
   2208
   2209remove_wof:
   2210	/*
   2211	 * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData
   2212	 * and ATTR_REPARSE.
   2213	 */
   2214	attr = NULL;
   2215	le = NULL;
   2216	while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
   2217		CLST svcn, evcn;
   2218		u32 asize, roff;
   2219
   2220		if (attr->type == ATTR_REPARSE) {
   2221			struct MFT_REF ref;
   2222
   2223			mi_get_ref(&ni->mi, &ref);
   2224			ntfs_remove_reparse(sbi, 0, &ref);
   2225		}
   2226
   2227		if (!attr->non_res)
   2228			continue;
   2229
   2230		if (attr->type != ATTR_REPARSE &&
   2231		    (attr->type != ATTR_DATA ||
   2232		     attr->name_len != ARRAY_SIZE(WOF_NAME) ||
   2233		     memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME))))
   2234			continue;
   2235
   2236		svcn = le64_to_cpu(attr->nres.svcn);
   2237		evcn = le64_to_cpu(attr->nres.evcn);
   2238
   2239		if (evcn + 1 <= svcn)
   2240			continue;
   2241
   2242		asize = le32_to_cpu(attr->size);
   2243		roff = le16_to_cpu(attr->nres.run_off);
   2244
   2245		/*run==1  Means unpack and deallocate. */
   2246		run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
   2247			      Add2Ptr(attr, roff), asize - roff);
   2248	}
   2249
   2250	/*
   2251	 * Step 3: Remove attribute ATTR_DATA::WofCompressedData.
   2252	 */
   2253	err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME),
   2254			     false, NULL);
   2255	if (err)
   2256		goto out;
   2257
   2258	/*
   2259	 * Step 4: Remove ATTR_REPARSE.
   2260	 */
   2261	err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL);
   2262	if (err)
   2263		goto out;
   2264
   2265	/*
   2266	 * Step 5: Remove sparse flag from data attribute.
   2267	 */
   2268	attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
   2269	if (!attr) {
   2270		err = -EINVAL;
   2271		goto out;
   2272	}
   2273
   2274	if (attr->non_res && is_attr_sparsed(attr)) {
   2275		/* Sparsed attribute header is 8 bytes bigger than normal. */
   2276		struct MFT_REC *rec = mi->mrec;
   2277		u32 used = le32_to_cpu(rec->used);
   2278		u32 asize = le32_to_cpu(attr->size);
   2279		u16 roff = le16_to_cpu(attr->nres.run_off);
   2280		char *rbuf = Add2Ptr(attr, roff);
   2281
   2282		memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf));
   2283		attr->size = cpu_to_le32(asize - 8);
   2284		attr->flags &= ~ATTR_FLAG_SPARSED;
   2285		attr->nres.run_off = cpu_to_le16(roff - 8);
   2286		attr->nres.c_unit = 0;
   2287		rec->used = cpu_to_le32(used - 8);
   2288		mi->dirty = true;
   2289		ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE |
   2290				FILE_ATTRIBUTE_REPARSE_POINT);
   2291
   2292		mark_inode_dirty(inode);
   2293	}
   2294
   2295	/* Clear cached flag. */
   2296	ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK;
   2297	if (ni->file.offs_page) {
   2298		put_page(ni->file.offs_page);
   2299		ni->file.offs_page = NULL;
   2300	}
   2301	mapping->a_ops = &ntfs_aops;
   2302
   2303out:
   2304	kfree(pages);
   2305	if (err) {
   2306		make_bad_inode(inode);
   2307		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
   2308	}
   2309
   2310	return err;
   2311}
   2312
   2313/*
   2314 * decompress_lzx_xpress - External compression LZX/Xpress.
   2315 */
   2316static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr,
   2317				 size_t cmpr_size, void *unc, size_t unc_size,
   2318				 u32 frame_size)
   2319{
   2320	int err;
   2321	void *ctx;
   2322
   2323	if (cmpr_size == unc_size) {
   2324		/* Frame not compressed. */
   2325		memcpy(unc, cmpr, unc_size);
   2326		return 0;
   2327	}
   2328
   2329	err = 0;
   2330	if (frame_size == 0x8000) {
   2331		mutex_lock(&sbi->compress.mtx_lzx);
   2332		/* LZX: Frame compressed. */
   2333		ctx = sbi->compress.lzx;
   2334		if (!ctx) {
   2335			/* Lazy initialize LZX decompress context. */
   2336			ctx = lzx_allocate_decompressor();
   2337			if (!ctx) {
   2338				err = -ENOMEM;
   2339				goto out1;
   2340			}
   2341
   2342			sbi->compress.lzx = ctx;
   2343		}
   2344
   2345		if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
   2346			/* Treat all errors as "invalid argument". */
   2347			err = -EINVAL;
   2348		}
   2349out1:
   2350		mutex_unlock(&sbi->compress.mtx_lzx);
   2351	} else {
   2352		/* XPRESS: Frame compressed. */
   2353		mutex_lock(&sbi->compress.mtx_xpress);
   2354		ctx = sbi->compress.xpress;
   2355		if (!ctx) {
   2356			/* Lazy initialize Xpress decompress context. */
   2357			ctx = xpress_allocate_decompressor();
   2358			if (!ctx) {
   2359				err = -ENOMEM;
   2360				goto out2;
   2361			}
   2362
   2363			sbi->compress.xpress = ctx;
   2364		}
   2365
   2366		if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
   2367			/* Treat all errors as "invalid argument". */
   2368			err = -EINVAL;
   2369		}
   2370out2:
   2371		mutex_unlock(&sbi->compress.mtx_xpress);
   2372	}
   2373	return err;
   2374}
   2375#endif
   2376
   2377/*
   2378 * ni_read_frame
   2379 *
   2380 * Pages - Array of locked pages.
   2381 */
   2382int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages,
   2383		  u32 pages_per_frame)
   2384{
   2385	int err;
   2386	struct ntfs_sb_info *sbi = ni->mi.sbi;
   2387	u8 cluster_bits = sbi->cluster_bits;
   2388	char *frame_ondisk = NULL;
   2389	char *frame_mem = NULL;
   2390	struct page **pages_disk = NULL;
   2391	struct ATTR_LIST_ENTRY *le = NULL;
   2392	struct runs_tree *run = &ni->file.run;
   2393	u64 valid_size = ni->i_valid;
   2394	u64 vbo_disk;
   2395	size_t unc_size;
   2396	u32 frame_size, i, npages_disk, ondisk_size;
   2397	struct page *pg;
   2398	struct ATTRIB *attr;
   2399	CLST frame, clst_data;
   2400
   2401	/*
   2402	 * To simplify decompress algorithm do vmap for source
   2403	 * and target pages.
   2404	 */
   2405	for (i = 0; i < pages_per_frame; i++)
   2406		kmap(pages[i]);
   2407
   2408	frame_size = pages_per_frame << PAGE_SHIFT;
   2409	frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL);
   2410	if (!frame_mem) {
   2411		err = -ENOMEM;
   2412		goto out;
   2413	}
   2414
   2415	attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL);
   2416	if (!attr) {
   2417		err = -ENOENT;
   2418		goto out1;
   2419	}
   2420
   2421	if (!attr->non_res) {
   2422		u32 data_size = le32_to_cpu(attr->res.data_size);
   2423
   2424		memset(frame_mem, 0, frame_size);
   2425		if (frame_vbo < data_size) {
   2426			ondisk_size = data_size - frame_vbo;
   2427			memcpy(frame_mem, resident_data(attr) + frame_vbo,
   2428			       min(ondisk_size, frame_size));
   2429		}
   2430		err = 0;
   2431		goto out1;
   2432	}
   2433
   2434	if (frame_vbo >= valid_size) {
   2435		memset(frame_mem, 0, frame_size);
   2436		err = 0;
   2437		goto out1;
   2438	}
   2439
   2440	if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
   2441#ifndef CONFIG_NTFS3_LZX_XPRESS
   2442		err = -EOPNOTSUPP;
   2443		goto out1;
   2444#else
   2445		u32 frame_bits = ni_ext_compress_bits(ni);
   2446		u64 frame64 = frame_vbo >> frame_bits;
   2447		u64 frames, vbo_data;
   2448
   2449		if (frame_size != (1u << frame_bits)) {
   2450			err = -EINVAL;
   2451			goto out1;
   2452		}
   2453		switch (frame_size) {
   2454		case 0x1000:
   2455		case 0x2000:
   2456		case 0x4000:
   2457		case 0x8000:
   2458			break;
   2459		default:
   2460			/* Unknown compression. */
   2461			err = -EOPNOTSUPP;
   2462			goto out1;
   2463		}
   2464
   2465		attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME,
   2466				    ARRAY_SIZE(WOF_NAME), NULL, NULL);
   2467		if (!attr) {
   2468			ntfs_inode_err(
   2469				&ni->vfs_inode,
   2470				"external compressed file should contains data attribute \"WofCompressedData\"");
   2471			err = -EINVAL;
   2472			goto out1;
   2473		}
   2474
   2475		if (!attr->non_res) {
   2476			run = NULL;
   2477		} else {
   2478			run = run_alloc();
   2479			if (!run) {
   2480				err = -ENOMEM;
   2481				goto out1;
   2482			}
   2483		}
   2484
   2485		frames = (ni->vfs_inode.i_size - 1) >> frame_bits;
   2486
   2487		err = attr_wof_frame_info(ni, attr, run, frame64, frames,
   2488					  frame_bits, &ondisk_size, &vbo_data);
   2489		if (err)
   2490			goto out2;
   2491
   2492		if (frame64 == frames) {
   2493			unc_size = 1 + ((ni->vfs_inode.i_size - 1) &
   2494					(frame_size - 1));
   2495			ondisk_size = attr_size(attr) - vbo_data;
   2496		} else {
   2497			unc_size = frame_size;
   2498		}
   2499
   2500		if (ondisk_size > frame_size) {
   2501			err = -EINVAL;
   2502			goto out2;
   2503		}
   2504
   2505		if (!attr->non_res) {
   2506			if (vbo_data + ondisk_size >
   2507			    le32_to_cpu(attr->res.data_size)) {
   2508				err = -EINVAL;
   2509				goto out1;
   2510			}
   2511
   2512			err = decompress_lzx_xpress(
   2513				sbi, Add2Ptr(resident_data(attr), vbo_data),
   2514				ondisk_size, frame_mem, unc_size, frame_size);
   2515			goto out1;
   2516		}
   2517		vbo_disk = vbo_data;
   2518		/* Load all runs to read [vbo_disk-vbo_to). */
   2519		err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME,
   2520					   ARRAY_SIZE(WOF_NAME), run, vbo_disk,
   2521					   vbo_data + ondisk_size);
   2522		if (err)
   2523			goto out2;
   2524		npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) +
   2525			       PAGE_SIZE - 1) >>
   2526			      PAGE_SHIFT;
   2527#endif
   2528	} else if (is_attr_compressed(attr)) {
   2529		/* LZNT compression. */
   2530		if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
   2531			err = -EOPNOTSUPP;
   2532			goto out1;
   2533		}
   2534
   2535		if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
   2536			err = -EOPNOTSUPP;
   2537			goto out1;
   2538		}
   2539
   2540		down_write(&ni->file.run_lock);
   2541		run_truncate_around(run, le64_to_cpu(attr->nres.svcn));
   2542		frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT);
   2543		err = attr_is_frame_compressed(ni, attr, frame, &clst_data);
   2544		up_write(&ni->file.run_lock);
   2545		if (err)
   2546			goto out1;
   2547
   2548		if (!clst_data) {
   2549			memset(frame_mem, 0, frame_size);
   2550			goto out1;
   2551		}
   2552
   2553		frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
   2554		ondisk_size = clst_data << cluster_bits;
   2555
   2556		if (clst_data >= NTFS_LZNT_CLUSTERS) {
   2557			/* Frame is not compressed. */
   2558			down_read(&ni->file.run_lock);
   2559			err = ntfs_bio_pages(sbi, run, pages, pages_per_frame,
   2560					     frame_vbo, ondisk_size,
   2561					     REQ_OP_READ);
   2562			up_read(&ni->file.run_lock);
   2563			goto out1;
   2564		}
   2565		vbo_disk = frame_vbo;
   2566		npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
   2567	} else {
   2568		__builtin_unreachable();
   2569		err = -EINVAL;
   2570		goto out1;
   2571	}
   2572
   2573	pages_disk = kzalloc(npages_disk * sizeof(struct page *), GFP_NOFS);
   2574	if (!pages_disk) {
   2575		err = -ENOMEM;
   2576		goto out2;
   2577	}
   2578
   2579	for (i = 0; i < npages_disk; i++) {
   2580		pg = alloc_page(GFP_KERNEL);
   2581		if (!pg) {
   2582			err = -ENOMEM;
   2583			goto out3;
   2584		}
   2585		pages_disk[i] = pg;
   2586		lock_page(pg);
   2587		kmap(pg);
   2588	}
   2589
   2590	/* Read 'ondisk_size' bytes from disk. */
   2591	down_read(&ni->file.run_lock);
   2592	err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk,
   2593			     ondisk_size, REQ_OP_READ);
   2594	up_read(&ni->file.run_lock);
   2595	if (err)
   2596		goto out3;
   2597
   2598	/*
   2599	 * To simplify decompress algorithm do vmap for source and target pages.
   2600	 */
   2601	frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO);
   2602	if (!frame_ondisk) {
   2603		err = -ENOMEM;
   2604		goto out3;
   2605	}
   2606
   2607	/* Decompress: Frame_ondisk -> frame_mem. */
   2608#ifdef CONFIG_NTFS3_LZX_XPRESS
   2609	if (run != &ni->file.run) {
   2610		/* LZX or XPRESS */
   2611		err = decompress_lzx_xpress(
   2612			sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)),
   2613			ondisk_size, frame_mem, unc_size, frame_size);
   2614	} else
   2615#endif
   2616	{
   2617		/* LZNT - Native NTFS compression. */
   2618		unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem,
   2619					   frame_size);
   2620		if ((ssize_t)unc_size < 0)
   2621			err = unc_size;
   2622		else if (!unc_size || unc_size > frame_size)
   2623			err = -EINVAL;
   2624	}
   2625	if (!err && valid_size < frame_vbo + frame_size) {
   2626		size_t ok = valid_size - frame_vbo;
   2627
   2628		memset(frame_mem + ok, 0, frame_size - ok);
   2629	}
   2630
   2631	vunmap(frame_ondisk);
   2632
   2633out3:
   2634	for (i = 0; i < npages_disk; i++) {
   2635		pg = pages_disk[i];
   2636		if (pg) {
   2637			kunmap(pg);
   2638			unlock_page(pg);
   2639			put_page(pg);
   2640		}
   2641	}
   2642	kfree(pages_disk);
   2643
   2644out2:
   2645#ifdef CONFIG_NTFS3_LZX_XPRESS
   2646	if (run != &ni->file.run)
   2647		run_free(run);
   2648#endif
   2649out1:
   2650	vunmap(frame_mem);
   2651out:
   2652	for (i = 0; i < pages_per_frame; i++) {
   2653		pg = pages[i];
   2654		kunmap(pg);
   2655		ClearPageError(pg);
   2656		SetPageUptodate(pg);
   2657	}
   2658
   2659	return err;
   2660}
   2661
   2662/*
   2663 * ni_write_frame
   2664 *
   2665 * Pages - Array of locked pages.
   2666 */
   2667int ni_write_frame(struct ntfs_inode *ni, struct page **pages,
   2668		   u32 pages_per_frame)
   2669{
   2670	int err;
   2671	struct ntfs_sb_info *sbi = ni->mi.sbi;
   2672	u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
   2673	u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
   2674	u64 frame_vbo = (u64)pages[0]->index << PAGE_SHIFT;
   2675	CLST frame = frame_vbo >> frame_bits;
   2676	char *frame_ondisk = NULL;
   2677	struct page **pages_disk = NULL;
   2678	struct ATTR_LIST_ENTRY *le = NULL;
   2679	char *frame_mem;
   2680	struct ATTRIB *attr;
   2681	struct mft_inode *mi;
   2682	u32 i;
   2683	struct page *pg;
   2684	size_t compr_size, ondisk_size;
   2685	struct lznt *lznt;
   2686
   2687	attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi);
   2688	if (!attr) {
   2689		err = -ENOENT;
   2690		goto out;
   2691	}
   2692
   2693	if (WARN_ON(!is_attr_compressed(attr))) {
   2694		err = -EINVAL;
   2695		goto out;
   2696	}
   2697
   2698	if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
   2699		err = -EOPNOTSUPP;
   2700		goto out;
   2701	}
   2702
   2703	if (!attr->non_res) {
   2704		down_write(&ni->file.run_lock);
   2705		err = attr_make_nonresident(ni, attr, le, mi,
   2706					    le32_to_cpu(attr->res.data_size),
   2707					    &ni->file.run, &attr, pages[0]);
   2708		up_write(&ni->file.run_lock);
   2709		if (err)
   2710			goto out;
   2711	}
   2712
   2713	if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
   2714		err = -EOPNOTSUPP;
   2715		goto out;
   2716	}
   2717
   2718	pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
   2719	if (!pages_disk) {
   2720		err = -ENOMEM;
   2721		goto out;
   2722	}
   2723
   2724	for (i = 0; i < pages_per_frame; i++) {
   2725		pg = alloc_page(GFP_KERNEL);
   2726		if (!pg) {
   2727			err = -ENOMEM;
   2728			goto out1;
   2729		}
   2730		pages_disk[i] = pg;
   2731		lock_page(pg);
   2732		kmap(pg);
   2733	}
   2734
   2735	/* To simplify compress algorithm do vmap for source and target pages. */
   2736	frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL);
   2737	if (!frame_ondisk) {
   2738		err = -ENOMEM;
   2739		goto out1;
   2740	}
   2741
   2742	for (i = 0; i < pages_per_frame; i++)
   2743		kmap(pages[i]);
   2744
   2745	/* Map in-memory frame for read-only. */
   2746	frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO);
   2747	if (!frame_mem) {
   2748		err = -ENOMEM;
   2749		goto out2;
   2750	}
   2751
   2752	mutex_lock(&sbi->compress.mtx_lznt);
   2753	lznt = NULL;
   2754	if (!sbi->compress.lznt) {
   2755		/*
   2756		 * LZNT implements two levels of compression:
   2757		 * 0 - Standard compression
   2758		 * 1 - Best compression, requires a lot of cpu
   2759		 * use mount option?
   2760		 */
   2761		lznt = get_lznt_ctx(0);
   2762		if (!lznt) {
   2763			mutex_unlock(&sbi->compress.mtx_lznt);
   2764			err = -ENOMEM;
   2765			goto out3;
   2766		}
   2767
   2768		sbi->compress.lznt = lznt;
   2769		lznt = NULL;
   2770	}
   2771
   2772	/* Compress: frame_mem -> frame_ondisk */
   2773	compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk,
   2774				   frame_size, sbi->compress.lznt);
   2775	mutex_unlock(&sbi->compress.mtx_lznt);
   2776	kfree(lznt);
   2777
   2778	if (compr_size + sbi->cluster_size > frame_size) {
   2779		/* Frame is not compressed. */
   2780		compr_size = frame_size;
   2781		ondisk_size = frame_size;
   2782	} else if (compr_size) {
   2783		/* Frame is compressed. */
   2784		ondisk_size = ntfs_up_cluster(sbi, compr_size);
   2785		memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size);
   2786	} else {
   2787		/* Frame is sparsed. */
   2788		ondisk_size = 0;
   2789	}
   2790
   2791	down_write(&ni->file.run_lock);
   2792	run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn));
   2793	err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid);
   2794	up_write(&ni->file.run_lock);
   2795	if (err)
   2796		goto out2;
   2797
   2798	if (!ondisk_size)
   2799		goto out2;
   2800
   2801	down_read(&ni->file.run_lock);
   2802	err = ntfs_bio_pages(sbi, &ni->file.run,
   2803			     ondisk_size < frame_size ? pages_disk : pages,
   2804			     pages_per_frame, frame_vbo, ondisk_size,
   2805			     REQ_OP_WRITE);
   2806	up_read(&ni->file.run_lock);
   2807
   2808out3:
   2809	vunmap(frame_mem);
   2810
   2811out2:
   2812	for (i = 0; i < pages_per_frame; i++)
   2813		kunmap(pages[i]);
   2814
   2815	vunmap(frame_ondisk);
   2816out1:
   2817	for (i = 0; i < pages_per_frame; i++) {
   2818		pg = pages_disk[i];
   2819		if (pg) {
   2820			kunmap(pg);
   2821			unlock_page(pg);
   2822			put_page(pg);
   2823		}
   2824	}
   2825	kfree(pages_disk);
   2826out:
   2827	return err;
   2828}
   2829
   2830/*
   2831 * ni_remove_name - Removes name 'de' from MFT and from directory.
   2832 * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs.
   2833 */
   2834int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
   2835		   struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step)
   2836{
   2837	int err;
   2838	struct ntfs_sb_info *sbi = ni->mi.sbi;
   2839	struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
   2840	struct ATTR_FILE_NAME *fname;
   2841	struct ATTR_LIST_ENTRY *le;
   2842	struct mft_inode *mi;
   2843	u16 de_key_size = le16_to_cpu(de->key_size);
   2844	u8 name_type;
   2845
   2846	*undo_step = 0;
   2847
   2848	/* Find name in record. */
   2849	mi_get_ref(&dir_ni->mi, &de_name->home);
   2850
   2851	fname = ni_fname_name(ni, (struct cpu_str *)&de_name->name_len,
   2852			      &de_name->home, &mi, &le);
   2853	if (!fname)
   2854		return -ENOENT;
   2855
   2856	memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO));
   2857	name_type = paired_name(fname->type);
   2858
   2859	/* Mark ntfs as dirty. It will be cleared at umount. */
   2860	ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
   2861
   2862	/* Step 1: Remove name from directory. */
   2863	err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi);
   2864	if (err)
   2865		return err;
   2866
   2867	/* Step 2: Remove name from MFT. */
   2868	ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
   2869
   2870	*undo_step = 2;
   2871
   2872	/* Get paired name. */
   2873	fname = ni_fname_type(ni, name_type, &mi, &le);
   2874	if (fname) {
   2875		u16 de2_key_size = fname_full_size(fname);
   2876
   2877		*de2 = Add2Ptr(de, 1024);
   2878		(*de2)->key_size = cpu_to_le16(de2_key_size);
   2879
   2880		memcpy(*de2 + 1, fname, de2_key_size);
   2881
   2882		/* Step 3: Remove paired name from directory. */
   2883		err = indx_delete_entry(&dir_ni->dir, dir_ni, fname,
   2884					de2_key_size, sbi);
   2885		if (err)
   2886			return err;
   2887
   2888		/* Step 4: Remove paired name from MFT. */
   2889		ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
   2890
   2891		*undo_step = 4;
   2892	}
   2893	return 0;
   2894}
   2895
   2896/*
   2897 * ni_remove_name_undo - Paired function for ni_remove_name.
   2898 *
   2899 * Return: True if ok
   2900 */
   2901bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
   2902			 struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step)
   2903{
   2904	struct ntfs_sb_info *sbi = ni->mi.sbi;
   2905	struct ATTRIB *attr;
   2906	u16 de_key_size = de2 ? le16_to_cpu(de2->key_size) : 0;
   2907
   2908	switch (undo_step) {
   2909	case 4:
   2910		if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
   2911				       &attr, NULL, NULL)) {
   2912			return false;
   2913		}
   2914		memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size);
   2915
   2916		mi_get_ref(&ni->mi, &de2->ref);
   2917		de2->size = cpu_to_le16(ALIGN(de_key_size, 8) +
   2918					sizeof(struct NTFS_DE));
   2919		de2->flags = 0;
   2920		de2->res = 0;
   2921
   2922		if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL,
   2923				      1)) {
   2924			return false;
   2925		}
   2926		fallthrough;
   2927
   2928	case 2:
   2929		de_key_size = le16_to_cpu(de->key_size);
   2930
   2931		if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
   2932				       &attr, NULL, NULL)) {
   2933			return false;
   2934		}
   2935
   2936		memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size);
   2937		mi_get_ref(&ni->mi, &de->ref);
   2938
   2939		if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1))
   2940			return false;
   2941	}
   2942
   2943	return true;
   2944}
   2945
   2946/*
   2947 * ni_add_name - Add new name in MFT and in directory.
   2948 */
   2949int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
   2950		struct NTFS_DE *de)
   2951{
   2952	int err;
   2953	struct ATTRIB *attr;
   2954	struct ATTR_LIST_ENTRY *le;
   2955	struct mft_inode *mi;
   2956	struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
   2957	u16 de_key_size = le16_to_cpu(de->key_size);
   2958
   2959	mi_get_ref(&ni->mi, &de->ref);
   2960	mi_get_ref(&dir_ni->mi, &de_name->home);
   2961
   2962	/* Insert new name in MFT. */
   2963	err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr,
   2964				 &mi, &le);
   2965	if (err)
   2966		return err;
   2967
   2968	memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size);
   2969
   2970	/* Insert new name in directory. */
   2971	err = indx_insert_entry(&dir_ni->dir, dir_ni, de, ni->mi.sbi, NULL, 0);
   2972	if (err)
   2973		ni_remove_attr_le(ni, attr, mi, le);
   2974
   2975	return err;
   2976}
   2977
   2978/*
   2979 * ni_rename - Remove one name and insert new name.
   2980 */
   2981int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni,
   2982	      struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de,
   2983	      bool *is_bad)
   2984{
   2985	int err;
   2986	struct NTFS_DE *de2 = NULL;
   2987	int undo = 0;
   2988
   2989	/*
   2990	 * There are two possible ways to rename:
   2991	 * 1) Add new name and remove old name.
   2992	 * 2) Remove old name and add new name.
   2993	 *
   2994	 * In most cases (not all!) adding new name in MFT and in directory can
   2995	 * allocate additional cluster(s).
   2996	 * Second way may result to bad inode if we can't add new name
   2997	 * and then can't restore (add) old name.
   2998	 */
   2999
   3000	/*
   3001	 * Way 1 - Add new + remove old.
   3002	 */
   3003	err = ni_add_name(new_dir_ni, ni, new_de);
   3004	if (!err) {
   3005		err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
   3006		if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo))
   3007			*is_bad = true;
   3008	}
   3009
   3010	/*
   3011	 * Way 2 - Remove old + add new.
   3012	 */
   3013	/*
   3014	 *	err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
   3015	 *	if (!err) {
   3016	 *		err = ni_add_name(new_dir_ni, ni, new_de);
   3017	 *		if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo))
   3018	 *			*is_bad = true;
   3019	 *	}
   3020	 */
   3021
   3022	return err;
   3023}
   3024
   3025/*
   3026 * ni_is_dirty - Return: True if 'ni' requires ni_write_inode.
   3027 */
   3028bool ni_is_dirty(struct inode *inode)
   3029{
   3030	struct ntfs_inode *ni = ntfs_i(inode);
   3031	struct rb_node *node;
   3032
   3033	if (ni->mi.dirty || ni->attr_list.dirty ||
   3034	    (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
   3035		return true;
   3036
   3037	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
   3038		if (rb_entry(node, struct mft_inode, node)->dirty)
   3039			return true;
   3040	}
   3041
   3042	return false;
   3043}
   3044
   3045/*
   3046 * ni_update_parent
   3047 *
   3048 * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories.
   3049 */
   3050static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup,
   3051			     int sync)
   3052{
   3053	struct ATTRIB *attr;
   3054	struct mft_inode *mi;
   3055	struct ATTR_LIST_ENTRY *le = NULL;
   3056	struct ntfs_sb_info *sbi = ni->mi.sbi;
   3057	struct super_block *sb = sbi->sb;
   3058	bool re_dirty = false;
   3059
   3060	if (ni->mi.mrec->flags & RECORD_FLAG_DIR) {
   3061		dup->fa |= FILE_ATTRIBUTE_DIRECTORY;
   3062		attr = NULL;
   3063		dup->alloc_size = 0;
   3064		dup->data_size = 0;
   3065	} else {
   3066		dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY;
   3067
   3068		attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL,
   3069				    &mi);
   3070		if (!attr) {
   3071			dup->alloc_size = dup->data_size = 0;
   3072		} else if (!attr->non_res) {
   3073			u32 data_size = le32_to_cpu(attr->res.data_size);
   3074
   3075			dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8));
   3076			dup->data_size = cpu_to_le64(data_size);
   3077		} else {
   3078			u64 new_valid = ni->i_valid;
   3079			u64 data_size = le64_to_cpu(attr->nres.data_size);
   3080			__le64 valid_le;
   3081
   3082			dup->alloc_size = is_attr_ext(attr)
   3083						  ? attr->nres.total_size
   3084						  : attr->nres.alloc_size;
   3085			dup->data_size = attr->nres.data_size;
   3086
   3087			if (new_valid > data_size)
   3088				new_valid = data_size;
   3089
   3090			valid_le = cpu_to_le64(new_valid);
   3091			if (valid_le != attr->nres.valid_size) {
   3092				attr->nres.valid_size = valid_le;
   3093				mi->dirty = true;
   3094			}
   3095		}
   3096	}
   3097
   3098	/* TODO: Fill reparse info. */
   3099	dup->reparse = 0;
   3100	dup->ea_size = 0;
   3101
   3102	if (ni->ni_flags & NI_FLAG_EA) {
   3103		attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL,
   3104				    NULL);
   3105		if (attr) {
   3106			const struct EA_INFO *info;
   3107
   3108			info = resident_data_ex(attr, sizeof(struct EA_INFO));
   3109			/* If ATTR_EA_INFO exists 'info' can't be NULL. */
   3110			if (info)
   3111				dup->ea_size = info->size_pack;
   3112		}
   3113	}
   3114
   3115	attr = NULL;
   3116	le = NULL;
   3117
   3118	while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL,
   3119				    &mi))) {
   3120		struct inode *dir;
   3121		struct ATTR_FILE_NAME *fname;
   3122
   3123		fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
   3124		if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup)))
   3125			continue;
   3126
   3127		/* ntfs_iget5 may sleep. */
   3128		dir = ntfs_iget5(sb, &fname->home, NULL);
   3129		if (IS_ERR(dir)) {
   3130			ntfs_inode_warn(
   3131				&ni->vfs_inode,
   3132				"failed to open parent directory r=%lx to update",
   3133				(long)ino_get(&fname->home));
   3134			continue;
   3135		}
   3136
   3137		if (!is_bad_inode(dir)) {
   3138			struct ntfs_inode *dir_ni = ntfs_i(dir);
   3139
   3140			if (!ni_trylock(dir_ni)) {
   3141				re_dirty = true;
   3142			} else {
   3143				indx_update_dup(dir_ni, sbi, fname, dup, sync);
   3144				ni_unlock(dir_ni);
   3145				memcpy(&fname->dup, dup, sizeof(fname->dup));
   3146				mi->dirty = true;
   3147			}
   3148		}
   3149		iput(dir);
   3150	}
   3151
   3152	return re_dirty;
   3153}
   3154
   3155/*
   3156 * ni_write_inode - Write MFT base record and all subrecords to disk.
   3157 */
   3158int ni_write_inode(struct inode *inode, int sync, const char *hint)
   3159{
   3160	int err = 0, err2;
   3161	struct ntfs_inode *ni = ntfs_i(inode);
   3162	struct super_block *sb = inode->i_sb;
   3163	struct ntfs_sb_info *sbi = sb->s_fs_info;
   3164	bool re_dirty = false;
   3165	struct ATTR_STD_INFO *std;
   3166	struct rb_node *node, *next;
   3167	struct NTFS_DUP_INFO dup;
   3168
   3169	if (is_bad_inode(inode) || sb_rdonly(sb))
   3170		return 0;
   3171
   3172	if (!ni_trylock(ni)) {
   3173		/* 'ni' is under modification, skip for now. */
   3174		mark_inode_dirty_sync(inode);
   3175		return 0;
   3176	}
   3177
   3178	if (is_rec_inuse(ni->mi.mrec) &&
   3179	    !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) {
   3180		bool modified = false;
   3181
   3182		/* Update times in standard attribute. */
   3183		std = ni_std(ni);
   3184		if (!std) {
   3185			err = -EINVAL;
   3186			goto out;
   3187		}
   3188
   3189		/* Update the access times if they have changed. */
   3190		dup.m_time = kernel2nt(&inode->i_mtime);
   3191		if (std->m_time != dup.m_time) {
   3192			std->m_time = dup.m_time;
   3193			modified = true;
   3194		}
   3195
   3196		dup.c_time = kernel2nt(&inode->i_ctime);
   3197		if (std->c_time != dup.c_time) {
   3198			std->c_time = dup.c_time;
   3199			modified = true;
   3200		}
   3201
   3202		dup.a_time = kernel2nt(&inode->i_atime);
   3203		if (std->a_time != dup.a_time) {
   3204			std->a_time = dup.a_time;
   3205			modified = true;
   3206		}
   3207
   3208		dup.fa = ni->std_fa;
   3209		if (std->fa != dup.fa) {
   3210			std->fa = dup.fa;
   3211			modified = true;
   3212		}
   3213
   3214		if (modified)
   3215			ni->mi.dirty = true;
   3216
   3217		if (!ntfs_is_meta_file(sbi, inode->i_ino) &&
   3218		    (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
   3219		    /* Avoid __wait_on_freeing_inode(inode). */
   3220		    && (sb->s_flags & SB_ACTIVE)) {
   3221			dup.cr_time = std->cr_time;
   3222			/* Not critical if this function fail. */
   3223			re_dirty = ni_update_parent(ni, &dup, sync);
   3224
   3225			if (re_dirty)
   3226				ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
   3227			else
   3228				ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT;
   3229		}
   3230
   3231		/* Update attribute list. */
   3232		if (ni->attr_list.size && ni->attr_list.dirty) {
   3233			if (inode->i_ino != MFT_REC_MFT || sync) {
   3234				err = ni_try_remove_attr_list(ni);
   3235				if (err)
   3236					goto out;
   3237			}
   3238
   3239			err = al_update(ni, sync);
   3240			if (err)
   3241				goto out;
   3242		}
   3243	}
   3244
   3245	for (node = rb_first(&ni->mi_tree); node; node = next) {
   3246		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
   3247		bool is_empty;
   3248
   3249		next = rb_next(node);
   3250
   3251		if (!mi->dirty)
   3252			continue;
   3253
   3254		is_empty = !mi_enum_attr(mi, NULL);
   3255
   3256		if (is_empty)
   3257			clear_rec_inuse(mi->mrec);
   3258
   3259		err2 = mi_write(mi, sync);
   3260		if (!err && err2)
   3261			err = err2;
   3262
   3263		if (is_empty) {
   3264			ntfs_mark_rec_free(sbi, mi->rno);
   3265			rb_erase(node, &ni->mi_tree);
   3266			mi_put(mi);
   3267		}
   3268	}
   3269
   3270	if (ni->mi.dirty) {
   3271		err2 = mi_write(&ni->mi, sync);
   3272		if (!err && err2)
   3273			err = err2;
   3274	}
   3275out:
   3276	ni_unlock(ni);
   3277
   3278	if (err) {
   3279		ntfs_err(sb, "%s r=%lx failed, %d.", hint, inode->i_ino, err);
   3280		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
   3281		return err;
   3282	}
   3283
   3284	if (re_dirty)
   3285		mark_inode_dirty_sync(inode);
   3286
   3287	return 0;
   3288}