cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

decompress_common.h (9839B)


      1/* SPDX-License-Identifier: GPL-2.0-or-later */
      2/*
      3 * decompress_common.h - Code shared by the XPRESS and LZX decompressors
      4 *
      5 * Copyright (C) 2015 Eric Biggers
      6 */
      7
      8#ifndef _LINUX_NTFS3_LIB_DECOMPRESS_COMMON_H
      9#define _LINUX_NTFS3_LIB_DECOMPRESS_COMMON_H
     10
     11#include <linux/string.h>
     12#include <linux/compiler.h>
     13#include <linux/types.h>
     14#include <linux/slab.h>
     15#include <asm/unaligned.h>
     16
     17
     18/* "Force inline" macro (not required, but helpful for performance)  */
     19#define forceinline __always_inline
     20
     21/* Enable whole-word match copying on selected architectures  */
     22#if defined(__i386__) || defined(__x86_64__) || defined(__ARM_FEATURE_UNALIGNED)
     23#  define FAST_UNALIGNED_ACCESS
     24#endif
     25
     26/* Size of a machine word  */
     27#define WORDBYTES (sizeof(size_t))
     28
     29static forceinline void
     30copy_unaligned_word(const void *src, void *dst)
     31{
     32	put_unaligned(get_unaligned((const size_t *)src), (size_t *)dst);
     33}
     34
     35
     36/* Generate a "word" with platform-dependent size whose bytes all contain the
     37 * value 'b'.
     38 */
     39static forceinline size_t repeat_byte(u8 b)
     40{
     41	size_t v;
     42
     43	v = b;
     44	v |= v << 8;
     45	v |= v << 16;
     46	v |= v << ((WORDBYTES == 8) ? 32 : 0);
     47	return v;
     48}
     49
     50/* Structure that encapsulates a block of in-memory data being interpreted as a
     51 * stream of bits, optionally with interwoven literal bytes.  Bits are assumed
     52 * to be stored in little endian 16-bit coding units, with the bits ordered high
     53 * to low.
     54 */
     55struct input_bitstream {
     56
     57	/* Bits that have been read from the input buffer.  The bits are
     58	 * left-justified; the next bit is always bit 31.
     59	 */
     60	u32 bitbuf;
     61
     62	/* Number of bits currently held in @bitbuf.  */
     63	u32 bitsleft;
     64
     65	/* Pointer to the next byte to be retrieved from the input buffer.  */
     66	const u8 *next;
     67
     68	/* Pointer to just past the end of the input buffer.  */
     69	const u8 *end;
     70};
     71
     72/* Initialize a bitstream to read from the specified input buffer.  */
     73static forceinline void init_input_bitstream(struct input_bitstream *is,
     74					     const void *buffer, u32 size)
     75{
     76	is->bitbuf = 0;
     77	is->bitsleft = 0;
     78	is->next = buffer;
     79	is->end = is->next + size;
     80}
     81
     82/* Ensure the bit buffer variable for the bitstream contains at least @num_bits
     83 * bits.  Following this, bitstream_peek_bits() and/or bitstream_remove_bits()
     84 * may be called on the bitstream to peek or remove up to @num_bits bits.  Note
     85 * that @num_bits must be <= 16.
     86 */
     87static forceinline void bitstream_ensure_bits(struct input_bitstream *is,
     88					      u32 num_bits)
     89{
     90	if (is->bitsleft < num_bits) {
     91		if (is->end - is->next >= 2) {
     92			is->bitbuf |= (u32)get_unaligned_le16(is->next)
     93					<< (16 - is->bitsleft);
     94			is->next += 2;
     95		}
     96		is->bitsleft += 16;
     97	}
     98}
     99
    100/* Return the next @num_bits bits from the bitstream, without removing them.
    101 * There must be at least @num_bits remaining in the buffer variable, from a
    102 * previous call to bitstream_ensure_bits().
    103 */
    104static forceinline u32
    105bitstream_peek_bits(const struct input_bitstream *is, const u32 num_bits)
    106{
    107	return (is->bitbuf >> 1) >> (sizeof(is->bitbuf) * 8 - num_bits - 1);
    108}
    109
    110/* Remove @num_bits from the bitstream.  There must be at least @num_bits
    111 * remaining in the buffer variable, from a previous call to
    112 * bitstream_ensure_bits().
    113 */
    114static forceinline void
    115bitstream_remove_bits(struct input_bitstream *is, u32 num_bits)
    116{
    117	is->bitbuf <<= num_bits;
    118	is->bitsleft -= num_bits;
    119}
    120
    121/* Remove and return @num_bits bits from the bitstream.  There must be at least
    122 * @num_bits remaining in the buffer variable, from a previous call to
    123 * bitstream_ensure_bits().
    124 */
    125static forceinline u32
    126bitstream_pop_bits(struct input_bitstream *is, u32 num_bits)
    127{
    128	u32 bits = bitstream_peek_bits(is, num_bits);
    129
    130	bitstream_remove_bits(is, num_bits);
    131	return bits;
    132}
    133
    134/* Read and return the next @num_bits bits from the bitstream.  */
    135static forceinline u32
    136bitstream_read_bits(struct input_bitstream *is, u32 num_bits)
    137{
    138	bitstream_ensure_bits(is, num_bits);
    139	return bitstream_pop_bits(is, num_bits);
    140}
    141
    142/* Read and return the next literal byte embedded in the bitstream.  */
    143static forceinline u8
    144bitstream_read_byte(struct input_bitstream *is)
    145{
    146	if (unlikely(is->end == is->next))
    147		return 0;
    148	return *is->next++;
    149}
    150
    151/* Read and return the next 16-bit integer embedded in the bitstream.  */
    152static forceinline u16
    153bitstream_read_u16(struct input_bitstream *is)
    154{
    155	u16 v;
    156
    157	if (unlikely(is->end - is->next < 2))
    158		return 0;
    159	v = get_unaligned_le16(is->next);
    160	is->next += 2;
    161	return v;
    162}
    163
    164/* Read and return the next 32-bit integer embedded in the bitstream.  */
    165static forceinline u32
    166bitstream_read_u32(struct input_bitstream *is)
    167{
    168	u32 v;
    169
    170	if (unlikely(is->end - is->next < 4))
    171		return 0;
    172	v = get_unaligned_le32(is->next);
    173	is->next += 4;
    174	return v;
    175}
    176
    177/* Read into @dst_buffer an array of literal bytes embedded in the bitstream.
    178 * Return either a pointer to the byte past the last written, or NULL if the
    179 * read overflows the input buffer.
    180 */
    181static forceinline void *bitstream_read_bytes(struct input_bitstream *is,
    182					      void *dst_buffer, size_t count)
    183{
    184	if ((size_t)(is->end - is->next) < count)
    185		return NULL;
    186	memcpy(dst_buffer, is->next, count);
    187	is->next += count;
    188	return (u8 *)dst_buffer + count;
    189}
    190
    191/* Align the input bitstream on a coding-unit boundary.  */
    192static forceinline void bitstream_align(struct input_bitstream *is)
    193{
    194	is->bitsleft = 0;
    195	is->bitbuf = 0;
    196}
    197
    198extern int make_huffman_decode_table(u16 decode_table[], const u32 num_syms,
    199				     const u32 num_bits, const u8 lens[],
    200				     const u32 max_codeword_len,
    201				     u16 working_space[]);
    202
    203
    204/* Reads and returns the next Huffman-encoded symbol from a bitstream.  If the
    205 * input data is exhausted, the Huffman symbol is decoded as if the missing bits
    206 * are all zeroes.
    207 */
    208static forceinline u32 read_huffsym(struct input_bitstream *istream,
    209					 const u16 decode_table[],
    210					 u32 table_bits,
    211					 u32 max_codeword_len)
    212{
    213	u32 entry;
    214	u32 key_bits;
    215
    216	bitstream_ensure_bits(istream, max_codeword_len);
    217
    218	/* Index the decode table by the next table_bits bits of the input.  */
    219	key_bits = bitstream_peek_bits(istream, table_bits);
    220	entry = decode_table[key_bits];
    221	if (entry < 0xC000) {
    222		/* Fast case: The decode table directly provided the
    223		 * symbol and codeword length.  The low 11 bits are the
    224		 * symbol, and the high 5 bits are the codeword length.
    225		 */
    226		bitstream_remove_bits(istream, entry >> 11);
    227		return entry & 0x7FF;
    228	}
    229	/* Slow case: The codeword for the symbol is longer than
    230	 * table_bits, so the symbol does not have an entry
    231	 * directly in the first (1 << table_bits) entries of the
    232	 * decode table.  Traverse the appropriate binary tree
    233	 * bit-by-bit to decode the symbol.
    234	 */
    235	bitstream_remove_bits(istream, table_bits);
    236	do {
    237		key_bits = (entry & 0x3FFF) + bitstream_pop_bits(istream, 1);
    238	} while ((entry = decode_table[key_bits]) >= 0xC000);
    239	return entry;
    240}
    241
    242/*
    243 * Copy an LZ77 match at (dst - offset) to dst.
    244 *
    245 * The length and offset must be already validated --- that is, (dst - offset)
    246 * can't underrun the output buffer, and (dst + length) can't overrun the output
    247 * buffer.  Also, the length cannot be 0.
    248 *
    249 * @bufend points to the byte past the end of the output buffer.  This function
    250 * won't write any data beyond this position.
    251 *
    252 * Returns dst + length.
    253 */
    254static forceinline u8 *lz_copy(u8 *dst, u32 length, u32 offset, const u8 *bufend,
    255			       u32 min_length)
    256{
    257	const u8 *src = dst - offset;
    258
    259	/*
    260	 * Try to copy one machine word at a time.  On i386 and x86_64 this is
    261	 * faster than copying one byte at a time, unless the data is
    262	 * near-random and all the matches have very short lengths.  Note that
    263	 * since this requires unaligned memory accesses, it won't necessarily
    264	 * be faster on every architecture.
    265	 *
    266	 * Also note that we might copy more than the length of the match.  For
    267	 * example, if a word is 8 bytes and the match is of length 5, then
    268	 * we'll simply copy 8 bytes.  This is okay as long as we don't write
    269	 * beyond the end of the output buffer, hence the check for (bufend -
    270	 * end >= WORDBYTES - 1).
    271	 */
    272#ifdef FAST_UNALIGNED_ACCESS
    273	u8 * const end = dst + length;
    274
    275	if (bufend - end >= (ptrdiff_t)(WORDBYTES - 1)) {
    276
    277		if (offset >= WORDBYTES) {
    278			/* The source and destination words don't overlap.  */
    279
    280			/* To improve branch prediction, one iteration of this
    281			 * loop is unrolled.  Most matches are short and will
    282			 * fail the first check.  But if that check passes, then
    283			 * it becomes increasing likely that the match is long
    284			 * and we'll need to continue copying.
    285			 */
    286
    287			copy_unaligned_word(src, dst);
    288			src += WORDBYTES;
    289			dst += WORDBYTES;
    290
    291			if (dst < end) {
    292				do {
    293					copy_unaligned_word(src, dst);
    294					src += WORDBYTES;
    295					dst += WORDBYTES;
    296				} while (dst < end);
    297			}
    298			return end;
    299		} else if (offset == 1) {
    300
    301			/* Offset 1 matches are equivalent to run-length
    302			 * encoding of the previous byte.  This case is common
    303			 * if the data contains many repeated bytes.
    304			 */
    305			size_t v = repeat_byte(*(dst - 1));
    306
    307			do {
    308				put_unaligned(v, (size_t *)dst);
    309				src += WORDBYTES;
    310				dst += WORDBYTES;
    311			} while (dst < end);
    312			return end;
    313		}
    314		/*
    315		 * We don't bother with special cases for other 'offset <
    316		 * WORDBYTES', which are usually rarer than 'offset == 1'.  Extra
    317		 * checks will just slow things down.  Actually, it's possible
    318		 * to handle all the 'offset < WORDBYTES' cases using the same
    319		 * code, but it still becomes more complicated doesn't seem any
    320		 * faster overall; it definitely slows down the more common
    321		 * 'offset == 1' case.
    322		 */
    323	}
    324#endif /* FAST_UNALIGNED_ACCESS */
    325
    326	/* Fall back to a bytewise copy.  */
    327
    328	if (min_length >= 2) {
    329		*dst++ = *src++;
    330		length--;
    331	}
    332	if (min_length >= 3) {
    333		*dst++ = *src++;
    334		length--;
    335	}
    336	do {
    337		*dst++ = *src++;
    338	} while (--length);
    339
    340	return dst;
    341}
    342
    343#endif /* _LINUX_NTFS3_LIB_DECOMPRESS_COMMON_H */