cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

fslog.c (125198B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 *
      4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
      5 *
      6 */
      7
      8#include <linux/blkdev.h>
      9#include <linux/fs.h>
     10#include <linux/random.h>
     11#include <linux/slab.h>
     12
     13#include "debug.h"
     14#include "ntfs.h"
     15#include "ntfs_fs.h"
     16
     17/*
     18 * LOG FILE structs
     19 */
     20
     21// clang-format off
     22
     23#define MaxLogFileSize     0x100000000ull
     24#define DefaultLogPageSize 4096
     25#define MinLogRecordPages  0x30
     26
     27struct RESTART_HDR {
     28	struct NTFS_RECORD_HEADER rhdr; // 'RSTR'
     29	__le32 sys_page_size; // 0x10: Page size of the system which initialized the log.
     30	__le32 page_size;     // 0x14: Log page size used for this log file.
     31	__le16 ra_off;        // 0x18:
     32	__le16 minor_ver;     // 0x1A:
     33	__le16 major_ver;     // 0x1C:
     34	__le16 fixups[];
     35};
     36
     37#define LFS_NO_CLIENT 0xffff
     38#define LFS_NO_CLIENT_LE cpu_to_le16(0xffff)
     39
     40struct CLIENT_REC {
     41	__le64 oldest_lsn;
     42	__le64 restart_lsn; // 0x08:
     43	__le16 prev_client; // 0x10:
     44	__le16 next_client; // 0x12:
     45	__le16 seq_num;     // 0x14:
     46	u8 align[6];        // 0x16:
     47	__le32 name_bytes;  // 0x1C: In bytes.
     48	__le16 name[32];    // 0x20: Name of client.
     49};
     50
     51static_assert(sizeof(struct CLIENT_REC) == 0x60);
     52
     53/* Two copies of these will exist at the beginning of the log file */
     54struct RESTART_AREA {
     55	__le64 current_lsn;    // 0x00: Current logical end of log file.
     56	__le16 log_clients;    // 0x08: Maximum number of clients.
     57	__le16 client_idx[2];  // 0x0A: Free/use index into the client record arrays.
     58	__le16 flags;          // 0x0E: See RESTART_SINGLE_PAGE_IO.
     59	__le32 seq_num_bits;   // 0x10: The number of bits in sequence number.
     60	__le16 ra_len;         // 0x14:
     61	__le16 client_off;     // 0x16:
     62	__le64 l_size;         // 0x18: Usable log file size.
     63	__le32 last_lsn_data_len; // 0x20:
     64	__le16 rec_hdr_len;    // 0x24: Log page data offset.
     65	__le16 data_off;       // 0x26: Log page data length.
     66	__le32 open_log_count; // 0x28:
     67	__le32 align[5];       // 0x2C:
     68	struct CLIENT_REC clients[]; // 0x40:
     69};
     70
     71struct LOG_REC_HDR {
     72	__le16 redo_op;      // 0x00:  NTFS_LOG_OPERATION
     73	__le16 undo_op;      // 0x02:  NTFS_LOG_OPERATION
     74	__le16 redo_off;     // 0x04:  Offset to Redo record.
     75	__le16 redo_len;     // 0x06:  Redo length.
     76	__le16 undo_off;     // 0x08:  Offset to Undo record.
     77	__le16 undo_len;     // 0x0A:  Undo length.
     78	__le16 target_attr;  // 0x0C:
     79	__le16 lcns_follow;  // 0x0E:
     80	__le16 record_off;   // 0x10:
     81	__le16 attr_off;     // 0x12:
     82	__le16 cluster_off;  // 0x14:
     83	__le16 reserved;     // 0x16:
     84	__le64 target_vcn;   // 0x18:
     85	__le64 page_lcns[];  // 0x20:
     86};
     87
     88static_assert(sizeof(struct LOG_REC_HDR) == 0x20);
     89
     90#define RESTART_ENTRY_ALLOCATED    0xFFFFFFFF
     91#define RESTART_ENTRY_ALLOCATED_LE cpu_to_le32(0xFFFFFFFF)
     92
     93struct RESTART_TABLE {
     94	__le16 size;       // 0x00: In bytes
     95	__le16 used;       // 0x02: Entries
     96	__le16 total;      // 0x04: Entries
     97	__le16 res[3];     // 0x06:
     98	__le32 free_goal;  // 0x0C:
     99	__le32 first_free; // 0x10:
    100	__le32 last_free;  // 0x14:
    101
    102};
    103
    104static_assert(sizeof(struct RESTART_TABLE) == 0x18);
    105
    106struct ATTR_NAME_ENTRY {
    107	__le16 off; // Offset in the Open attribute Table.
    108	__le16 name_bytes;
    109	__le16 name[];
    110};
    111
    112struct OPEN_ATTR_ENRTY {
    113	__le32 next;            // 0x00: RESTART_ENTRY_ALLOCATED if allocated
    114	__le32 bytes_per_index; // 0x04:
    115	enum ATTR_TYPE type;    // 0x08:
    116	u8 is_dirty_pages;      // 0x0C:
    117	u8 is_attr_name;        // 0x0B: Faked field to manage 'ptr'
    118	u8 name_len;            // 0x0C: Faked field to manage 'ptr'
    119	u8 res;
    120	struct MFT_REF ref;     // 0x10: File Reference of file containing attribute
    121	__le64 open_record_lsn; // 0x18:
    122	void *ptr;              // 0x20:
    123};
    124
    125/* 32 bit version of 'struct OPEN_ATTR_ENRTY' */
    126struct OPEN_ATTR_ENRTY_32 {
    127	__le32 next;            // 0x00: RESTART_ENTRY_ALLOCATED if allocated
    128	__le32 ptr;             // 0x04:
    129	struct MFT_REF ref;     // 0x08:
    130	__le64 open_record_lsn; // 0x10:
    131	u8 is_dirty_pages;      // 0x18:
    132	u8 is_attr_name;        // 0x19:
    133	u8 res1[2];
    134	enum ATTR_TYPE type;    // 0x1C:
    135	u8 name_len;            // 0x20: In wchar
    136	u8 res2[3];
    137	__le32 AttributeName;   // 0x24:
    138	__le32 bytes_per_index; // 0x28:
    139};
    140
    141#define SIZEOF_OPENATTRIBUTEENTRY0 0x2c
    142// static_assert( 0x2C == sizeof(struct OPEN_ATTR_ENRTY_32) );
    143static_assert(sizeof(struct OPEN_ATTR_ENRTY) < SIZEOF_OPENATTRIBUTEENTRY0);
    144
    145/*
    146 * One entry exists in the Dirty Pages Table for each page which is dirty at
    147 * the time the Restart Area is written.
    148 */
    149struct DIR_PAGE_ENTRY {
    150	__le32 next;         // 0x00: RESTART_ENTRY_ALLOCATED if allocated
    151	__le32 target_attr;  // 0x04: Index into the Open attribute Table
    152	__le32 transfer_len; // 0x08:
    153	__le32 lcns_follow;  // 0x0C:
    154	__le64 vcn;          // 0x10: Vcn of dirty page
    155	__le64 oldest_lsn;   // 0x18:
    156	__le64 page_lcns[];  // 0x20:
    157};
    158
    159static_assert(sizeof(struct DIR_PAGE_ENTRY) == 0x20);
    160
    161/* 32 bit version of 'struct DIR_PAGE_ENTRY' */
    162struct DIR_PAGE_ENTRY_32 {
    163	__le32 next;		// 0x00: RESTART_ENTRY_ALLOCATED if allocated
    164	__le32 target_attr;	// 0x04: Index into the Open attribute Table
    165	__le32 transfer_len;	// 0x08:
    166	__le32 lcns_follow;	// 0x0C:
    167	__le32 reserved;	// 0x10:
    168	__le32 vcn_low;		// 0x14: Vcn of dirty page
    169	__le32 vcn_hi;		// 0x18: Vcn of dirty page
    170	__le32 oldest_lsn_low;	// 0x1C:
    171	__le32 oldest_lsn_hi;	// 0x1C:
    172	__le32 page_lcns_low;	// 0x24:
    173	__le32 page_lcns_hi;	// 0x24:
    174};
    175
    176static_assert(offsetof(struct DIR_PAGE_ENTRY_32, vcn_low) == 0x14);
    177static_assert(sizeof(struct DIR_PAGE_ENTRY_32) == 0x2c);
    178
    179enum transact_state {
    180	TransactionUninitialized = 0,
    181	TransactionActive,
    182	TransactionPrepared,
    183	TransactionCommitted
    184};
    185
    186struct TRANSACTION_ENTRY {
    187	__le32 next;          // 0x00: RESTART_ENTRY_ALLOCATED if allocated
    188	u8 transact_state;    // 0x04:
    189	u8 reserved[3];       // 0x05:
    190	__le64 first_lsn;     // 0x08:
    191	__le64 prev_lsn;      // 0x10:
    192	__le64 undo_next_lsn; // 0x18:
    193	__le32 undo_records;  // 0x20: Number of undo log records pending abort
    194	__le32 undo_len;      // 0x24: Total undo size
    195};
    196
    197static_assert(sizeof(struct TRANSACTION_ENTRY) == 0x28);
    198
    199struct NTFS_RESTART {
    200	__le32 major_ver;             // 0x00:
    201	__le32 minor_ver;             // 0x04:
    202	__le64 check_point_start;     // 0x08:
    203	__le64 open_attr_table_lsn;   // 0x10:
    204	__le64 attr_names_lsn;        // 0x18:
    205	__le64 dirty_pages_table_lsn; // 0x20:
    206	__le64 transact_table_lsn;    // 0x28:
    207	__le32 open_attr_len;         // 0x30: In bytes
    208	__le32 attr_names_len;        // 0x34: In bytes
    209	__le32 dirty_pages_len;       // 0x38: In bytes
    210	__le32 transact_table_len;    // 0x3C: In bytes
    211};
    212
    213static_assert(sizeof(struct NTFS_RESTART) == 0x40);
    214
    215struct NEW_ATTRIBUTE_SIZES {
    216	__le64 alloc_size;
    217	__le64 valid_size;
    218	__le64 data_size;
    219	__le64 total_size;
    220};
    221
    222struct BITMAP_RANGE {
    223	__le32 bitmap_off;
    224	__le32 bits;
    225};
    226
    227struct LCN_RANGE {
    228	__le64 lcn;
    229	__le64 len;
    230};
    231
    232/* The following type defines the different log record types. */
    233#define LfsClientRecord  cpu_to_le32(1)
    234#define LfsClientRestart cpu_to_le32(2)
    235
    236/* This is used to uniquely identify a client for a particular log file. */
    237struct CLIENT_ID {
    238	__le16 seq_num;
    239	__le16 client_idx;
    240};
    241
    242/* This is the header that begins every Log Record in the log file. */
    243struct LFS_RECORD_HDR {
    244	__le64 this_lsn;		// 0x00:
    245	__le64 client_prev_lsn;		// 0x08:
    246	__le64 client_undo_next_lsn;	// 0x10:
    247	__le32 client_data_len;		// 0x18:
    248	struct CLIENT_ID client;	// 0x1C: Owner of this log record.
    249	__le32 record_type;		// 0x20: LfsClientRecord or LfsClientRestart.
    250	__le32 transact_id;		// 0x24:
    251	__le16 flags;			// 0x28: LOG_RECORD_MULTI_PAGE
    252	u8 align[6];			// 0x2A:
    253};
    254
    255#define LOG_RECORD_MULTI_PAGE cpu_to_le16(1)
    256
    257static_assert(sizeof(struct LFS_RECORD_HDR) == 0x30);
    258
    259struct LFS_RECORD {
    260	__le16 next_record_off;	// 0x00: Offset of the free space in the page,
    261	u8 align[6];		// 0x02:
    262	__le64 last_end_lsn;	// 0x08: lsn for the last log record which ends on the page,
    263};
    264
    265static_assert(sizeof(struct LFS_RECORD) == 0x10);
    266
    267struct RECORD_PAGE_HDR {
    268	struct NTFS_RECORD_HEADER rhdr;	// 'RCRD'
    269	__le32 rflags;			// 0x10: See LOG_PAGE_LOG_RECORD_END
    270	__le16 page_count;		// 0x14:
    271	__le16 page_pos;		// 0x16:
    272	struct LFS_RECORD record_hdr;	// 0x18:
    273	__le16 fixups[10];		// 0x28:
    274	__le32 file_off;		// 0x3c: Used when major version >= 2
    275};
    276
    277// clang-format on
    278
    279// Page contains the end of a log record.
    280#define LOG_PAGE_LOG_RECORD_END cpu_to_le32(0x00000001)
    281
    282static inline bool is_log_record_end(const struct RECORD_PAGE_HDR *hdr)
    283{
    284	return hdr->rflags & LOG_PAGE_LOG_RECORD_END;
    285}
    286
    287static_assert(offsetof(struct RECORD_PAGE_HDR, file_off) == 0x3c);
    288
    289/*
    290 * END of NTFS LOG structures
    291 */
    292
    293/* Define some tuning parameters to keep the restart tables a reasonable size. */
    294#define INITIAL_NUMBER_TRANSACTIONS 5
    295
    296enum NTFS_LOG_OPERATION {
    297
    298	Noop = 0x00,
    299	CompensationLogRecord = 0x01,
    300	InitializeFileRecordSegment = 0x02,
    301	DeallocateFileRecordSegment = 0x03,
    302	WriteEndOfFileRecordSegment = 0x04,
    303	CreateAttribute = 0x05,
    304	DeleteAttribute = 0x06,
    305	UpdateResidentValue = 0x07,
    306	UpdateNonresidentValue = 0x08,
    307	UpdateMappingPairs = 0x09,
    308	DeleteDirtyClusters = 0x0A,
    309	SetNewAttributeSizes = 0x0B,
    310	AddIndexEntryRoot = 0x0C,
    311	DeleteIndexEntryRoot = 0x0D,
    312	AddIndexEntryAllocation = 0x0E,
    313	DeleteIndexEntryAllocation = 0x0F,
    314	WriteEndOfIndexBuffer = 0x10,
    315	SetIndexEntryVcnRoot = 0x11,
    316	SetIndexEntryVcnAllocation = 0x12,
    317	UpdateFileNameRoot = 0x13,
    318	UpdateFileNameAllocation = 0x14,
    319	SetBitsInNonresidentBitMap = 0x15,
    320	ClearBitsInNonresidentBitMap = 0x16,
    321	HotFix = 0x17,
    322	EndTopLevelAction = 0x18,
    323	PrepareTransaction = 0x19,
    324	CommitTransaction = 0x1A,
    325	ForgetTransaction = 0x1B,
    326	OpenNonresidentAttribute = 0x1C,
    327	OpenAttributeTableDump = 0x1D,
    328	AttributeNamesDump = 0x1E,
    329	DirtyPageTableDump = 0x1F,
    330	TransactionTableDump = 0x20,
    331	UpdateRecordDataRoot = 0x21,
    332	UpdateRecordDataAllocation = 0x22,
    333
    334	UpdateRelativeDataInIndex =
    335		0x23, // NtOfsRestartUpdateRelativeDataInIndex
    336	UpdateRelativeDataInIndex2 = 0x24,
    337	ZeroEndOfFileRecord = 0x25,
    338};
    339
    340/*
    341 * Array for log records which require a target attribute.
    342 * A true indicates that the corresponding restart operation
    343 * requires a target attribute.
    344 */
    345static const u8 AttributeRequired[] = {
    346	0xFC, 0xFB, 0xFF, 0x10, 0x06,
    347};
    348
    349static inline bool is_target_required(u16 op)
    350{
    351	bool ret = op <= UpdateRecordDataAllocation &&
    352		   (AttributeRequired[op >> 3] >> (op & 7) & 1);
    353	return ret;
    354}
    355
    356static inline bool can_skip_action(enum NTFS_LOG_OPERATION op)
    357{
    358	switch (op) {
    359	case Noop:
    360	case DeleteDirtyClusters:
    361	case HotFix:
    362	case EndTopLevelAction:
    363	case PrepareTransaction:
    364	case CommitTransaction:
    365	case ForgetTransaction:
    366	case CompensationLogRecord:
    367	case OpenNonresidentAttribute:
    368	case OpenAttributeTableDump:
    369	case AttributeNamesDump:
    370	case DirtyPageTableDump:
    371	case TransactionTableDump:
    372		return true;
    373	default:
    374		return false;
    375	}
    376}
    377
    378enum { lcb_ctx_undo_next, lcb_ctx_prev, lcb_ctx_next };
    379
    380/* Bytes per restart table. */
    381static inline u32 bytes_per_rt(const struct RESTART_TABLE *rt)
    382{
    383	return le16_to_cpu(rt->used) * le16_to_cpu(rt->size) +
    384	       sizeof(struct RESTART_TABLE);
    385}
    386
    387/* Log record length. */
    388static inline u32 lrh_length(const struct LOG_REC_HDR *lr)
    389{
    390	u16 t16 = le16_to_cpu(lr->lcns_follow);
    391
    392	return struct_size(lr, page_lcns, max_t(u16, 1, t16));
    393}
    394
    395struct lcb {
    396	struct LFS_RECORD_HDR *lrh; // Log record header of the current lsn.
    397	struct LOG_REC_HDR *log_rec;
    398	u32 ctx_mode; // lcb_ctx_undo_next/lcb_ctx_prev/lcb_ctx_next
    399	struct CLIENT_ID client;
    400	bool alloc; // If true the we should deallocate 'log_rec'.
    401};
    402
    403static void lcb_put(struct lcb *lcb)
    404{
    405	if (lcb->alloc)
    406		kfree(lcb->log_rec);
    407	kfree(lcb->lrh);
    408	kfree(lcb);
    409}
    410
    411/* Find the oldest lsn from active clients. */
    412static inline void oldest_client_lsn(const struct CLIENT_REC *ca,
    413				     __le16 next_client, u64 *oldest_lsn)
    414{
    415	while (next_client != LFS_NO_CLIENT_LE) {
    416		const struct CLIENT_REC *cr = ca + le16_to_cpu(next_client);
    417		u64 lsn = le64_to_cpu(cr->oldest_lsn);
    418
    419		/* Ignore this block if it's oldest lsn is 0. */
    420		if (lsn && lsn < *oldest_lsn)
    421			*oldest_lsn = lsn;
    422
    423		next_client = cr->next_client;
    424	}
    425}
    426
    427static inline bool is_rst_page_hdr_valid(u32 file_off,
    428					 const struct RESTART_HDR *rhdr)
    429{
    430	u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
    431	u32 page_size = le32_to_cpu(rhdr->page_size);
    432	u32 end_usa;
    433	u16 ro;
    434
    435	if (sys_page < SECTOR_SIZE || page_size < SECTOR_SIZE ||
    436	    sys_page & (sys_page - 1) || page_size & (page_size - 1)) {
    437		return false;
    438	}
    439
    440	/* Check that if the file offset isn't 0, it is the system page size. */
    441	if (file_off && file_off != sys_page)
    442		return false;
    443
    444	/* Check support version 1.1+. */
    445	if (le16_to_cpu(rhdr->major_ver) <= 1 && !rhdr->minor_ver)
    446		return false;
    447
    448	if (le16_to_cpu(rhdr->major_ver) > 2)
    449		return false;
    450
    451	ro = le16_to_cpu(rhdr->ra_off);
    452	if (!IS_ALIGNED(ro, 8) || ro > sys_page)
    453		return false;
    454
    455	end_usa = ((sys_page >> SECTOR_SHIFT) + 1) * sizeof(short);
    456	end_usa += le16_to_cpu(rhdr->rhdr.fix_off);
    457
    458	if (ro < end_usa)
    459		return false;
    460
    461	return true;
    462}
    463
    464static inline bool is_rst_area_valid(const struct RESTART_HDR *rhdr)
    465{
    466	const struct RESTART_AREA *ra;
    467	u16 cl, fl, ul;
    468	u32 off, l_size, file_dat_bits, file_size_round;
    469	u16 ro = le16_to_cpu(rhdr->ra_off);
    470	u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
    471
    472	if (ro + offsetof(struct RESTART_AREA, l_size) >
    473	    SECTOR_SIZE - sizeof(short))
    474		return false;
    475
    476	ra = Add2Ptr(rhdr, ro);
    477	cl = le16_to_cpu(ra->log_clients);
    478
    479	if (cl > 1)
    480		return false;
    481
    482	off = le16_to_cpu(ra->client_off);
    483
    484	if (!IS_ALIGNED(off, 8) || ro + off > SECTOR_SIZE - sizeof(short))
    485		return false;
    486
    487	off += cl * sizeof(struct CLIENT_REC);
    488
    489	if (off > sys_page)
    490		return false;
    491
    492	/*
    493	 * Check the restart length field and whether the entire
    494	 * restart area is contained that length.
    495	 */
    496	if (le16_to_cpu(rhdr->ra_off) + le16_to_cpu(ra->ra_len) > sys_page ||
    497	    off > le16_to_cpu(ra->ra_len)) {
    498		return false;
    499	}
    500
    501	/*
    502	 * As a final check make sure that the use list and the free list
    503	 * are either empty or point to a valid client.
    504	 */
    505	fl = le16_to_cpu(ra->client_idx[0]);
    506	ul = le16_to_cpu(ra->client_idx[1]);
    507	if ((fl != LFS_NO_CLIENT && fl >= cl) ||
    508	    (ul != LFS_NO_CLIENT && ul >= cl))
    509		return false;
    510
    511	/* Make sure the sequence number bits match the log file size. */
    512	l_size = le64_to_cpu(ra->l_size);
    513
    514	file_dat_bits = sizeof(u64) * 8 - le32_to_cpu(ra->seq_num_bits);
    515	file_size_round = 1u << (file_dat_bits + 3);
    516	if (file_size_round != l_size &&
    517	    (file_size_round < l_size || (file_size_round / 2) > l_size)) {
    518		return false;
    519	}
    520
    521	/* The log page data offset and record header length must be quad-aligned. */
    522	if (!IS_ALIGNED(le16_to_cpu(ra->data_off), 8) ||
    523	    !IS_ALIGNED(le16_to_cpu(ra->rec_hdr_len), 8))
    524		return false;
    525
    526	return true;
    527}
    528
    529static inline bool is_client_area_valid(const struct RESTART_HDR *rhdr,
    530					bool usa_error)
    531{
    532	u16 ro = le16_to_cpu(rhdr->ra_off);
    533	const struct RESTART_AREA *ra = Add2Ptr(rhdr, ro);
    534	u16 ra_len = le16_to_cpu(ra->ra_len);
    535	const struct CLIENT_REC *ca;
    536	u32 i;
    537
    538	if (usa_error && ra_len + ro > SECTOR_SIZE - sizeof(short))
    539		return false;
    540
    541	/* Find the start of the client array. */
    542	ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
    543
    544	/*
    545	 * Start with the free list.
    546	 * Check that all the clients are valid and that there isn't a cycle.
    547	 * Do the in-use list on the second pass.
    548	 */
    549	for (i = 0; i < 2; i++) {
    550		u16 client_idx = le16_to_cpu(ra->client_idx[i]);
    551		bool first_client = true;
    552		u16 clients = le16_to_cpu(ra->log_clients);
    553
    554		while (client_idx != LFS_NO_CLIENT) {
    555			const struct CLIENT_REC *cr;
    556
    557			if (!clients ||
    558			    client_idx >= le16_to_cpu(ra->log_clients))
    559				return false;
    560
    561			clients -= 1;
    562			cr = ca + client_idx;
    563
    564			client_idx = le16_to_cpu(cr->next_client);
    565
    566			if (first_client) {
    567				first_client = false;
    568				if (cr->prev_client != LFS_NO_CLIENT_LE)
    569					return false;
    570			}
    571		}
    572	}
    573
    574	return true;
    575}
    576
    577/*
    578 * remove_client
    579 *
    580 * Remove a client record from a client record list an restart area.
    581 */
    582static inline void remove_client(struct CLIENT_REC *ca,
    583				 const struct CLIENT_REC *cr, __le16 *head)
    584{
    585	if (cr->prev_client == LFS_NO_CLIENT_LE)
    586		*head = cr->next_client;
    587	else
    588		ca[le16_to_cpu(cr->prev_client)].next_client = cr->next_client;
    589
    590	if (cr->next_client != LFS_NO_CLIENT_LE)
    591		ca[le16_to_cpu(cr->next_client)].prev_client = cr->prev_client;
    592}
    593
    594/*
    595 * add_client - Add a client record to the start of a list.
    596 */
    597static inline void add_client(struct CLIENT_REC *ca, u16 index, __le16 *head)
    598{
    599	struct CLIENT_REC *cr = ca + index;
    600
    601	cr->prev_client = LFS_NO_CLIENT_LE;
    602	cr->next_client = *head;
    603
    604	if (*head != LFS_NO_CLIENT_LE)
    605		ca[le16_to_cpu(*head)].prev_client = cpu_to_le16(index);
    606
    607	*head = cpu_to_le16(index);
    608}
    609
    610static inline void *enum_rstbl(struct RESTART_TABLE *t, void *c)
    611{
    612	__le32 *e;
    613	u32 bprt;
    614	u16 rsize = t ? le16_to_cpu(t->size) : 0;
    615
    616	if (!c) {
    617		if (!t || !t->total)
    618			return NULL;
    619		e = Add2Ptr(t, sizeof(struct RESTART_TABLE));
    620	} else {
    621		e = Add2Ptr(c, rsize);
    622	}
    623
    624	/* Loop until we hit the first one allocated, or the end of the list. */
    625	for (bprt = bytes_per_rt(t); PtrOffset(t, e) < bprt;
    626	     e = Add2Ptr(e, rsize)) {
    627		if (*e == RESTART_ENTRY_ALLOCATED_LE)
    628			return e;
    629	}
    630	return NULL;
    631}
    632
    633/*
    634 * find_dp - Search for a @vcn in Dirty Page Table.
    635 */
    636static inline struct DIR_PAGE_ENTRY *find_dp(struct RESTART_TABLE *dptbl,
    637					     u32 target_attr, u64 vcn)
    638{
    639	__le32 ta = cpu_to_le32(target_attr);
    640	struct DIR_PAGE_ENTRY *dp = NULL;
    641
    642	while ((dp = enum_rstbl(dptbl, dp))) {
    643		u64 dp_vcn = le64_to_cpu(dp->vcn);
    644
    645		if (dp->target_attr == ta && vcn >= dp_vcn &&
    646		    vcn < dp_vcn + le32_to_cpu(dp->lcns_follow)) {
    647			return dp;
    648		}
    649	}
    650	return NULL;
    651}
    652
    653static inline u32 norm_file_page(u32 page_size, u32 *l_size, bool use_default)
    654{
    655	if (use_default)
    656		page_size = DefaultLogPageSize;
    657
    658	/* Round the file size down to a system page boundary. */
    659	*l_size &= ~(page_size - 1);
    660
    661	/* File should contain at least 2 restart pages and MinLogRecordPages pages. */
    662	if (*l_size < (MinLogRecordPages + 2) * page_size)
    663		return 0;
    664
    665	return page_size;
    666}
    667
    668static bool check_log_rec(const struct LOG_REC_HDR *lr, u32 bytes, u32 tr,
    669			  u32 bytes_per_attr_entry)
    670{
    671	u16 t16;
    672
    673	if (bytes < sizeof(struct LOG_REC_HDR))
    674		return false;
    675	if (!tr)
    676		return false;
    677
    678	if ((tr - sizeof(struct RESTART_TABLE)) %
    679	    sizeof(struct TRANSACTION_ENTRY))
    680		return false;
    681
    682	if (le16_to_cpu(lr->redo_off) & 7)
    683		return false;
    684
    685	if (le16_to_cpu(lr->undo_off) & 7)
    686		return false;
    687
    688	if (lr->target_attr)
    689		goto check_lcns;
    690
    691	if (is_target_required(le16_to_cpu(lr->redo_op)))
    692		return false;
    693
    694	if (is_target_required(le16_to_cpu(lr->undo_op)))
    695		return false;
    696
    697check_lcns:
    698	if (!lr->lcns_follow)
    699		goto check_length;
    700
    701	t16 = le16_to_cpu(lr->target_attr);
    702	if ((t16 - sizeof(struct RESTART_TABLE)) % bytes_per_attr_entry)
    703		return false;
    704
    705check_length:
    706	if (bytes < lrh_length(lr))
    707		return false;
    708
    709	return true;
    710}
    711
    712static bool check_rstbl(const struct RESTART_TABLE *rt, size_t bytes)
    713{
    714	u32 ts;
    715	u32 i, off;
    716	u16 rsize = le16_to_cpu(rt->size);
    717	u16 ne = le16_to_cpu(rt->used);
    718	u32 ff = le32_to_cpu(rt->first_free);
    719	u32 lf = le32_to_cpu(rt->last_free);
    720
    721	ts = rsize * ne + sizeof(struct RESTART_TABLE);
    722
    723	if (!rsize || rsize > bytes ||
    724	    rsize + sizeof(struct RESTART_TABLE) > bytes || bytes < ts ||
    725	    le16_to_cpu(rt->total) > ne || ff > ts || lf > ts ||
    726	    (ff && ff < sizeof(struct RESTART_TABLE)) ||
    727	    (lf && lf < sizeof(struct RESTART_TABLE))) {
    728		return false;
    729	}
    730
    731	/*
    732	 * Verify each entry is either allocated or points
    733	 * to a valid offset the table.
    734	 */
    735	for (i = 0; i < ne; i++) {
    736		off = le32_to_cpu(*(__le32 *)Add2Ptr(
    737			rt, i * rsize + sizeof(struct RESTART_TABLE)));
    738
    739		if (off != RESTART_ENTRY_ALLOCATED && off &&
    740		    (off < sizeof(struct RESTART_TABLE) ||
    741		     ((off - sizeof(struct RESTART_TABLE)) % rsize))) {
    742			return false;
    743		}
    744	}
    745
    746	/*
    747	 * Walk through the list headed by the first entry to make
    748	 * sure none of the entries are currently being used.
    749	 */
    750	for (off = ff; off;) {
    751		if (off == RESTART_ENTRY_ALLOCATED)
    752			return false;
    753
    754		off = le32_to_cpu(*(__le32 *)Add2Ptr(rt, off));
    755	}
    756
    757	return true;
    758}
    759
    760/*
    761 * free_rsttbl_idx - Free a previously allocated index a Restart Table.
    762 */
    763static inline void free_rsttbl_idx(struct RESTART_TABLE *rt, u32 off)
    764{
    765	__le32 *e;
    766	u32 lf = le32_to_cpu(rt->last_free);
    767	__le32 off_le = cpu_to_le32(off);
    768
    769	e = Add2Ptr(rt, off);
    770
    771	if (off < le32_to_cpu(rt->free_goal)) {
    772		*e = rt->first_free;
    773		rt->first_free = off_le;
    774		if (!lf)
    775			rt->last_free = off_le;
    776	} else {
    777		if (lf)
    778			*(__le32 *)Add2Ptr(rt, lf) = off_le;
    779		else
    780			rt->first_free = off_le;
    781
    782		rt->last_free = off_le;
    783		*e = 0;
    784	}
    785
    786	le16_sub_cpu(&rt->total, 1);
    787}
    788
    789static inline struct RESTART_TABLE *init_rsttbl(u16 esize, u16 used)
    790{
    791	__le32 *e, *last_free;
    792	u32 off;
    793	u32 bytes = esize * used + sizeof(struct RESTART_TABLE);
    794	u32 lf = sizeof(struct RESTART_TABLE) + (used - 1) * esize;
    795	struct RESTART_TABLE *t = kzalloc(bytes, GFP_NOFS);
    796
    797	if (!t)
    798		return NULL;
    799
    800	t->size = cpu_to_le16(esize);
    801	t->used = cpu_to_le16(used);
    802	t->free_goal = cpu_to_le32(~0u);
    803	t->first_free = cpu_to_le32(sizeof(struct RESTART_TABLE));
    804	t->last_free = cpu_to_le32(lf);
    805
    806	e = (__le32 *)(t + 1);
    807	last_free = Add2Ptr(t, lf);
    808
    809	for (off = sizeof(struct RESTART_TABLE) + esize; e < last_free;
    810	     e = Add2Ptr(e, esize), off += esize) {
    811		*e = cpu_to_le32(off);
    812	}
    813	return t;
    814}
    815
    816static inline struct RESTART_TABLE *extend_rsttbl(struct RESTART_TABLE *tbl,
    817						  u32 add, u32 free_goal)
    818{
    819	u16 esize = le16_to_cpu(tbl->size);
    820	__le32 osize = cpu_to_le32(bytes_per_rt(tbl));
    821	u32 used = le16_to_cpu(tbl->used);
    822	struct RESTART_TABLE *rt;
    823
    824	rt = init_rsttbl(esize, used + add);
    825	if (!rt)
    826		return NULL;
    827
    828	memcpy(rt + 1, tbl + 1, esize * used);
    829
    830	rt->free_goal = free_goal == ~0u
    831				? cpu_to_le32(~0u)
    832				: cpu_to_le32(sizeof(struct RESTART_TABLE) +
    833					      free_goal * esize);
    834
    835	if (tbl->first_free) {
    836		rt->first_free = tbl->first_free;
    837		*(__le32 *)Add2Ptr(rt, le32_to_cpu(tbl->last_free)) = osize;
    838	} else {
    839		rt->first_free = osize;
    840	}
    841
    842	rt->total = tbl->total;
    843
    844	kfree(tbl);
    845	return rt;
    846}
    847
    848/*
    849 * alloc_rsttbl_idx
    850 *
    851 * Allocate an index from within a previously initialized Restart Table.
    852 */
    853static inline void *alloc_rsttbl_idx(struct RESTART_TABLE **tbl)
    854{
    855	u32 off;
    856	__le32 *e;
    857	struct RESTART_TABLE *t = *tbl;
    858
    859	if (!t->first_free) {
    860		*tbl = t = extend_rsttbl(t, 16, ~0u);
    861		if (!t)
    862			return NULL;
    863	}
    864
    865	off = le32_to_cpu(t->first_free);
    866
    867	/* Dequeue this entry and zero it. */
    868	e = Add2Ptr(t, off);
    869
    870	t->first_free = *e;
    871
    872	memset(e, 0, le16_to_cpu(t->size));
    873
    874	*e = RESTART_ENTRY_ALLOCATED_LE;
    875
    876	/* If list is going empty, then we fix the last_free as well. */
    877	if (!t->first_free)
    878		t->last_free = 0;
    879
    880	le16_add_cpu(&t->total, 1);
    881
    882	return Add2Ptr(t, off);
    883}
    884
    885/*
    886 * alloc_rsttbl_from_idx
    887 *
    888 * Allocate a specific index from within a previously initialized Restart Table.
    889 */
    890static inline void *alloc_rsttbl_from_idx(struct RESTART_TABLE **tbl, u32 vbo)
    891{
    892	u32 off;
    893	__le32 *e;
    894	struct RESTART_TABLE *rt = *tbl;
    895	u32 bytes = bytes_per_rt(rt);
    896	u16 esize = le16_to_cpu(rt->size);
    897
    898	/* If the entry is not the table, we will have to extend the table. */
    899	if (vbo >= bytes) {
    900		/*
    901		 * Extend the size by computing the number of entries between
    902		 * the existing size and the desired index and adding 1 to that.
    903		 */
    904		u32 bytes2idx = vbo - bytes;
    905
    906		/*
    907		 * There should always be an integral number of entries
    908		 * being added. Now extend the table.
    909		 */
    910		*tbl = rt = extend_rsttbl(rt, bytes2idx / esize + 1, bytes);
    911		if (!rt)
    912			return NULL;
    913	}
    914
    915	/* See if the entry is already allocated, and just return if it is. */
    916	e = Add2Ptr(rt, vbo);
    917
    918	if (*e == RESTART_ENTRY_ALLOCATED_LE)
    919		return e;
    920
    921	/*
    922	 * Walk through the table, looking for the entry we're
    923	 * interested and the previous entry.
    924	 */
    925	off = le32_to_cpu(rt->first_free);
    926	e = Add2Ptr(rt, off);
    927
    928	if (off == vbo) {
    929		/* this is a match */
    930		rt->first_free = *e;
    931		goto skip_looking;
    932	}
    933
    934	/*
    935	 * Need to walk through the list looking for the predecessor
    936	 * of our entry.
    937	 */
    938	for (;;) {
    939		/* Remember the entry just found */
    940		u32 last_off = off;
    941		__le32 *last_e = e;
    942
    943		/* Should never run of entries. */
    944
    945		/* Lookup up the next entry the list. */
    946		off = le32_to_cpu(*last_e);
    947		e = Add2Ptr(rt, off);
    948
    949		/* If this is our match we are done. */
    950		if (off == vbo) {
    951			*last_e = *e;
    952
    953			/*
    954			 * If this was the last entry, we update that
    955			 * table as well.
    956			 */
    957			if (le32_to_cpu(rt->last_free) == off)
    958				rt->last_free = cpu_to_le32(last_off);
    959			break;
    960		}
    961	}
    962
    963skip_looking:
    964	/* If the list is now empty, we fix the last_free as well. */
    965	if (!rt->first_free)
    966		rt->last_free = 0;
    967
    968	/* Zero this entry. */
    969	memset(e, 0, esize);
    970	*e = RESTART_ENTRY_ALLOCATED_LE;
    971
    972	le16_add_cpu(&rt->total, 1);
    973
    974	return e;
    975}
    976
    977#define RESTART_SINGLE_PAGE_IO cpu_to_le16(0x0001)
    978
    979#define NTFSLOG_WRAPPED 0x00000001
    980#define NTFSLOG_MULTIPLE_PAGE_IO 0x00000002
    981#define NTFSLOG_NO_LAST_LSN 0x00000004
    982#define NTFSLOG_REUSE_TAIL 0x00000010
    983#define NTFSLOG_NO_OLDEST_LSN 0x00000020
    984
    985/* Helper struct to work with NTFS $LogFile. */
    986struct ntfs_log {
    987	struct ntfs_inode *ni;
    988
    989	u32 l_size;
    990	u32 sys_page_size;
    991	u32 sys_page_mask;
    992	u32 page_size;
    993	u32 page_mask; // page_size - 1
    994	u8 page_bits;
    995	struct RECORD_PAGE_HDR *one_page_buf;
    996
    997	struct RESTART_TABLE *open_attr_tbl;
    998	u32 transaction_id;
    999	u32 clst_per_page;
   1000
   1001	u32 first_page;
   1002	u32 next_page;
   1003	u32 ra_off;
   1004	u32 data_off;
   1005	u32 restart_size;
   1006	u32 data_size;
   1007	u16 record_header_len;
   1008	u64 seq_num;
   1009	u32 seq_num_bits;
   1010	u32 file_data_bits;
   1011	u32 seq_num_mask; /* (1 << file_data_bits) - 1 */
   1012
   1013	struct RESTART_AREA *ra; /* In-memory image of the next restart area. */
   1014	u32 ra_size; /* The usable size of the restart area. */
   1015
   1016	/*
   1017	 * If true, then the in-memory restart area is to be written
   1018	 * to the first position on the disk.
   1019	 */
   1020	bool init_ra;
   1021	bool set_dirty; /* True if we need to set dirty flag. */
   1022
   1023	u64 oldest_lsn;
   1024
   1025	u32 oldest_lsn_off;
   1026	u64 last_lsn;
   1027
   1028	u32 total_avail;
   1029	u32 total_avail_pages;
   1030	u32 total_undo_commit;
   1031	u32 max_current_avail;
   1032	u32 current_avail;
   1033	u32 reserved;
   1034
   1035	short major_ver;
   1036	short minor_ver;
   1037
   1038	u32 l_flags; /* See NTFSLOG_XXX */
   1039	u32 current_openlog_count; /* On-disk value for open_log_count. */
   1040
   1041	struct CLIENT_ID client_id;
   1042	u32 client_undo_commit;
   1043};
   1044
   1045static inline u32 lsn_to_vbo(struct ntfs_log *log, const u64 lsn)
   1046{
   1047	u32 vbo = (lsn << log->seq_num_bits) >> (log->seq_num_bits - 3);
   1048
   1049	return vbo;
   1050}
   1051
   1052/* Compute the offset in the log file of the next log page. */
   1053static inline u32 next_page_off(struct ntfs_log *log, u32 off)
   1054{
   1055	off = (off & ~log->sys_page_mask) + log->page_size;
   1056	return off >= log->l_size ? log->first_page : off;
   1057}
   1058
   1059static inline u32 lsn_to_page_off(struct ntfs_log *log, u64 lsn)
   1060{
   1061	return (((u32)lsn) << 3) & log->page_mask;
   1062}
   1063
   1064static inline u64 vbo_to_lsn(struct ntfs_log *log, u32 off, u64 Seq)
   1065{
   1066	return (off >> 3) + (Seq << log->file_data_bits);
   1067}
   1068
   1069static inline bool is_lsn_in_file(struct ntfs_log *log, u64 lsn)
   1070{
   1071	return lsn >= log->oldest_lsn &&
   1072	       lsn <= le64_to_cpu(log->ra->current_lsn);
   1073}
   1074
   1075static inline u32 hdr_file_off(struct ntfs_log *log,
   1076			       struct RECORD_PAGE_HDR *hdr)
   1077{
   1078	if (log->major_ver < 2)
   1079		return le64_to_cpu(hdr->rhdr.lsn);
   1080
   1081	return le32_to_cpu(hdr->file_off);
   1082}
   1083
   1084static inline u64 base_lsn(struct ntfs_log *log,
   1085			   const struct RECORD_PAGE_HDR *hdr, u64 lsn)
   1086{
   1087	u64 h_lsn = le64_to_cpu(hdr->rhdr.lsn);
   1088	u64 ret = (((h_lsn >> log->file_data_bits) +
   1089		    (lsn < (lsn_to_vbo(log, h_lsn) & ~log->page_mask) ? 1 : 0))
   1090		   << log->file_data_bits) +
   1091		  ((((is_log_record_end(hdr) &&
   1092		      h_lsn <= le64_to_cpu(hdr->record_hdr.last_end_lsn))
   1093			     ? le16_to_cpu(hdr->record_hdr.next_record_off)
   1094			     : log->page_size) +
   1095		    lsn) >>
   1096		   3);
   1097
   1098	return ret;
   1099}
   1100
   1101static inline bool verify_client_lsn(struct ntfs_log *log,
   1102				     const struct CLIENT_REC *client, u64 lsn)
   1103{
   1104	return lsn >= le64_to_cpu(client->oldest_lsn) &&
   1105	       lsn <= le64_to_cpu(log->ra->current_lsn) && lsn;
   1106}
   1107
   1108struct restart_info {
   1109	u64 last_lsn;
   1110	struct RESTART_HDR *r_page;
   1111	u32 vbo;
   1112	bool chkdsk_was_run;
   1113	bool valid_page;
   1114	bool initialized;
   1115	bool restart;
   1116};
   1117
   1118static int read_log_page(struct ntfs_log *log, u32 vbo,
   1119			 struct RECORD_PAGE_HDR **buffer, bool *usa_error)
   1120{
   1121	int err = 0;
   1122	u32 page_idx = vbo >> log->page_bits;
   1123	u32 page_off = vbo & log->page_mask;
   1124	u32 bytes = log->page_size - page_off;
   1125	void *to_free = NULL;
   1126	u32 page_vbo = page_idx << log->page_bits;
   1127	struct RECORD_PAGE_HDR *page_buf;
   1128	struct ntfs_inode *ni = log->ni;
   1129	bool bBAAD;
   1130
   1131	if (vbo >= log->l_size)
   1132		return -EINVAL;
   1133
   1134	if (!*buffer) {
   1135		to_free = kmalloc(bytes, GFP_NOFS);
   1136		if (!to_free)
   1137			return -ENOMEM;
   1138		*buffer = to_free;
   1139	}
   1140
   1141	page_buf = page_off ? log->one_page_buf : *buffer;
   1142
   1143	err = ntfs_read_run_nb(ni->mi.sbi, &ni->file.run, page_vbo, page_buf,
   1144			       log->page_size, NULL);
   1145	if (err)
   1146		goto out;
   1147
   1148	if (page_buf->rhdr.sign != NTFS_FFFF_SIGNATURE)
   1149		ntfs_fix_post_read(&page_buf->rhdr, PAGE_SIZE, false);
   1150
   1151	if (page_buf != *buffer)
   1152		memcpy(*buffer, Add2Ptr(page_buf, page_off), bytes);
   1153
   1154	bBAAD = page_buf->rhdr.sign == NTFS_BAAD_SIGNATURE;
   1155
   1156	if (usa_error)
   1157		*usa_error = bBAAD;
   1158	/* Check that the update sequence array for this page is valid */
   1159	/* If we don't allow errors, raise an error status */
   1160	else if (bBAAD)
   1161		err = -EINVAL;
   1162
   1163out:
   1164	if (err && to_free) {
   1165		kfree(to_free);
   1166		*buffer = NULL;
   1167	}
   1168
   1169	return err;
   1170}
   1171
   1172/*
   1173 * log_read_rst
   1174 *
   1175 * It walks through 512 blocks of the file looking for a valid
   1176 * restart page header. It will stop the first time we find a
   1177 * valid page header.
   1178 */
   1179static int log_read_rst(struct ntfs_log *log, u32 l_size, bool first,
   1180			struct restart_info *info)
   1181{
   1182	u32 skip, vbo;
   1183	struct RESTART_HDR *r_page = kmalloc(DefaultLogPageSize, GFP_NOFS);
   1184
   1185	if (!r_page)
   1186		return -ENOMEM;
   1187
   1188	/* Determine which restart area we are looking for. */
   1189	if (first) {
   1190		vbo = 0;
   1191		skip = 512;
   1192	} else {
   1193		vbo = 512;
   1194		skip = 0;
   1195	}
   1196
   1197	/* Loop continuously until we succeed. */
   1198	for (; vbo < l_size; vbo = 2 * vbo + skip, skip = 0) {
   1199		bool usa_error;
   1200		u32 sys_page_size;
   1201		bool brst, bchk;
   1202		struct RESTART_AREA *ra;
   1203
   1204		/* Read a page header at the current offset. */
   1205		if (read_log_page(log, vbo, (struct RECORD_PAGE_HDR **)&r_page,
   1206				  &usa_error)) {
   1207			/* Ignore any errors. */
   1208			continue;
   1209		}
   1210
   1211		/* Exit if the signature is a log record page. */
   1212		if (r_page->rhdr.sign == NTFS_RCRD_SIGNATURE) {
   1213			info->initialized = true;
   1214			break;
   1215		}
   1216
   1217		brst = r_page->rhdr.sign == NTFS_RSTR_SIGNATURE;
   1218		bchk = r_page->rhdr.sign == NTFS_CHKD_SIGNATURE;
   1219
   1220		if (!bchk && !brst) {
   1221			if (r_page->rhdr.sign != NTFS_FFFF_SIGNATURE) {
   1222				/*
   1223				 * Remember if the signature does not
   1224				 * indicate uninitialized file.
   1225				 */
   1226				info->initialized = true;
   1227			}
   1228			continue;
   1229		}
   1230
   1231		ra = NULL;
   1232		info->valid_page = false;
   1233		info->initialized = true;
   1234		info->vbo = vbo;
   1235
   1236		/* Let's check the restart area if this is a valid page. */
   1237		if (!is_rst_page_hdr_valid(vbo, r_page))
   1238			goto check_result;
   1239		ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
   1240
   1241		if (!is_rst_area_valid(r_page))
   1242			goto check_result;
   1243
   1244		/*
   1245		 * We have a valid restart page header and restart area.
   1246		 * If chkdsk was run or we have no clients then we have
   1247		 * no more checking to do.
   1248		 */
   1249		if (bchk || ra->client_idx[1] == LFS_NO_CLIENT_LE) {
   1250			info->valid_page = true;
   1251			goto check_result;
   1252		}
   1253
   1254		/* Read the entire restart area. */
   1255		sys_page_size = le32_to_cpu(r_page->sys_page_size);
   1256		if (DefaultLogPageSize != sys_page_size) {
   1257			kfree(r_page);
   1258			r_page = kzalloc(sys_page_size, GFP_NOFS);
   1259			if (!r_page)
   1260				return -ENOMEM;
   1261
   1262			if (read_log_page(log, vbo,
   1263					  (struct RECORD_PAGE_HDR **)&r_page,
   1264					  &usa_error)) {
   1265				/* Ignore any errors. */
   1266				kfree(r_page);
   1267				r_page = NULL;
   1268				continue;
   1269			}
   1270		}
   1271
   1272		if (is_client_area_valid(r_page, usa_error)) {
   1273			info->valid_page = true;
   1274			ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
   1275		}
   1276
   1277check_result:
   1278		/*
   1279		 * If chkdsk was run then update the caller's
   1280		 * values and return.
   1281		 */
   1282		if (r_page->rhdr.sign == NTFS_CHKD_SIGNATURE) {
   1283			info->chkdsk_was_run = true;
   1284			info->last_lsn = le64_to_cpu(r_page->rhdr.lsn);
   1285			info->restart = true;
   1286			info->r_page = r_page;
   1287			return 0;
   1288		}
   1289
   1290		/*
   1291		 * If we have a valid page then copy the values
   1292		 * we need from it.
   1293		 */
   1294		if (info->valid_page) {
   1295			info->last_lsn = le64_to_cpu(ra->current_lsn);
   1296			info->restart = true;
   1297			info->r_page = r_page;
   1298			return 0;
   1299		}
   1300	}
   1301
   1302	kfree(r_page);
   1303
   1304	return 0;
   1305}
   1306
   1307/*
   1308 * Ilog_init_pg_hdr - Init @log from restart page header.
   1309 */
   1310static void log_init_pg_hdr(struct ntfs_log *log, u32 sys_page_size,
   1311			    u32 page_size, u16 major_ver, u16 minor_ver)
   1312{
   1313	log->sys_page_size = sys_page_size;
   1314	log->sys_page_mask = sys_page_size - 1;
   1315	log->page_size = page_size;
   1316	log->page_mask = page_size - 1;
   1317	log->page_bits = blksize_bits(page_size);
   1318
   1319	log->clst_per_page = log->page_size >> log->ni->mi.sbi->cluster_bits;
   1320	if (!log->clst_per_page)
   1321		log->clst_per_page = 1;
   1322
   1323	log->first_page = major_ver >= 2
   1324				  ? 0x22 * page_size
   1325				  : ((sys_page_size << 1) + (page_size << 1));
   1326	log->major_ver = major_ver;
   1327	log->minor_ver = minor_ver;
   1328}
   1329
   1330/*
   1331 * log_create - Init @log in cases when we don't have a restart area to use.
   1332 */
   1333static void log_create(struct ntfs_log *log, u32 l_size, const u64 last_lsn,
   1334		       u32 open_log_count, bool wrapped, bool use_multi_page)
   1335{
   1336	log->l_size = l_size;
   1337	/* All file offsets must be quadword aligned. */
   1338	log->file_data_bits = blksize_bits(l_size) - 3;
   1339	log->seq_num_mask = (8 << log->file_data_bits) - 1;
   1340	log->seq_num_bits = sizeof(u64) * 8 - log->file_data_bits;
   1341	log->seq_num = (last_lsn >> log->file_data_bits) + 2;
   1342	log->next_page = log->first_page;
   1343	log->oldest_lsn = log->seq_num << log->file_data_bits;
   1344	log->oldest_lsn_off = 0;
   1345	log->last_lsn = log->oldest_lsn;
   1346
   1347	log->l_flags |= NTFSLOG_NO_LAST_LSN | NTFSLOG_NO_OLDEST_LSN;
   1348
   1349	/* Set the correct flags for the I/O and indicate if we have wrapped. */
   1350	if (wrapped)
   1351		log->l_flags |= NTFSLOG_WRAPPED;
   1352
   1353	if (use_multi_page)
   1354		log->l_flags |= NTFSLOG_MULTIPLE_PAGE_IO;
   1355
   1356	/* Compute the log page values. */
   1357	log->data_off = ALIGN(
   1358		offsetof(struct RECORD_PAGE_HDR, fixups) +
   1359			sizeof(short) * ((log->page_size >> SECTOR_SHIFT) + 1),
   1360		8);
   1361	log->data_size = log->page_size - log->data_off;
   1362	log->record_header_len = sizeof(struct LFS_RECORD_HDR);
   1363
   1364	/* Remember the different page sizes for reservation. */
   1365	log->reserved = log->data_size - log->record_header_len;
   1366
   1367	/* Compute the restart page values. */
   1368	log->ra_off = ALIGN(
   1369		offsetof(struct RESTART_HDR, fixups) +
   1370			sizeof(short) *
   1371				((log->sys_page_size >> SECTOR_SHIFT) + 1),
   1372		8);
   1373	log->restart_size = log->sys_page_size - log->ra_off;
   1374	log->ra_size = struct_size(log->ra, clients, 1);
   1375	log->current_openlog_count = open_log_count;
   1376
   1377	/*
   1378	 * The total available log file space is the number of
   1379	 * log file pages times the space available on each page.
   1380	 */
   1381	log->total_avail_pages = log->l_size - log->first_page;
   1382	log->total_avail = log->total_avail_pages >> log->page_bits;
   1383
   1384	/*
   1385	 * We assume that we can't use the end of the page less than
   1386	 * the file record size.
   1387	 * Then we won't need to reserve more than the caller asks for.
   1388	 */
   1389	log->max_current_avail = log->total_avail * log->reserved;
   1390	log->total_avail = log->total_avail * log->data_size;
   1391	log->current_avail = log->max_current_avail;
   1392}
   1393
   1394/*
   1395 * log_create_ra - Fill a restart area from the values stored in @log.
   1396 */
   1397static struct RESTART_AREA *log_create_ra(struct ntfs_log *log)
   1398{
   1399	struct CLIENT_REC *cr;
   1400	struct RESTART_AREA *ra = kzalloc(log->restart_size, GFP_NOFS);
   1401
   1402	if (!ra)
   1403		return NULL;
   1404
   1405	ra->current_lsn = cpu_to_le64(log->last_lsn);
   1406	ra->log_clients = cpu_to_le16(1);
   1407	ra->client_idx[1] = LFS_NO_CLIENT_LE;
   1408	if (log->l_flags & NTFSLOG_MULTIPLE_PAGE_IO)
   1409		ra->flags = RESTART_SINGLE_PAGE_IO;
   1410	ra->seq_num_bits = cpu_to_le32(log->seq_num_bits);
   1411	ra->ra_len = cpu_to_le16(log->ra_size);
   1412	ra->client_off = cpu_to_le16(offsetof(struct RESTART_AREA, clients));
   1413	ra->l_size = cpu_to_le64(log->l_size);
   1414	ra->rec_hdr_len = cpu_to_le16(log->record_header_len);
   1415	ra->data_off = cpu_to_le16(log->data_off);
   1416	ra->open_log_count = cpu_to_le32(log->current_openlog_count + 1);
   1417
   1418	cr = ra->clients;
   1419
   1420	cr->prev_client = LFS_NO_CLIENT_LE;
   1421	cr->next_client = LFS_NO_CLIENT_LE;
   1422
   1423	return ra;
   1424}
   1425
   1426static u32 final_log_off(struct ntfs_log *log, u64 lsn, u32 data_len)
   1427{
   1428	u32 base_vbo = lsn << 3;
   1429	u32 final_log_off = (base_vbo & log->seq_num_mask) & ~log->page_mask;
   1430	u32 page_off = base_vbo & log->page_mask;
   1431	u32 tail = log->page_size - page_off;
   1432
   1433	page_off -= 1;
   1434
   1435	/* Add the length of the header. */
   1436	data_len += log->record_header_len;
   1437
   1438	/*
   1439	 * If this lsn is contained this log page we are done.
   1440	 * Otherwise we need to walk through several log pages.
   1441	 */
   1442	if (data_len > tail) {
   1443		data_len -= tail;
   1444		tail = log->data_size;
   1445		page_off = log->data_off - 1;
   1446
   1447		for (;;) {
   1448			final_log_off = next_page_off(log, final_log_off);
   1449
   1450			/*
   1451			 * We are done if the remaining bytes
   1452			 * fit on this page.
   1453			 */
   1454			if (data_len <= tail)
   1455				break;
   1456			data_len -= tail;
   1457		}
   1458	}
   1459
   1460	/*
   1461	 * We add the remaining bytes to our starting position on this page
   1462	 * and then add that value to the file offset of this log page.
   1463	 */
   1464	return final_log_off + data_len + page_off;
   1465}
   1466
   1467static int next_log_lsn(struct ntfs_log *log, const struct LFS_RECORD_HDR *rh,
   1468			u64 *lsn)
   1469{
   1470	int err;
   1471	u64 this_lsn = le64_to_cpu(rh->this_lsn);
   1472	u32 vbo = lsn_to_vbo(log, this_lsn);
   1473	u32 end =
   1474		final_log_off(log, this_lsn, le32_to_cpu(rh->client_data_len));
   1475	u32 hdr_off = end & ~log->sys_page_mask;
   1476	u64 seq = this_lsn >> log->file_data_bits;
   1477	struct RECORD_PAGE_HDR *page = NULL;
   1478
   1479	/* Remember if we wrapped. */
   1480	if (end <= vbo)
   1481		seq += 1;
   1482
   1483	/* Log page header for this page. */
   1484	err = read_log_page(log, hdr_off, &page, NULL);
   1485	if (err)
   1486		return err;
   1487
   1488	/*
   1489	 * If the lsn we were given was not the last lsn on this page,
   1490	 * then the starting offset for the next lsn is on a quad word
   1491	 * boundary following the last file offset for the current lsn.
   1492	 * Otherwise the file offset is the start of the data on the next page.
   1493	 */
   1494	if (this_lsn == le64_to_cpu(page->rhdr.lsn)) {
   1495		/* If we wrapped, we need to increment the sequence number. */
   1496		hdr_off = next_page_off(log, hdr_off);
   1497		if (hdr_off == log->first_page)
   1498			seq += 1;
   1499
   1500		vbo = hdr_off + log->data_off;
   1501	} else {
   1502		vbo = ALIGN(end, 8);
   1503	}
   1504
   1505	/* Compute the lsn based on the file offset and the sequence count. */
   1506	*lsn = vbo_to_lsn(log, vbo, seq);
   1507
   1508	/*
   1509	 * If this lsn is within the legal range for the file, we return true.
   1510	 * Otherwise false indicates that there are no more lsn's.
   1511	 */
   1512	if (!is_lsn_in_file(log, *lsn))
   1513		*lsn = 0;
   1514
   1515	kfree(page);
   1516
   1517	return 0;
   1518}
   1519
   1520/*
   1521 * current_log_avail - Calculate the number of bytes available for log records.
   1522 */
   1523static u32 current_log_avail(struct ntfs_log *log)
   1524{
   1525	u32 oldest_off, next_free_off, free_bytes;
   1526
   1527	if (log->l_flags & NTFSLOG_NO_LAST_LSN) {
   1528		/* The entire file is available. */
   1529		return log->max_current_avail;
   1530	}
   1531
   1532	/*
   1533	 * If there is a last lsn the restart area then we know that we will
   1534	 * have to compute the free range.
   1535	 * If there is no oldest lsn then start at the first page of the file.
   1536	 */
   1537	oldest_off = (log->l_flags & NTFSLOG_NO_OLDEST_LSN)
   1538			     ? log->first_page
   1539			     : (log->oldest_lsn_off & ~log->sys_page_mask);
   1540
   1541	/*
   1542	 * We will use the next log page offset to compute the next free page.
   1543	 * If we are going to reuse this page go to the next page.
   1544	 * If we are at the first page then use the end of the file.
   1545	 */
   1546	next_free_off = (log->l_flags & NTFSLOG_REUSE_TAIL)
   1547				? log->next_page + log->page_size
   1548				: log->next_page == log->first_page
   1549					  ? log->l_size
   1550					  : log->next_page;
   1551
   1552	/* If the two offsets are the same then there is no available space. */
   1553	if (oldest_off == next_free_off)
   1554		return 0;
   1555	/*
   1556	 * If the free offset follows the oldest offset then subtract
   1557	 * this range from the total available pages.
   1558	 */
   1559	free_bytes =
   1560		oldest_off < next_free_off
   1561			? log->total_avail_pages - (next_free_off - oldest_off)
   1562			: oldest_off - next_free_off;
   1563
   1564	free_bytes >>= log->page_bits;
   1565	return free_bytes * log->reserved;
   1566}
   1567
   1568static bool check_subseq_log_page(struct ntfs_log *log,
   1569				  const struct RECORD_PAGE_HDR *rp, u32 vbo,
   1570				  u64 seq)
   1571{
   1572	u64 lsn_seq;
   1573	const struct NTFS_RECORD_HEADER *rhdr = &rp->rhdr;
   1574	u64 lsn = le64_to_cpu(rhdr->lsn);
   1575
   1576	if (rhdr->sign == NTFS_FFFF_SIGNATURE || !rhdr->sign)
   1577		return false;
   1578
   1579	/*
   1580	 * If the last lsn on the page occurs was written after the page
   1581	 * that caused the original error then we have a fatal error.
   1582	 */
   1583	lsn_seq = lsn >> log->file_data_bits;
   1584
   1585	/*
   1586	 * If the sequence number for the lsn the page is equal or greater
   1587	 * than lsn we expect, then this is a subsequent write.
   1588	 */
   1589	return lsn_seq >= seq ||
   1590	       (lsn_seq == seq - 1 && log->first_page == vbo &&
   1591		vbo != (lsn_to_vbo(log, lsn) & ~log->page_mask));
   1592}
   1593
   1594/*
   1595 * last_log_lsn
   1596 *
   1597 * Walks through the log pages for a file, searching for the
   1598 * last log page written to the file.
   1599 */
   1600static int last_log_lsn(struct ntfs_log *log)
   1601{
   1602	int err;
   1603	bool usa_error = false;
   1604	bool replace_page = false;
   1605	bool reuse_page = log->l_flags & NTFSLOG_REUSE_TAIL;
   1606	bool wrapped_file, wrapped;
   1607
   1608	u32 page_cnt = 1, page_pos = 1;
   1609	u32 page_off = 0, page_off1 = 0, saved_off = 0;
   1610	u32 final_off, second_off, final_off_prev = 0, second_off_prev = 0;
   1611	u32 first_file_off = 0, second_file_off = 0;
   1612	u32 part_io_count = 0;
   1613	u32 tails = 0;
   1614	u32 this_off, curpage_off, nextpage_off, remain_pages;
   1615
   1616	u64 expected_seq, seq_base = 0, lsn_base = 0;
   1617	u64 best_lsn, best_lsn1, best_lsn2;
   1618	u64 lsn_cur, lsn1, lsn2;
   1619	u64 last_ok_lsn = reuse_page ? log->last_lsn : 0;
   1620
   1621	u16 cur_pos, best_page_pos;
   1622
   1623	struct RECORD_PAGE_HDR *page = NULL;
   1624	struct RECORD_PAGE_HDR *tst_page = NULL;
   1625	struct RECORD_PAGE_HDR *first_tail = NULL;
   1626	struct RECORD_PAGE_HDR *second_tail = NULL;
   1627	struct RECORD_PAGE_HDR *tail_page = NULL;
   1628	struct RECORD_PAGE_HDR *second_tail_prev = NULL;
   1629	struct RECORD_PAGE_HDR *first_tail_prev = NULL;
   1630	struct RECORD_PAGE_HDR *page_bufs = NULL;
   1631	struct RECORD_PAGE_HDR *best_page;
   1632
   1633	if (log->major_ver >= 2) {
   1634		final_off = 0x02 * log->page_size;
   1635		second_off = 0x12 * log->page_size;
   1636
   1637		// 0x10 == 0x12 - 0x2
   1638		page_bufs = kmalloc(log->page_size * 0x10, GFP_NOFS);
   1639		if (!page_bufs)
   1640			return -ENOMEM;
   1641	} else {
   1642		second_off = log->first_page - log->page_size;
   1643		final_off = second_off - log->page_size;
   1644	}
   1645
   1646next_tail:
   1647	/* Read second tail page (at pos 3/0x12000). */
   1648	if (read_log_page(log, second_off, &second_tail, &usa_error) ||
   1649	    usa_error || second_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
   1650		kfree(second_tail);
   1651		second_tail = NULL;
   1652		second_file_off = 0;
   1653		lsn2 = 0;
   1654	} else {
   1655		second_file_off = hdr_file_off(log, second_tail);
   1656		lsn2 = le64_to_cpu(second_tail->record_hdr.last_end_lsn);
   1657	}
   1658
   1659	/* Read first tail page (at pos 2/0x2000). */
   1660	if (read_log_page(log, final_off, &first_tail, &usa_error) ||
   1661	    usa_error || first_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
   1662		kfree(first_tail);
   1663		first_tail = NULL;
   1664		first_file_off = 0;
   1665		lsn1 = 0;
   1666	} else {
   1667		first_file_off = hdr_file_off(log, first_tail);
   1668		lsn1 = le64_to_cpu(first_tail->record_hdr.last_end_lsn);
   1669	}
   1670
   1671	if (log->major_ver < 2) {
   1672		int best_page;
   1673
   1674		first_tail_prev = first_tail;
   1675		final_off_prev = first_file_off;
   1676		second_tail_prev = second_tail;
   1677		second_off_prev = second_file_off;
   1678		tails = 1;
   1679
   1680		if (!first_tail && !second_tail)
   1681			goto tail_read;
   1682
   1683		if (first_tail && second_tail)
   1684			best_page = lsn1 < lsn2 ? 1 : 0;
   1685		else if (first_tail)
   1686			best_page = 0;
   1687		else
   1688			best_page = 1;
   1689
   1690		page_off = best_page ? second_file_off : first_file_off;
   1691		seq_base = (best_page ? lsn2 : lsn1) >> log->file_data_bits;
   1692		goto tail_read;
   1693	}
   1694
   1695	best_lsn1 = first_tail ? base_lsn(log, first_tail, first_file_off) : 0;
   1696	best_lsn2 =
   1697		second_tail ? base_lsn(log, second_tail, second_file_off) : 0;
   1698
   1699	if (first_tail && second_tail) {
   1700		if (best_lsn1 > best_lsn2) {
   1701			best_lsn = best_lsn1;
   1702			best_page = first_tail;
   1703			this_off = first_file_off;
   1704		} else {
   1705			best_lsn = best_lsn2;
   1706			best_page = second_tail;
   1707			this_off = second_file_off;
   1708		}
   1709	} else if (first_tail) {
   1710		best_lsn = best_lsn1;
   1711		best_page = first_tail;
   1712		this_off = first_file_off;
   1713	} else if (second_tail) {
   1714		best_lsn = best_lsn2;
   1715		best_page = second_tail;
   1716		this_off = second_file_off;
   1717	} else {
   1718		goto tail_read;
   1719	}
   1720
   1721	best_page_pos = le16_to_cpu(best_page->page_pos);
   1722
   1723	if (!tails) {
   1724		if (best_page_pos == page_pos) {
   1725			seq_base = best_lsn >> log->file_data_bits;
   1726			saved_off = page_off = le32_to_cpu(best_page->file_off);
   1727			lsn_base = best_lsn;
   1728
   1729			memmove(page_bufs, best_page, log->page_size);
   1730
   1731			page_cnt = le16_to_cpu(best_page->page_count);
   1732			if (page_cnt > 1)
   1733				page_pos += 1;
   1734
   1735			tails = 1;
   1736		}
   1737	} else if (seq_base == (best_lsn >> log->file_data_bits) &&
   1738		   saved_off + log->page_size == this_off &&
   1739		   lsn_base < best_lsn &&
   1740		   (page_pos != page_cnt || best_page_pos == page_pos ||
   1741		    best_page_pos == 1) &&
   1742		   (page_pos >= page_cnt || best_page_pos == page_pos)) {
   1743		u16 bppc = le16_to_cpu(best_page->page_count);
   1744
   1745		saved_off += log->page_size;
   1746		lsn_base = best_lsn;
   1747
   1748		memmove(Add2Ptr(page_bufs, tails * log->page_size), best_page,
   1749			log->page_size);
   1750
   1751		tails += 1;
   1752
   1753		if (best_page_pos != bppc) {
   1754			page_cnt = bppc;
   1755			page_pos = best_page_pos;
   1756
   1757			if (page_cnt > 1)
   1758				page_pos += 1;
   1759		} else {
   1760			page_pos = page_cnt = 1;
   1761		}
   1762	} else {
   1763		kfree(first_tail);
   1764		kfree(second_tail);
   1765		goto tail_read;
   1766	}
   1767
   1768	kfree(first_tail_prev);
   1769	first_tail_prev = first_tail;
   1770	final_off_prev = first_file_off;
   1771	first_tail = NULL;
   1772
   1773	kfree(second_tail_prev);
   1774	second_tail_prev = second_tail;
   1775	second_off_prev = second_file_off;
   1776	second_tail = NULL;
   1777
   1778	final_off += log->page_size;
   1779	second_off += log->page_size;
   1780
   1781	if (tails < 0x10)
   1782		goto next_tail;
   1783tail_read:
   1784	first_tail = first_tail_prev;
   1785	final_off = final_off_prev;
   1786
   1787	second_tail = second_tail_prev;
   1788	second_off = second_off_prev;
   1789
   1790	page_cnt = page_pos = 1;
   1791
   1792	curpage_off = seq_base == log->seq_num ? min(log->next_page, page_off)
   1793					       : log->next_page;
   1794
   1795	wrapped_file =
   1796		curpage_off == log->first_page &&
   1797		!(log->l_flags & (NTFSLOG_NO_LAST_LSN | NTFSLOG_REUSE_TAIL));
   1798
   1799	expected_seq = wrapped_file ? (log->seq_num + 1) : log->seq_num;
   1800
   1801	nextpage_off = curpage_off;
   1802
   1803next_page:
   1804	tail_page = NULL;
   1805	/* Read the next log page. */
   1806	err = read_log_page(log, curpage_off, &page, &usa_error);
   1807
   1808	/* Compute the next log page offset the file. */
   1809	nextpage_off = next_page_off(log, curpage_off);
   1810	wrapped = nextpage_off == log->first_page;
   1811
   1812	if (tails > 1) {
   1813		struct RECORD_PAGE_HDR *cur_page =
   1814			Add2Ptr(page_bufs, curpage_off - page_off);
   1815
   1816		if (curpage_off == saved_off) {
   1817			tail_page = cur_page;
   1818			goto use_tail_page;
   1819		}
   1820
   1821		if (page_off > curpage_off || curpage_off >= saved_off)
   1822			goto use_tail_page;
   1823
   1824		if (page_off1)
   1825			goto use_cur_page;
   1826
   1827		if (!err && !usa_error &&
   1828		    page->rhdr.sign == NTFS_RCRD_SIGNATURE &&
   1829		    cur_page->rhdr.lsn == page->rhdr.lsn &&
   1830		    cur_page->record_hdr.next_record_off ==
   1831			    page->record_hdr.next_record_off &&
   1832		    ((page_pos == page_cnt &&
   1833		      le16_to_cpu(page->page_pos) == 1) ||
   1834		     (page_pos != page_cnt &&
   1835		      le16_to_cpu(page->page_pos) == page_pos + 1 &&
   1836		      le16_to_cpu(page->page_count) == page_cnt))) {
   1837			cur_page = NULL;
   1838			goto use_tail_page;
   1839		}
   1840
   1841		page_off1 = page_off;
   1842
   1843use_cur_page:
   1844
   1845		lsn_cur = le64_to_cpu(cur_page->rhdr.lsn);
   1846
   1847		if (last_ok_lsn !=
   1848			    le64_to_cpu(cur_page->record_hdr.last_end_lsn) &&
   1849		    ((lsn_cur >> log->file_data_bits) +
   1850		     ((curpage_off <
   1851		       (lsn_to_vbo(log, lsn_cur) & ~log->page_mask))
   1852			      ? 1
   1853			      : 0)) != expected_seq) {
   1854			goto check_tail;
   1855		}
   1856
   1857		if (!is_log_record_end(cur_page)) {
   1858			tail_page = NULL;
   1859			last_ok_lsn = lsn_cur;
   1860			goto next_page_1;
   1861		}
   1862
   1863		log->seq_num = expected_seq;
   1864		log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
   1865		log->last_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
   1866		log->ra->current_lsn = cur_page->record_hdr.last_end_lsn;
   1867
   1868		if (log->record_header_len <=
   1869		    log->page_size -
   1870			    le16_to_cpu(cur_page->record_hdr.next_record_off)) {
   1871			log->l_flags |= NTFSLOG_REUSE_TAIL;
   1872			log->next_page = curpage_off;
   1873		} else {
   1874			log->l_flags &= ~NTFSLOG_REUSE_TAIL;
   1875			log->next_page = nextpage_off;
   1876		}
   1877
   1878		if (wrapped_file)
   1879			log->l_flags |= NTFSLOG_WRAPPED;
   1880
   1881		last_ok_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
   1882		goto next_page_1;
   1883	}
   1884
   1885	/*
   1886	 * If we are at the expected first page of a transfer check to see
   1887	 * if either tail copy is at this offset.
   1888	 * If this page is the last page of a transfer, check if we wrote
   1889	 * a subsequent tail copy.
   1890	 */
   1891	if (page_cnt == page_pos || page_cnt == page_pos + 1) {
   1892		/*
   1893		 * Check if the offset matches either the first or second
   1894		 * tail copy. It is possible it will match both.
   1895		 */
   1896		if (curpage_off == final_off)
   1897			tail_page = first_tail;
   1898
   1899		/*
   1900		 * If we already matched on the first page then
   1901		 * check the ending lsn's.
   1902		 */
   1903		if (curpage_off == second_off) {
   1904			if (!tail_page ||
   1905			    (second_tail &&
   1906			     le64_to_cpu(second_tail->record_hdr.last_end_lsn) >
   1907				     le64_to_cpu(first_tail->record_hdr
   1908							 .last_end_lsn))) {
   1909				tail_page = second_tail;
   1910			}
   1911		}
   1912	}
   1913
   1914use_tail_page:
   1915	if (tail_page) {
   1916		/* We have a candidate for a tail copy. */
   1917		lsn_cur = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
   1918
   1919		if (last_ok_lsn < lsn_cur) {
   1920			/*
   1921			 * If the sequence number is not expected,
   1922			 * then don't use the tail copy.
   1923			 */
   1924			if (expected_seq != (lsn_cur >> log->file_data_bits))
   1925				tail_page = NULL;
   1926		} else if (last_ok_lsn > lsn_cur) {
   1927			/*
   1928			 * If the last lsn is greater than the one on
   1929			 * this page then forget this tail.
   1930			 */
   1931			tail_page = NULL;
   1932		}
   1933	}
   1934
   1935	/*
   1936	 *If we have an error on the current page,
   1937	 * we will break of this loop.
   1938	 */
   1939	if (err || usa_error)
   1940		goto check_tail;
   1941
   1942	/*
   1943	 * Done if the last lsn on this page doesn't match the previous known
   1944	 * last lsn or the sequence number is not expected.
   1945	 */
   1946	lsn_cur = le64_to_cpu(page->rhdr.lsn);
   1947	if (last_ok_lsn != lsn_cur &&
   1948	    expected_seq != (lsn_cur >> log->file_data_bits)) {
   1949		goto check_tail;
   1950	}
   1951
   1952	/*
   1953	 * Check that the page position and page count values are correct.
   1954	 * If this is the first page of a transfer the position must be 1
   1955	 * and the count will be unknown.
   1956	 */
   1957	if (page_cnt == page_pos) {
   1958		if (page->page_pos != cpu_to_le16(1) &&
   1959		    (!reuse_page || page->page_pos != page->page_count)) {
   1960			/*
   1961			 * If the current page is the first page we are
   1962			 * looking at and we are reusing this page then
   1963			 * it can be either the first or last page of a
   1964			 * transfer. Otherwise it can only be the first.
   1965			 */
   1966			goto check_tail;
   1967		}
   1968	} else if (le16_to_cpu(page->page_count) != page_cnt ||
   1969		   le16_to_cpu(page->page_pos) != page_pos + 1) {
   1970		/*
   1971		 * The page position better be 1 more than the last page
   1972		 * position and the page count better match.
   1973		 */
   1974		goto check_tail;
   1975	}
   1976
   1977	/*
   1978	 * We have a valid page the file and may have a valid page
   1979	 * the tail copy area.
   1980	 * If the tail page was written after the page the file then
   1981	 * break of the loop.
   1982	 */
   1983	if (tail_page &&
   1984	    le64_to_cpu(tail_page->record_hdr.last_end_lsn) > lsn_cur) {
   1985		/* Remember if we will replace the page. */
   1986		replace_page = true;
   1987		goto check_tail;
   1988	}
   1989
   1990	tail_page = NULL;
   1991
   1992	if (is_log_record_end(page)) {
   1993		/*
   1994		 * Since we have read this page we know the sequence number
   1995		 * is the same as our expected value.
   1996		 */
   1997		log->seq_num = expected_seq;
   1998		log->last_lsn = le64_to_cpu(page->record_hdr.last_end_lsn);
   1999		log->ra->current_lsn = page->record_hdr.last_end_lsn;
   2000		log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
   2001
   2002		/*
   2003		 * If there is room on this page for another header then
   2004		 * remember we want to reuse the page.
   2005		 */
   2006		if (log->record_header_len <=
   2007		    log->page_size -
   2008			    le16_to_cpu(page->record_hdr.next_record_off)) {
   2009			log->l_flags |= NTFSLOG_REUSE_TAIL;
   2010			log->next_page = curpage_off;
   2011		} else {
   2012			log->l_flags &= ~NTFSLOG_REUSE_TAIL;
   2013			log->next_page = nextpage_off;
   2014		}
   2015
   2016		/* Remember if we wrapped the log file. */
   2017		if (wrapped_file)
   2018			log->l_flags |= NTFSLOG_WRAPPED;
   2019	}
   2020
   2021	/*
   2022	 * Remember the last page count and position.
   2023	 * Also remember the last known lsn.
   2024	 */
   2025	page_cnt = le16_to_cpu(page->page_count);
   2026	page_pos = le16_to_cpu(page->page_pos);
   2027	last_ok_lsn = le64_to_cpu(page->rhdr.lsn);
   2028
   2029next_page_1:
   2030
   2031	if (wrapped) {
   2032		expected_seq += 1;
   2033		wrapped_file = 1;
   2034	}
   2035
   2036	curpage_off = nextpage_off;
   2037	kfree(page);
   2038	page = NULL;
   2039	reuse_page = 0;
   2040	goto next_page;
   2041
   2042check_tail:
   2043	if (tail_page) {
   2044		log->seq_num = expected_seq;
   2045		log->last_lsn = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
   2046		log->ra->current_lsn = tail_page->record_hdr.last_end_lsn;
   2047		log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
   2048
   2049		if (log->page_size -
   2050			    le16_to_cpu(
   2051				    tail_page->record_hdr.next_record_off) >=
   2052		    log->record_header_len) {
   2053			log->l_flags |= NTFSLOG_REUSE_TAIL;
   2054			log->next_page = curpage_off;
   2055		} else {
   2056			log->l_flags &= ~NTFSLOG_REUSE_TAIL;
   2057			log->next_page = nextpage_off;
   2058		}
   2059
   2060		if (wrapped)
   2061			log->l_flags |= NTFSLOG_WRAPPED;
   2062	}
   2063
   2064	/* Remember that the partial IO will start at the next page. */
   2065	second_off = nextpage_off;
   2066
   2067	/*
   2068	 * If the next page is the first page of the file then update
   2069	 * the sequence number for log records which begon the next page.
   2070	 */
   2071	if (wrapped)
   2072		expected_seq += 1;
   2073
   2074	/*
   2075	 * If we have a tail copy or are performing single page I/O we can
   2076	 * immediately look at the next page.
   2077	 */
   2078	if (replace_page || (log->ra->flags & RESTART_SINGLE_PAGE_IO)) {
   2079		page_cnt = 2;
   2080		page_pos = 1;
   2081		goto check_valid;
   2082	}
   2083
   2084	if (page_pos != page_cnt)
   2085		goto check_valid;
   2086	/*
   2087	 * If the next page causes us to wrap to the beginning of the log
   2088	 * file then we know which page to check next.
   2089	 */
   2090	if (wrapped) {
   2091		page_cnt = 2;
   2092		page_pos = 1;
   2093		goto check_valid;
   2094	}
   2095
   2096	cur_pos = 2;
   2097
   2098next_test_page:
   2099	kfree(tst_page);
   2100	tst_page = NULL;
   2101
   2102	/* Walk through the file, reading log pages. */
   2103	err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
   2104
   2105	/*
   2106	 * If we get a USA error then assume that we correctly found
   2107	 * the end of the original transfer.
   2108	 */
   2109	if (usa_error)
   2110		goto file_is_valid;
   2111
   2112	/*
   2113	 * If we were able to read the page, we examine it to see if it
   2114	 * is the same or different Io block.
   2115	 */
   2116	if (err)
   2117		goto next_test_page_1;
   2118
   2119	if (le16_to_cpu(tst_page->page_pos) == cur_pos &&
   2120	    check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
   2121		page_cnt = le16_to_cpu(tst_page->page_count) + 1;
   2122		page_pos = le16_to_cpu(tst_page->page_pos);
   2123		goto check_valid;
   2124	} else {
   2125		goto file_is_valid;
   2126	}
   2127
   2128next_test_page_1:
   2129
   2130	nextpage_off = next_page_off(log, curpage_off);
   2131	wrapped = nextpage_off == log->first_page;
   2132
   2133	if (wrapped) {
   2134		expected_seq += 1;
   2135		page_cnt = 2;
   2136		page_pos = 1;
   2137	}
   2138
   2139	cur_pos += 1;
   2140	part_io_count += 1;
   2141	if (!wrapped)
   2142		goto next_test_page;
   2143
   2144check_valid:
   2145	/* Skip over the remaining pages this transfer. */
   2146	remain_pages = page_cnt - page_pos - 1;
   2147	part_io_count += remain_pages;
   2148
   2149	while (remain_pages--) {
   2150		nextpage_off = next_page_off(log, curpage_off);
   2151		wrapped = nextpage_off == log->first_page;
   2152
   2153		if (wrapped)
   2154			expected_seq += 1;
   2155	}
   2156
   2157	/* Call our routine to check this log page. */
   2158	kfree(tst_page);
   2159	tst_page = NULL;
   2160
   2161	err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
   2162	if (!err && !usa_error &&
   2163	    check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
   2164		err = -EINVAL;
   2165		goto out;
   2166	}
   2167
   2168file_is_valid:
   2169
   2170	/* We have a valid file. */
   2171	if (page_off1 || tail_page) {
   2172		struct RECORD_PAGE_HDR *tmp_page;
   2173
   2174		if (sb_rdonly(log->ni->mi.sbi->sb)) {
   2175			err = -EROFS;
   2176			goto out;
   2177		}
   2178
   2179		if (page_off1) {
   2180			tmp_page = Add2Ptr(page_bufs, page_off1 - page_off);
   2181			tails -= (page_off1 - page_off) / log->page_size;
   2182			if (!tail_page)
   2183				tails -= 1;
   2184		} else {
   2185			tmp_page = tail_page;
   2186			tails = 1;
   2187		}
   2188
   2189		while (tails--) {
   2190			u64 off = hdr_file_off(log, tmp_page);
   2191
   2192			if (!page) {
   2193				page = kmalloc(log->page_size, GFP_NOFS);
   2194				if (!page)
   2195					return -ENOMEM;
   2196			}
   2197
   2198			/*
   2199			 * Correct page and copy the data from this page
   2200			 * into it and flush it to disk.
   2201			 */
   2202			memcpy(page, tmp_page, log->page_size);
   2203
   2204			/* Fill last flushed lsn value flush the page. */
   2205			if (log->major_ver < 2)
   2206				page->rhdr.lsn = page->record_hdr.last_end_lsn;
   2207			else
   2208				page->file_off = 0;
   2209
   2210			page->page_pos = page->page_count = cpu_to_le16(1);
   2211
   2212			ntfs_fix_pre_write(&page->rhdr, log->page_size);
   2213
   2214			err = ntfs_sb_write_run(log->ni->mi.sbi,
   2215						&log->ni->file.run, off, page,
   2216						log->page_size, 0);
   2217
   2218			if (err)
   2219				goto out;
   2220
   2221			if (part_io_count && second_off == off) {
   2222				second_off += log->page_size;
   2223				part_io_count -= 1;
   2224			}
   2225
   2226			tmp_page = Add2Ptr(tmp_page, log->page_size);
   2227		}
   2228	}
   2229
   2230	if (part_io_count) {
   2231		if (sb_rdonly(log->ni->mi.sbi->sb)) {
   2232			err = -EROFS;
   2233			goto out;
   2234		}
   2235	}
   2236
   2237out:
   2238	kfree(second_tail);
   2239	kfree(first_tail);
   2240	kfree(page);
   2241	kfree(tst_page);
   2242	kfree(page_bufs);
   2243
   2244	return err;
   2245}
   2246
   2247/*
   2248 * read_log_rec_buf - Copy a log record from the file to a buffer.
   2249 *
   2250 * The log record may span several log pages and may even wrap the file.
   2251 */
   2252static int read_log_rec_buf(struct ntfs_log *log,
   2253			    const struct LFS_RECORD_HDR *rh, void *buffer)
   2254{
   2255	int err;
   2256	struct RECORD_PAGE_HDR *ph = NULL;
   2257	u64 lsn = le64_to_cpu(rh->this_lsn);
   2258	u32 vbo = lsn_to_vbo(log, lsn) & ~log->page_mask;
   2259	u32 off = lsn_to_page_off(log, lsn) + log->record_header_len;
   2260	u32 data_len = le32_to_cpu(rh->client_data_len);
   2261
   2262	/*
   2263	 * While there are more bytes to transfer,
   2264	 * we continue to attempt to perform the read.
   2265	 */
   2266	for (;;) {
   2267		bool usa_error;
   2268		u32 tail = log->page_size - off;
   2269
   2270		if (tail >= data_len)
   2271			tail = data_len;
   2272
   2273		data_len -= tail;
   2274
   2275		err = read_log_page(log, vbo, &ph, &usa_error);
   2276		if (err)
   2277			goto out;
   2278
   2279		/*
   2280		 * The last lsn on this page better be greater or equal
   2281		 * to the lsn we are copying.
   2282		 */
   2283		if (lsn > le64_to_cpu(ph->rhdr.lsn)) {
   2284			err = -EINVAL;
   2285			goto out;
   2286		}
   2287
   2288		memcpy(buffer, Add2Ptr(ph, off), tail);
   2289
   2290		/* If there are no more bytes to transfer, we exit the loop. */
   2291		if (!data_len) {
   2292			if (!is_log_record_end(ph) ||
   2293			    lsn > le64_to_cpu(ph->record_hdr.last_end_lsn)) {
   2294				err = -EINVAL;
   2295				goto out;
   2296			}
   2297			break;
   2298		}
   2299
   2300		if (ph->rhdr.lsn == ph->record_hdr.last_end_lsn ||
   2301		    lsn > le64_to_cpu(ph->rhdr.lsn)) {
   2302			err = -EINVAL;
   2303			goto out;
   2304		}
   2305
   2306		vbo = next_page_off(log, vbo);
   2307		off = log->data_off;
   2308
   2309		/*
   2310		 * Adjust our pointer the user's buffer to transfer
   2311		 * the next block to.
   2312		 */
   2313		buffer = Add2Ptr(buffer, tail);
   2314	}
   2315
   2316out:
   2317	kfree(ph);
   2318	return err;
   2319}
   2320
   2321static int read_rst_area(struct ntfs_log *log, struct NTFS_RESTART **rst_,
   2322			 u64 *lsn)
   2323{
   2324	int err;
   2325	struct LFS_RECORD_HDR *rh = NULL;
   2326	const struct CLIENT_REC *cr =
   2327		Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
   2328	u64 lsnr, lsnc = le64_to_cpu(cr->restart_lsn);
   2329	u32 len;
   2330	struct NTFS_RESTART *rst;
   2331
   2332	*lsn = 0;
   2333	*rst_ = NULL;
   2334
   2335	/* If the client doesn't have a restart area, go ahead and exit now. */
   2336	if (!lsnc)
   2337		return 0;
   2338
   2339	err = read_log_page(log, lsn_to_vbo(log, lsnc),
   2340			    (struct RECORD_PAGE_HDR **)&rh, NULL);
   2341	if (err)
   2342		return err;
   2343
   2344	rst = NULL;
   2345	lsnr = le64_to_cpu(rh->this_lsn);
   2346
   2347	if (lsnc != lsnr) {
   2348		/* If the lsn values don't match, then the disk is corrupt. */
   2349		err = -EINVAL;
   2350		goto out;
   2351	}
   2352
   2353	*lsn = lsnr;
   2354	len = le32_to_cpu(rh->client_data_len);
   2355
   2356	if (!len) {
   2357		err = 0;
   2358		goto out;
   2359	}
   2360
   2361	if (len < sizeof(struct NTFS_RESTART)) {
   2362		err = -EINVAL;
   2363		goto out;
   2364	}
   2365
   2366	rst = kmalloc(len, GFP_NOFS);
   2367	if (!rst) {
   2368		err = -ENOMEM;
   2369		goto out;
   2370	}
   2371
   2372	/* Copy the data into the 'rst' buffer. */
   2373	err = read_log_rec_buf(log, rh, rst);
   2374	if (err)
   2375		goto out;
   2376
   2377	*rst_ = rst;
   2378	rst = NULL;
   2379
   2380out:
   2381	kfree(rh);
   2382	kfree(rst);
   2383
   2384	return err;
   2385}
   2386
   2387static int find_log_rec(struct ntfs_log *log, u64 lsn, struct lcb *lcb)
   2388{
   2389	int err;
   2390	struct LFS_RECORD_HDR *rh = lcb->lrh;
   2391	u32 rec_len, len;
   2392
   2393	/* Read the record header for this lsn. */
   2394	if (!rh) {
   2395		err = read_log_page(log, lsn_to_vbo(log, lsn),
   2396				    (struct RECORD_PAGE_HDR **)&rh, NULL);
   2397
   2398		lcb->lrh = rh;
   2399		if (err)
   2400			return err;
   2401	}
   2402
   2403	/*
   2404	 * If the lsn the log record doesn't match the desired
   2405	 * lsn then the disk is corrupt.
   2406	 */
   2407	if (lsn != le64_to_cpu(rh->this_lsn))
   2408		return -EINVAL;
   2409
   2410	len = le32_to_cpu(rh->client_data_len);
   2411
   2412	/*
   2413	 * Check that the length field isn't greater than the total
   2414	 * available space the log file.
   2415	 */
   2416	rec_len = len + log->record_header_len;
   2417	if (rec_len >= log->total_avail)
   2418		return -EINVAL;
   2419
   2420	/*
   2421	 * If the entire log record is on this log page,
   2422	 * put a pointer to the log record the context block.
   2423	 */
   2424	if (rh->flags & LOG_RECORD_MULTI_PAGE) {
   2425		void *lr = kmalloc(len, GFP_NOFS);
   2426
   2427		if (!lr)
   2428			return -ENOMEM;
   2429
   2430		lcb->log_rec = lr;
   2431		lcb->alloc = true;
   2432
   2433		/* Copy the data into the buffer returned. */
   2434		err = read_log_rec_buf(log, rh, lr);
   2435		if (err)
   2436			return err;
   2437	} else {
   2438		/* If beyond the end of the current page -> an error. */
   2439		u32 page_off = lsn_to_page_off(log, lsn);
   2440
   2441		if (page_off + len + log->record_header_len > log->page_size)
   2442			return -EINVAL;
   2443
   2444		lcb->log_rec = Add2Ptr(rh, sizeof(struct LFS_RECORD_HDR));
   2445		lcb->alloc = false;
   2446	}
   2447
   2448	return 0;
   2449}
   2450
   2451/*
   2452 * read_log_rec_lcb - Init the query operation.
   2453 */
   2454static int read_log_rec_lcb(struct ntfs_log *log, u64 lsn, u32 ctx_mode,
   2455			    struct lcb **lcb_)
   2456{
   2457	int err;
   2458	const struct CLIENT_REC *cr;
   2459	struct lcb *lcb;
   2460
   2461	switch (ctx_mode) {
   2462	case lcb_ctx_undo_next:
   2463	case lcb_ctx_prev:
   2464	case lcb_ctx_next:
   2465		break;
   2466	default:
   2467		return -EINVAL;
   2468	}
   2469
   2470	/* Check that the given lsn is the legal range for this client. */
   2471	cr = Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
   2472
   2473	if (!verify_client_lsn(log, cr, lsn))
   2474		return -EINVAL;
   2475
   2476	lcb = kzalloc(sizeof(struct lcb), GFP_NOFS);
   2477	if (!lcb)
   2478		return -ENOMEM;
   2479	lcb->client = log->client_id;
   2480	lcb->ctx_mode = ctx_mode;
   2481
   2482	/* Find the log record indicated by the given lsn. */
   2483	err = find_log_rec(log, lsn, lcb);
   2484	if (err)
   2485		goto out;
   2486
   2487	*lcb_ = lcb;
   2488	return 0;
   2489
   2490out:
   2491	lcb_put(lcb);
   2492	*lcb_ = NULL;
   2493	return err;
   2494}
   2495
   2496/*
   2497 * find_client_next_lsn
   2498 *
   2499 * Attempt to find the next lsn to return to a client based on the context mode.
   2500 */
   2501static int find_client_next_lsn(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
   2502{
   2503	int err;
   2504	u64 next_lsn;
   2505	struct LFS_RECORD_HDR *hdr;
   2506
   2507	hdr = lcb->lrh;
   2508	*lsn = 0;
   2509
   2510	if (lcb_ctx_next != lcb->ctx_mode)
   2511		goto check_undo_next;
   2512
   2513	/* Loop as long as another lsn can be found. */
   2514	for (;;) {
   2515		u64 current_lsn;
   2516
   2517		err = next_log_lsn(log, hdr, &current_lsn);
   2518		if (err)
   2519			goto out;
   2520
   2521		if (!current_lsn)
   2522			break;
   2523
   2524		if (hdr != lcb->lrh)
   2525			kfree(hdr);
   2526
   2527		hdr = NULL;
   2528		err = read_log_page(log, lsn_to_vbo(log, current_lsn),
   2529				    (struct RECORD_PAGE_HDR **)&hdr, NULL);
   2530		if (err)
   2531			goto out;
   2532
   2533		if (memcmp(&hdr->client, &lcb->client,
   2534			   sizeof(struct CLIENT_ID))) {
   2535			/*err = -EINVAL; */
   2536		} else if (LfsClientRecord == hdr->record_type) {
   2537			kfree(lcb->lrh);
   2538			lcb->lrh = hdr;
   2539			*lsn = current_lsn;
   2540			return 0;
   2541		}
   2542	}
   2543
   2544out:
   2545	if (hdr != lcb->lrh)
   2546		kfree(hdr);
   2547	return err;
   2548
   2549check_undo_next:
   2550	if (lcb_ctx_undo_next == lcb->ctx_mode)
   2551		next_lsn = le64_to_cpu(hdr->client_undo_next_lsn);
   2552	else if (lcb_ctx_prev == lcb->ctx_mode)
   2553		next_lsn = le64_to_cpu(hdr->client_prev_lsn);
   2554	else
   2555		return 0;
   2556
   2557	if (!next_lsn)
   2558		return 0;
   2559
   2560	if (!verify_client_lsn(
   2561		    log, Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)),
   2562		    next_lsn))
   2563		return 0;
   2564
   2565	hdr = NULL;
   2566	err = read_log_page(log, lsn_to_vbo(log, next_lsn),
   2567			    (struct RECORD_PAGE_HDR **)&hdr, NULL);
   2568	if (err)
   2569		return err;
   2570	kfree(lcb->lrh);
   2571	lcb->lrh = hdr;
   2572
   2573	*lsn = next_lsn;
   2574
   2575	return 0;
   2576}
   2577
   2578static int read_next_log_rec(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
   2579{
   2580	int err;
   2581
   2582	err = find_client_next_lsn(log, lcb, lsn);
   2583	if (err)
   2584		return err;
   2585
   2586	if (!*lsn)
   2587		return 0;
   2588
   2589	if (lcb->alloc)
   2590		kfree(lcb->log_rec);
   2591
   2592	lcb->log_rec = NULL;
   2593	lcb->alloc = false;
   2594	kfree(lcb->lrh);
   2595	lcb->lrh = NULL;
   2596
   2597	return find_log_rec(log, *lsn, lcb);
   2598}
   2599
   2600static inline bool check_index_header(const struct INDEX_HDR *hdr, size_t bytes)
   2601{
   2602	__le16 mask;
   2603	u32 min_de, de_off, used, total;
   2604	const struct NTFS_DE *e;
   2605
   2606	if (hdr_has_subnode(hdr)) {
   2607		min_de = sizeof(struct NTFS_DE) + sizeof(u64);
   2608		mask = NTFS_IE_HAS_SUBNODES;
   2609	} else {
   2610		min_de = sizeof(struct NTFS_DE);
   2611		mask = 0;
   2612	}
   2613
   2614	de_off = le32_to_cpu(hdr->de_off);
   2615	used = le32_to_cpu(hdr->used);
   2616	total = le32_to_cpu(hdr->total);
   2617
   2618	if (de_off > bytes - min_de || used > bytes || total > bytes ||
   2619	    de_off + min_de > used || used > total) {
   2620		return false;
   2621	}
   2622
   2623	e = Add2Ptr(hdr, de_off);
   2624	for (;;) {
   2625		u16 esize = le16_to_cpu(e->size);
   2626		struct NTFS_DE *next = Add2Ptr(e, esize);
   2627
   2628		if (esize < min_de || PtrOffset(hdr, next) > used ||
   2629		    (e->flags & NTFS_IE_HAS_SUBNODES) != mask) {
   2630			return false;
   2631		}
   2632
   2633		if (de_is_last(e))
   2634			break;
   2635
   2636		e = next;
   2637	}
   2638
   2639	return true;
   2640}
   2641
   2642static inline bool check_index_buffer(const struct INDEX_BUFFER *ib, u32 bytes)
   2643{
   2644	u16 fo;
   2645	const struct NTFS_RECORD_HEADER *r = &ib->rhdr;
   2646
   2647	if (r->sign != NTFS_INDX_SIGNATURE)
   2648		return false;
   2649
   2650	fo = (SECTOR_SIZE - ((bytes >> SECTOR_SHIFT) + 1) * sizeof(short));
   2651
   2652	if (le16_to_cpu(r->fix_off) > fo)
   2653		return false;
   2654
   2655	if ((le16_to_cpu(r->fix_num) - 1) * SECTOR_SIZE != bytes)
   2656		return false;
   2657
   2658	return check_index_header(&ib->ihdr,
   2659				  bytes - offsetof(struct INDEX_BUFFER, ihdr));
   2660}
   2661
   2662static inline bool check_index_root(const struct ATTRIB *attr,
   2663				    struct ntfs_sb_info *sbi)
   2664{
   2665	bool ret;
   2666	const struct INDEX_ROOT *root = resident_data(attr);
   2667	u8 index_bits = le32_to_cpu(root->index_block_size) >= sbi->cluster_size
   2668				? sbi->cluster_bits
   2669				: SECTOR_SHIFT;
   2670	u8 block_clst = root->index_block_clst;
   2671
   2672	if (le32_to_cpu(attr->res.data_size) < sizeof(struct INDEX_ROOT) ||
   2673	    (root->type != ATTR_NAME && root->type != ATTR_ZERO) ||
   2674	    (root->type == ATTR_NAME &&
   2675	     root->rule != NTFS_COLLATION_TYPE_FILENAME) ||
   2676	    (le32_to_cpu(root->index_block_size) !=
   2677	     (block_clst << index_bits)) ||
   2678	    (block_clst != 1 && block_clst != 2 && block_clst != 4 &&
   2679	     block_clst != 8 && block_clst != 0x10 && block_clst != 0x20 &&
   2680	     block_clst != 0x40 && block_clst != 0x80)) {
   2681		return false;
   2682	}
   2683
   2684	ret = check_index_header(&root->ihdr,
   2685				 le32_to_cpu(attr->res.data_size) -
   2686					 offsetof(struct INDEX_ROOT, ihdr));
   2687	return ret;
   2688}
   2689
   2690static inline bool check_attr(const struct MFT_REC *rec,
   2691			      const struct ATTRIB *attr,
   2692			      struct ntfs_sb_info *sbi)
   2693{
   2694	u32 asize = le32_to_cpu(attr->size);
   2695	u32 rsize = 0;
   2696	u64 dsize, svcn, evcn;
   2697	u16 run_off;
   2698
   2699	/* Check the fixed part of the attribute record header. */
   2700	if (asize >= sbi->record_size ||
   2701	    asize + PtrOffset(rec, attr) >= sbi->record_size ||
   2702	    (attr->name_len &&
   2703	     le16_to_cpu(attr->name_off) + attr->name_len * sizeof(short) >
   2704		     asize)) {
   2705		return false;
   2706	}
   2707
   2708	/* Check the attribute fields. */
   2709	switch (attr->non_res) {
   2710	case 0:
   2711		rsize = le32_to_cpu(attr->res.data_size);
   2712		if (rsize >= asize ||
   2713		    le16_to_cpu(attr->res.data_off) + rsize > asize) {
   2714			return false;
   2715		}
   2716		break;
   2717
   2718	case 1:
   2719		dsize = le64_to_cpu(attr->nres.data_size);
   2720		svcn = le64_to_cpu(attr->nres.svcn);
   2721		evcn = le64_to_cpu(attr->nres.evcn);
   2722		run_off = le16_to_cpu(attr->nres.run_off);
   2723
   2724		if (svcn > evcn + 1 || run_off >= asize ||
   2725		    le64_to_cpu(attr->nres.valid_size) > dsize ||
   2726		    dsize > le64_to_cpu(attr->nres.alloc_size)) {
   2727			return false;
   2728		}
   2729
   2730		if (run_unpack(NULL, sbi, 0, svcn, evcn, svcn,
   2731			       Add2Ptr(attr, run_off), asize - run_off) < 0) {
   2732			return false;
   2733		}
   2734
   2735		return true;
   2736
   2737	default:
   2738		return false;
   2739	}
   2740
   2741	switch (attr->type) {
   2742	case ATTR_NAME:
   2743		if (fname_full_size(Add2Ptr(
   2744			    attr, le16_to_cpu(attr->res.data_off))) > asize) {
   2745			return false;
   2746		}
   2747		break;
   2748
   2749	case ATTR_ROOT:
   2750		return check_index_root(attr, sbi);
   2751
   2752	case ATTR_STD:
   2753		if (rsize < sizeof(struct ATTR_STD_INFO5) &&
   2754		    rsize != sizeof(struct ATTR_STD_INFO)) {
   2755			return false;
   2756		}
   2757		break;
   2758
   2759	case ATTR_LIST:
   2760	case ATTR_ID:
   2761	case ATTR_SECURE:
   2762	case ATTR_LABEL:
   2763	case ATTR_VOL_INFO:
   2764	case ATTR_DATA:
   2765	case ATTR_ALLOC:
   2766	case ATTR_BITMAP:
   2767	case ATTR_REPARSE:
   2768	case ATTR_EA_INFO:
   2769	case ATTR_EA:
   2770	case ATTR_PROPERTYSET:
   2771	case ATTR_LOGGED_UTILITY_STREAM:
   2772		break;
   2773
   2774	default:
   2775		return false;
   2776	}
   2777
   2778	return true;
   2779}
   2780
   2781static inline bool check_file_record(const struct MFT_REC *rec,
   2782				     const struct MFT_REC *rec2,
   2783				     struct ntfs_sb_info *sbi)
   2784{
   2785	const struct ATTRIB *attr;
   2786	u16 fo = le16_to_cpu(rec->rhdr.fix_off);
   2787	u16 fn = le16_to_cpu(rec->rhdr.fix_num);
   2788	u16 ao = le16_to_cpu(rec->attr_off);
   2789	u32 rs = sbi->record_size;
   2790
   2791	/* Check the file record header for consistency. */
   2792	if (rec->rhdr.sign != NTFS_FILE_SIGNATURE ||
   2793	    fo > (SECTOR_SIZE - ((rs >> SECTOR_SHIFT) + 1) * sizeof(short)) ||
   2794	    (fn - 1) * SECTOR_SIZE != rs || ao < MFTRECORD_FIXUP_OFFSET_1 ||
   2795	    ao > sbi->record_size - SIZEOF_RESIDENT || !is_rec_inuse(rec) ||
   2796	    le32_to_cpu(rec->total) != rs) {
   2797		return false;
   2798	}
   2799
   2800	/* Loop to check all of the attributes. */
   2801	for (attr = Add2Ptr(rec, ao); attr->type != ATTR_END;
   2802	     attr = Add2Ptr(attr, le32_to_cpu(attr->size))) {
   2803		if (check_attr(rec, attr, sbi))
   2804			continue;
   2805		return false;
   2806	}
   2807
   2808	return true;
   2809}
   2810
   2811static inline int check_lsn(const struct NTFS_RECORD_HEADER *hdr,
   2812			    const u64 *rlsn)
   2813{
   2814	u64 lsn;
   2815
   2816	if (!rlsn)
   2817		return true;
   2818
   2819	lsn = le64_to_cpu(hdr->lsn);
   2820
   2821	if (hdr->sign == NTFS_HOLE_SIGNATURE)
   2822		return false;
   2823
   2824	if (*rlsn > lsn)
   2825		return true;
   2826
   2827	return false;
   2828}
   2829
   2830static inline bool check_if_attr(const struct MFT_REC *rec,
   2831				 const struct LOG_REC_HDR *lrh)
   2832{
   2833	u16 ro = le16_to_cpu(lrh->record_off);
   2834	u16 o = le16_to_cpu(rec->attr_off);
   2835	const struct ATTRIB *attr = Add2Ptr(rec, o);
   2836
   2837	while (o < ro) {
   2838		u32 asize;
   2839
   2840		if (attr->type == ATTR_END)
   2841			break;
   2842
   2843		asize = le32_to_cpu(attr->size);
   2844		if (!asize)
   2845			break;
   2846
   2847		o += asize;
   2848		attr = Add2Ptr(attr, asize);
   2849	}
   2850
   2851	return o == ro;
   2852}
   2853
   2854static inline bool check_if_index_root(const struct MFT_REC *rec,
   2855				       const struct LOG_REC_HDR *lrh)
   2856{
   2857	u16 ro = le16_to_cpu(lrh->record_off);
   2858	u16 o = le16_to_cpu(rec->attr_off);
   2859	const struct ATTRIB *attr = Add2Ptr(rec, o);
   2860
   2861	while (o < ro) {
   2862		u32 asize;
   2863
   2864		if (attr->type == ATTR_END)
   2865			break;
   2866
   2867		asize = le32_to_cpu(attr->size);
   2868		if (!asize)
   2869			break;
   2870
   2871		o += asize;
   2872		attr = Add2Ptr(attr, asize);
   2873	}
   2874
   2875	return o == ro && attr->type == ATTR_ROOT;
   2876}
   2877
   2878static inline bool check_if_root_index(const struct ATTRIB *attr,
   2879				       const struct INDEX_HDR *hdr,
   2880				       const struct LOG_REC_HDR *lrh)
   2881{
   2882	u16 ao = le16_to_cpu(lrh->attr_off);
   2883	u32 de_off = le32_to_cpu(hdr->de_off);
   2884	u32 o = PtrOffset(attr, hdr) + de_off;
   2885	const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
   2886	u32 asize = le32_to_cpu(attr->size);
   2887
   2888	while (o < ao) {
   2889		u16 esize;
   2890
   2891		if (o >= asize)
   2892			break;
   2893
   2894		esize = le16_to_cpu(e->size);
   2895		if (!esize)
   2896			break;
   2897
   2898		o += esize;
   2899		e = Add2Ptr(e, esize);
   2900	}
   2901
   2902	return o == ao;
   2903}
   2904
   2905static inline bool check_if_alloc_index(const struct INDEX_HDR *hdr,
   2906					u32 attr_off)
   2907{
   2908	u32 de_off = le32_to_cpu(hdr->de_off);
   2909	u32 o = offsetof(struct INDEX_BUFFER, ihdr) + de_off;
   2910	const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
   2911	u32 used = le32_to_cpu(hdr->used);
   2912
   2913	while (o < attr_off) {
   2914		u16 esize;
   2915
   2916		if (de_off >= used)
   2917			break;
   2918
   2919		esize = le16_to_cpu(e->size);
   2920		if (!esize)
   2921			break;
   2922
   2923		o += esize;
   2924		de_off += esize;
   2925		e = Add2Ptr(e, esize);
   2926	}
   2927
   2928	return o == attr_off;
   2929}
   2930
   2931static inline void change_attr_size(struct MFT_REC *rec, struct ATTRIB *attr,
   2932				    u32 nsize)
   2933{
   2934	u32 asize = le32_to_cpu(attr->size);
   2935	int dsize = nsize - asize;
   2936	u8 *next = Add2Ptr(attr, asize);
   2937	u32 used = le32_to_cpu(rec->used);
   2938
   2939	memmove(Add2Ptr(attr, nsize), next, used - PtrOffset(rec, next));
   2940
   2941	rec->used = cpu_to_le32(used + dsize);
   2942	attr->size = cpu_to_le32(nsize);
   2943}
   2944
   2945struct OpenAttr {
   2946	struct ATTRIB *attr;
   2947	struct runs_tree *run1;
   2948	struct runs_tree run0;
   2949	struct ntfs_inode *ni;
   2950	// CLST rno;
   2951};
   2952
   2953/*
   2954 * cmp_type_and_name
   2955 *
   2956 * Return: 0 if 'attr' has the same type and name.
   2957 */
   2958static inline int cmp_type_and_name(const struct ATTRIB *a1,
   2959				    const struct ATTRIB *a2)
   2960{
   2961	return a1->type != a2->type || a1->name_len != a2->name_len ||
   2962	       (a1->name_len && memcmp(attr_name(a1), attr_name(a2),
   2963				       a1->name_len * sizeof(short)));
   2964}
   2965
   2966static struct OpenAttr *find_loaded_attr(struct ntfs_log *log,
   2967					 const struct ATTRIB *attr, CLST rno)
   2968{
   2969	struct OPEN_ATTR_ENRTY *oe = NULL;
   2970
   2971	while ((oe = enum_rstbl(log->open_attr_tbl, oe))) {
   2972		struct OpenAttr *op_attr;
   2973
   2974		if (ino_get(&oe->ref) != rno)
   2975			continue;
   2976
   2977		op_attr = (struct OpenAttr *)oe->ptr;
   2978		if (!cmp_type_and_name(op_attr->attr, attr))
   2979			return op_attr;
   2980	}
   2981	return NULL;
   2982}
   2983
   2984static struct ATTRIB *attr_create_nonres_log(struct ntfs_sb_info *sbi,
   2985					     enum ATTR_TYPE type, u64 size,
   2986					     const u16 *name, size_t name_len,
   2987					     __le16 flags)
   2988{
   2989	struct ATTRIB *attr;
   2990	u32 name_size = ALIGN(name_len * sizeof(short), 8);
   2991	bool is_ext = flags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED);
   2992	u32 asize = name_size +
   2993		    (is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT);
   2994
   2995	attr = kzalloc(asize, GFP_NOFS);
   2996	if (!attr)
   2997		return NULL;
   2998
   2999	attr->type = type;
   3000	attr->size = cpu_to_le32(asize);
   3001	attr->flags = flags;
   3002	attr->non_res = 1;
   3003	attr->name_len = name_len;
   3004
   3005	attr->nres.evcn = cpu_to_le64((u64)bytes_to_cluster(sbi, size) - 1);
   3006	attr->nres.alloc_size = cpu_to_le64(ntfs_up_cluster(sbi, size));
   3007	attr->nres.data_size = cpu_to_le64(size);
   3008	attr->nres.valid_size = attr->nres.data_size;
   3009	if (is_ext) {
   3010		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
   3011		if (is_attr_compressed(attr))
   3012			attr->nres.c_unit = COMPRESSION_UNIT;
   3013
   3014		attr->nres.run_off =
   3015			cpu_to_le16(SIZEOF_NONRESIDENT_EX + name_size);
   3016		memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT_EX), name,
   3017		       name_len * sizeof(short));
   3018	} else {
   3019		attr->name_off = SIZEOF_NONRESIDENT_LE;
   3020		attr->nres.run_off =
   3021			cpu_to_le16(SIZEOF_NONRESIDENT + name_size);
   3022		memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT), name,
   3023		       name_len * sizeof(short));
   3024	}
   3025
   3026	return attr;
   3027}
   3028
   3029/*
   3030 * do_action - Common routine for the Redo and Undo Passes.
   3031 * @rlsn: If it is NULL then undo.
   3032 */
   3033static int do_action(struct ntfs_log *log, struct OPEN_ATTR_ENRTY *oe,
   3034		     const struct LOG_REC_HDR *lrh, u32 op, void *data,
   3035		     u32 dlen, u32 rec_len, const u64 *rlsn)
   3036{
   3037	int err = 0;
   3038	struct ntfs_sb_info *sbi = log->ni->mi.sbi;
   3039	struct inode *inode = NULL, *inode_parent;
   3040	struct mft_inode *mi = NULL, *mi2_child = NULL;
   3041	CLST rno = 0, rno_base = 0;
   3042	struct INDEX_BUFFER *ib = NULL;
   3043	struct MFT_REC *rec = NULL;
   3044	struct ATTRIB *attr = NULL, *attr2;
   3045	struct INDEX_HDR *hdr;
   3046	struct INDEX_ROOT *root;
   3047	struct NTFS_DE *e, *e1, *e2;
   3048	struct NEW_ATTRIBUTE_SIZES *new_sz;
   3049	struct ATTR_FILE_NAME *fname;
   3050	struct OpenAttr *oa, *oa2;
   3051	u32 nsize, t32, asize, used, esize, bmp_off, bmp_bits;
   3052	u16 id, id2;
   3053	u32 record_size = sbi->record_size;
   3054	u64 t64;
   3055	u16 roff = le16_to_cpu(lrh->record_off);
   3056	u16 aoff = le16_to_cpu(lrh->attr_off);
   3057	u64 lco = 0;
   3058	u64 cbo = (u64)le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
   3059	u64 tvo = le64_to_cpu(lrh->target_vcn) << sbi->cluster_bits;
   3060	u64 vbo = cbo + tvo;
   3061	void *buffer_le = NULL;
   3062	u32 bytes = 0;
   3063	bool a_dirty = false;
   3064	u16 data_off;
   3065
   3066	oa = oe->ptr;
   3067
   3068	/* Big switch to prepare. */
   3069	switch (op) {
   3070	/* ============================================================
   3071	 * Process MFT records, as described by the current log record.
   3072	 * ============================================================
   3073	 */
   3074	case InitializeFileRecordSegment:
   3075	case DeallocateFileRecordSegment:
   3076	case WriteEndOfFileRecordSegment:
   3077	case CreateAttribute:
   3078	case DeleteAttribute:
   3079	case UpdateResidentValue:
   3080	case UpdateMappingPairs:
   3081	case SetNewAttributeSizes:
   3082	case AddIndexEntryRoot:
   3083	case DeleteIndexEntryRoot:
   3084	case SetIndexEntryVcnRoot:
   3085	case UpdateFileNameRoot:
   3086	case UpdateRecordDataRoot:
   3087	case ZeroEndOfFileRecord:
   3088		rno = vbo >> sbi->record_bits;
   3089		inode = ilookup(sbi->sb, rno);
   3090		if (inode) {
   3091			mi = &ntfs_i(inode)->mi;
   3092		} else if (op == InitializeFileRecordSegment) {
   3093			mi = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
   3094			if (!mi)
   3095				return -ENOMEM;
   3096			err = mi_format_new(mi, sbi, rno, 0, false);
   3097			if (err)
   3098				goto out;
   3099		} else {
   3100			/* Read from disk. */
   3101			err = mi_get(sbi, rno, &mi);
   3102			if (err)
   3103				return err;
   3104		}
   3105		rec = mi->mrec;
   3106
   3107		if (op == DeallocateFileRecordSegment)
   3108			goto skip_load_parent;
   3109
   3110		if (InitializeFileRecordSegment != op) {
   3111			if (rec->rhdr.sign == NTFS_BAAD_SIGNATURE)
   3112				goto dirty_vol;
   3113			if (!check_lsn(&rec->rhdr, rlsn))
   3114				goto out;
   3115			if (!check_file_record(rec, NULL, sbi))
   3116				goto dirty_vol;
   3117			attr = Add2Ptr(rec, roff);
   3118		}
   3119
   3120		if (is_rec_base(rec) || InitializeFileRecordSegment == op) {
   3121			rno_base = rno;
   3122			goto skip_load_parent;
   3123		}
   3124
   3125		rno_base = ino_get(&rec->parent_ref);
   3126		inode_parent = ntfs_iget5(sbi->sb, &rec->parent_ref, NULL);
   3127		if (IS_ERR(inode_parent))
   3128			goto skip_load_parent;
   3129
   3130		if (is_bad_inode(inode_parent)) {
   3131			iput(inode_parent);
   3132			goto skip_load_parent;
   3133		}
   3134
   3135		if (ni_load_mi_ex(ntfs_i(inode_parent), rno, &mi2_child)) {
   3136			iput(inode_parent);
   3137		} else {
   3138			if (mi2_child->mrec != mi->mrec)
   3139				memcpy(mi2_child->mrec, mi->mrec,
   3140				       sbi->record_size);
   3141
   3142			if (inode)
   3143				iput(inode);
   3144			else if (mi)
   3145				mi_put(mi);
   3146
   3147			inode = inode_parent;
   3148			mi = mi2_child;
   3149			rec = mi2_child->mrec;
   3150			attr = Add2Ptr(rec, roff);
   3151		}
   3152
   3153skip_load_parent:
   3154		inode_parent = NULL;
   3155		break;
   3156
   3157	/*
   3158	 * Process attributes, as described by the current log record.
   3159	 */
   3160	case UpdateNonresidentValue:
   3161	case AddIndexEntryAllocation:
   3162	case DeleteIndexEntryAllocation:
   3163	case WriteEndOfIndexBuffer:
   3164	case SetIndexEntryVcnAllocation:
   3165	case UpdateFileNameAllocation:
   3166	case SetBitsInNonresidentBitMap:
   3167	case ClearBitsInNonresidentBitMap:
   3168	case UpdateRecordDataAllocation:
   3169		attr = oa->attr;
   3170		bytes = UpdateNonresidentValue == op ? dlen : 0;
   3171		lco = (u64)le16_to_cpu(lrh->lcns_follow) << sbi->cluster_bits;
   3172
   3173		if (attr->type == ATTR_ALLOC) {
   3174			t32 = le32_to_cpu(oe->bytes_per_index);
   3175			if (bytes < t32)
   3176				bytes = t32;
   3177		}
   3178
   3179		if (!bytes)
   3180			bytes = lco - cbo;
   3181
   3182		bytes += roff;
   3183		if (attr->type == ATTR_ALLOC)
   3184			bytes = (bytes + 511) & ~511; // align
   3185
   3186		buffer_le = kmalloc(bytes, GFP_NOFS);
   3187		if (!buffer_le)
   3188			return -ENOMEM;
   3189
   3190		err = ntfs_read_run_nb(sbi, oa->run1, vbo, buffer_le, bytes,
   3191				       NULL);
   3192		if (err)
   3193			goto out;
   3194
   3195		if (attr->type == ATTR_ALLOC && *(int *)buffer_le)
   3196			ntfs_fix_post_read(buffer_le, bytes, false);
   3197		break;
   3198
   3199	default:
   3200		WARN_ON(1);
   3201	}
   3202
   3203	/* Big switch to do operation. */
   3204	switch (op) {
   3205	case InitializeFileRecordSegment:
   3206		if (roff + dlen > record_size)
   3207			goto dirty_vol;
   3208
   3209		memcpy(Add2Ptr(rec, roff), data, dlen);
   3210		mi->dirty = true;
   3211		break;
   3212
   3213	case DeallocateFileRecordSegment:
   3214		clear_rec_inuse(rec);
   3215		le16_add_cpu(&rec->seq, 1);
   3216		mi->dirty = true;
   3217		break;
   3218
   3219	case WriteEndOfFileRecordSegment:
   3220		attr2 = (struct ATTRIB *)data;
   3221		if (!check_if_attr(rec, lrh) || roff + dlen > record_size)
   3222			goto dirty_vol;
   3223
   3224		memmove(attr, attr2, dlen);
   3225		rec->used = cpu_to_le32(ALIGN(roff + dlen, 8));
   3226
   3227		mi->dirty = true;
   3228		break;
   3229
   3230	case CreateAttribute:
   3231		attr2 = (struct ATTRIB *)data;
   3232		asize = le32_to_cpu(attr2->size);
   3233		used = le32_to_cpu(rec->used);
   3234
   3235		if (!check_if_attr(rec, lrh) || dlen < SIZEOF_RESIDENT ||
   3236		    !IS_ALIGNED(asize, 8) ||
   3237		    Add2Ptr(attr2, asize) > Add2Ptr(lrh, rec_len) ||
   3238		    dlen > record_size - used) {
   3239			goto dirty_vol;
   3240		}
   3241
   3242		memmove(Add2Ptr(attr, asize), attr, used - roff);
   3243		memcpy(attr, attr2, asize);
   3244
   3245		rec->used = cpu_to_le32(used + asize);
   3246		id = le16_to_cpu(rec->next_attr_id);
   3247		id2 = le16_to_cpu(attr2->id);
   3248		if (id <= id2)
   3249			rec->next_attr_id = cpu_to_le16(id2 + 1);
   3250		if (is_attr_indexed(attr))
   3251			le16_add_cpu(&rec->hard_links, 1);
   3252
   3253		oa2 = find_loaded_attr(log, attr, rno_base);
   3254		if (oa2) {
   3255			void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
   3256					   GFP_NOFS);
   3257			if (p2) {
   3258				// run_close(oa2->run1);
   3259				kfree(oa2->attr);
   3260				oa2->attr = p2;
   3261			}
   3262		}
   3263
   3264		mi->dirty = true;
   3265		break;
   3266
   3267	case DeleteAttribute:
   3268		asize = le32_to_cpu(attr->size);
   3269		used = le32_to_cpu(rec->used);
   3270
   3271		if (!check_if_attr(rec, lrh))
   3272			goto dirty_vol;
   3273
   3274		rec->used = cpu_to_le32(used - asize);
   3275		if (is_attr_indexed(attr))
   3276			le16_add_cpu(&rec->hard_links, -1);
   3277
   3278		memmove(attr, Add2Ptr(attr, asize), used - asize - roff);
   3279
   3280		mi->dirty = true;
   3281		break;
   3282
   3283	case UpdateResidentValue:
   3284		nsize = aoff + dlen;
   3285
   3286		if (!check_if_attr(rec, lrh))
   3287			goto dirty_vol;
   3288
   3289		asize = le32_to_cpu(attr->size);
   3290		used = le32_to_cpu(rec->used);
   3291
   3292		if (lrh->redo_len == lrh->undo_len) {
   3293			if (nsize > asize)
   3294				goto dirty_vol;
   3295			goto move_data;
   3296		}
   3297
   3298		if (nsize > asize && nsize - asize > record_size - used)
   3299			goto dirty_vol;
   3300
   3301		nsize = ALIGN(nsize, 8);
   3302		data_off = le16_to_cpu(attr->res.data_off);
   3303
   3304		if (nsize < asize) {
   3305			memmove(Add2Ptr(attr, aoff), data, dlen);
   3306			data = NULL; // To skip below memmove().
   3307		}
   3308
   3309		memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
   3310			used - le16_to_cpu(lrh->record_off) - asize);
   3311
   3312		rec->used = cpu_to_le32(used + nsize - asize);
   3313		attr->size = cpu_to_le32(nsize);
   3314		attr->res.data_size = cpu_to_le32(aoff + dlen - data_off);
   3315
   3316move_data:
   3317		if (data)
   3318			memmove(Add2Ptr(attr, aoff), data, dlen);
   3319
   3320		oa2 = find_loaded_attr(log, attr, rno_base);
   3321		if (oa2) {
   3322			void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
   3323					   GFP_NOFS);
   3324			if (p2) {
   3325				// run_close(&oa2->run0);
   3326				oa2->run1 = &oa2->run0;
   3327				kfree(oa2->attr);
   3328				oa2->attr = p2;
   3329			}
   3330		}
   3331
   3332		mi->dirty = true;
   3333		break;
   3334
   3335	case UpdateMappingPairs:
   3336		nsize = aoff + dlen;
   3337		asize = le32_to_cpu(attr->size);
   3338		used = le32_to_cpu(rec->used);
   3339
   3340		if (!check_if_attr(rec, lrh) || !attr->non_res ||
   3341		    aoff < le16_to_cpu(attr->nres.run_off) || aoff > asize ||
   3342		    (nsize > asize && nsize - asize > record_size - used)) {
   3343			goto dirty_vol;
   3344		}
   3345
   3346		nsize = ALIGN(nsize, 8);
   3347
   3348		memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
   3349			used - le16_to_cpu(lrh->record_off) - asize);
   3350		rec->used = cpu_to_le32(used + nsize - asize);
   3351		attr->size = cpu_to_le32(nsize);
   3352		memmove(Add2Ptr(attr, aoff), data, dlen);
   3353
   3354		if (run_get_highest_vcn(le64_to_cpu(attr->nres.svcn),
   3355					attr_run(attr), &t64)) {
   3356			goto dirty_vol;
   3357		}
   3358
   3359		attr->nres.evcn = cpu_to_le64(t64);
   3360		oa2 = find_loaded_attr(log, attr, rno_base);
   3361		if (oa2 && oa2->attr->non_res)
   3362			oa2->attr->nres.evcn = attr->nres.evcn;
   3363
   3364		mi->dirty = true;
   3365		break;
   3366
   3367	case SetNewAttributeSizes:
   3368		new_sz = data;
   3369		if (!check_if_attr(rec, lrh) || !attr->non_res)
   3370			goto dirty_vol;
   3371
   3372		attr->nres.alloc_size = new_sz->alloc_size;
   3373		attr->nres.data_size = new_sz->data_size;
   3374		attr->nres.valid_size = new_sz->valid_size;
   3375
   3376		if (dlen >= sizeof(struct NEW_ATTRIBUTE_SIZES))
   3377			attr->nres.total_size = new_sz->total_size;
   3378
   3379		oa2 = find_loaded_attr(log, attr, rno_base);
   3380		if (oa2) {
   3381			void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
   3382					   GFP_NOFS);
   3383			if (p2) {
   3384				kfree(oa2->attr);
   3385				oa2->attr = p2;
   3386			}
   3387		}
   3388		mi->dirty = true;
   3389		break;
   3390
   3391	case AddIndexEntryRoot:
   3392		e = (struct NTFS_DE *)data;
   3393		esize = le16_to_cpu(e->size);
   3394		root = resident_data(attr);
   3395		hdr = &root->ihdr;
   3396		used = le32_to_cpu(hdr->used);
   3397
   3398		if (!check_if_index_root(rec, lrh) ||
   3399		    !check_if_root_index(attr, hdr, lrh) ||
   3400		    Add2Ptr(data, esize) > Add2Ptr(lrh, rec_len) ||
   3401		    esize > le32_to_cpu(rec->total) - le32_to_cpu(rec->used)) {
   3402			goto dirty_vol;
   3403		}
   3404
   3405		e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
   3406
   3407		change_attr_size(rec, attr, le32_to_cpu(attr->size) + esize);
   3408
   3409		memmove(Add2Ptr(e1, esize), e1,
   3410			PtrOffset(e1, Add2Ptr(hdr, used)));
   3411		memmove(e1, e, esize);
   3412
   3413		le32_add_cpu(&attr->res.data_size, esize);
   3414		hdr->used = cpu_to_le32(used + esize);
   3415		le32_add_cpu(&hdr->total, esize);
   3416
   3417		mi->dirty = true;
   3418		break;
   3419
   3420	case DeleteIndexEntryRoot:
   3421		root = resident_data(attr);
   3422		hdr = &root->ihdr;
   3423		used = le32_to_cpu(hdr->used);
   3424
   3425		if (!check_if_index_root(rec, lrh) ||
   3426		    !check_if_root_index(attr, hdr, lrh)) {
   3427			goto dirty_vol;
   3428		}
   3429
   3430		e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
   3431		esize = le16_to_cpu(e1->size);
   3432		e2 = Add2Ptr(e1, esize);
   3433
   3434		memmove(e1, e2, PtrOffset(e2, Add2Ptr(hdr, used)));
   3435
   3436		le32_sub_cpu(&attr->res.data_size, esize);
   3437		hdr->used = cpu_to_le32(used - esize);
   3438		le32_sub_cpu(&hdr->total, esize);
   3439
   3440		change_attr_size(rec, attr, le32_to_cpu(attr->size) - esize);
   3441
   3442		mi->dirty = true;
   3443		break;
   3444
   3445	case SetIndexEntryVcnRoot:
   3446		root = resident_data(attr);
   3447		hdr = &root->ihdr;
   3448
   3449		if (!check_if_index_root(rec, lrh) ||
   3450		    !check_if_root_index(attr, hdr, lrh)) {
   3451			goto dirty_vol;
   3452		}
   3453
   3454		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
   3455
   3456		de_set_vbn_le(e, *(__le64 *)data);
   3457		mi->dirty = true;
   3458		break;
   3459
   3460	case UpdateFileNameRoot:
   3461		root = resident_data(attr);
   3462		hdr = &root->ihdr;
   3463
   3464		if (!check_if_index_root(rec, lrh) ||
   3465		    !check_if_root_index(attr, hdr, lrh)) {
   3466			goto dirty_vol;
   3467		}
   3468
   3469		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
   3470		fname = (struct ATTR_FILE_NAME *)(e + 1);
   3471		memmove(&fname->dup, data, sizeof(fname->dup)); //
   3472		mi->dirty = true;
   3473		break;
   3474
   3475	case UpdateRecordDataRoot:
   3476		root = resident_data(attr);
   3477		hdr = &root->ihdr;
   3478
   3479		if (!check_if_index_root(rec, lrh) ||
   3480		    !check_if_root_index(attr, hdr, lrh)) {
   3481			goto dirty_vol;
   3482		}
   3483
   3484		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
   3485
   3486		memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
   3487
   3488		mi->dirty = true;
   3489		break;
   3490
   3491	case ZeroEndOfFileRecord:
   3492		if (roff + dlen > record_size)
   3493			goto dirty_vol;
   3494
   3495		memset(attr, 0, dlen);
   3496		mi->dirty = true;
   3497		break;
   3498
   3499	case UpdateNonresidentValue:
   3500		if (lco < cbo + roff + dlen)
   3501			goto dirty_vol;
   3502
   3503		memcpy(Add2Ptr(buffer_le, roff), data, dlen);
   3504
   3505		a_dirty = true;
   3506		if (attr->type == ATTR_ALLOC)
   3507			ntfs_fix_pre_write(buffer_le, bytes);
   3508		break;
   3509
   3510	case AddIndexEntryAllocation:
   3511		ib = Add2Ptr(buffer_le, roff);
   3512		hdr = &ib->ihdr;
   3513		e = data;
   3514		esize = le16_to_cpu(e->size);
   3515		e1 = Add2Ptr(ib, aoff);
   3516
   3517		if (is_baad(&ib->rhdr))
   3518			goto dirty_vol;
   3519		if (!check_lsn(&ib->rhdr, rlsn))
   3520			goto out;
   3521
   3522		used = le32_to_cpu(hdr->used);
   3523
   3524		if (!check_index_buffer(ib, bytes) ||
   3525		    !check_if_alloc_index(hdr, aoff) ||
   3526		    Add2Ptr(e, esize) > Add2Ptr(lrh, rec_len) ||
   3527		    used + esize > le32_to_cpu(hdr->total)) {
   3528			goto dirty_vol;
   3529		}
   3530
   3531		memmove(Add2Ptr(e1, esize), e1,
   3532			PtrOffset(e1, Add2Ptr(hdr, used)));
   3533		memcpy(e1, e, esize);
   3534
   3535		hdr->used = cpu_to_le32(used + esize);
   3536
   3537		a_dirty = true;
   3538
   3539		ntfs_fix_pre_write(&ib->rhdr, bytes);
   3540		break;
   3541
   3542	case DeleteIndexEntryAllocation:
   3543		ib = Add2Ptr(buffer_le, roff);
   3544		hdr = &ib->ihdr;
   3545		e = Add2Ptr(ib, aoff);
   3546		esize = le16_to_cpu(e->size);
   3547
   3548		if (is_baad(&ib->rhdr))
   3549			goto dirty_vol;
   3550		if (!check_lsn(&ib->rhdr, rlsn))
   3551			goto out;
   3552
   3553		if (!check_index_buffer(ib, bytes) ||
   3554		    !check_if_alloc_index(hdr, aoff)) {
   3555			goto dirty_vol;
   3556		}
   3557
   3558		e1 = Add2Ptr(e, esize);
   3559		nsize = esize;
   3560		used = le32_to_cpu(hdr->used);
   3561
   3562		memmove(e, e1, PtrOffset(e1, Add2Ptr(hdr, used)));
   3563
   3564		hdr->used = cpu_to_le32(used - nsize);
   3565
   3566		a_dirty = true;
   3567
   3568		ntfs_fix_pre_write(&ib->rhdr, bytes);
   3569		break;
   3570
   3571	case WriteEndOfIndexBuffer:
   3572		ib = Add2Ptr(buffer_le, roff);
   3573		hdr = &ib->ihdr;
   3574		e = Add2Ptr(ib, aoff);
   3575
   3576		if (is_baad(&ib->rhdr))
   3577			goto dirty_vol;
   3578		if (!check_lsn(&ib->rhdr, rlsn))
   3579			goto out;
   3580		if (!check_index_buffer(ib, bytes) ||
   3581		    !check_if_alloc_index(hdr, aoff) ||
   3582		    aoff + dlen > offsetof(struct INDEX_BUFFER, ihdr) +
   3583					  le32_to_cpu(hdr->total)) {
   3584			goto dirty_vol;
   3585		}
   3586
   3587		hdr->used = cpu_to_le32(dlen + PtrOffset(hdr, e));
   3588		memmove(e, data, dlen);
   3589
   3590		a_dirty = true;
   3591		ntfs_fix_pre_write(&ib->rhdr, bytes);
   3592		break;
   3593
   3594	case SetIndexEntryVcnAllocation:
   3595		ib = Add2Ptr(buffer_le, roff);
   3596		hdr = &ib->ihdr;
   3597		e = Add2Ptr(ib, aoff);
   3598
   3599		if (is_baad(&ib->rhdr))
   3600			goto dirty_vol;
   3601
   3602		if (!check_lsn(&ib->rhdr, rlsn))
   3603			goto out;
   3604		if (!check_index_buffer(ib, bytes) ||
   3605		    !check_if_alloc_index(hdr, aoff)) {
   3606			goto dirty_vol;
   3607		}
   3608
   3609		de_set_vbn_le(e, *(__le64 *)data);
   3610
   3611		a_dirty = true;
   3612		ntfs_fix_pre_write(&ib->rhdr, bytes);
   3613		break;
   3614
   3615	case UpdateFileNameAllocation:
   3616		ib = Add2Ptr(buffer_le, roff);
   3617		hdr = &ib->ihdr;
   3618		e = Add2Ptr(ib, aoff);
   3619
   3620		if (is_baad(&ib->rhdr))
   3621			goto dirty_vol;
   3622
   3623		if (!check_lsn(&ib->rhdr, rlsn))
   3624			goto out;
   3625		if (!check_index_buffer(ib, bytes) ||
   3626		    !check_if_alloc_index(hdr, aoff)) {
   3627			goto dirty_vol;
   3628		}
   3629
   3630		fname = (struct ATTR_FILE_NAME *)(e + 1);
   3631		memmove(&fname->dup, data, sizeof(fname->dup));
   3632
   3633		a_dirty = true;
   3634		ntfs_fix_pre_write(&ib->rhdr, bytes);
   3635		break;
   3636
   3637	case SetBitsInNonresidentBitMap:
   3638		bmp_off =
   3639			le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
   3640		bmp_bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
   3641
   3642		if (cbo + (bmp_off + 7) / 8 > lco ||
   3643		    cbo + ((bmp_off + bmp_bits + 7) / 8) > lco) {
   3644			goto dirty_vol;
   3645		}
   3646
   3647		__bitmap_set(Add2Ptr(buffer_le, roff), bmp_off, bmp_bits);
   3648		a_dirty = true;
   3649		break;
   3650
   3651	case ClearBitsInNonresidentBitMap:
   3652		bmp_off =
   3653			le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
   3654		bmp_bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
   3655
   3656		if (cbo + (bmp_off + 7) / 8 > lco ||
   3657		    cbo + ((bmp_off + bmp_bits + 7) / 8) > lco) {
   3658			goto dirty_vol;
   3659		}
   3660
   3661		__bitmap_clear(Add2Ptr(buffer_le, roff), bmp_off, bmp_bits);
   3662		a_dirty = true;
   3663		break;
   3664
   3665	case UpdateRecordDataAllocation:
   3666		ib = Add2Ptr(buffer_le, roff);
   3667		hdr = &ib->ihdr;
   3668		e = Add2Ptr(ib, aoff);
   3669
   3670		if (is_baad(&ib->rhdr))
   3671			goto dirty_vol;
   3672
   3673		if (!check_lsn(&ib->rhdr, rlsn))
   3674			goto out;
   3675		if (!check_index_buffer(ib, bytes) ||
   3676		    !check_if_alloc_index(hdr, aoff)) {
   3677			goto dirty_vol;
   3678		}
   3679
   3680		memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
   3681
   3682		a_dirty = true;
   3683		ntfs_fix_pre_write(&ib->rhdr, bytes);
   3684		break;
   3685
   3686	default:
   3687		WARN_ON(1);
   3688	}
   3689
   3690	if (rlsn) {
   3691		__le64 t64 = cpu_to_le64(*rlsn);
   3692
   3693		if (rec)
   3694			rec->rhdr.lsn = t64;
   3695		if (ib)
   3696			ib->rhdr.lsn = t64;
   3697	}
   3698
   3699	if (mi && mi->dirty) {
   3700		err = mi_write(mi, 0);
   3701		if (err)
   3702			goto out;
   3703	}
   3704
   3705	if (a_dirty) {
   3706		attr = oa->attr;
   3707		err = ntfs_sb_write_run(sbi, oa->run1, vbo, buffer_le, bytes, 0);
   3708		if (err)
   3709			goto out;
   3710	}
   3711
   3712out:
   3713
   3714	if (inode)
   3715		iput(inode);
   3716	else if (mi != mi2_child)
   3717		mi_put(mi);
   3718
   3719	kfree(buffer_le);
   3720
   3721	return err;
   3722
   3723dirty_vol:
   3724	log->set_dirty = true;
   3725	goto out;
   3726}
   3727
   3728/*
   3729 * log_replay - Replays log and empties it.
   3730 *
   3731 * This function is called during mount operation.
   3732 * It replays log and empties it.
   3733 * Initialized is set false if logfile contains '-1'.
   3734 */
   3735int log_replay(struct ntfs_inode *ni, bool *initialized)
   3736{
   3737	int err;
   3738	struct ntfs_sb_info *sbi = ni->mi.sbi;
   3739	struct ntfs_log *log;
   3740
   3741	struct restart_info rst_info, rst_info2;
   3742	u64 rec_lsn, ra_lsn, checkpt_lsn = 0, rlsn = 0;
   3743	struct ATTR_NAME_ENTRY *attr_names = NULL;
   3744	struct ATTR_NAME_ENTRY *ane;
   3745	struct RESTART_TABLE *dptbl = NULL;
   3746	struct RESTART_TABLE *trtbl = NULL;
   3747	const struct RESTART_TABLE *rt;
   3748	struct RESTART_TABLE *oatbl = NULL;
   3749	struct inode *inode;
   3750	struct OpenAttr *oa;
   3751	struct ntfs_inode *ni_oe;
   3752	struct ATTRIB *attr = NULL;
   3753	u64 size, vcn, undo_next_lsn;
   3754	CLST rno, lcn, lcn0, len0, clen;
   3755	void *data;
   3756	struct NTFS_RESTART *rst = NULL;
   3757	struct lcb *lcb = NULL;
   3758	struct OPEN_ATTR_ENRTY *oe;
   3759	struct TRANSACTION_ENTRY *tr;
   3760	struct DIR_PAGE_ENTRY *dp;
   3761	u32 i, bytes_per_attr_entry;
   3762	u32 l_size = ni->vfs_inode.i_size;
   3763	u32 orig_file_size = l_size;
   3764	u32 page_size, vbo, tail, off, dlen;
   3765	u32 saved_len, rec_len, transact_id;
   3766	bool use_second_page;
   3767	struct RESTART_AREA *ra2, *ra = NULL;
   3768	struct CLIENT_REC *ca, *cr;
   3769	__le16 client;
   3770	struct RESTART_HDR *rh;
   3771	const struct LFS_RECORD_HDR *frh;
   3772	const struct LOG_REC_HDR *lrh;
   3773	bool is_mapped;
   3774	bool is_ro = sb_rdonly(sbi->sb);
   3775	u64 t64;
   3776	u16 t16;
   3777	u32 t32;
   3778
   3779	/* Get the size of page. NOTE: To replay we can use default page. */
   3780#if PAGE_SIZE >= DefaultLogPageSize && PAGE_SIZE <= DefaultLogPageSize * 2
   3781	page_size = norm_file_page(PAGE_SIZE, &l_size, true);
   3782#else
   3783	page_size = norm_file_page(PAGE_SIZE, &l_size, false);
   3784#endif
   3785	if (!page_size)
   3786		return -EINVAL;
   3787
   3788	log = kzalloc(sizeof(struct ntfs_log), GFP_NOFS);
   3789	if (!log)
   3790		return -ENOMEM;
   3791
   3792	memset(&rst_info, 0, sizeof(struct restart_info));
   3793
   3794	log->ni = ni;
   3795	log->l_size = l_size;
   3796	log->one_page_buf = kmalloc(page_size, GFP_NOFS);
   3797	if (!log->one_page_buf) {
   3798		err = -ENOMEM;
   3799		goto out;
   3800	}
   3801
   3802	log->page_size = page_size;
   3803	log->page_mask = page_size - 1;
   3804	log->page_bits = blksize_bits(page_size);
   3805
   3806	/* Look for a restart area on the disk. */
   3807	err = log_read_rst(log, l_size, true, &rst_info);
   3808	if (err)
   3809		goto out;
   3810
   3811	/* remember 'initialized' */
   3812	*initialized = rst_info.initialized;
   3813
   3814	if (!rst_info.restart) {
   3815		if (rst_info.initialized) {
   3816			/* No restart area but the file is not initialized. */
   3817			err = -EINVAL;
   3818			goto out;
   3819		}
   3820
   3821		log_init_pg_hdr(log, page_size, page_size, 1, 1);
   3822		log_create(log, l_size, 0, get_random_int(), false, false);
   3823
   3824		log->ra = ra;
   3825
   3826		ra = log_create_ra(log);
   3827		if (!ra) {
   3828			err = -ENOMEM;
   3829			goto out;
   3830		}
   3831		log->ra = ra;
   3832		log->init_ra = true;
   3833
   3834		goto process_log;
   3835	}
   3836
   3837	/*
   3838	 * If the restart offset above wasn't zero then we won't
   3839	 * look for a second restart.
   3840	 */
   3841	if (rst_info.vbo)
   3842		goto check_restart_area;
   3843
   3844	memset(&rst_info2, 0, sizeof(struct restart_info));
   3845	err = log_read_rst(log, l_size, false, &rst_info2);
   3846
   3847	/* Determine which restart area to use. */
   3848	if (!rst_info2.restart || rst_info2.last_lsn <= rst_info.last_lsn)
   3849		goto use_first_page;
   3850
   3851	use_second_page = true;
   3852
   3853	if (rst_info.chkdsk_was_run && page_size != rst_info.vbo) {
   3854		struct RECORD_PAGE_HDR *sp = NULL;
   3855		bool usa_error;
   3856
   3857		if (!read_log_page(log, page_size, &sp, &usa_error) &&
   3858		    sp->rhdr.sign == NTFS_CHKD_SIGNATURE) {
   3859			use_second_page = false;
   3860		}
   3861		kfree(sp);
   3862	}
   3863
   3864	if (use_second_page) {
   3865		kfree(rst_info.r_page);
   3866		memcpy(&rst_info, &rst_info2, sizeof(struct restart_info));
   3867		rst_info2.r_page = NULL;
   3868	}
   3869
   3870use_first_page:
   3871	kfree(rst_info2.r_page);
   3872
   3873check_restart_area:
   3874	/*
   3875	 * If the restart area is at offset 0, we want
   3876	 * to write the second restart area first.
   3877	 */
   3878	log->init_ra = !!rst_info.vbo;
   3879
   3880	/* If we have a valid page then grab a pointer to the restart area. */
   3881	ra2 = rst_info.valid_page
   3882		      ? Add2Ptr(rst_info.r_page,
   3883				le16_to_cpu(rst_info.r_page->ra_off))
   3884		      : NULL;
   3885
   3886	if (rst_info.chkdsk_was_run ||
   3887	    (ra2 && ra2->client_idx[1] == LFS_NO_CLIENT_LE)) {
   3888		bool wrapped = false;
   3889		bool use_multi_page = false;
   3890		u32 open_log_count;
   3891
   3892		/* Do some checks based on whether we have a valid log page. */
   3893		if (!rst_info.valid_page) {
   3894			open_log_count = get_random_int();
   3895			goto init_log_instance;
   3896		}
   3897		open_log_count = le32_to_cpu(ra2->open_log_count);
   3898
   3899		/*
   3900		 * If the restart page size isn't changing then we want to
   3901		 * check how much work we need to do.
   3902		 */
   3903		if (page_size != le32_to_cpu(rst_info.r_page->sys_page_size))
   3904			goto init_log_instance;
   3905
   3906init_log_instance:
   3907		log_init_pg_hdr(log, page_size, page_size, 1, 1);
   3908
   3909		log_create(log, l_size, rst_info.last_lsn, open_log_count,
   3910			   wrapped, use_multi_page);
   3911
   3912		ra = log_create_ra(log);
   3913		if (!ra) {
   3914			err = -ENOMEM;
   3915			goto out;
   3916		}
   3917		log->ra = ra;
   3918
   3919		/* Put the restart areas and initialize
   3920		 * the log file as required.
   3921		 */
   3922		goto process_log;
   3923	}
   3924
   3925	if (!ra2) {
   3926		err = -EINVAL;
   3927		goto out;
   3928	}
   3929
   3930	/*
   3931	 * If the log page or the system page sizes have changed, we can't
   3932	 * use the log file. We must use the system page size instead of the
   3933	 * default size if there is not a clean shutdown.
   3934	 */
   3935	t32 = le32_to_cpu(rst_info.r_page->sys_page_size);
   3936	if (page_size != t32) {
   3937		l_size = orig_file_size;
   3938		page_size =
   3939			norm_file_page(t32, &l_size, t32 == DefaultLogPageSize);
   3940	}
   3941
   3942	if (page_size != t32 ||
   3943	    page_size != le32_to_cpu(rst_info.r_page->page_size)) {
   3944		err = -EINVAL;
   3945		goto out;
   3946	}
   3947
   3948	/* If the file size has shrunk then we won't mount it. */
   3949	if (l_size < le64_to_cpu(ra2->l_size)) {
   3950		err = -EINVAL;
   3951		goto out;
   3952	}
   3953
   3954	log_init_pg_hdr(log, page_size, page_size,
   3955			le16_to_cpu(rst_info.r_page->major_ver),
   3956			le16_to_cpu(rst_info.r_page->minor_ver));
   3957
   3958	log->l_size = le64_to_cpu(ra2->l_size);
   3959	log->seq_num_bits = le32_to_cpu(ra2->seq_num_bits);
   3960	log->file_data_bits = sizeof(u64) * 8 - log->seq_num_bits;
   3961	log->seq_num_mask = (8 << log->file_data_bits) - 1;
   3962	log->last_lsn = le64_to_cpu(ra2->current_lsn);
   3963	log->seq_num = log->last_lsn >> log->file_data_bits;
   3964	log->ra_off = le16_to_cpu(rst_info.r_page->ra_off);
   3965	log->restart_size = log->sys_page_size - log->ra_off;
   3966	log->record_header_len = le16_to_cpu(ra2->rec_hdr_len);
   3967	log->ra_size = le16_to_cpu(ra2->ra_len);
   3968	log->data_off = le16_to_cpu(ra2->data_off);
   3969	log->data_size = log->page_size - log->data_off;
   3970	log->reserved = log->data_size - log->record_header_len;
   3971
   3972	vbo = lsn_to_vbo(log, log->last_lsn);
   3973
   3974	if (vbo < log->first_page) {
   3975		/* This is a pseudo lsn. */
   3976		log->l_flags |= NTFSLOG_NO_LAST_LSN;
   3977		log->next_page = log->first_page;
   3978		goto find_oldest;
   3979	}
   3980
   3981	/* Find the end of this log record. */
   3982	off = final_log_off(log, log->last_lsn,
   3983			    le32_to_cpu(ra2->last_lsn_data_len));
   3984
   3985	/* If we wrapped the file then increment the sequence number. */
   3986	if (off <= vbo) {
   3987		log->seq_num += 1;
   3988		log->l_flags |= NTFSLOG_WRAPPED;
   3989	}
   3990
   3991	/* Now compute the next log page to use. */
   3992	vbo &= ~log->sys_page_mask;
   3993	tail = log->page_size - (off & log->page_mask) - 1;
   3994
   3995	/*
   3996	 *If we can fit another log record on the page,
   3997	 * move back a page the log file.
   3998	 */
   3999	if (tail >= log->record_header_len) {
   4000		log->l_flags |= NTFSLOG_REUSE_TAIL;
   4001		log->next_page = vbo;
   4002	} else {
   4003		log->next_page = next_page_off(log, vbo);
   4004	}
   4005
   4006find_oldest:
   4007	/*
   4008	 * Find the oldest client lsn. Use the last
   4009	 * flushed lsn as a starting point.
   4010	 */
   4011	log->oldest_lsn = log->last_lsn;
   4012	oldest_client_lsn(Add2Ptr(ra2, le16_to_cpu(ra2->client_off)),
   4013			  ra2->client_idx[1], &log->oldest_lsn);
   4014	log->oldest_lsn_off = lsn_to_vbo(log, log->oldest_lsn);
   4015
   4016	if (log->oldest_lsn_off < log->first_page)
   4017		log->l_flags |= NTFSLOG_NO_OLDEST_LSN;
   4018
   4019	if (!(ra2->flags & RESTART_SINGLE_PAGE_IO))
   4020		log->l_flags |= NTFSLOG_WRAPPED | NTFSLOG_MULTIPLE_PAGE_IO;
   4021
   4022	log->current_openlog_count = le32_to_cpu(ra2->open_log_count);
   4023	log->total_avail_pages = log->l_size - log->first_page;
   4024	log->total_avail = log->total_avail_pages >> log->page_bits;
   4025	log->max_current_avail = log->total_avail * log->reserved;
   4026	log->total_avail = log->total_avail * log->data_size;
   4027
   4028	log->current_avail = current_log_avail(log);
   4029
   4030	ra = kzalloc(log->restart_size, GFP_NOFS);
   4031	if (!ra) {
   4032		err = -ENOMEM;
   4033		goto out;
   4034	}
   4035	log->ra = ra;
   4036
   4037	t16 = le16_to_cpu(ra2->client_off);
   4038	if (t16 == offsetof(struct RESTART_AREA, clients)) {
   4039		memcpy(ra, ra2, log->ra_size);
   4040	} else {
   4041		memcpy(ra, ra2, offsetof(struct RESTART_AREA, clients));
   4042		memcpy(ra->clients, Add2Ptr(ra2, t16),
   4043		       le16_to_cpu(ra2->ra_len) - t16);
   4044
   4045		log->current_openlog_count = get_random_int();
   4046		ra->open_log_count = cpu_to_le32(log->current_openlog_count);
   4047		log->ra_size = offsetof(struct RESTART_AREA, clients) +
   4048			       sizeof(struct CLIENT_REC);
   4049		ra->client_off =
   4050			cpu_to_le16(offsetof(struct RESTART_AREA, clients));
   4051		ra->ra_len = cpu_to_le16(log->ra_size);
   4052	}
   4053
   4054	le32_add_cpu(&ra->open_log_count, 1);
   4055
   4056	/* Now we need to walk through looking for the last lsn. */
   4057	err = last_log_lsn(log);
   4058	if (err)
   4059		goto out;
   4060
   4061	log->current_avail = current_log_avail(log);
   4062
   4063	/* Remember which restart area to write first. */
   4064	log->init_ra = rst_info.vbo;
   4065
   4066process_log:
   4067	/* 1.0, 1.1, 2.0 log->major_ver/minor_ver - short values. */
   4068	switch ((log->major_ver << 16) + log->minor_ver) {
   4069	case 0x10000:
   4070	case 0x10001:
   4071	case 0x20000:
   4072		break;
   4073	default:
   4074		ntfs_warn(sbi->sb, "\x24LogFile version %d.%d is not supported",
   4075			  log->major_ver, log->minor_ver);
   4076		err = -EOPNOTSUPP;
   4077		log->set_dirty = true;
   4078		goto out;
   4079	}
   4080
   4081	/* One client "NTFS" per logfile. */
   4082	ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
   4083
   4084	for (client = ra->client_idx[1];; client = cr->next_client) {
   4085		if (client == LFS_NO_CLIENT_LE) {
   4086			/* Insert "NTFS" client LogFile. */
   4087			client = ra->client_idx[0];
   4088			if (client == LFS_NO_CLIENT_LE) {
   4089				err = -EINVAL;
   4090				goto out;
   4091			}
   4092
   4093			t16 = le16_to_cpu(client);
   4094			cr = ca + t16;
   4095
   4096			remove_client(ca, cr, &ra->client_idx[0]);
   4097
   4098			cr->restart_lsn = 0;
   4099			cr->oldest_lsn = cpu_to_le64(log->oldest_lsn);
   4100			cr->name_bytes = cpu_to_le32(8);
   4101			cr->name[0] = cpu_to_le16('N');
   4102			cr->name[1] = cpu_to_le16('T');
   4103			cr->name[2] = cpu_to_le16('F');
   4104			cr->name[3] = cpu_to_le16('S');
   4105
   4106			add_client(ca, t16, &ra->client_idx[1]);
   4107			break;
   4108		}
   4109
   4110		cr = ca + le16_to_cpu(client);
   4111
   4112		if (cpu_to_le32(8) == cr->name_bytes &&
   4113		    cpu_to_le16('N') == cr->name[0] &&
   4114		    cpu_to_le16('T') == cr->name[1] &&
   4115		    cpu_to_le16('F') == cr->name[2] &&
   4116		    cpu_to_le16('S') == cr->name[3])
   4117			break;
   4118	}
   4119
   4120	/* Update the client handle with the client block information. */
   4121	log->client_id.seq_num = cr->seq_num;
   4122	log->client_id.client_idx = client;
   4123
   4124	err = read_rst_area(log, &rst, &ra_lsn);
   4125	if (err)
   4126		goto out;
   4127
   4128	if (!rst)
   4129		goto out;
   4130
   4131	bytes_per_attr_entry = !rst->major_ver ? 0x2C : 0x28;
   4132
   4133	checkpt_lsn = le64_to_cpu(rst->check_point_start);
   4134	if (!checkpt_lsn)
   4135		checkpt_lsn = ra_lsn;
   4136
   4137	/* Allocate and Read the Transaction Table. */
   4138	if (!rst->transact_table_len)
   4139		goto check_dirty_page_table;
   4140
   4141	t64 = le64_to_cpu(rst->transact_table_lsn);
   4142	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
   4143	if (err)
   4144		goto out;
   4145
   4146	lrh = lcb->log_rec;
   4147	frh = lcb->lrh;
   4148	rec_len = le32_to_cpu(frh->client_data_len);
   4149
   4150	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
   4151			   bytes_per_attr_entry)) {
   4152		err = -EINVAL;
   4153		goto out;
   4154	}
   4155
   4156	t16 = le16_to_cpu(lrh->redo_off);
   4157
   4158	rt = Add2Ptr(lrh, t16);
   4159	t32 = rec_len - t16;
   4160
   4161	/* Now check that this is a valid restart table. */
   4162	if (!check_rstbl(rt, t32)) {
   4163		err = -EINVAL;
   4164		goto out;
   4165	}
   4166
   4167	trtbl = kmemdup(rt, t32, GFP_NOFS);
   4168	if (!trtbl) {
   4169		err = -ENOMEM;
   4170		goto out;
   4171	}
   4172
   4173	lcb_put(lcb);
   4174	lcb = NULL;
   4175
   4176check_dirty_page_table:
   4177	/* The next record back should be the Dirty Pages Table. */
   4178	if (!rst->dirty_pages_len)
   4179		goto check_attribute_names;
   4180
   4181	t64 = le64_to_cpu(rst->dirty_pages_table_lsn);
   4182	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
   4183	if (err)
   4184		goto out;
   4185
   4186	lrh = lcb->log_rec;
   4187	frh = lcb->lrh;
   4188	rec_len = le32_to_cpu(frh->client_data_len);
   4189
   4190	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
   4191			   bytes_per_attr_entry)) {
   4192		err = -EINVAL;
   4193		goto out;
   4194	}
   4195
   4196	t16 = le16_to_cpu(lrh->redo_off);
   4197
   4198	rt = Add2Ptr(lrh, t16);
   4199	t32 = rec_len - t16;
   4200
   4201	/* Now check that this is a valid restart table. */
   4202	if (!check_rstbl(rt, t32)) {
   4203		err = -EINVAL;
   4204		goto out;
   4205	}
   4206
   4207	dptbl = kmemdup(rt, t32, GFP_NOFS);
   4208	if (!dptbl) {
   4209		err = -ENOMEM;
   4210		goto out;
   4211	}
   4212
   4213	/* Convert Ra version '0' into version '1'. */
   4214	if (rst->major_ver)
   4215		goto end_conv_1;
   4216
   4217	dp = NULL;
   4218	while ((dp = enum_rstbl(dptbl, dp))) {
   4219		struct DIR_PAGE_ENTRY_32 *dp0 = (struct DIR_PAGE_ENTRY_32 *)dp;
   4220		// NOTE: Danger. Check for of boundary.
   4221		memmove(&dp->vcn, &dp0->vcn_low,
   4222			2 * sizeof(u64) +
   4223				le32_to_cpu(dp->lcns_follow) * sizeof(u64));
   4224	}
   4225
   4226end_conv_1:
   4227	lcb_put(lcb);
   4228	lcb = NULL;
   4229
   4230	/*
   4231	 * Go through the table and remove the duplicates,
   4232	 * remembering the oldest lsn values.
   4233	 */
   4234	if (sbi->cluster_size <= log->page_size)
   4235		goto trace_dp_table;
   4236
   4237	dp = NULL;
   4238	while ((dp = enum_rstbl(dptbl, dp))) {
   4239		struct DIR_PAGE_ENTRY *next = dp;
   4240
   4241		while ((next = enum_rstbl(dptbl, next))) {
   4242			if (next->target_attr == dp->target_attr &&
   4243			    next->vcn == dp->vcn) {
   4244				if (le64_to_cpu(next->oldest_lsn) <
   4245				    le64_to_cpu(dp->oldest_lsn)) {
   4246					dp->oldest_lsn = next->oldest_lsn;
   4247				}
   4248
   4249				free_rsttbl_idx(dptbl, PtrOffset(dptbl, next));
   4250			}
   4251		}
   4252	}
   4253trace_dp_table:
   4254check_attribute_names:
   4255	/* The next record should be the Attribute Names. */
   4256	if (!rst->attr_names_len)
   4257		goto check_attr_table;
   4258
   4259	t64 = le64_to_cpu(rst->attr_names_lsn);
   4260	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
   4261	if (err)
   4262		goto out;
   4263
   4264	lrh = lcb->log_rec;
   4265	frh = lcb->lrh;
   4266	rec_len = le32_to_cpu(frh->client_data_len);
   4267
   4268	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
   4269			   bytes_per_attr_entry)) {
   4270		err = -EINVAL;
   4271		goto out;
   4272	}
   4273
   4274	t32 = lrh_length(lrh);
   4275	rec_len -= t32;
   4276
   4277	attr_names = kmemdup(Add2Ptr(lrh, t32), rec_len, GFP_NOFS);
   4278
   4279	lcb_put(lcb);
   4280	lcb = NULL;
   4281
   4282check_attr_table:
   4283	/* The next record should be the attribute Table. */
   4284	if (!rst->open_attr_len)
   4285		goto check_attribute_names2;
   4286
   4287	t64 = le64_to_cpu(rst->open_attr_table_lsn);
   4288	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
   4289	if (err)
   4290		goto out;
   4291
   4292	lrh = lcb->log_rec;
   4293	frh = lcb->lrh;
   4294	rec_len = le32_to_cpu(frh->client_data_len);
   4295
   4296	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
   4297			   bytes_per_attr_entry)) {
   4298		err = -EINVAL;
   4299		goto out;
   4300	}
   4301
   4302	t16 = le16_to_cpu(lrh->redo_off);
   4303
   4304	rt = Add2Ptr(lrh, t16);
   4305	t32 = rec_len - t16;
   4306
   4307	if (!check_rstbl(rt, t32)) {
   4308		err = -EINVAL;
   4309		goto out;
   4310	}
   4311
   4312	oatbl = kmemdup(rt, t32, GFP_NOFS);
   4313	if (!oatbl) {
   4314		err = -ENOMEM;
   4315		goto out;
   4316	}
   4317
   4318	log->open_attr_tbl = oatbl;
   4319
   4320	/* Clear all of the Attr pointers. */
   4321	oe = NULL;
   4322	while ((oe = enum_rstbl(oatbl, oe))) {
   4323		if (!rst->major_ver) {
   4324			struct OPEN_ATTR_ENRTY_32 oe0;
   4325
   4326			/* Really 'oe' points to OPEN_ATTR_ENRTY_32. */
   4327			memcpy(&oe0, oe, SIZEOF_OPENATTRIBUTEENTRY0);
   4328
   4329			oe->bytes_per_index = oe0.bytes_per_index;
   4330			oe->type = oe0.type;
   4331			oe->is_dirty_pages = oe0.is_dirty_pages;
   4332			oe->name_len = 0;
   4333			oe->ref = oe0.ref;
   4334			oe->open_record_lsn = oe0.open_record_lsn;
   4335		}
   4336
   4337		oe->is_attr_name = 0;
   4338		oe->ptr = NULL;
   4339	}
   4340
   4341	lcb_put(lcb);
   4342	lcb = NULL;
   4343
   4344check_attribute_names2:
   4345	if (!rst->attr_names_len)
   4346		goto trace_attribute_table;
   4347
   4348	ane = attr_names;
   4349	if (!oatbl)
   4350		goto trace_attribute_table;
   4351	while (ane->off) {
   4352		/* TODO: Clear table on exit! */
   4353		oe = Add2Ptr(oatbl, le16_to_cpu(ane->off));
   4354		t16 = le16_to_cpu(ane->name_bytes);
   4355		oe->name_len = t16 / sizeof(short);
   4356		oe->ptr = ane->name;
   4357		oe->is_attr_name = 2;
   4358		ane = Add2Ptr(ane, sizeof(struct ATTR_NAME_ENTRY) + t16);
   4359	}
   4360
   4361trace_attribute_table:
   4362	/*
   4363	 * If the checkpt_lsn is zero, then this is a freshly
   4364	 * formatted disk and we have no work to do.
   4365	 */
   4366	if (!checkpt_lsn) {
   4367		err = 0;
   4368		goto out;
   4369	}
   4370
   4371	if (!oatbl) {
   4372		oatbl = init_rsttbl(bytes_per_attr_entry, 8);
   4373		if (!oatbl) {
   4374			err = -ENOMEM;
   4375			goto out;
   4376		}
   4377	}
   4378
   4379	log->open_attr_tbl = oatbl;
   4380
   4381	/* Start the analysis pass from the Checkpoint lsn. */
   4382	rec_lsn = checkpt_lsn;
   4383
   4384	/* Read the first lsn. */
   4385	err = read_log_rec_lcb(log, checkpt_lsn, lcb_ctx_next, &lcb);
   4386	if (err)
   4387		goto out;
   4388
   4389	/* Loop to read all subsequent records to the end of the log file. */
   4390next_log_record_analyze:
   4391	err = read_next_log_rec(log, lcb, &rec_lsn);
   4392	if (err)
   4393		goto out;
   4394
   4395	if (!rec_lsn)
   4396		goto end_log_records_enumerate;
   4397
   4398	frh = lcb->lrh;
   4399	transact_id = le32_to_cpu(frh->transact_id);
   4400	rec_len = le32_to_cpu(frh->client_data_len);
   4401	lrh = lcb->log_rec;
   4402
   4403	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
   4404		err = -EINVAL;
   4405		goto out;
   4406	}
   4407
   4408	/*
   4409	 * The first lsn after the previous lsn remembered
   4410	 * the checkpoint is the first candidate for the rlsn.
   4411	 */
   4412	if (!rlsn)
   4413		rlsn = rec_lsn;
   4414
   4415	if (LfsClientRecord != frh->record_type)
   4416		goto next_log_record_analyze;
   4417
   4418	/*
   4419	 * Now update the Transaction Table for this transaction. If there
   4420	 * is no entry present or it is unallocated we allocate the entry.
   4421	 */
   4422	if (!trtbl) {
   4423		trtbl = init_rsttbl(sizeof(struct TRANSACTION_ENTRY),
   4424				    INITIAL_NUMBER_TRANSACTIONS);
   4425		if (!trtbl) {
   4426			err = -ENOMEM;
   4427			goto out;
   4428		}
   4429	}
   4430
   4431	tr = Add2Ptr(trtbl, transact_id);
   4432
   4433	if (transact_id >= bytes_per_rt(trtbl) ||
   4434	    tr->next != RESTART_ENTRY_ALLOCATED_LE) {
   4435		tr = alloc_rsttbl_from_idx(&trtbl, transact_id);
   4436		if (!tr) {
   4437			err = -ENOMEM;
   4438			goto out;
   4439		}
   4440		tr->transact_state = TransactionActive;
   4441		tr->first_lsn = cpu_to_le64(rec_lsn);
   4442	}
   4443
   4444	tr->prev_lsn = tr->undo_next_lsn = cpu_to_le64(rec_lsn);
   4445
   4446	/*
   4447	 * If this is a compensation log record, then change
   4448	 * the undo_next_lsn to be the undo_next_lsn of this record.
   4449	 */
   4450	if (lrh->undo_op == cpu_to_le16(CompensationLogRecord))
   4451		tr->undo_next_lsn = frh->client_undo_next_lsn;
   4452
   4453	/* Dispatch to handle log record depending on type. */
   4454	switch (le16_to_cpu(lrh->redo_op)) {
   4455	case InitializeFileRecordSegment:
   4456	case DeallocateFileRecordSegment:
   4457	case WriteEndOfFileRecordSegment:
   4458	case CreateAttribute:
   4459	case DeleteAttribute:
   4460	case UpdateResidentValue:
   4461	case UpdateNonresidentValue:
   4462	case UpdateMappingPairs:
   4463	case SetNewAttributeSizes:
   4464	case AddIndexEntryRoot:
   4465	case DeleteIndexEntryRoot:
   4466	case AddIndexEntryAllocation:
   4467	case DeleteIndexEntryAllocation:
   4468	case WriteEndOfIndexBuffer:
   4469	case SetIndexEntryVcnRoot:
   4470	case SetIndexEntryVcnAllocation:
   4471	case UpdateFileNameRoot:
   4472	case UpdateFileNameAllocation:
   4473	case SetBitsInNonresidentBitMap:
   4474	case ClearBitsInNonresidentBitMap:
   4475	case UpdateRecordDataRoot:
   4476	case UpdateRecordDataAllocation:
   4477	case ZeroEndOfFileRecord:
   4478		t16 = le16_to_cpu(lrh->target_attr);
   4479		t64 = le64_to_cpu(lrh->target_vcn);
   4480		dp = find_dp(dptbl, t16, t64);
   4481
   4482		if (dp)
   4483			goto copy_lcns;
   4484
   4485		/*
   4486		 * Calculate the number of clusters per page the system
   4487		 * which wrote the checkpoint, possibly creating the table.
   4488		 */
   4489		if (dptbl) {
   4490			t32 = (le16_to_cpu(dptbl->size) -
   4491			       sizeof(struct DIR_PAGE_ENTRY)) /
   4492			      sizeof(u64);
   4493		} else {
   4494			t32 = log->clst_per_page;
   4495			kfree(dptbl);
   4496			dptbl = init_rsttbl(struct_size(dp, page_lcns, t32),
   4497					    32);
   4498			if (!dptbl) {
   4499				err = -ENOMEM;
   4500				goto out;
   4501			}
   4502		}
   4503
   4504		dp = alloc_rsttbl_idx(&dptbl);
   4505		if (!dp) {
   4506			err = -ENOMEM;
   4507			goto out;
   4508		}
   4509		dp->target_attr = cpu_to_le32(t16);
   4510		dp->transfer_len = cpu_to_le32(t32 << sbi->cluster_bits);
   4511		dp->lcns_follow = cpu_to_le32(t32);
   4512		dp->vcn = cpu_to_le64(t64 & ~((u64)t32 - 1));
   4513		dp->oldest_lsn = cpu_to_le64(rec_lsn);
   4514
   4515copy_lcns:
   4516		/*
   4517		 * Copy the Lcns from the log record into the Dirty Page Entry.
   4518		 * TODO: For different page size support, must somehow make
   4519		 * whole routine a loop, case Lcns do not fit below.
   4520		 */
   4521		t16 = le16_to_cpu(lrh->lcns_follow);
   4522		for (i = 0; i < t16; i++) {
   4523			size_t j = (size_t)(le64_to_cpu(lrh->target_vcn) -
   4524					    le64_to_cpu(dp->vcn));
   4525			dp->page_lcns[j + i] = lrh->page_lcns[i];
   4526		}
   4527
   4528		goto next_log_record_analyze;
   4529
   4530	case DeleteDirtyClusters: {
   4531		u32 range_count =
   4532			le16_to_cpu(lrh->redo_len) / sizeof(struct LCN_RANGE);
   4533		const struct LCN_RANGE *r =
   4534			Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
   4535
   4536		/* Loop through all of the Lcn ranges this log record. */
   4537		for (i = 0; i < range_count; i++, r++) {
   4538			u64 lcn0 = le64_to_cpu(r->lcn);
   4539			u64 lcn_e = lcn0 + le64_to_cpu(r->len) - 1;
   4540
   4541			dp = NULL;
   4542			while ((dp = enum_rstbl(dptbl, dp))) {
   4543				u32 j;
   4544
   4545				t32 = le32_to_cpu(dp->lcns_follow);
   4546				for (j = 0; j < t32; j++) {
   4547					t64 = le64_to_cpu(dp->page_lcns[j]);
   4548					if (t64 >= lcn0 && t64 <= lcn_e)
   4549						dp->page_lcns[j] = 0;
   4550				}
   4551			}
   4552		}
   4553		goto next_log_record_analyze;
   4554		;
   4555	}
   4556
   4557	case OpenNonresidentAttribute:
   4558		t16 = le16_to_cpu(lrh->target_attr);
   4559		if (t16 >= bytes_per_rt(oatbl)) {
   4560			/*
   4561			 * Compute how big the table needs to be.
   4562			 * Add 10 extra entries for some cushion.
   4563			 */
   4564			u32 new_e = t16 / le16_to_cpu(oatbl->size);
   4565
   4566			new_e += 10 - le16_to_cpu(oatbl->used);
   4567
   4568			oatbl = extend_rsttbl(oatbl, new_e, ~0u);
   4569			log->open_attr_tbl = oatbl;
   4570			if (!oatbl) {
   4571				err = -ENOMEM;
   4572				goto out;
   4573			}
   4574		}
   4575
   4576		/* Point to the entry being opened. */
   4577		oe = alloc_rsttbl_from_idx(&oatbl, t16);
   4578		log->open_attr_tbl = oatbl;
   4579		if (!oe) {
   4580			err = -ENOMEM;
   4581			goto out;
   4582		}
   4583
   4584		/* Initialize this entry from the log record. */
   4585		t16 = le16_to_cpu(lrh->redo_off);
   4586		if (!rst->major_ver) {
   4587			/* Convert version '0' into version '1'. */
   4588			struct OPEN_ATTR_ENRTY_32 *oe0 = Add2Ptr(lrh, t16);
   4589
   4590			oe->bytes_per_index = oe0->bytes_per_index;
   4591			oe->type = oe0->type;
   4592			oe->is_dirty_pages = oe0->is_dirty_pages;
   4593			oe->name_len = 0; //oe0.name_len;
   4594			oe->ref = oe0->ref;
   4595			oe->open_record_lsn = oe0->open_record_lsn;
   4596		} else {
   4597			memcpy(oe, Add2Ptr(lrh, t16), bytes_per_attr_entry);
   4598		}
   4599
   4600		t16 = le16_to_cpu(lrh->undo_len);
   4601		if (t16) {
   4602			oe->ptr = kmalloc(t16, GFP_NOFS);
   4603			if (!oe->ptr) {
   4604				err = -ENOMEM;
   4605				goto out;
   4606			}
   4607			oe->name_len = t16 / sizeof(short);
   4608			memcpy(oe->ptr,
   4609			       Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)), t16);
   4610			oe->is_attr_name = 1;
   4611		} else {
   4612			oe->ptr = NULL;
   4613			oe->is_attr_name = 0;
   4614		}
   4615
   4616		goto next_log_record_analyze;
   4617
   4618	case HotFix:
   4619		t16 = le16_to_cpu(lrh->target_attr);
   4620		t64 = le64_to_cpu(lrh->target_vcn);
   4621		dp = find_dp(dptbl, t16, t64);
   4622		if (dp) {
   4623			size_t j = le64_to_cpu(lrh->target_vcn) -
   4624				   le64_to_cpu(dp->vcn);
   4625			if (dp->page_lcns[j])
   4626				dp->page_lcns[j] = lrh->page_lcns[0];
   4627		}
   4628		goto next_log_record_analyze;
   4629
   4630	case EndTopLevelAction:
   4631		tr = Add2Ptr(trtbl, transact_id);
   4632		tr->prev_lsn = cpu_to_le64(rec_lsn);
   4633		tr->undo_next_lsn = frh->client_undo_next_lsn;
   4634		goto next_log_record_analyze;
   4635
   4636	case PrepareTransaction:
   4637		tr = Add2Ptr(trtbl, transact_id);
   4638		tr->transact_state = TransactionPrepared;
   4639		goto next_log_record_analyze;
   4640
   4641	case CommitTransaction:
   4642		tr = Add2Ptr(trtbl, transact_id);
   4643		tr->transact_state = TransactionCommitted;
   4644		goto next_log_record_analyze;
   4645
   4646	case ForgetTransaction:
   4647		free_rsttbl_idx(trtbl, transact_id);
   4648		goto next_log_record_analyze;
   4649
   4650	case Noop:
   4651	case OpenAttributeTableDump:
   4652	case AttributeNamesDump:
   4653	case DirtyPageTableDump:
   4654	case TransactionTableDump:
   4655		/* The following cases require no action the Analysis Pass. */
   4656		goto next_log_record_analyze;
   4657
   4658	default:
   4659		/*
   4660		 * All codes will be explicitly handled.
   4661		 * If we see a code we do not expect, then we are trouble.
   4662		 */
   4663		goto next_log_record_analyze;
   4664	}
   4665
   4666end_log_records_enumerate:
   4667	lcb_put(lcb);
   4668	lcb = NULL;
   4669
   4670	/*
   4671	 * Scan the Dirty Page Table and Transaction Table for
   4672	 * the lowest lsn, and return it as the Redo lsn.
   4673	 */
   4674	dp = NULL;
   4675	while ((dp = enum_rstbl(dptbl, dp))) {
   4676		t64 = le64_to_cpu(dp->oldest_lsn);
   4677		if (t64 && t64 < rlsn)
   4678			rlsn = t64;
   4679	}
   4680
   4681	tr = NULL;
   4682	while ((tr = enum_rstbl(trtbl, tr))) {
   4683		t64 = le64_to_cpu(tr->first_lsn);
   4684		if (t64 && t64 < rlsn)
   4685			rlsn = t64;
   4686	}
   4687
   4688	/*
   4689	 * Only proceed if the Dirty Page Table or Transaction
   4690	 * table are not empty.
   4691	 */
   4692	if ((!dptbl || !dptbl->total) && (!trtbl || !trtbl->total))
   4693		goto end_reply;
   4694
   4695	sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
   4696	if (is_ro)
   4697		goto out;
   4698
   4699	/* Reopen all of the attributes with dirty pages. */
   4700	oe = NULL;
   4701next_open_attribute:
   4702
   4703	oe = enum_rstbl(oatbl, oe);
   4704	if (!oe) {
   4705		err = 0;
   4706		dp = NULL;
   4707		goto next_dirty_page;
   4708	}
   4709
   4710	oa = kzalloc(sizeof(struct OpenAttr), GFP_NOFS);
   4711	if (!oa) {
   4712		err = -ENOMEM;
   4713		goto out;
   4714	}
   4715
   4716	inode = ntfs_iget5(sbi->sb, &oe->ref, NULL);
   4717	if (IS_ERR(inode))
   4718		goto fake_attr;
   4719
   4720	if (is_bad_inode(inode)) {
   4721		iput(inode);
   4722fake_attr:
   4723		if (oa->ni) {
   4724			iput(&oa->ni->vfs_inode);
   4725			oa->ni = NULL;
   4726		}
   4727
   4728		attr = attr_create_nonres_log(sbi, oe->type, 0, oe->ptr,
   4729					      oe->name_len, 0);
   4730		if (!attr) {
   4731			kfree(oa);
   4732			err = -ENOMEM;
   4733			goto out;
   4734		}
   4735		oa->attr = attr;
   4736		oa->run1 = &oa->run0;
   4737		goto final_oe;
   4738	}
   4739
   4740	ni_oe = ntfs_i(inode);
   4741	oa->ni = ni_oe;
   4742
   4743	attr = ni_find_attr(ni_oe, NULL, NULL, oe->type, oe->ptr, oe->name_len,
   4744			    NULL, NULL);
   4745
   4746	if (!attr)
   4747		goto fake_attr;
   4748
   4749	t32 = le32_to_cpu(attr->size);
   4750	oa->attr = kmemdup(attr, t32, GFP_NOFS);
   4751	if (!oa->attr)
   4752		goto fake_attr;
   4753
   4754	if (!S_ISDIR(inode->i_mode)) {
   4755		if (attr->type == ATTR_DATA && !attr->name_len) {
   4756			oa->run1 = &ni_oe->file.run;
   4757			goto final_oe;
   4758		}
   4759	} else {
   4760		if (attr->type == ATTR_ALLOC &&
   4761		    attr->name_len == ARRAY_SIZE(I30_NAME) &&
   4762		    !memcmp(attr_name(attr), I30_NAME, sizeof(I30_NAME))) {
   4763			oa->run1 = &ni_oe->dir.alloc_run;
   4764			goto final_oe;
   4765		}
   4766	}
   4767
   4768	if (attr->non_res) {
   4769		u16 roff = le16_to_cpu(attr->nres.run_off);
   4770		CLST svcn = le64_to_cpu(attr->nres.svcn);
   4771
   4772		err = run_unpack(&oa->run0, sbi, inode->i_ino, svcn,
   4773				 le64_to_cpu(attr->nres.evcn), svcn,
   4774				 Add2Ptr(attr, roff), t32 - roff);
   4775		if (err < 0) {
   4776			kfree(oa->attr);
   4777			oa->attr = NULL;
   4778			goto fake_attr;
   4779		}
   4780		err = 0;
   4781	}
   4782	oa->run1 = &oa->run0;
   4783	attr = oa->attr;
   4784
   4785final_oe:
   4786	if (oe->is_attr_name == 1)
   4787		kfree(oe->ptr);
   4788	oe->is_attr_name = 0;
   4789	oe->ptr = oa;
   4790	oe->name_len = attr->name_len;
   4791
   4792	goto next_open_attribute;
   4793
   4794	/*
   4795	 * Now loop through the dirty page table to extract all of the Vcn/Lcn.
   4796	 * Mapping that we have, and insert it into the appropriate run.
   4797	 */
   4798next_dirty_page:
   4799	dp = enum_rstbl(dptbl, dp);
   4800	if (!dp)
   4801		goto do_redo_1;
   4802
   4803	oe = Add2Ptr(oatbl, le32_to_cpu(dp->target_attr));
   4804
   4805	if (oe->next != RESTART_ENTRY_ALLOCATED_LE)
   4806		goto next_dirty_page;
   4807
   4808	oa = oe->ptr;
   4809	if (!oa)
   4810		goto next_dirty_page;
   4811
   4812	i = -1;
   4813next_dirty_page_vcn:
   4814	i += 1;
   4815	if (i >= le32_to_cpu(dp->lcns_follow))
   4816		goto next_dirty_page;
   4817
   4818	vcn = le64_to_cpu(dp->vcn) + i;
   4819	size = (vcn + 1) << sbi->cluster_bits;
   4820
   4821	if (!dp->page_lcns[i])
   4822		goto next_dirty_page_vcn;
   4823
   4824	rno = ino_get(&oe->ref);
   4825	if (rno <= MFT_REC_MIRR &&
   4826	    size < (MFT_REC_VOL + 1) * sbi->record_size &&
   4827	    oe->type == ATTR_DATA) {
   4828		goto next_dirty_page_vcn;
   4829	}
   4830
   4831	lcn = le64_to_cpu(dp->page_lcns[i]);
   4832
   4833	if ((!run_lookup_entry(oa->run1, vcn, &lcn0, &len0, NULL) ||
   4834	     lcn0 != lcn) &&
   4835	    !run_add_entry(oa->run1, vcn, lcn, 1, false)) {
   4836		err = -ENOMEM;
   4837		goto out;
   4838	}
   4839	attr = oa->attr;
   4840	t64 = le64_to_cpu(attr->nres.alloc_size);
   4841	if (size > t64) {
   4842		attr->nres.valid_size = attr->nres.data_size =
   4843			attr->nres.alloc_size = cpu_to_le64(size);
   4844	}
   4845	goto next_dirty_page_vcn;
   4846
   4847do_redo_1:
   4848	/*
   4849	 * Perform the Redo Pass, to restore all of the dirty pages to the same
   4850	 * contents that they had immediately before the crash. If the dirty
   4851	 * page table is empty, then we can skip the entire Redo Pass.
   4852	 */
   4853	if (!dptbl || !dptbl->total)
   4854		goto do_undo_action;
   4855
   4856	rec_lsn = rlsn;
   4857
   4858	/*
   4859	 * Read the record at the Redo lsn, before falling
   4860	 * into common code to handle each record.
   4861	 */
   4862	err = read_log_rec_lcb(log, rlsn, lcb_ctx_next, &lcb);
   4863	if (err)
   4864		goto out;
   4865
   4866	/*
   4867	 * Now loop to read all of our log records forwards, until
   4868	 * we hit the end of the file, cleaning up at the end.
   4869	 */
   4870do_action_next:
   4871	frh = lcb->lrh;
   4872
   4873	if (LfsClientRecord != frh->record_type)
   4874		goto read_next_log_do_action;
   4875
   4876	transact_id = le32_to_cpu(frh->transact_id);
   4877	rec_len = le32_to_cpu(frh->client_data_len);
   4878	lrh = lcb->log_rec;
   4879
   4880	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
   4881		err = -EINVAL;
   4882		goto out;
   4883	}
   4884
   4885	/* Ignore log records that do not update pages. */
   4886	if (lrh->lcns_follow)
   4887		goto find_dirty_page;
   4888
   4889	goto read_next_log_do_action;
   4890
   4891find_dirty_page:
   4892	t16 = le16_to_cpu(lrh->target_attr);
   4893	t64 = le64_to_cpu(lrh->target_vcn);
   4894	dp = find_dp(dptbl, t16, t64);
   4895
   4896	if (!dp)
   4897		goto read_next_log_do_action;
   4898
   4899	if (rec_lsn < le64_to_cpu(dp->oldest_lsn))
   4900		goto read_next_log_do_action;
   4901
   4902	t16 = le16_to_cpu(lrh->target_attr);
   4903	if (t16 >= bytes_per_rt(oatbl)) {
   4904		err = -EINVAL;
   4905		goto out;
   4906	}
   4907
   4908	oe = Add2Ptr(oatbl, t16);
   4909
   4910	if (oe->next != RESTART_ENTRY_ALLOCATED_LE) {
   4911		err = -EINVAL;
   4912		goto out;
   4913	}
   4914
   4915	oa = oe->ptr;
   4916
   4917	if (!oa) {
   4918		err = -EINVAL;
   4919		goto out;
   4920	}
   4921	attr = oa->attr;
   4922
   4923	vcn = le64_to_cpu(lrh->target_vcn);
   4924
   4925	if (!run_lookup_entry(oa->run1, vcn, &lcn, NULL, NULL) ||
   4926	    lcn == SPARSE_LCN) {
   4927		goto read_next_log_do_action;
   4928	}
   4929
   4930	/* Point to the Redo data and get its length. */
   4931	data = Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
   4932	dlen = le16_to_cpu(lrh->redo_len);
   4933
   4934	/* Shorten length by any Lcns which were deleted. */
   4935	saved_len = dlen;
   4936
   4937	for (i = le16_to_cpu(lrh->lcns_follow); i; i--) {
   4938		size_t j;
   4939		u32 alen, voff;
   4940
   4941		voff = le16_to_cpu(lrh->record_off) +
   4942		       le16_to_cpu(lrh->attr_off);
   4943		voff += le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
   4944
   4945		/* If the Vcn question is allocated, we can just get out. */
   4946		j = le64_to_cpu(lrh->target_vcn) - le64_to_cpu(dp->vcn);
   4947		if (dp->page_lcns[j + i - 1])
   4948			break;
   4949
   4950		if (!saved_len)
   4951			saved_len = 1;
   4952
   4953		/*
   4954		 * Calculate the allocated space left relative to the
   4955		 * log record Vcn, after removing this unallocated Vcn.
   4956		 */
   4957		alen = (i - 1) << sbi->cluster_bits;
   4958
   4959		/*
   4960		 * If the update described this log record goes beyond
   4961		 * the allocated space, then we will have to reduce the length.
   4962		 */
   4963		if (voff >= alen)
   4964			dlen = 0;
   4965		else if (voff + dlen > alen)
   4966			dlen = alen - voff;
   4967	}
   4968
   4969	/*
   4970	 * If the resulting dlen from above is now zero,
   4971	 * we can skip this log record.
   4972	 */
   4973	if (!dlen && saved_len)
   4974		goto read_next_log_do_action;
   4975
   4976	t16 = le16_to_cpu(lrh->redo_op);
   4977	if (can_skip_action(t16))
   4978		goto read_next_log_do_action;
   4979
   4980	/* Apply the Redo operation a common routine. */
   4981	err = do_action(log, oe, lrh, t16, data, dlen, rec_len, &rec_lsn);
   4982	if (err)
   4983		goto out;
   4984
   4985	/* Keep reading and looping back until end of file. */
   4986read_next_log_do_action:
   4987	err = read_next_log_rec(log, lcb, &rec_lsn);
   4988	if (!err && rec_lsn)
   4989		goto do_action_next;
   4990
   4991	lcb_put(lcb);
   4992	lcb = NULL;
   4993
   4994do_undo_action:
   4995	/* Scan Transaction Table. */
   4996	tr = NULL;
   4997transaction_table_next:
   4998	tr = enum_rstbl(trtbl, tr);
   4999	if (!tr)
   5000		goto undo_action_done;
   5001
   5002	if (TransactionActive != tr->transact_state || !tr->undo_next_lsn) {
   5003		free_rsttbl_idx(trtbl, PtrOffset(trtbl, tr));
   5004		goto transaction_table_next;
   5005	}
   5006
   5007	log->transaction_id = PtrOffset(trtbl, tr);
   5008	undo_next_lsn = le64_to_cpu(tr->undo_next_lsn);
   5009
   5010	/*
   5011	 * We only have to do anything if the transaction has
   5012	 * something its undo_next_lsn field.
   5013	 */
   5014	if (!undo_next_lsn)
   5015		goto commit_undo;
   5016
   5017	/* Read the first record to be undone by this transaction. */
   5018	err = read_log_rec_lcb(log, undo_next_lsn, lcb_ctx_undo_next, &lcb);
   5019	if (err)
   5020		goto out;
   5021
   5022	/*
   5023	 * Now loop to read all of our log records forwards,
   5024	 * until we hit the end of the file, cleaning up at the end.
   5025	 */
   5026undo_action_next:
   5027
   5028	lrh = lcb->log_rec;
   5029	frh = lcb->lrh;
   5030	transact_id = le32_to_cpu(frh->transact_id);
   5031	rec_len = le32_to_cpu(frh->client_data_len);
   5032
   5033	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
   5034		err = -EINVAL;
   5035		goto out;
   5036	}
   5037
   5038	if (lrh->undo_op == cpu_to_le16(Noop))
   5039		goto read_next_log_undo_action;
   5040
   5041	oe = Add2Ptr(oatbl, le16_to_cpu(lrh->target_attr));
   5042	oa = oe->ptr;
   5043
   5044	t16 = le16_to_cpu(lrh->lcns_follow);
   5045	if (!t16)
   5046		goto add_allocated_vcns;
   5047
   5048	is_mapped = run_lookup_entry(oa->run1, le64_to_cpu(lrh->target_vcn),
   5049				     &lcn, &clen, NULL);
   5050
   5051	/*
   5052	 * If the mapping isn't already the table or the  mapping
   5053	 * corresponds to a hole the mapping, we need to make sure
   5054	 * there is no partial page already memory.
   5055	 */
   5056	if (is_mapped && lcn != SPARSE_LCN && clen >= t16)
   5057		goto add_allocated_vcns;
   5058
   5059	vcn = le64_to_cpu(lrh->target_vcn);
   5060	vcn &= ~(log->clst_per_page - 1);
   5061
   5062add_allocated_vcns:
   5063	for (i = 0, vcn = le64_to_cpu(lrh->target_vcn),
   5064	    size = (vcn + 1) << sbi->cluster_bits;
   5065	     i < t16; i++, vcn += 1, size += sbi->cluster_size) {
   5066		attr = oa->attr;
   5067		if (!attr->non_res) {
   5068			if (size > le32_to_cpu(attr->res.data_size))
   5069				attr->res.data_size = cpu_to_le32(size);
   5070		} else {
   5071			if (size > le64_to_cpu(attr->nres.data_size))
   5072				attr->nres.valid_size = attr->nres.data_size =
   5073					attr->nres.alloc_size =
   5074						cpu_to_le64(size);
   5075		}
   5076	}
   5077
   5078	t16 = le16_to_cpu(lrh->undo_op);
   5079	if (can_skip_action(t16))
   5080		goto read_next_log_undo_action;
   5081
   5082	/* Point to the Redo data and get its length. */
   5083	data = Add2Ptr(lrh, le16_to_cpu(lrh->undo_off));
   5084	dlen = le16_to_cpu(lrh->undo_len);
   5085
   5086	/* It is time to apply the undo action. */
   5087	err = do_action(log, oe, lrh, t16, data, dlen, rec_len, NULL);
   5088
   5089read_next_log_undo_action:
   5090	/*
   5091	 * Keep reading and looping back until we have read the
   5092	 * last record for this transaction.
   5093	 */
   5094	err = read_next_log_rec(log, lcb, &rec_lsn);
   5095	if (err)
   5096		goto out;
   5097
   5098	if (rec_lsn)
   5099		goto undo_action_next;
   5100
   5101	lcb_put(lcb);
   5102	lcb = NULL;
   5103
   5104commit_undo:
   5105	free_rsttbl_idx(trtbl, log->transaction_id);
   5106
   5107	log->transaction_id = 0;
   5108
   5109	goto transaction_table_next;
   5110
   5111undo_action_done:
   5112
   5113	ntfs_update_mftmirr(sbi, 0);
   5114
   5115	sbi->flags &= ~NTFS_FLAGS_NEED_REPLAY;
   5116
   5117end_reply:
   5118
   5119	err = 0;
   5120	if (is_ro)
   5121		goto out;
   5122
   5123	rh = kzalloc(log->page_size, GFP_NOFS);
   5124	if (!rh) {
   5125		err = -ENOMEM;
   5126		goto out;
   5127	}
   5128
   5129	rh->rhdr.sign = NTFS_RSTR_SIGNATURE;
   5130	rh->rhdr.fix_off = cpu_to_le16(offsetof(struct RESTART_HDR, fixups));
   5131	t16 = (log->page_size >> SECTOR_SHIFT) + 1;
   5132	rh->rhdr.fix_num = cpu_to_le16(t16);
   5133	rh->sys_page_size = cpu_to_le32(log->page_size);
   5134	rh->page_size = cpu_to_le32(log->page_size);
   5135
   5136	t16 = ALIGN(offsetof(struct RESTART_HDR, fixups) + sizeof(short) * t16,
   5137		    8);
   5138	rh->ra_off = cpu_to_le16(t16);
   5139	rh->minor_ver = cpu_to_le16(1); // 0x1A:
   5140	rh->major_ver = cpu_to_le16(1); // 0x1C:
   5141
   5142	ra2 = Add2Ptr(rh, t16);
   5143	memcpy(ra2, ra, sizeof(struct RESTART_AREA));
   5144
   5145	ra2->client_idx[0] = 0;
   5146	ra2->client_idx[1] = LFS_NO_CLIENT_LE;
   5147	ra2->flags = cpu_to_le16(2);
   5148
   5149	le32_add_cpu(&ra2->open_log_count, 1);
   5150
   5151	ntfs_fix_pre_write(&rh->rhdr, log->page_size);
   5152
   5153	err = ntfs_sb_write_run(sbi, &ni->file.run, 0, rh, log->page_size, 0);
   5154	if (!err)
   5155		err = ntfs_sb_write_run(sbi, &log->ni->file.run, log->page_size,
   5156					rh, log->page_size, 0);
   5157
   5158	kfree(rh);
   5159	if (err)
   5160		goto out;
   5161
   5162out:
   5163	kfree(rst);
   5164	if (lcb)
   5165		lcb_put(lcb);
   5166
   5167	/*
   5168	 * Scan the Open Attribute Table to close all of
   5169	 * the open attributes.
   5170	 */
   5171	oe = NULL;
   5172	while ((oe = enum_rstbl(oatbl, oe))) {
   5173		rno = ino_get(&oe->ref);
   5174
   5175		if (oe->is_attr_name == 1) {
   5176			kfree(oe->ptr);
   5177			oe->ptr = NULL;
   5178			continue;
   5179		}
   5180
   5181		if (oe->is_attr_name)
   5182			continue;
   5183
   5184		oa = oe->ptr;
   5185		if (!oa)
   5186			continue;
   5187
   5188		run_close(&oa->run0);
   5189		kfree(oa->attr);
   5190		if (oa->ni)
   5191			iput(&oa->ni->vfs_inode);
   5192		kfree(oa);
   5193	}
   5194
   5195	kfree(trtbl);
   5196	kfree(oatbl);
   5197	kfree(dptbl);
   5198	kfree(attr_names);
   5199	kfree(rst_info.r_page);
   5200
   5201	kfree(ra);
   5202	kfree(log->one_page_buf);
   5203
   5204	if (err)
   5205		sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
   5206
   5207	if (err == -EROFS)
   5208		err = 0;
   5209	else if (log->set_dirty)
   5210		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
   5211
   5212	kfree(log);
   5213
   5214	return err;
   5215}