cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ntfs.h (37068B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2/*
      3 *
      4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
      5 *
      6 * on-disk ntfs structs
      7 */
      8
      9// clang-format off
     10#ifndef _LINUX_NTFS3_NTFS_H
     11#define _LINUX_NTFS3_NTFS_H
     12
     13#include <linux/blkdev.h>
     14#include <linux/build_bug.h>
     15#include <linux/kernel.h>
     16#include <linux/stddef.h>
     17#include <linux/string.h>
     18#include <linux/types.h>
     19
     20#include "debug.h"
     21
     22/* TODO: Check 4K MFT record and 512 bytes cluster. */
     23
     24/* Check each run for marked clusters. */
     25#define NTFS3_CHECK_FREE_CLST
     26
     27#define NTFS_NAME_LEN 255
     28
     29/*
     30 * ntfs.sys used 500 maximum links on-disk struct allows up to 0xffff.
     31 * xfstest generic/041 creates 3003 hardlinks.
     32 */
     33#define NTFS_LINK_MAX 4000
     34
     35/*
     36 * Activate to use 64 bit clusters instead of 32 bits in ntfs.sys.
     37 * Logical and virtual cluster number if needed, may be
     38 * redefined to use 64 bit value.
     39 */
     40//#define CONFIG_NTFS3_64BIT_CLUSTER
     41
     42#define NTFS_LZNT_MAX_CLUSTER	4096
     43#define NTFS_LZNT_CUNIT		4
     44#define NTFS_LZNT_CLUSTERS	(1u<<NTFS_LZNT_CUNIT)
     45
     46struct GUID {
     47	__le32 Data1;
     48	__le16 Data2;
     49	__le16 Data3;
     50	u8 Data4[8];
     51};
     52
     53/*
     54 * This struct repeats layout of ATTR_FILE_NAME
     55 * at offset 0x40.
     56 * It used to store global constants NAME_MFT/NAME_MIRROR...
     57 * most constant names are shorter than 10.
     58 */
     59struct cpu_str {
     60	u8 len;
     61	u8 unused;
     62	u16 name[10];
     63};
     64
     65struct le_str {
     66	u8 len;
     67	u8 unused;
     68	__le16 name[];
     69};
     70
     71static_assert(SECTOR_SHIFT == 9);
     72
     73#ifdef CONFIG_NTFS3_64BIT_CLUSTER
     74typedef u64 CLST;
     75static_assert(sizeof(size_t) == 8);
     76#else
     77typedef u32 CLST;
     78#endif
     79
     80#define SPARSE_LCN64   ((u64)-1)
     81#define SPARSE_LCN     ((CLST)-1)
     82#define RESIDENT_LCN   ((CLST)-2)
     83#define COMPRESSED_LCN ((CLST)-3)
     84
     85#define COMPRESSION_UNIT     4
     86#define COMPRESS_MAX_CLUSTER 0x1000
     87#define MFT_INCREASE_CHUNK   1024
     88
     89enum RECORD_NUM {
     90	MFT_REC_MFT		= 0,
     91	MFT_REC_MIRR		= 1,
     92	MFT_REC_LOG		= 2,
     93	MFT_REC_VOL		= 3,
     94	MFT_REC_ATTR		= 4,
     95	MFT_REC_ROOT		= 5,
     96	MFT_REC_BITMAP		= 6,
     97	MFT_REC_BOOT		= 7,
     98	MFT_REC_BADCLUST	= 8,
     99	//MFT_REC_QUOTA		= 9,
    100	MFT_REC_SECURE		= 9, // NTFS 3.0
    101	MFT_REC_UPCASE		= 10,
    102	MFT_REC_EXTEND		= 11, // NTFS 3.0
    103	MFT_REC_RESERVED	= 11,
    104	MFT_REC_FREE		= 16,
    105	MFT_REC_USER		= 24,
    106};
    107
    108enum ATTR_TYPE {
    109	ATTR_ZERO		= cpu_to_le32(0x00),
    110	ATTR_STD		= cpu_to_le32(0x10),
    111	ATTR_LIST		= cpu_to_le32(0x20),
    112	ATTR_NAME		= cpu_to_le32(0x30),
    113	// ATTR_VOLUME_VERSION on Nt4
    114	ATTR_ID			= cpu_to_le32(0x40),
    115	ATTR_SECURE		= cpu_to_le32(0x50),
    116	ATTR_LABEL		= cpu_to_le32(0x60),
    117	ATTR_VOL_INFO		= cpu_to_le32(0x70),
    118	ATTR_DATA		= cpu_to_le32(0x80),
    119	ATTR_ROOT		= cpu_to_le32(0x90),
    120	ATTR_ALLOC		= cpu_to_le32(0xA0),
    121	ATTR_BITMAP		= cpu_to_le32(0xB0),
    122	// ATTR_SYMLINK on Nt4
    123	ATTR_REPARSE		= cpu_to_le32(0xC0),
    124	ATTR_EA_INFO		= cpu_to_le32(0xD0),
    125	ATTR_EA			= cpu_to_le32(0xE0),
    126	ATTR_PROPERTYSET	= cpu_to_le32(0xF0),
    127	ATTR_LOGGED_UTILITY_STREAM = cpu_to_le32(0x100),
    128	ATTR_END		= cpu_to_le32(0xFFFFFFFF)
    129};
    130
    131static_assert(sizeof(enum ATTR_TYPE) == 4);
    132
    133enum FILE_ATTRIBUTE {
    134	FILE_ATTRIBUTE_READONLY		= cpu_to_le32(0x00000001),
    135	FILE_ATTRIBUTE_HIDDEN		= cpu_to_le32(0x00000002),
    136	FILE_ATTRIBUTE_SYSTEM		= cpu_to_le32(0x00000004),
    137	FILE_ATTRIBUTE_ARCHIVE		= cpu_to_le32(0x00000020),
    138	FILE_ATTRIBUTE_DEVICE		= cpu_to_le32(0x00000040),
    139	FILE_ATTRIBUTE_TEMPORARY	= cpu_to_le32(0x00000100),
    140	FILE_ATTRIBUTE_SPARSE_FILE	= cpu_to_le32(0x00000200),
    141	FILE_ATTRIBUTE_REPARSE_POINT	= cpu_to_le32(0x00000400),
    142	FILE_ATTRIBUTE_COMPRESSED	= cpu_to_le32(0x00000800),
    143	FILE_ATTRIBUTE_OFFLINE		= cpu_to_le32(0x00001000),
    144	FILE_ATTRIBUTE_NOT_CONTENT_INDEXED = cpu_to_le32(0x00002000),
    145	FILE_ATTRIBUTE_ENCRYPTED	= cpu_to_le32(0x00004000),
    146	FILE_ATTRIBUTE_VALID_FLAGS	= cpu_to_le32(0x00007fb7),
    147	FILE_ATTRIBUTE_DIRECTORY	= cpu_to_le32(0x10000000),
    148};
    149
    150static_assert(sizeof(enum FILE_ATTRIBUTE) == 4);
    151
    152extern const struct cpu_str NAME_MFT;
    153extern const struct cpu_str NAME_MIRROR;
    154extern const struct cpu_str NAME_LOGFILE;
    155extern const struct cpu_str NAME_VOLUME;
    156extern const struct cpu_str NAME_ATTRDEF;
    157extern const struct cpu_str NAME_ROOT;
    158extern const struct cpu_str NAME_BITMAP;
    159extern const struct cpu_str NAME_BOOT;
    160extern const struct cpu_str NAME_BADCLUS;
    161extern const struct cpu_str NAME_QUOTA;
    162extern const struct cpu_str NAME_SECURE;
    163extern const struct cpu_str NAME_UPCASE;
    164extern const struct cpu_str NAME_EXTEND;
    165extern const struct cpu_str NAME_OBJID;
    166extern const struct cpu_str NAME_REPARSE;
    167extern const struct cpu_str NAME_USNJRNL;
    168
    169extern const __le16 I30_NAME[4];
    170extern const __le16 SII_NAME[4];
    171extern const __le16 SDH_NAME[4];
    172extern const __le16 SO_NAME[2];
    173extern const __le16 SQ_NAME[2];
    174extern const __le16 SR_NAME[2];
    175
    176extern const __le16 BAD_NAME[4];
    177extern const __le16 SDS_NAME[4];
    178extern const __le16 WOF_NAME[17];	/* WofCompressedData */
    179
    180/* MFT record number structure. */
    181struct MFT_REF {
    182	__le32 low;	// The low part of the number.
    183	__le16 high;	// The high part of the number.
    184	__le16 seq;	// The sequence number of MFT record.
    185};
    186
    187static_assert(sizeof(__le64) == sizeof(struct MFT_REF));
    188
    189static inline CLST ino_get(const struct MFT_REF *ref)
    190{
    191#ifdef CONFIG_NTFS3_64BIT_CLUSTER
    192	return le32_to_cpu(ref->low) | ((u64)le16_to_cpu(ref->high) << 32);
    193#else
    194	return le32_to_cpu(ref->low);
    195#endif
    196}
    197
    198struct NTFS_BOOT {
    199	u8 jump_code[3];	// 0x00: Jump to boot code.
    200	u8 system_id[8];	// 0x03: System ID, equals "NTFS    "
    201
    202	// NOTE: This member is not aligned(!)
    203	// bytes_per_sector[0] must be 0.
    204	// bytes_per_sector[1] must be multiplied by 256.
    205	u8 bytes_per_sector[2];	// 0x0B: Bytes per sector.
    206
    207	u8 sectors_per_clusters;// 0x0D: Sectors per cluster.
    208	u8 unused1[7];
    209	u8 media_type;		// 0x15: Media type (0xF8 - harddisk)
    210	u8 unused2[2];
    211	__le16 sct_per_track;	// 0x18: number of sectors per track.
    212	__le16 heads;		// 0x1A: number of heads per cylinder.
    213	__le32 hidden_sectors;	// 0x1C: number of 'hidden' sectors.
    214	u8 unused3[4];
    215	u8 bios_drive_num;	// 0x24: BIOS drive number =0x80.
    216	u8 unused4;
    217	u8 signature_ex;	// 0x26: Extended BOOT signature =0x80.
    218	u8 unused5;
    219	__le64 sectors_per_volume;// 0x28: Size of volume in sectors.
    220	__le64 mft_clst;	// 0x30: First cluster of $MFT
    221	__le64 mft2_clst;	// 0x38: First cluster of $MFTMirr
    222	s8 record_size;		// 0x40: Size of MFT record in clusters(sectors).
    223	u8 unused6[3];
    224	s8 index_size;		// 0x44: Size of INDX record in clusters(sectors).
    225	u8 unused7[3];
    226	__le64 serial_num;	// 0x48: Volume serial number
    227	__le32 check_sum;	// 0x50: Simple additive checksum of all
    228				// of the u32's which precede the 'check_sum'.
    229
    230	u8 boot_code[0x200 - 0x50 - 2 - 4]; // 0x54:
    231	u8 boot_magic[2];	// 0x1FE: Boot signature =0x55 + 0xAA
    232};
    233
    234static_assert(sizeof(struct NTFS_BOOT) == 0x200);
    235
    236enum NTFS_SIGNATURE {
    237	NTFS_FILE_SIGNATURE = cpu_to_le32(0x454C4946), // 'FILE'
    238	NTFS_INDX_SIGNATURE = cpu_to_le32(0x58444E49), // 'INDX'
    239	NTFS_CHKD_SIGNATURE = cpu_to_le32(0x444B4843), // 'CHKD'
    240	NTFS_RSTR_SIGNATURE = cpu_to_le32(0x52545352), // 'RSTR'
    241	NTFS_RCRD_SIGNATURE = cpu_to_le32(0x44524352), // 'RCRD'
    242	NTFS_BAAD_SIGNATURE = cpu_to_le32(0x44414142), // 'BAAD'
    243	NTFS_HOLE_SIGNATURE = cpu_to_le32(0x454C4F48), // 'HOLE'
    244	NTFS_FFFF_SIGNATURE = cpu_to_le32(0xffffffff),
    245};
    246
    247static_assert(sizeof(enum NTFS_SIGNATURE) == 4);
    248
    249/* MFT Record header structure. */
    250struct NTFS_RECORD_HEADER {
    251	/* Record magic number, equals 'FILE'/'INDX'/'RSTR'/'RCRD'. */
    252	enum NTFS_SIGNATURE sign; // 0x00:
    253	__le16 fix_off;		// 0x04:
    254	__le16 fix_num;		// 0x06:
    255	__le64 lsn;		// 0x08: Log file sequence number,
    256};
    257
    258static_assert(sizeof(struct NTFS_RECORD_HEADER) == 0x10);
    259
    260static inline int is_baad(const struct NTFS_RECORD_HEADER *hdr)
    261{
    262	return hdr->sign == NTFS_BAAD_SIGNATURE;
    263}
    264
    265/* Possible bits in struct MFT_REC.flags. */
    266enum RECORD_FLAG {
    267	RECORD_FLAG_IN_USE	= cpu_to_le16(0x0001),
    268	RECORD_FLAG_DIR		= cpu_to_le16(0x0002),
    269	RECORD_FLAG_SYSTEM	= cpu_to_le16(0x0004),
    270	RECORD_FLAG_UNKNOWN	= cpu_to_le16(0x0008),
    271};
    272
    273/* MFT Record structure. */
    274struct MFT_REC {
    275	struct NTFS_RECORD_HEADER rhdr; // 'FILE'
    276
    277	__le16 seq;		// 0x10: Sequence number for this record.
    278	__le16 hard_links;	// 0x12: The number of hard links to record.
    279	__le16 attr_off;	// 0x14: Offset to attributes.
    280	__le16 flags;		// 0x16: See RECORD_FLAG.
    281	__le32 used;		// 0x18: The size of used part.
    282	__le32 total;		// 0x1C: Total record size.
    283
    284	struct MFT_REF parent_ref; // 0x20: Parent MFT record.
    285	__le16 next_attr_id;	// 0x28: The next attribute Id.
    286
    287	__le16 res;		// 0x2A: High part of MFT record?
    288	__le32 mft_record;	// 0x2C: Current MFT record number.
    289	__le16 fixups[];	// 0x30:
    290};
    291
    292#define MFTRECORD_FIXUP_OFFSET_1 offsetof(struct MFT_REC, res)
    293#define MFTRECORD_FIXUP_OFFSET_3 offsetof(struct MFT_REC, fixups)
    294
    295static_assert(MFTRECORD_FIXUP_OFFSET_1 == 0x2A);
    296static_assert(MFTRECORD_FIXUP_OFFSET_3 == 0x30);
    297
    298static inline bool is_rec_base(const struct MFT_REC *rec)
    299{
    300	const struct MFT_REF *r = &rec->parent_ref;
    301
    302	return !r->low && !r->high && !r->seq;
    303}
    304
    305static inline bool is_mft_rec5(const struct MFT_REC *rec)
    306{
    307	return le16_to_cpu(rec->rhdr.fix_off) >=
    308	       offsetof(struct MFT_REC, fixups);
    309}
    310
    311static inline bool is_rec_inuse(const struct MFT_REC *rec)
    312{
    313	return rec->flags & RECORD_FLAG_IN_USE;
    314}
    315
    316static inline bool clear_rec_inuse(struct MFT_REC *rec)
    317{
    318	return rec->flags &= ~RECORD_FLAG_IN_USE;
    319}
    320
    321/* Possible values of ATTR_RESIDENT.flags */
    322#define RESIDENT_FLAG_INDEXED 0x01
    323
    324struct ATTR_RESIDENT {
    325	__le32 data_size;	// 0x10: The size of data.
    326	__le16 data_off;	// 0x14: Offset to data.
    327	u8 flags;		// 0x16: Resident flags ( 1 - indexed ).
    328	u8 res;			// 0x17:
    329}; // sizeof() = 0x18
    330
    331struct ATTR_NONRESIDENT {
    332	__le64 svcn;		// 0x10: Starting VCN of this segment.
    333	__le64 evcn;		// 0x18: End VCN of this segment.
    334	__le16 run_off;		// 0x20: Offset to packed runs.
    335	//  Unit of Compression size for this stream, expressed
    336	//  as a log of the cluster size.
    337	//
    338	//	0 means file is not compressed
    339	//	1, 2, 3, and 4 are potentially legal values if the
    340	//	    stream is compressed, however the implementation
    341	//	    may only choose to use 4, or possibly 3.  Note
    342	//	    that 4 means cluster size time 16.	If convenient
    343	//	    the implementation may wish to accept a
    344	//	    reasonable range of legal values here (1-5?),
    345	//	    even if the implementation only generates
    346	//	    a smaller set of values itself.
    347	u8 c_unit;		// 0x22:
    348	u8 res1[5];		// 0x23:
    349	__le64 alloc_size;	// 0x28: The allocated size of attribute in bytes.
    350				// (multiple of cluster size)
    351	__le64 data_size;	// 0x30: The size of attribute  in bytes <= alloc_size.
    352	__le64 valid_size;	// 0x38: The size of valid part in bytes <= data_size.
    353	__le64 total_size;	// 0x40: The sum of the allocated clusters for a file.
    354				// (present only for the first segment (0 == vcn)
    355				// of compressed attribute)
    356
    357}; // sizeof()=0x40 or 0x48 (if compressed)
    358
    359/* Possible values of ATTRIB.flags: */
    360#define ATTR_FLAG_COMPRESSED	  cpu_to_le16(0x0001)
    361#define ATTR_FLAG_COMPRESSED_MASK cpu_to_le16(0x00FF)
    362#define ATTR_FLAG_ENCRYPTED	  cpu_to_le16(0x4000)
    363#define ATTR_FLAG_SPARSED	  cpu_to_le16(0x8000)
    364
    365struct ATTRIB {
    366	enum ATTR_TYPE type;	// 0x00: The type of this attribute.
    367	__le32 size;		// 0x04: The size of this attribute.
    368	u8 non_res;		// 0x08: Is this attribute non-resident?
    369	u8 name_len;		// 0x09: This attribute name length.
    370	__le16 name_off;	// 0x0A: Offset to the attribute name.
    371	__le16 flags;		// 0x0C: See ATTR_FLAG_XXX.
    372	__le16 id;		// 0x0E: Unique id (per record).
    373
    374	union {
    375		struct ATTR_RESIDENT res;     // 0x10
    376		struct ATTR_NONRESIDENT nres; // 0x10
    377	};
    378};
    379
    380/* Define attribute sizes. */
    381#define SIZEOF_RESIDENT			0x18
    382#define SIZEOF_NONRESIDENT_EX		0x48
    383#define SIZEOF_NONRESIDENT		0x40
    384
    385#define SIZEOF_RESIDENT_LE		cpu_to_le16(0x18)
    386#define SIZEOF_NONRESIDENT_EX_LE	cpu_to_le16(0x48)
    387#define SIZEOF_NONRESIDENT_LE		cpu_to_le16(0x40)
    388
    389static inline u64 attr_ondisk_size(const struct ATTRIB *attr)
    390{
    391	return attr->non_res ? ((attr->flags &
    392				 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ?
    393					le64_to_cpu(attr->nres.total_size) :
    394					le64_to_cpu(attr->nres.alloc_size))
    395			     : ALIGN(le32_to_cpu(attr->res.data_size), 8);
    396}
    397
    398static inline u64 attr_size(const struct ATTRIB *attr)
    399{
    400	return attr->non_res ? le64_to_cpu(attr->nres.data_size) :
    401			       le32_to_cpu(attr->res.data_size);
    402}
    403
    404static inline bool is_attr_encrypted(const struct ATTRIB *attr)
    405{
    406	return attr->flags & ATTR_FLAG_ENCRYPTED;
    407}
    408
    409static inline bool is_attr_sparsed(const struct ATTRIB *attr)
    410{
    411	return attr->flags & ATTR_FLAG_SPARSED;
    412}
    413
    414static inline bool is_attr_compressed(const struct ATTRIB *attr)
    415{
    416	return attr->flags & ATTR_FLAG_COMPRESSED;
    417}
    418
    419static inline bool is_attr_ext(const struct ATTRIB *attr)
    420{
    421	return attr->flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED);
    422}
    423
    424static inline bool is_attr_indexed(const struct ATTRIB *attr)
    425{
    426	return !attr->non_res && (attr->res.flags & RESIDENT_FLAG_INDEXED);
    427}
    428
    429static inline __le16 const *attr_name(const struct ATTRIB *attr)
    430{
    431	return Add2Ptr(attr, le16_to_cpu(attr->name_off));
    432}
    433
    434static inline u64 attr_svcn(const struct ATTRIB *attr)
    435{
    436	return attr->non_res ? le64_to_cpu(attr->nres.svcn) : 0;
    437}
    438
    439/* The size of resident attribute by its resident size. */
    440#define BYTES_PER_RESIDENT(b) (0x18 + (b))
    441
    442static_assert(sizeof(struct ATTRIB) == 0x48);
    443static_assert(sizeof(((struct ATTRIB *)NULL)->res) == 0x08);
    444static_assert(sizeof(((struct ATTRIB *)NULL)->nres) == 0x38);
    445
    446static inline void *resident_data_ex(const struct ATTRIB *attr, u32 datasize)
    447{
    448	u32 asize, rsize;
    449	u16 off;
    450
    451	if (attr->non_res)
    452		return NULL;
    453
    454	asize = le32_to_cpu(attr->size);
    455	off = le16_to_cpu(attr->res.data_off);
    456
    457	if (asize < datasize + off)
    458		return NULL;
    459
    460	rsize = le32_to_cpu(attr->res.data_size);
    461	if (rsize < datasize)
    462		return NULL;
    463
    464	return Add2Ptr(attr, off);
    465}
    466
    467static inline void *resident_data(const struct ATTRIB *attr)
    468{
    469	return Add2Ptr(attr, le16_to_cpu(attr->res.data_off));
    470}
    471
    472static inline void *attr_run(const struct ATTRIB *attr)
    473{
    474	return Add2Ptr(attr, le16_to_cpu(attr->nres.run_off));
    475}
    476
    477/* Standard information attribute (0x10). */
    478struct ATTR_STD_INFO {
    479	__le64 cr_time;		// 0x00: File creation file.
    480	__le64 m_time;		// 0x08: File modification time.
    481	__le64 c_time;		// 0x10: Last time any attribute was modified.
    482	__le64 a_time;		// 0x18: File last access time.
    483	enum FILE_ATTRIBUTE fa;	// 0x20: Standard DOS attributes & more.
    484	__le32 max_ver_num;	// 0x24: Maximum Number of Versions.
    485	__le32 ver_num;		// 0x28: Version Number.
    486	__le32 class_id;	// 0x2C: Class Id from bidirectional Class Id index.
    487};
    488
    489static_assert(sizeof(struct ATTR_STD_INFO) == 0x30);
    490
    491#define SECURITY_ID_INVALID 0x00000000
    492#define SECURITY_ID_FIRST 0x00000100
    493
    494struct ATTR_STD_INFO5 {
    495	__le64 cr_time;		// 0x00: File creation file.
    496	__le64 m_time;		// 0x08: File modification time.
    497	__le64 c_time;		// 0x10: Last time any attribute was modified.
    498	__le64 a_time;		// 0x18: File last access time.
    499	enum FILE_ATTRIBUTE fa;	// 0x20: Standard DOS attributes & more.
    500	__le32 max_ver_num;	// 0x24: Maximum Number of Versions.
    501	__le32 ver_num;		// 0x28: Version Number.
    502	__le32 class_id;	// 0x2C: Class Id from bidirectional Class Id index.
    503
    504	__le32 owner_id;	// 0x30: Owner Id of the user owning the file.
    505	__le32 security_id;	// 0x34: The Security Id is a key in the $SII Index and $SDS.
    506	__le64 quota_charge;	// 0x38:
    507	__le64 usn;		// 0x40: Last Update Sequence Number of the file. This is a direct
    508				// index into the file $UsnJrnl. If zero, the USN Journal is
    509				// disabled.
    510};
    511
    512static_assert(sizeof(struct ATTR_STD_INFO5) == 0x48);
    513
    514/* Attribute list entry structure (0x20) */
    515struct ATTR_LIST_ENTRY {
    516	enum ATTR_TYPE type;	// 0x00: The type of attribute.
    517	__le16 size;		// 0x04: The size of this record.
    518	u8 name_len;		// 0x06: The length of attribute name.
    519	u8 name_off;		// 0x07: The offset to attribute name.
    520	__le64 vcn;		// 0x08: Starting VCN of this attribute.
    521	struct MFT_REF ref;	// 0x10: MFT record number with attribute.
    522	__le16 id;		// 0x18: struct ATTRIB ID.
    523	__le16 name[3];		// 0x1A: Just to align. To get real name can use bNameOffset.
    524
    525}; // sizeof(0x20)
    526
    527static_assert(sizeof(struct ATTR_LIST_ENTRY) == 0x20);
    528
    529static inline u32 le_size(u8 name_len)
    530{
    531	return ALIGN(offsetof(struct ATTR_LIST_ENTRY, name) +
    532		     name_len * sizeof(short), 8);
    533}
    534
    535/* Returns 0 if 'attr' has the same type and name. */
    536static inline int le_cmp(const struct ATTR_LIST_ENTRY *le,
    537			 const struct ATTRIB *attr)
    538{
    539	return le->type != attr->type || le->name_len != attr->name_len ||
    540	       (!le->name_len &&
    541		memcmp(Add2Ptr(le, le->name_off),
    542		       Add2Ptr(attr, le16_to_cpu(attr->name_off)),
    543		       le->name_len * sizeof(short)));
    544}
    545
    546static inline __le16 const *le_name(const struct ATTR_LIST_ENTRY *le)
    547{
    548	return Add2Ptr(le, le->name_off);
    549}
    550
    551/* File name types (the field type in struct ATTR_FILE_NAME). */
    552#define FILE_NAME_POSIX   0
    553#define FILE_NAME_UNICODE 1
    554#define FILE_NAME_DOS	  2
    555#define FILE_NAME_UNICODE_AND_DOS (FILE_NAME_DOS | FILE_NAME_UNICODE)
    556
    557/* Filename attribute structure (0x30). */
    558struct NTFS_DUP_INFO {
    559	__le64 cr_time;		// 0x00: File creation file.
    560	__le64 m_time;		// 0x08: File modification time.
    561	__le64 c_time;		// 0x10: Last time any attribute was modified.
    562	__le64 a_time;		// 0x18: File last access time.
    563	__le64 alloc_size;	// 0x20: Data attribute allocated size, multiple of cluster size.
    564	__le64 data_size;	// 0x28: Data attribute size <= Dataalloc_size.
    565	enum FILE_ATTRIBUTE fa;	// 0x30: Standard DOS attributes & more.
    566	__le16 ea_size;		// 0x34: Packed EAs.
    567	__le16 reparse;		// 0x36: Used by Reparse.
    568
    569}; // 0x38
    570
    571struct ATTR_FILE_NAME {
    572	struct MFT_REF home;	// 0x00: MFT record for directory.
    573	struct NTFS_DUP_INFO dup;// 0x08:
    574	u8 name_len;		// 0x40: File name length in words.
    575	u8 type;		// 0x41: File name type.
    576	__le16 name[];		// 0x42: File name.
    577};
    578
    579static_assert(sizeof(((struct ATTR_FILE_NAME *)NULL)->dup) == 0x38);
    580static_assert(offsetof(struct ATTR_FILE_NAME, name) == 0x42);
    581#define SIZEOF_ATTRIBUTE_FILENAME     0x44
    582#define SIZEOF_ATTRIBUTE_FILENAME_MAX (0x42 + 255 * 2)
    583
    584static inline struct ATTRIB *attr_from_name(struct ATTR_FILE_NAME *fname)
    585{
    586	return (struct ATTRIB *)((char *)fname - SIZEOF_RESIDENT);
    587}
    588
    589static inline u16 fname_full_size(const struct ATTR_FILE_NAME *fname)
    590{
    591	/* Don't return struct_size(fname, name, fname->name_len); */
    592	return offsetof(struct ATTR_FILE_NAME, name) +
    593	       fname->name_len * sizeof(short);
    594}
    595
    596static inline u8 paired_name(u8 type)
    597{
    598	if (type == FILE_NAME_UNICODE)
    599		return FILE_NAME_DOS;
    600	if (type == FILE_NAME_DOS)
    601		return FILE_NAME_UNICODE;
    602	return FILE_NAME_POSIX;
    603}
    604
    605/* Index entry defines ( the field flags in NtfsDirEntry ). */
    606#define NTFS_IE_HAS_SUBNODES	cpu_to_le16(1)
    607#define NTFS_IE_LAST		cpu_to_le16(2)
    608
    609/* Directory entry structure. */
    610struct NTFS_DE {
    611	union {
    612		struct MFT_REF ref; // 0x00: MFT record number with this file.
    613		struct {
    614			__le16 data_off;  // 0x00:
    615			__le16 data_size; // 0x02:
    616			__le32 res;	  // 0x04: Must be 0.
    617		} view;
    618	};
    619	__le16 size;		// 0x08: The size of this entry.
    620	__le16 key_size;	// 0x0A: The size of File name length in bytes + 0x42.
    621	__le16 flags;		// 0x0C: Entry flags: NTFS_IE_XXX.
    622	__le16 res;		// 0x0E:
    623
    624	// Here any indexed attribute can be placed.
    625	// One of them is:
    626	// struct ATTR_FILE_NAME AttrFileName;
    627	//
    628
    629	// The last 8 bytes of this structure contains
    630	// the VBN of subnode.
    631	// !!! Note !!!
    632	// This field is presented only if (flags & NTFS_IE_HAS_SUBNODES)
    633	// __le64 vbn;
    634};
    635
    636static_assert(sizeof(struct NTFS_DE) == 0x10);
    637
    638static inline void de_set_vbn_le(struct NTFS_DE *e, __le64 vcn)
    639{
    640	__le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
    641
    642	*v = vcn;
    643}
    644
    645static inline void de_set_vbn(struct NTFS_DE *e, CLST vcn)
    646{
    647	__le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
    648
    649	*v = cpu_to_le64(vcn);
    650}
    651
    652static inline __le64 de_get_vbn_le(const struct NTFS_DE *e)
    653{
    654	return *(__le64 *)Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
    655}
    656
    657static inline CLST de_get_vbn(const struct NTFS_DE *e)
    658{
    659	__le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
    660
    661	return le64_to_cpu(*v);
    662}
    663
    664static inline struct NTFS_DE *de_get_next(const struct NTFS_DE *e)
    665{
    666	return Add2Ptr(e, le16_to_cpu(e->size));
    667}
    668
    669static inline struct ATTR_FILE_NAME *de_get_fname(const struct NTFS_DE *e)
    670{
    671	return le16_to_cpu(e->key_size) >= SIZEOF_ATTRIBUTE_FILENAME ?
    672		       Add2Ptr(e, sizeof(struct NTFS_DE)) :
    673		       NULL;
    674}
    675
    676static inline bool de_is_last(const struct NTFS_DE *e)
    677{
    678	return e->flags & NTFS_IE_LAST;
    679}
    680
    681static inline bool de_has_vcn(const struct NTFS_DE *e)
    682{
    683	return e->flags & NTFS_IE_HAS_SUBNODES;
    684}
    685
    686static inline bool de_has_vcn_ex(const struct NTFS_DE *e)
    687{
    688	return (e->flags & NTFS_IE_HAS_SUBNODES) &&
    689	       (u64)(-1) != *((u64 *)Add2Ptr(e, le16_to_cpu(e->size) -
    690							sizeof(__le64)));
    691}
    692
    693#define MAX_BYTES_PER_NAME_ENTRY \
    694	ALIGN(sizeof(struct NTFS_DE) + \
    695	      offsetof(struct ATTR_FILE_NAME, name) + \
    696	      NTFS_NAME_LEN * sizeof(short), 8)
    697
    698struct INDEX_HDR {
    699	__le32 de_off;	// 0x00: The offset from the start of this structure
    700			// to the first NTFS_DE.
    701	__le32 used;	// 0x04: The size of this structure plus all
    702			// entries (quad-word aligned).
    703	__le32 total;	// 0x08: The allocated size of for this structure plus all entries.
    704	u8 flags;	// 0x0C: 0x00 = Small directory, 0x01 = Large directory.
    705	u8 res[3];
    706
    707	//
    708	// de_off + used <= total
    709	//
    710};
    711
    712static_assert(sizeof(struct INDEX_HDR) == 0x10);
    713
    714static inline struct NTFS_DE *hdr_first_de(const struct INDEX_HDR *hdr)
    715{
    716	u32 de_off = le32_to_cpu(hdr->de_off);
    717	u32 used = le32_to_cpu(hdr->used);
    718	struct NTFS_DE *e = Add2Ptr(hdr, de_off);
    719	u16 esize;
    720
    721	if (de_off >= used || de_off >= le32_to_cpu(hdr->total))
    722		return NULL;
    723
    724	esize = le16_to_cpu(e->size);
    725	if (esize < sizeof(struct NTFS_DE) || de_off + esize > used)
    726		return NULL;
    727
    728	return e;
    729}
    730
    731static inline struct NTFS_DE *hdr_next_de(const struct INDEX_HDR *hdr,
    732					  const struct NTFS_DE *e)
    733{
    734	size_t off = PtrOffset(hdr, e);
    735	u32 used = le32_to_cpu(hdr->used);
    736	u16 esize;
    737
    738	if (off >= used)
    739		return NULL;
    740
    741	esize = le16_to_cpu(e->size);
    742
    743	if (esize < sizeof(struct NTFS_DE) ||
    744	    off + esize + sizeof(struct NTFS_DE) > used)
    745		return NULL;
    746
    747	return Add2Ptr(e, esize);
    748}
    749
    750static inline bool hdr_has_subnode(const struct INDEX_HDR *hdr)
    751{
    752	return hdr->flags & 1;
    753}
    754
    755struct INDEX_BUFFER {
    756	struct NTFS_RECORD_HEADER rhdr; // 'INDX'
    757	__le64 vbn; // 0x10: vcn if index >= cluster or vsn id index < cluster
    758	struct INDEX_HDR ihdr; // 0x18:
    759};
    760
    761static_assert(sizeof(struct INDEX_BUFFER) == 0x28);
    762
    763static inline bool ib_is_empty(const struct INDEX_BUFFER *ib)
    764{
    765	const struct NTFS_DE *first = hdr_first_de(&ib->ihdr);
    766
    767	return !first || de_is_last(first);
    768}
    769
    770static inline bool ib_is_leaf(const struct INDEX_BUFFER *ib)
    771{
    772	return !(ib->ihdr.flags & 1);
    773}
    774
    775/* Index root structure ( 0x90 ). */
    776enum COLLATION_RULE {
    777	NTFS_COLLATION_TYPE_BINARY	= cpu_to_le32(0),
    778	// $I30
    779	NTFS_COLLATION_TYPE_FILENAME	= cpu_to_le32(0x01),
    780	// $SII of $Secure and $Q of Quota
    781	NTFS_COLLATION_TYPE_UINT	= cpu_to_le32(0x10),
    782	// $O of Quota
    783	NTFS_COLLATION_TYPE_SID		= cpu_to_le32(0x11),
    784	// $SDH of $Secure
    785	NTFS_COLLATION_TYPE_SECURITY_HASH = cpu_to_le32(0x12),
    786	// $O of ObjId and "$R" for Reparse
    787	NTFS_COLLATION_TYPE_UINTS	= cpu_to_le32(0x13)
    788};
    789
    790static_assert(sizeof(enum COLLATION_RULE) == 4);
    791
    792//
    793struct INDEX_ROOT {
    794	enum ATTR_TYPE type;	// 0x00: The type of attribute to index on.
    795	enum COLLATION_RULE rule; // 0x04: The rule.
    796	__le32 index_block_size;// 0x08: The size of index record.
    797	u8 index_block_clst;	// 0x0C: The number of clusters or sectors per index.
    798	u8 res[3];
    799	struct INDEX_HDR ihdr;	// 0x10:
    800};
    801
    802static_assert(sizeof(struct INDEX_ROOT) == 0x20);
    803static_assert(offsetof(struct INDEX_ROOT, ihdr) == 0x10);
    804
    805#define VOLUME_FLAG_DIRTY	    cpu_to_le16(0x0001)
    806#define VOLUME_FLAG_RESIZE_LOG_FILE cpu_to_le16(0x0002)
    807
    808struct VOLUME_INFO {
    809	__le64 res1;	// 0x00
    810	u8 major_ver;	// 0x08: NTFS major version number (before .)
    811	u8 minor_ver;	// 0x09: NTFS minor version number (after .)
    812	__le16 flags;	// 0x0A: Volume flags, see VOLUME_FLAG_XXX
    813
    814}; // sizeof=0xC
    815
    816#define SIZEOF_ATTRIBUTE_VOLUME_INFO 0xc
    817
    818#define NTFS_LABEL_MAX_LENGTH		(0x100 / sizeof(short))
    819#define NTFS_ATTR_INDEXABLE		cpu_to_le32(0x00000002)
    820#define NTFS_ATTR_DUPALLOWED		cpu_to_le32(0x00000004)
    821#define NTFS_ATTR_MUST_BE_INDEXED	cpu_to_le32(0x00000010)
    822#define NTFS_ATTR_MUST_BE_NAMED		cpu_to_le32(0x00000020)
    823#define NTFS_ATTR_MUST_BE_RESIDENT	cpu_to_le32(0x00000040)
    824#define NTFS_ATTR_LOG_ALWAYS		cpu_to_le32(0x00000080)
    825
    826/* $AttrDef file entry. */
    827struct ATTR_DEF_ENTRY {
    828	__le16 name[0x40];	// 0x00: Attr name.
    829	enum ATTR_TYPE type;	// 0x80: struct ATTRIB type.
    830	__le32 res;		// 0x84:
    831	enum COLLATION_RULE rule; // 0x88:
    832	__le32 flags;		// 0x8C: NTFS_ATTR_XXX (see above).
    833	__le64 min_sz;		// 0x90: Minimum attribute data size.
    834	__le64 max_sz;		// 0x98: Maximum attribute data size.
    835};
    836
    837static_assert(sizeof(struct ATTR_DEF_ENTRY) == 0xa0);
    838
    839/* Object ID (0x40) */
    840struct OBJECT_ID {
    841	struct GUID ObjId;	// 0x00: Unique Id assigned to file.
    842	struct GUID BirthVolumeId; // 0x10: Birth Volume Id is the Object Id of the Volume on.
    843				// which the Object Id was allocated. It never changes.
    844	struct GUID BirthObjectId; // 0x20: Birth Object Id is the first Object Id that was
    845				// ever assigned to this MFT Record. I.e. If the Object Id
    846				// is changed for some reason, this field will reflect the
    847				// original value of the Object Id.
    848	struct GUID DomainId;	// 0x30: Domain Id is currently unused but it is intended to be
    849				// used in a network environment where the local machine is
    850				// part of a Windows 2000 Domain. This may be used in a Windows
    851				// 2000 Advanced Server managed domain.
    852};
    853
    854static_assert(sizeof(struct OBJECT_ID) == 0x40);
    855
    856/* O Directory entry structure ( rule = 0x13 ) */
    857struct NTFS_DE_O {
    858	struct NTFS_DE de;
    859	struct GUID ObjId;	// 0x10: Unique Id assigned to file.
    860	struct MFT_REF ref;	// 0x20: MFT record number with this file.
    861	struct GUID BirthVolumeId; // 0x28: Birth Volume Id is the Object Id of the Volume on
    862				// which the Object Id was allocated. It never changes.
    863	struct GUID BirthObjectId; // 0x38: Birth Object Id is the first Object Id that was
    864				// ever assigned to this MFT Record. I.e. If the Object Id
    865				// is changed for some reason, this field will reflect the
    866				// original value of the Object Id.
    867				// This field is valid if data_size == 0x48.
    868	struct GUID BirthDomainId; // 0x48: Domain Id is currently unused but it is intended
    869				// to be used in a network environment where the local
    870				// machine is part of a Windows 2000 Domain. This may be
    871				// used in a Windows 2000 Advanced Server managed domain.
    872};
    873
    874static_assert(sizeof(struct NTFS_DE_O) == 0x58);
    875
    876#define NTFS_OBJECT_ENTRY_DATA_SIZE1					       \
    877	0x38 // struct NTFS_DE_O.BirthDomainId is not used
    878#define NTFS_OBJECT_ENTRY_DATA_SIZE2					       \
    879	0x48 // struct NTFS_DE_O.BirthDomainId is used
    880
    881/* Q Directory entry structure ( rule = 0x11 ) */
    882struct NTFS_DE_Q {
    883	struct NTFS_DE de;
    884	__le32 owner_id;	// 0x10: Unique Id assigned to file
    885	__le32 Version;		// 0x14: 0x02
    886	__le32 flags2;		// 0x18: Quota flags, see above
    887	__le64 BytesUsed;	// 0x1C:
    888	__le64 ChangeTime;	// 0x24:
    889	__le64 WarningLimit;	// 0x28:
    890	__le64 HardLimit;	// 0x34:
    891	__le64 ExceededTime;	// 0x3C:
    892
    893	// SID is placed here
    894}; // sizeof() = 0x44
    895
    896#define SIZEOF_NTFS_DE_Q 0x44
    897
    898#define SecurityDescriptorsBlockSize 0x40000 // 256K
    899#define SecurityDescriptorMaxSize    0x20000 // 128K
    900#define Log2OfSecurityDescriptorsBlockSize 18
    901
    902struct SECURITY_KEY {
    903	__le32 hash; //  Hash value for descriptor
    904	__le32 sec_id; //  Security Id (guaranteed unique)
    905};
    906
    907/* Security descriptors (the content of $Secure::SDS data stream) */
    908struct SECURITY_HDR {
    909	struct SECURITY_KEY key;	// 0x00: Security Key.
    910	__le64 off;			// 0x08: Offset of this entry in the file.
    911	__le32 size;			// 0x10: Size of this entry, 8 byte aligned.
    912	/*
    913	 * Security descriptor itself is placed here.
    914	 * Total size is 16 byte aligned.
    915	 */
    916} __packed;
    917
    918#define SIZEOF_SECURITY_HDR 0x14
    919
    920/* SII Directory entry structure */
    921struct NTFS_DE_SII {
    922	struct NTFS_DE de;
    923	__le32 sec_id;			// 0x10: Key: sizeof(security_id) = wKeySize
    924	struct SECURITY_HDR sec_hdr;	// 0x14:
    925} __packed;
    926
    927#define SIZEOF_SII_DIRENTRY 0x28
    928
    929/* SDH Directory entry structure */
    930struct NTFS_DE_SDH {
    931	struct NTFS_DE de;
    932	struct SECURITY_KEY key;	// 0x10: Key
    933	struct SECURITY_HDR sec_hdr;	// 0x18: Data
    934	__le16 magic[2];		// 0x2C: 0x00490049 "I I"
    935};
    936
    937#define SIZEOF_SDH_DIRENTRY 0x30
    938
    939struct REPARSE_KEY {
    940	__le32 ReparseTag;		// 0x00: Reparse Tag
    941	struct MFT_REF ref;		// 0x04: MFT record number with this file
    942}; // sizeof() = 0x0C
    943
    944static_assert(offsetof(struct REPARSE_KEY, ref) == 0x04);
    945#define SIZEOF_REPARSE_KEY 0x0C
    946
    947/* Reparse Directory entry structure */
    948struct NTFS_DE_R {
    949	struct NTFS_DE de;
    950	struct REPARSE_KEY key;		// 0x10: Reparse Key.
    951	u32 zero;			// 0x1c:
    952}; // sizeof() = 0x20
    953
    954static_assert(sizeof(struct NTFS_DE_R) == 0x20);
    955
    956/* CompressReparseBuffer.WofVersion */
    957#define WOF_CURRENT_VERSION		cpu_to_le32(1)
    958/* CompressReparseBuffer.WofProvider */
    959#define WOF_PROVIDER_WIM		cpu_to_le32(1)
    960/* CompressReparseBuffer.WofProvider */
    961#define WOF_PROVIDER_SYSTEM		cpu_to_le32(2)
    962/* CompressReparseBuffer.ProviderVer */
    963#define WOF_PROVIDER_CURRENT_VERSION	cpu_to_le32(1)
    964
    965#define WOF_COMPRESSION_XPRESS4K	cpu_to_le32(0) // 4k
    966#define WOF_COMPRESSION_LZX32K		cpu_to_le32(1) // 32k
    967#define WOF_COMPRESSION_XPRESS8K	cpu_to_le32(2) // 8k
    968#define WOF_COMPRESSION_XPRESS16K	cpu_to_le32(3) // 16k
    969
    970/*
    971 * ATTR_REPARSE (0xC0)
    972 *
    973 * The reparse struct GUID structure is used by all 3rd party layered drivers to
    974 * store data in a reparse point. For non-Microsoft tags, The struct GUID field
    975 * cannot be GUID_NULL.
    976 * The constraints on reparse tags are defined below.
    977 * Microsoft tags can also be used with this format of the reparse point buffer.
    978 */
    979struct REPARSE_POINT {
    980	__le32 ReparseTag;	// 0x00:
    981	__le16 ReparseDataLength;// 0x04:
    982	__le16 Reserved;
    983
    984	struct GUID Guid;	// 0x08:
    985
    986	//
    987	// Here GenericReparseBuffer is placed
    988	//
    989};
    990
    991static_assert(sizeof(struct REPARSE_POINT) == 0x18);
    992
    993/* Maximum allowed size of the reparse data. */
    994#define MAXIMUM_REPARSE_DATA_BUFFER_SIZE	(16 * 1024)
    995
    996/*
    997 * The value of the following constant needs to satisfy the following
    998 * conditions:
    999 *  (1) Be at least as large as the largest of the reserved tags.
   1000 *  (2) Be strictly smaller than all the tags in use.
   1001 */
   1002#define IO_REPARSE_TAG_RESERVED_RANGE		1
   1003
   1004/*
   1005 * The reparse tags are a ULONG. The 32 bits are laid out as follows:
   1006 *
   1007 *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
   1008 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
   1009 *  +-+-+-+-+-----------------------+-------------------------------+
   1010 *  |M|R|N|R|	  Reserved bits     |	    Reparse Tag Value	    |
   1011 *  +-+-+-+-+-----------------------+-------------------------------+
   1012 *
   1013 * M is the Microsoft bit. When set to 1, it denotes a tag owned by Microsoft.
   1014 *   All ISVs must use a tag with a 0 in this position.
   1015 *   Note: If a Microsoft tag is used by non-Microsoft software, the
   1016 *   behavior is not defined.
   1017 *
   1018 * R is reserved.  Must be zero for non-Microsoft tags.
   1019 *
   1020 * N is name surrogate. When set to 1, the file represents another named
   1021 *   entity in the system.
   1022 *
   1023 * The M and N bits are OR-able.
   1024 * The following macros check for the M and N bit values:
   1025 */
   1026
   1027/*
   1028 * Macro to determine whether a reparse point tag corresponds to a tag
   1029 * owned by Microsoft.
   1030 */
   1031#define IsReparseTagMicrosoft(_tag)	(((_tag)&IO_REPARSE_TAG_MICROSOFT))
   1032
   1033/* Macro to determine whether a reparse point tag is a name surrogate. */
   1034#define IsReparseTagNameSurrogate(_tag)	(((_tag)&IO_REPARSE_TAG_NAME_SURROGATE))
   1035
   1036/*
   1037 * The following constant represents the bits that are valid to use in
   1038 * reparse tags.
   1039 */
   1040#define IO_REPARSE_TAG_VALID_VALUES	0xF000FFFF
   1041
   1042/*
   1043 * Macro to determine whether a reparse tag is a valid tag.
   1044 */
   1045#define IsReparseTagValid(_tag)						       \
   1046	(!((_tag) & ~IO_REPARSE_TAG_VALID_VALUES) &&			       \
   1047	 ((_tag) > IO_REPARSE_TAG_RESERVED_RANGE))
   1048
   1049/* Microsoft tags for reparse points. */
   1050
   1051enum IO_REPARSE_TAG {
   1052	IO_REPARSE_TAG_SYMBOLIC_LINK	= cpu_to_le32(0),
   1053	IO_REPARSE_TAG_NAME_SURROGATE	= cpu_to_le32(0x20000000),
   1054	IO_REPARSE_TAG_MICROSOFT	= cpu_to_le32(0x80000000),
   1055	IO_REPARSE_TAG_MOUNT_POINT	= cpu_to_le32(0xA0000003),
   1056	IO_REPARSE_TAG_SYMLINK		= cpu_to_le32(0xA000000C),
   1057	IO_REPARSE_TAG_HSM		= cpu_to_le32(0xC0000004),
   1058	IO_REPARSE_TAG_SIS		= cpu_to_le32(0x80000007),
   1059	IO_REPARSE_TAG_DEDUP		= cpu_to_le32(0x80000013),
   1060	IO_REPARSE_TAG_COMPRESS		= cpu_to_le32(0x80000017),
   1061
   1062	/*
   1063	 * The reparse tag 0x80000008 is reserved for Microsoft internal use.
   1064	 * May be published in the future.
   1065	 */
   1066
   1067	/* Microsoft reparse tag reserved for DFS */
   1068	IO_REPARSE_TAG_DFS	= cpu_to_le32(0x8000000A),
   1069
   1070	/* Microsoft reparse tag reserved for the file system filter manager. */
   1071	IO_REPARSE_TAG_FILTER_MANAGER	= cpu_to_le32(0x8000000B),
   1072
   1073	/* Non-Microsoft tags for reparse points */
   1074
   1075	/* Tag allocated to CONGRUENT, May 2000. Used by IFSTEST. */
   1076	IO_REPARSE_TAG_IFSTEST_CONGRUENT = cpu_to_le32(0x00000009),
   1077
   1078	/* Tag allocated to ARKIVIO. */
   1079	IO_REPARSE_TAG_ARKIVIO	= cpu_to_le32(0x0000000C),
   1080
   1081	/* Tag allocated to SOLUTIONSOFT. */
   1082	IO_REPARSE_TAG_SOLUTIONSOFT	= cpu_to_le32(0x2000000D),
   1083
   1084	/* Tag allocated to COMMVAULT. */
   1085	IO_REPARSE_TAG_COMMVAULT	= cpu_to_le32(0x0000000E),
   1086
   1087	/* OneDrive?? */
   1088	IO_REPARSE_TAG_CLOUD	= cpu_to_le32(0x9000001A),
   1089	IO_REPARSE_TAG_CLOUD_1	= cpu_to_le32(0x9000101A),
   1090	IO_REPARSE_TAG_CLOUD_2	= cpu_to_le32(0x9000201A),
   1091	IO_REPARSE_TAG_CLOUD_3	= cpu_to_le32(0x9000301A),
   1092	IO_REPARSE_TAG_CLOUD_4	= cpu_to_le32(0x9000401A),
   1093	IO_REPARSE_TAG_CLOUD_5	= cpu_to_le32(0x9000501A),
   1094	IO_REPARSE_TAG_CLOUD_6	= cpu_to_le32(0x9000601A),
   1095	IO_REPARSE_TAG_CLOUD_7	= cpu_to_le32(0x9000701A),
   1096	IO_REPARSE_TAG_CLOUD_8	= cpu_to_le32(0x9000801A),
   1097	IO_REPARSE_TAG_CLOUD_9	= cpu_to_le32(0x9000901A),
   1098	IO_REPARSE_TAG_CLOUD_A	= cpu_to_le32(0x9000A01A),
   1099	IO_REPARSE_TAG_CLOUD_B	= cpu_to_le32(0x9000B01A),
   1100	IO_REPARSE_TAG_CLOUD_C	= cpu_to_le32(0x9000C01A),
   1101	IO_REPARSE_TAG_CLOUD_D	= cpu_to_le32(0x9000D01A),
   1102	IO_REPARSE_TAG_CLOUD_E	= cpu_to_le32(0x9000E01A),
   1103	IO_REPARSE_TAG_CLOUD_F	= cpu_to_le32(0x9000F01A),
   1104
   1105};
   1106
   1107#define SYMLINK_FLAG_RELATIVE		1
   1108
   1109/* Microsoft reparse buffer. (see DDK for details) */
   1110struct REPARSE_DATA_BUFFER {
   1111	__le32 ReparseTag;		// 0x00:
   1112	__le16 ReparseDataLength;	// 0x04:
   1113	__le16 Reserved;
   1114
   1115	union {
   1116		/* If ReparseTag == 0xA0000003 (IO_REPARSE_TAG_MOUNT_POINT) */
   1117		struct {
   1118			__le16 SubstituteNameOffset; // 0x08
   1119			__le16 SubstituteNameLength; // 0x0A
   1120			__le16 PrintNameOffset;      // 0x0C
   1121			__le16 PrintNameLength;      // 0x0E
   1122			__le16 PathBuffer[];	     // 0x10
   1123		} MountPointReparseBuffer;
   1124
   1125		/*
   1126		 * If ReparseTag == 0xA000000C (IO_REPARSE_TAG_SYMLINK)
   1127		 * https://msdn.microsoft.com/en-us/library/cc232006.aspx
   1128		 */
   1129		struct {
   1130			__le16 SubstituteNameOffset; // 0x08
   1131			__le16 SubstituteNameLength; // 0x0A
   1132			__le16 PrintNameOffset;      // 0x0C
   1133			__le16 PrintNameLength;      // 0x0E
   1134			// 0-absolute path 1- relative path, SYMLINK_FLAG_RELATIVE
   1135			__le32 Flags;		     // 0x10
   1136			__le16 PathBuffer[];	     // 0x14
   1137		} SymbolicLinkReparseBuffer;
   1138
   1139		/* If ReparseTag == 0x80000017U */
   1140		struct {
   1141			__le32 WofVersion;  // 0x08 == 1
   1142			/*
   1143			 * 1 - WIM backing provider ("WIMBoot"),
   1144			 * 2 - System compressed file provider
   1145			 */
   1146			__le32 WofProvider; // 0x0C:
   1147			__le32 ProviderVer; // 0x10: == 1 WOF_FILE_PROVIDER_CURRENT_VERSION == 1
   1148			__le32 CompressionFormat; // 0x14: 0, 1, 2, 3. See WOF_COMPRESSION_XXX
   1149		} CompressReparseBuffer;
   1150
   1151		struct {
   1152			u8 DataBuffer[1];   // 0x08:
   1153		} GenericReparseBuffer;
   1154	};
   1155};
   1156
   1157/* ATTR_EA_INFO (0xD0) */
   1158
   1159#define FILE_NEED_EA 0x80 // See ntifs.h
   1160/*
   1161 *FILE_NEED_EA, indicates that the file to which the EA belongs cannot be
   1162 * interpreted without understanding the associated extended attributes.
   1163 */
   1164struct EA_INFO {
   1165	__le16 size_pack;	// 0x00: Size of buffer to hold in packed form.
   1166	__le16 count;		// 0x02: Count of EA's with FILE_NEED_EA bit set.
   1167	__le32 size;		// 0x04: Size of buffer to hold in unpacked form.
   1168};
   1169
   1170static_assert(sizeof(struct EA_INFO) == 8);
   1171
   1172/* ATTR_EA (0xE0) */
   1173struct EA_FULL {
   1174	__le32 size;		// 0x00: (not in packed)
   1175	u8 flags;		// 0x04:
   1176	u8 name_len;		// 0x05:
   1177	__le16 elength;		// 0x06:
   1178	u8 name[];		// 0x08:
   1179};
   1180
   1181static_assert(offsetof(struct EA_FULL, name) == 8);
   1182
   1183#define ACL_REVISION	2
   1184#define ACL_REVISION_DS 4
   1185
   1186#define SE_SELF_RELATIVE cpu_to_le16(0x8000)
   1187
   1188struct SECURITY_DESCRIPTOR_RELATIVE {
   1189	u8 Revision;
   1190	u8 Sbz1;
   1191	__le16 Control;
   1192	__le32 Owner;
   1193	__le32 Group;
   1194	__le32 Sacl;
   1195	__le32 Dacl;
   1196};
   1197static_assert(sizeof(struct SECURITY_DESCRIPTOR_RELATIVE) == 0x14);
   1198
   1199struct ACE_HEADER {
   1200	u8 AceType;
   1201	u8 AceFlags;
   1202	__le16 AceSize;
   1203};
   1204static_assert(sizeof(struct ACE_HEADER) == 4);
   1205
   1206struct ACL {
   1207	u8 AclRevision;
   1208	u8 Sbz1;
   1209	__le16 AclSize;
   1210	__le16 AceCount;
   1211	__le16 Sbz2;
   1212};
   1213static_assert(sizeof(struct ACL) == 8);
   1214
   1215struct SID {
   1216	u8 Revision;
   1217	u8 SubAuthorityCount;
   1218	u8 IdentifierAuthority[6];
   1219	__le32 SubAuthority[];
   1220};
   1221static_assert(offsetof(struct SID, SubAuthority) == 8);
   1222
   1223#endif /* _LINUX_NTFS3_NTFS_H */
   1224// clang-format on