cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

journal.c (63764B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * journal.c
      4 *
      5 * Defines functions of journalling api
      6 *
      7 * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
      8 */
      9
     10#include <linux/fs.h>
     11#include <linux/types.h>
     12#include <linux/slab.h>
     13#include <linux/highmem.h>
     14#include <linux/kthread.h>
     15#include <linux/time.h>
     16#include <linux/random.h>
     17#include <linux/delay.h>
     18
     19#include <cluster/masklog.h>
     20
     21#include "ocfs2.h"
     22
     23#include "alloc.h"
     24#include "blockcheck.h"
     25#include "dir.h"
     26#include "dlmglue.h"
     27#include "extent_map.h"
     28#include "heartbeat.h"
     29#include "inode.h"
     30#include "journal.h"
     31#include "localalloc.h"
     32#include "slot_map.h"
     33#include "super.h"
     34#include "sysfile.h"
     35#include "uptodate.h"
     36#include "quota.h"
     37#include "file.h"
     38#include "namei.h"
     39
     40#include "buffer_head_io.h"
     41#include "ocfs2_trace.h"
     42
     43DEFINE_SPINLOCK(trans_inc_lock);
     44
     45#define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
     46
     47static int ocfs2_force_read_journal(struct inode *inode);
     48static int ocfs2_recover_node(struct ocfs2_super *osb,
     49			      int node_num, int slot_num);
     50static int __ocfs2_recovery_thread(void *arg);
     51static int ocfs2_commit_cache(struct ocfs2_super *osb);
     52static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
     53static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
     54				      int dirty, int replayed);
     55static int ocfs2_trylock_journal(struct ocfs2_super *osb,
     56				 int slot_num);
     57static int ocfs2_recover_orphans(struct ocfs2_super *osb,
     58				 int slot,
     59				 enum ocfs2_orphan_reco_type orphan_reco_type);
     60static int ocfs2_commit_thread(void *arg);
     61static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
     62					    int slot_num,
     63					    struct ocfs2_dinode *la_dinode,
     64					    struct ocfs2_dinode *tl_dinode,
     65					    struct ocfs2_quota_recovery *qrec,
     66					    enum ocfs2_orphan_reco_type orphan_reco_type);
     67
     68static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
     69{
     70	return __ocfs2_wait_on_mount(osb, 0);
     71}
     72
     73static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
     74{
     75	return __ocfs2_wait_on_mount(osb, 1);
     76}
     77
     78/*
     79 * This replay_map is to track online/offline slots, so we could recover
     80 * offline slots during recovery and mount
     81 */
     82
     83enum ocfs2_replay_state {
     84	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
     85	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
     86	REPLAY_DONE 		/* Replay was already queued */
     87};
     88
     89struct ocfs2_replay_map {
     90	unsigned int rm_slots;
     91	enum ocfs2_replay_state rm_state;
     92	unsigned char rm_replay_slots[];
     93};
     94
     95static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
     96{
     97	if (!osb->replay_map)
     98		return;
     99
    100	/* If we've already queued the replay, we don't have any more to do */
    101	if (osb->replay_map->rm_state == REPLAY_DONE)
    102		return;
    103
    104	osb->replay_map->rm_state = state;
    105}
    106
    107int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
    108{
    109	struct ocfs2_replay_map *replay_map;
    110	int i, node_num;
    111
    112	/* If replay map is already set, we don't do it again */
    113	if (osb->replay_map)
    114		return 0;
    115
    116	replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
    117			     (osb->max_slots * sizeof(char)), GFP_KERNEL);
    118
    119	if (!replay_map) {
    120		mlog_errno(-ENOMEM);
    121		return -ENOMEM;
    122	}
    123
    124	spin_lock(&osb->osb_lock);
    125
    126	replay_map->rm_slots = osb->max_slots;
    127	replay_map->rm_state = REPLAY_UNNEEDED;
    128
    129	/* set rm_replay_slots for offline slot(s) */
    130	for (i = 0; i < replay_map->rm_slots; i++) {
    131		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
    132			replay_map->rm_replay_slots[i] = 1;
    133	}
    134
    135	osb->replay_map = replay_map;
    136	spin_unlock(&osb->osb_lock);
    137	return 0;
    138}
    139
    140static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
    141		enum ocfs2_orphan_reco_type orphan_reco_type)
    142{
    143	struct ocfs2_replay_map *replay_map = osb->replay_map;
    144	int i;
    145
    146	if (!replay_map)
    147		return;
    148
    149	if (replay_map->rm_state != REPLAY_NEEDED)
    150		return;
    151
    152	for (i = 0; i < replay_map->rm_slots; i++)
    153		if (replay_map->rm_replay_slots[i])
    154			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
    155							NULL, NULL,
    156							orphan_reco_type);
    157	replay_map->rm_state = REPLAY_DONE;
    158}
    159
    160static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
    161{
    162	struct ocfs2_replay_map *replay_map = osb->replay_map;
    163
    164	if (!osb->replay_map)
    165		return;
    166
    167	kfree(replay_map);
    168	osb->replay_map = NULL;
    169}
    170
    171int ocfs2_recovery_init(struct ocfs2_super *osb)
    172{
    173	struct ocfs2_recovery_map *rm;
    174
    175	mutex_init(&osb->recovery_lock);
    176	osb->disable_recovery = 0;
    177	osb->recovery_thread_task = NULL;
    178	init_waitqueue_head(&osb->recovery_event);
    179
    180	rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
    181		     osb->max_slots * sizeof(unsigned int),
    182		     GFP_KERNEL);
    183	if (!rm) {
    184		mlog_errno(-ENOMEM);
    185		return -ENOMEM;
    186	}
    187
    188	rm->rm_entries = (unsigned int *)((char *)rm +
    189					  sizeof(struct ocfs2_recovery_map));
    190	osb->recovery_map = rm;
    191
    192	return 0;
    193}
    194
    195/* we can't grab the goofy sem lock from inside wait_event, so we use
    196 * memory barriers to make sure that we'll see the null task before
    197 * being woken up */
    198static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
    199{
    200	mb();
    201	return osb->recovery_thread_task != NULL;
    202}
    203
    204void ocfs2_recovery_exit(struct ocfs2_super *osb)
    205{
    206	struct ocfs2_recovery_map *rm;
    207
    208	/* disable any new recovery threads and wait for any currently
    209	 * running ones to exit. Do this before setting the vol_state. */
    210	mutex_lock(&osb->recovery_lock);
    211	osb->disable_recovery = 1;
    212	mutex_unlock(&osb->recovery_lock);
    213	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
    214
    215	/* At this point, we know that no more recovery threads can be
    216	 * launched, so wait for any recovery completion work to
    217	 * complete. */
    218	if (osb->ocfs2_wq)
    219		flush_workqueue(osb->ocfs2_wq);
    220
    221	/*
    222	 * Now that recovery is shut down, and the osb is about to be
    223	 * freed,  the osb_lock is not taken here.
    224	 */
    225	rm = osb->recovery_map;
    226	/* XXX: Should we bug if there are dirty entries? */
    227
    228	kfree(rm);
    229}
    230
    231static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
    232				     unsigned int node_num)
    233{
    234	int i;
    235	struct ocfs2_recovery_map *rm = osb->recovery_map;
    236
    237	assert_spin_locked(&osb->osb_lock);
    238
    239	for (i = 0; i < rm->rm_used; i++) {
    240		if (rm->rm_entries[i] == node_num)
    241			return 1;
    242	}
    243
    244	return 0;
    245}
    246
    247/* Behaves like test-and-set.  Returns the previous value */
    248static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
    249				  unsigned int node_num)
    250{
    251	struct ocfs2_recovery_map *rm = osb->recovery_map;
    252
    253	spin_lock(&osb->osb_lock);
    254	if (__ocfs2_recovery_map_test(osb, node_num)) {
    255		spin_unlock(&osb->osb_lock);
    256		return 1;
    257	}
    258
    259	/* XXX: Can this be exploited? Not from o2dlm... */
    260	BUG_ON(rm->rm_used >= osb->max_slots);
    261
    262	rm->rm_entries[rm->rm_used] = node_num;
    263	rm->rm_used++;
    264	spin_unlock(&osb->osb_lock);
    265
    266	return 0;
    267}
    268
    269static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
    270				     unsigned int node_num)
    271{
    272	int i;
    273	struct ocfs2_recovery_map *rm = osb->recovery_map;
    274
    275	spin_lock(&osb->osb_lock);
    276
    277	for (i = 0; i < rm->rm_used; i++) {
    278		if (rm->rm_entries[i] == node_num)
    279			break;
    280	}
    281
    282	if (i < rm->rm_used) {
    283		/* XXX: be careful with the pointer math */
    284		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
    285			(rm->rm_used - i - 1) * sizeof(unsigned int));
    286		rm->rm_used--;
    287	}
    288
    289	spin_unlock(&osb->osb_lock);
    290}
    291
    292static int ocfs2_commit_cache(struct ocfs2_super *osb)
    293{
    294	int status = 0;
    295	unsigned int flushed;
    296	struct ocfs2_journal *journal = NULL;
    297
    298	journal = osb->journal;
    299
    300	/* Flush all pending commits and checkpoint the journal. */
    301	down_write(&journal->j_trans_barrier);
    302
    303	flushed = atomic_read(&journal->j_num_trans);
    304	trace_ocfs2_commit_cache_begin(flushed);
    305	if (flushed == 0) {
    306		up_write(&journal->j_trans_barrier);
    307		goto finally;
    308	}
    309
    310	jbd2_journal_lock_updates(journal->j_journal);
    311	status = jbd2_journal_flush(journal->j_journal, 0);
    312	jbd2_journal_unlock_updates(journal->j_journal);
    313	if (status < 0) {
    314		up_write(&journal->j_trans_barrier);
    315		mlog_errno(status);
    316		goto finally;
    317	}
    318
    319	ocfs2_inc_trans_id(journal);
    320
    321	flushed = atomic_read(&journal->j_num_trans);
    322	atomic_set(&journal->j_num_trans, 0);
    323	up_write(&journal->j_trans_barrier);
    324
    325	trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
    326
    327	ocfs2_wake_downconvert_thread(osb);
    328	wake_up(&journal->j_checkpointed);
    329finally:
    330	return status;
    331}
    332
    333handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
    334{
    335	journal_t *journal = osb->journal->j_journal;
    336	handle_t *handle;
    337
    338	BUG_ON(!osb || !osb->journal->j_journal);
    339
    340	if (ocfs2_is_hard_readonly(osb))
    341		return ERR_PTR(-EROFS);
    342
    343	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
    344	BUG_ON(max_buffs <= 0);
    345
    346	/* Nested transaction? Just return the handle... */
    347	if (journal_current_handle())
    348		return jbd2_journal_start(journal, max_buffs);
    349
    350	sb_start_intwrite(osb->sb);
    351
    352	down_read(&osb->journal->j_trans_barrier);
    353
    354	handle = jbd2_journal_start(journal, max_buffs);
    355	if (IS_ERR(handle)) {
    356		up_read(&osb->journal->j_trans_barrier);
    357		sb_end_intwrite(osb->sb);
    358
    359		mlog_errno(PTR_ERR(handle));
    360
    361		if (is_journal_aborted(journal)) {
    362			ocfs2_abort(osb->sb, "Detected aborted journal\n");
    363			handle = ERR_PTR(-EROFS);
    364		}
    365	} else {
    366		if (!ocfs2_mount_local(osb))
    367			atomic_inc(&(osb->journal->j_num_trans));
    368	}
    369
    370	return handle;
    371}
    372
    373int ocfs2_commit_trans(struct ocfs2_super *osb,
    374		       handle_t *handle)
    375{
    376	int ret, nested;
    377	struct ocfs2_journal *journal = osb->journal;
    378
    379	BUG_ON(!handle);
    380
    381	nested = handle->h_ref > 1;
    382	ret = jbd2_journal_stop(handle);
    383	if (ret < 0)
    384		mlog_errno(ret);
    385
    386	if (!nested) {
    387		up_read(&journal->j_trans_barrier);
    388		sb_end_intwrite(osb->sb);
    389	}
    390
    391	return ret;
    392}
    393
    394/*
    395 * 'nblocks' is what you want to add to the current transaction.
    396 *
    397 * This might call jbd2_journal_restart() which will commit dirty buffers
    398 * and then restart the transaction. Before calling
    399 * ocfs2_extend_trans(), any changed blocks should have been
    400 * dirtied. After calling it, all blocks which need to be changed must
    401 * go through another set of journal_access/journal_dirty calls.
    402 *
    403 * WARNING: This will not release any semaphores or disk locks taken
    404 * during the transaction, so make sure they were taken *before*
    405 * start_trans or we'll have ordering deadlocks.
    406 *
    407 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
    408 * good because transaction ids haven't yet been recorded on the
    409 * cluster locks associated with this handle.
    410 */
    411int ocfs2_extend_trans(handle_t *handle, int nblocks)
    412{
    413	int status, old_nblocks;
    414
    415	BUG_ON(!handle);
    416	BUG_ON(nblocks < 0);
    417
    418	if (!nblocks)
    419		return 0;
    420
    421	old_nblocks = jbd2_handle_buffer_credits(handle);
    422
    423	trace_ocfs2_extend_trans(old_nblocks, nblocks);
    424
    425#ifdef CONFIG_OCFS2_DEBUG_FS
    426	status = 1;
    427#else
    428	status = jbd2_journal_extend(handle, nblocks, 0);
    429	if (status < 0) {
    430		mlog_errno(status);
    431		goto bail;
    432	}
    433#endif
    434
    435	if (status > 0) {
    436		trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
    437		status = jbd2_journal_restart(handle,
    438					      old_nblocks + nblocks);
    439		if (status < 0) {
    440			mlog_errno(status);
    441			goto bail;
    442		}
    443	}
    444
    445	status = 0;
    446bail:
    447	return status;
    448}
    449
    450/*
    451 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
    452 * If that fails, restart the transaction & regain write access for the
    453 * buffer head which is used for metadata modifications.
    454 * Taken from Ext4: extend_or_restart_transaction()
    455 */
    456int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
    457{
    458	int status, old_nblks;
    459
    460	BUG_ON(!handle);
    461
    462	old_nblks = jbd2_handle_buffer_credits(handle);
    463	trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
    464
    465	if (old_nblks < thresh)
    466		return 0;
    467
    468	status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0);
    469	if (status < 0) {
    470		mlog_errno(status);
    471		goto bail;
    472	}
    473
    474	if (status > 0) {
    475		status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
    476		if (status < 0)
    477			mlog_errno(status);
    478	}
    479
    480bail:
    481	return status;
    482}
    483
    484
    485struct ocfs2_triggers {
    486	struct jbd2_buffer_trigger_type	ot_triggers;
    487	int				ot_offset;
    488};
    489
    490static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
    491{
    492	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
    493}
    494
    495static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
    496				 struct buffer_head *bh,
    497				 void *data, size_t size)
    498{
    499	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
    500
    501	/*
    502	 * We aren't guaranteed to have the superblock here, so we
    503	 * must unconditionally compute the ecc data.
    504	 * __ocfs2_journal_access() will only set the triggers if
    505	 * metaecc is enabled.
    506	 */
    507	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
    508}
    509
    510/*
    511 * Quota blocks have their own trigger because the struct ocfs2_block_check
    512 * offset depends on the blocksize.
    513 */
    514static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
    515				 struct buffer_head *bh,
    516				 void *data, size_t size)
    517{
    518	struct ocfs2_disk_dqtrailer *dqt =
    519		ocfs2_block_dqtrailer(size, data);
    520
    521	/*
    522	 * We aren't guaranteed to have the superblock here, so we
    523	 * must unconditionally compute the ecc data.
    524	 * __ocfs2_journal_access() will only set the triggers if
    525	 * metaecc is enabled.
    526	 */
    527	ocfs2_block_check_compute(data, size, &dqt->dq_check);
    528}
    529
    530/*
    531 * Directory blocks also have their own trigger because the
    532 * struct ocfs2_block_check offset depends on the blocksize.
    533 */
    534static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
    535				 struct buffer_head *bh,
    536				 void *data, size_t size)
    537{
    538	struct ocfs2_dir_block_trailer *trailer =
    539		ocfs2_dir_trailer_from_size(size, data);
    540
    541	/*
    542	 * We aren't guaranteed to have the superblock here, so we
    543	 * must unconditionally compute the ecc data.
    544	 * __ocfs2_journal_access() will only set the triggers if
    545	 * metaecc is enabled.
    546	 */
    547	ocfs2_block_check_compute(data, size, &trailer->db_check);
    548}
    549
    550static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
    551				struct buffer_head *bh)
    552{
    553	mlog(ML_ERROR,
    554	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
    555	     "bh->b_blocknr = %llu\n",
    556	     (unsigned long)bh,
    557	     (unsigned long long)bh->b_blocknr);
    558
    559	ocfs2_error(bh->b_bdev->bd_super,
    560		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
    561}
    562
    563static struct ocfs2_triggers di_triggers = {
    564	.ot_triggers = {
    565		.t_frozen = ocfs2_frozen_trigger,
    566		.t_abort = ocfs2_abort_trigger,
    567	},
    568	.ot_offset	= offsetof(struct ocfs2_dinode, i_check),
    569};
    570
    571static struct ocfs2_triggers eb_triggers = {
    572	.ot_triggers = {
    573		.t_frozen = ocfs2_frozen_trigger,
    574		.t_abort = ocfs2_abort_trigger,
    575	},
    576	.ot_offset	= offsetof(struct ocfs2_extent_block, h_check),
    577};
    578
    579static struct ocfs2_triggers rb_triggers = {
    580	.ot_triggers = {
    581		.t_frozen = ocfs2_frozen_trigger,
    582		.t_abort = ocfs2_abort_trigger,
    583	},
    584	.ot_offset	= offsetof(struct ocfs2_refcount_block, rf_check),
    585};
    586
    587static struct ocfs2_triggers gd_triggers = {
    588	.ot_triggers = {
    589		.t_frozen = ocfs2_frozen_trigger,
    590		.t_abort = ocfs2_abort_trigger,
    591	},
    592	.ot_offset	= offsetof(struct ocfs2_group_desc, bg_check),
    593};
    594
    595static struct ocfs2_triggers db_triggers = {
    596	.ot_triggers = {
    597		.t_frozen = ocfs2_db_frozen_trigger,
    598		.t_abort = ocfs2_abort_trigger,
    599	},
    600};
    601
    602static struct ocfs2_triggers xb_triggers = {
    603	.ot_triggers = {
    604		.t_frozen = ocfs2_frozen_trigger,
    605		.t_abort = ocfs2_abort_trigger,
    606	},
    607	.ot_offset	= offsetof(struct ocfs2_xattr_block, xb_check),
    608};
    609
    610static struct ocfs2_triggers dq_triggers = {
    611	.ot_triggers = {
    612		.t_frozen = ocfs2_dq_frozen_trigger,
    613		.t_abort = ocfs2_abort_trigger,
    614	},
    615};
    616
    617static struct ocfs2_triggers dr_triggers = {
    618	.ot_triggers = {
    619		.t_frozen = ocfs2_frozen_trigger,
    620		.t_abort = ocfs2_abort_trigger,
    621	},
    622	.ot_offset	= offsetof(struct ocfs2_dx_root_block, dr_check),
    623};
    624
    625static struct ocfs2_triggers dl_triggers = {
    626	.ot_triggers = {
    627		.t_frozen = ocfs2_frozen_trigger,
    628		.t_abort = ocfs2_abort_trigger,
    629	},
    630	.ot_offset	= offsetof(struct ocfs2_dx_leaf, dl_check),
    631};
    632
    633static int __ocfs2_journal_access(handle_t *handle,
    634				  struct ocfs2_caching_info *ci,
    635				  struct buffer_head *bh,
    636				  struct ocfs2_triggers *triggers,
    637				  int type)
    638{
    639	int status;
    640	struct ocfs2_super *osb =
    641		OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
    642
    643	BUG_ON(!ci || !ci->ci_ops);
    644	BUG_ON(!handle);
    645	BUG_ON(!bh);
    646
    647	trace_ocfs2_journal_access(
    648		(unsigned long long)ocfs2_metadata_cache_owner(ci),
    649		(unsigned long long)bh->b_blocknr, type, bh->b_size);
    650
    651	/* we can safely remove this assertion after testing. */
    652	if (!buffer_uptodate(bh)) {
    653		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
    654		mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
    655		     (unsigned long long)bh->b_blocknr, bh->b_state);
    656
    657		lock_buffer(bh);
    658		/*
    659		 * A previous transaction with a couple of buffer heads fail
    660		 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
    661		 * For current transaction, the bh is just among those error
    662		 * bhs which previous transaction handle. We can't just clear
    663		 * its BH_Write_EIO and reuse directly, since other bhs are
    664		 * not written to disk yet and that will cause metadata
    665		 * inconsistency. So we should set fs read-only to avoid
    666		 * further damage.
    667		 */
    668		if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
    669			unlock_buffer(bh);
    670			return ocfs2_error(osb->sb, "A previous attempt to "
    671					"write this buffer head failed\n");
    672		}
    673		unlock_buffer(bh);
    674	}
    675
    676	/* Set the current transaction information on the ci so
    677	 * that the locking code knows whether it can drop it's locks
    678	 * on this ci or not. We're protected from the commit
    679	 * thread updating the current transaction id until
    680	 * ocfs2_commit_trans() because ocfs2_start_trans() took
    681	 * j_trans_barrier for us. */
    682	ocfs2_set_ci_lock_trans(osb->journal, ci);
    683
    684	ocfs2_metadata_cache_io_lock(ci);
    685	switch (type) {
    686	case OCFS2_JOURNAL_ACCESS_CREATE:
    687	case OCFS2_JOURNAL_ACCESS_WRITE:
    688		status = jbd2_journal_get_write_access(handle, bh);
    689		break;
    690
    691	case OCFS2_JOURNAL_ACCESS_UNDO:
    692		status = jbd2_journal_get_undo_access(handle, bh);
    693		break;
    694
    695	default:
    696		status = -EINVAL;
    697		mlog(ML_ERROR, "Unknown access type!\n");
    698	}
    699	if (!status && ocfs2_meta_ecc(osb) && triggers)
    700		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
    701	ocfs2_metadata_cache_io_unlock(ci);
    702
    703	if (status < 0)
    704		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
    705		     status, type);
    706
    707	return status;
    708}
    709
    710int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
    711			    struct buffer_head *bh, int type)
    712{
    713	return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
    714}
    715
    716int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
    717			    struct buffer_head *bh, int type)
    718{
    719	return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
    720}
    721
    722int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
    723			    struct buffer_head *bh, int type)
    724{
    725	return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
    726				      type);
    727}
    728
    729int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
    730			    struct buffer_head *bh, int type)
    731{
    732	return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
    733}
    734
    735int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
    736			    struct buffer_head *bh, int type)
    737{
    738	return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
    739}
    740
    741int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
    742			    struct buffer_head *bh, int type)
    743{
    744	return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
    745}
    746
    747int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
    748			    struct buffer_head *bh, int type)
    749{
    750	return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
    751}
    752
    753int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
    754			    struct buffer_head *bh, int type)
    755{
    756	return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
    757}
    758
    759int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
    760			    struct buffer_head *bh, int type)
    761{
    762	return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
    763}
    764
    765int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
    766			 struct buffer_head *bh, int type)
    767{
    768	return __ocfs2_journal_access(handle, ci, bh, NULL, type);
    769}
    770
    771void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
    772{
    773	int status;
    774
    775	trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
    776
    777	status = jbd2_journal_dirty_metadata(handle, bh);
    778	if (status) {
    779		mlog_errno(status);
    780		if (!is_handle_aborted(handle)) {
    781			journal_t *journal = handle->h_transaction->t_journal;
    782			struct super_block *sb = bh->b_bdev->bd_super;
    783
    784			mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
    785					"Aborting transaction and journal.\n");
    786			handle->h_err = status;
    787			jbd2_journal_abort_handle(handle);
    788			jbd2_journal_abort(journal, status);
    789			ocfs2_abort(sb, "Journal already aborted.\n");
    790		}
    791	}
    792}
    793
    794#define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
    795
    796void ocfs2_set_journal_params(struct ocfs2_super *osb)
    797{
    798	journal_t *journal = osb->journal->j_journal;
    799	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
    800
    801	if (osb->osb_commit_interval)
    802		commit_interval = osb->osb_commit_interval;
    803
    804	write_lock(&journal->j_state_lock);
    805	journal->j_commit_interval = commit_interval;
    806	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
    807		journal->j_flags |= JBD2_BARRIER;
    808	else
    809		journal->j_flags &= ~JBD2_BARRIER;
    810	write_unlock(&journal->j_state_lock);
    811}
    812
    813/*
    814 * alloc & initialize skeleton for journal structure.
    815 * ocfs2_journal_init() will make fs have journal ability.
    816 */
    817int ocfs2_journal_alloc(struct ocfs2_super *osb)
    818{
    819	int status = 0;
    820	struct ocfs2_journal *journal;
    821
    822	journal = kzalloc(sizeof(struct ocfs2_journal), GFP_KERNEL);
    823	if (!journal) {
    824		mlog(ML_ERROR, "unable to alloc journal\n");
    825		status = -ENOMEM;
    826		goto bail;
    827	}
    828	osb->journal = journal;
    829	journal->j_osb = osb;
    830
    831	atomic_set(&journal->j_num_trans, 0);
    832	init_rwsem(&journal->j_trans_barrier);
    833	init_waitqueue_head(&journal->j_checkpointed);
    834	spin_lock_init(&journal->j_lock);
    835	journal->j_trans_id = 1UL;
    836	INIT_LIST_HEAD(&journal->j_la_cleanups);
    837	INIT_WORK(&journal->j_recovery_work, ocfs2_complete_recovery);
    838	journal->j_state = OCFS2_JOURNAL_FREE;
    839
    840bail:
    841	return status;
    842}
    843
    844int ocfs2_journal_init(struct ocfs2_super *osb, int *dirty)
    845{
    846	int status = -1;
    847	struct inode *inode = NULL; /* the journal inode */
    848	journal_t *j_journal = NULL;
    849	struct ocfs2_journal *journal = osb->journal;
    850	struct ocfs2_dinode *di = NULL;
    851	struct buffer_head *bh = NULL;
    852	int inode_lock = 0;
    853
    854	BUG_ON(!journal);
    855	/* already have the inode for our journal */
    856	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
    857					    osb->slot_num);
    858	if (inode == NULL) {
    859		status = -EACCES;
    860		mlog_errno(status);
    861		goto done;
    862	}
    863	if (is_bad_inode(inode)) {
    864		mlog(ML_ERROR, "access error (bad inode)\n");
    865		iput(inode);
    866		inode = NULL;
    867		status = -EACCES;
    868		goto done;
    869	}
    870
    871	SET_INODE_JOURNAL(inode);
    872	OCFS2_I(inode)->ip_open_count++;
    873
    874	/* Skip recovery waits here - journal inode metadata never
    875	 * changes in a live cluster so it can be considered an
    876	 * exception to the rule. */
    877	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
    878	if (status < 0) {
    879		if (status != -ERESTARTSYS)
    880			mlog(ML_ERROR, "Could not get lock on journal!\n");
    881		goto done;
    882	}
    883
    884	inode_lock = 1;
    885	di = (struct ocfs2_dinode *)bh->b_data;
    886
    887	if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
    888		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
    889		     i_size_read(inode));
    890		status = -EINVAL;
    891		goto done;
    892	}
    893
    894	trace_ocfs2_journal_init(i_size_read(inode),
    895				 (unsigned long long)inode->i_blocks,
    896				 OCFS2_I(inode)->ip_clusters);
    897
    898	/* call the kernels journal init function now */
    899	j_journal = jbd2_journal_init_inode(inode);
    900	if (j_journal == NULL) {
    901		mlog(ML_ERROR, "Linux journal layer error\n");
    902		status = -EINVAL;
    903		goto done;
    904	}
    905
    906	trace_ocfs2_journal_init_maxlen(j_journal->j_total_len);
    907
    908	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
    909		  OCFS2_JOURNAL_DIRTY_FL);
    910
    911	journal->j_journal = j_journal;
    912	journal->j_journal->j_submit_inode_data_buffers =
    913		jbd2_journal_submit_inode_data_buffers;
    914	journal->j_journal->j_finish_inode_data_buffers =
    915		jbd2_journal_finish_inode_data_buffers;
    916	journal->j_inode = inode;
    917	journal->j_bh = bh;
    918
    919	ocfs2_set_journal_params(osb);
    920
    921	journal->j_state = OCFS2_JOURNAL_LOADED;
    922
    923	status = 0;
    924done:
    925	if (status < 0) {
    926		if (inode_lock)
    927			ocfs2_inode_unlock(inode, 1);
    928		brelse(bh);
    929		if (inode) {
    930			OCFS2_I(inode)->ip_open_count--;
    931			iput(inode);
    932		}
    933	}
    934
    935	return status;
    936}
    937
    938static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
    939{
    940	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
    941}
    942
    943static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
    944{
    945	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
    946}
    947
    948static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
    949				      int dirty, int replayed)
    950{
    951	int status;
    952	unsigned int flags;
    953	struct ocfs2_journal *journal = osb->journal;
    954	struct buffer_head *bh = journal->j_bh;
    955	struct ocfs2_dinode *fe;
    956
    957	fe = (struct ocfs2_dinode *)bh->b_data;
    958
    959	/* The journal bh on the osb always comes from ocfs2_journal_init()
    960	 * and was validated there inside ocfs2_inode_lock_full().  It's a
    961	 * code bug if we mess it up. */
    962	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
    963
    964	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
    965	if (dirty)
    966		flags |= OCFS2_JOURNAL_DIRTY_FL;
    967	else
    968		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
    969	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
    970
    971	if (replayed)
    972		ocfs2_bump_recovery_generation(fe);
    973
    974	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
    975	status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
    976	if (status < 0)
    977		mlog_errno(status);
    978
    979	return status;
    980}
    981
    982/*
    983 * If the journal has been kmalloc'd it needs to be freed after this
    984 * call.
    985 */
    986void ocfs2_journal_shutdown(struct ocfs2_super *osb)
    987{
    988	struct ocfs2_journal *journal = NULL;
    989	int status = 0;
    990	struct inode *inode = NULL;
    991	int num_running_trans = 0;
    992
    993	BUG_ON(!osb);
    994
    995	journal = osb->journal;
    996	if (!journal)
    997		goto done;
    998
    999	inode = journal->j_inode;
   1000
   1001	if (journal->j_state != OCFS2_JOURNAL_LOADED)
   1002		goto done;
   1003
   1004	/* need to inc inode use count - jbd2_journal_destroy will iput. */
   1005	if (!igrab(inode))
   1006		BUG();
   1007
   1008	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
   1009	trace_ocfs2_journal_shutdown(num_running_trans);
   1010
   1011	/* Do a commit_cache here. It will flush our journal, *and*
   1012	 * release any locks that are still held.
   1013	 * set the SHUTDOWN flag and release the trans lock.
   1014	 * the commit thread will take the trans lock for us below. */
   1015	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
   1016
   1017	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
   1018	 * drop the trans_lock (which we want to hold until we
   1019	 * completely destroy the journal. */
   1020	if (osb->commit_task) {
   1021		/* Wait for the commit thread */
   1022		trace_ocfs2_journal_shutdown_wait(osb->commit_task);
   1023		kthread_stop(osb->commit_task);
   1024		osb->commit_task = NULL;
   1025	}
   1026
   1027	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
   1028
   1029	if (ocfs2_mount_local(osb)) {
   1030		jbd2_journal_lock_updates(journal->j_journal);
   1031		status = jbd2_journal_flush(journal->j_journal, 0);
   1032		jbd2_journal_unlock_updates(journal->j_journal);
   1033		if (status < 0)
   1034			mlog_errno(status);
   1035	}
   1036
   1037	/* Shutdown the kernel journal system */
   1038	if (!jbd2_journal_destroy(journal->j_journal) && !status) {
   1039		/*
   1040		 * Do not toggle if flush was unsuccessful otherwise
   1041		 * will leave dirty metadata in a "clean" journal
   1042		 */
   1043		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
   1044		if (status < 0)
   1045			mlog_errno(status);
   1046	}
   1047	journal->j_journal = NULL;
   1048
   1049	OCFS2_I(inode)->ip_open_count--;
   1050
   1051	/* unlock our journal */
   1052	ocfs2_inode_unlock(inode, 1);
   1053
   1054	brelse(journal->j_bh);
   1055	journal->j_bh = NULL;
   1056
   1057	journal->j_state = OCFS2_JOURNAL_FREE;
   1058
   1059done:
   1060	iput(inode);
   1061	kfree(journal);
   1062	osb->journal = NULL;
   1063}
   1064
   1065static void ocfs2_clear_journal_error(struct super_block *sb,
   1066				      journal_t *journal,
   1067				      int slot)
   1068{
   1069	int olderr;
   1070
   1071	olderr = jbd2_journal_errno(journal);
   1072	if (olderr) {
   1073		mlog(ML_ERROR, "File system error %d recorded in "
   1074		     "journal %u.\n", olderr, slot);
   1075		mlog(ML_ERROR, "File system on device %s needs checking.\n",
   1076		     sb->s_id);
   1077
   1078		jbd2_journal_ack_err(journal);
   1079		jbd2_journal_clear_err(journal);
   1080	}
   1081}
   1082
   1083int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
   1084{
   1085	int status = 0;
   1086	struct ocfs2_super *osb;
   1087
   1088	BUG_ON(!journal);
   1089
   1090	osb = journal->j_osb;
   1091
   1092	status = jbd2_journal_load(journal->j_journal);
   1093	if (status < 0) {
   1094		mlog(ML_ERROR, "Failed to load journal!\n");
   1095		goto done;
   1096	}
   1097
   1098	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
   1099
   1100	if (replayed) {
   1101		jbd2_journal_lock_updates(journal->j_journal);
   1102		status = jbd2_journal_flush(journal->j_journal, 0);
   1103		jbd2_journal_unlock_updates(journal->j_journal);
   1104		if (status < 0)
   1105			mlog_errno(status);
   1106	}
   1107
   1108	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
   1109	if (status < 0) {
   1110		mlog_errno(status);
   1111		goto done;
   1112	}
   1113
   1114	/* Launch the commit thread */
   1115	if (!local) {
   1116		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
   1117				"ocfs2cmt-%s", osb->uuid_str);
   1118		if (IS_ERR(osb->commit_task)) {
   1119			status = PTR_ERR(osb->commit_task);
   1120			osb->commit_task = NULL;
   1121			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
   1122			     "error=%d", status);
   1123			goto done;
   1124		}
   1125	} else
   1126		osb->commit_task = NULL;
   1127
   1128done:
   1129	return status;
   1130}
   1131
   1132
   1133/* 'full' flag tells us whether we clear out all blocks or if we just
   1134 * mark the journal clean */
   1135int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
   1136{
   1137	int status;
   1138
   1139	BUG_ON(!journal);
   1140
   1141	status = jbd2_journal_wipe(journal->j_journal, full);
   1142	if (status < 0) {
   1143		mlog_errno(status);
   1144		goto bail;
   1145	}
   1146
   1147	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
   1148	if (status < 0)
   1149		mlog_errno(status);
   1150
   1151bail:
   1152	return status;
   1153}
   1154
   1155static int ocfs2_recovery_completed(struct ocfs2_super *osb)
   1156{
   1157	int empty;
   1158	struct ocfs2_recovery_map *rm = osb->recovery_map;
   1159
   1160	spin_lock(&osb->osb_lock);
   1161	empty = (rm->rm_used == 0);
   1162	spin_unlock(&osb->osb_lock);
   1163
   1164	return empty;
   1165}
   1166
   1167void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
   1168{
   1169	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
   1170}
   1171
   1172/*
   1173 * JBD Might read a cached version of another nodes journal file. We
   1174 * don't want this as this file changes often and we get no
   1175 * notification on those changes. The only way to be sure that we've
   1176 * got the most up to date version of those blocks then is to force
   1177 * read them off disk. Just searching through the buffer cache won't
   1178 * work as there may be pages backing this file which are still marked
   1179 * up to date. We know things can't change on this file underneath us
   1180 * as we have the lock by now :)
   1181 */
   1182static int ocfs2_force_read_journal(struct inode *inode)
   1183{
   1184	int status = 0;
   1185	int i;
   1186	u64 v_blkno, p_blkno, p_blocks, num_blocks;
   1187	struct buffer_head *bh = NULL;
   1188	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
   1189
   1190	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
   1191	v_blkno = 0;
   1192	while (v_blkno < num_blocks) {
   1193		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
   1194						     &p_blkno, &p_blocks, NULL);
   1195		if (status < 0) {
   1196			mlog_errno(status);
   1197			goto bail;
   1198		}
   1199
   1200		for (i = 0; i < p_blocks; i++, p_blkno++) {
   1201			bh = __find_get_block(osb->sb->s_bdev, p_blkno,
   1202					osb->sb->s_blocksize);
   1203			/* block not cached. */
   1204			if (!bh)
   1205				continue;
   1206
   1207			brelse(bh);
   1208			bh = NULL;
   1209			/* We are reading journal data which should not
   1210			 * be put in the uptodate cache.
   1211			 */
   1212			status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
   1213			if (status < 0) {
   1214				mlog_errno(status);
   1215				goto bail;
   1216			}
   1217
   1218			brelse(bh);
   1219			bh = NULL;
   1220		}
   1221
   1222		v_blkno += p_blocks;
   1223	}
   1224
   1225bail:
   1226	return status;
   1227}
   1228
   1229struct ocfs2_la_recovery_item {
   1230	struct list_head	lri_list;
   1231	int			lri_slot;
   1232	struct ocfs2_dinode	*lri_la_dinode;
   1233	struct ocfs2_dinode	*lri_tl_dinode;
   1234	struct ocfs2_quota_recovery *lri_qrec;
   1235	enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
   1236};
   1237
   1238/* Does the second half of the recovery process. By this point, the
   1239 * node is marked clean and can actually be considered recovered,
   1240 * hence it's no longer in the recovery map, but there's still some
   1241 * cleanup we can do which shouldn't happen within the recovery thread
   1242 * as locking in that context becomes very difficult if we are to take
   1243 * recovering nodes into account.
   1244 *
   1245 * NOTE: This function can and will sleep on recovery of other nodes
   1246 * during cluster locking, just like any other ocfs2 process.
   1247 */
   1248void ocfs2_complete_recovery(struct work_struct *work)
   1249{
   1250	int ret = 0;
   1251	struct ocfs2_journal *journal =
   1252		container_of(work, struct ocfs2_journal, j_recovery_work);
   1253	struct ocfs2_super *osb = journal->j_osb;
   1254	struct ocfs2_dinode *la_dinode, *tl_dinode;
   1255	struct ocfs2_la_recovery_item *item, *n;
   1256	struct ocfs2_quota_recovery *qrec;
   1257	enum ocfs2_orphan_reco_type orphan_reco_type;
   1258	LIST_HEAD(tmp_la_list);
   1259
   1260	trace_ocfs2_complete_recovery(
   1261		(unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
   1262
   1263	spin_lock(&journal->j_lock);
   1264	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
   1265	spin_unlock(&journal->j_lock);
   1266
   1267	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
   1268		list_del_init(&item->lri_list);
   1269
   1270		ocfs2_wait_on_quotas(osb);
   1271
   1272		la_dinode = item->lri_la_dinode;
   1273		tl_dinode = item->lri_tl_dinode;
   1274		qrec = item->lri_qrec;
   1275		orphan_reco_type = item->lri_orphan_reco_type;
   1276
   1277		trace_ocfs2_complete_recovery_slot(item->lri_slot,
   1278			la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
   1279			tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
   1280			qrec);
   1281
   1282		if (la_dinode) {
   1283			ret = ocfs2_complete_local_alloc_recovery(osb,
   1284								  la_dinode);
   1285			if (ret < 0)
   1286				mlog_errno(ret);
   1287
   1288			kfree(la_dinode);
   1289		}
   1290
   1291		if (tl_dinode) {
   1292			ret = ocfs2_complete_truncate_log_recovery(osb,
   1293								   tl_dinode);
   1294			if (ret < 0)
   1295				mlog_errno(ret);
   1296
   1297			kfree(tl_dinode);
   1298		}
   1299
   1300		ret = ocfs2_recover_orphans(osb, item->lri_slot,
   1301				orphan_reco_type);
   1302		if (ret < 0)
   1303			mlog_errno(ret);
   1304
   1305		if (qrec) {
   1306			ret = ocfs2_finish_quota_recovery(osb, qrec,
   1307							  item->lri_slot);
   1308			if (ret < 0)
   1309				mlog_errno(ret);
   1310			/* Recovery info is already freed now */
   1311		}
   1312
   1313		kfree(item);
   1314	}
   1315
   1316	trace_ocfs2_complete_recovery_end(ret);
   1317}
   1318
   1319/* NOTE: This function always eats your references to la_dinode and
   1320 * tl_dinode, either manually on error, or by passing them to
   1321 * ocfs2_complete_recovery */
   1322static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
   1323					    int slot_num,
   1324					    struct ocfs2_dinode *la_dinode,
   1325					    struct ocfs2_dinode *tl_dinode,
   1326					    struct ocfs2_quota_recovery *qrec,
   1327					    enum ocfs2_orphan_reco_type orphan_reco_type)
   1328{
   1329	struct ocfs2_la_recovery_item *item;
   1330
   1331	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
   1332	if (!item) {
   1333		/* Though we wish to avoid it, we are in fact safe in
   1334		 * skipping local alloc cleanup as fsck.ocfs2 is more
   1335		 * than capable of reclaiming unused space. */
   1336		kfree(la_dinode);
   1337		kfree(tl_dinode);
   1338
   1339		if (qrec)
   1340			ocfs2_free_quota_recovery(qrec);
   1341
   1342		mlog_errno(-ENOMEM);
   1343		return;
   1344	}
   1345
   1346	INIT_LIST_HEAD(&item->lri_list);
   1347	item->lri_la_dinode = la_dinode;
   1348	item->lri_slot = slot_num;
   1349	item->lri_tl_dinode = tl_dinode;
   1350	item->lri_qrec = qrec;
   1351	item->lri_orphan_reco_type = orphan_reco_type;
   1352
   1353	spin_lock(&journal->j_lock);
   1354	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
   1355	queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
   1356	spin_unlock(&journal->j_lock);
   1357}
   1358
   1359/* Called by the mount code to queue recovery the last part of
   1360 * recovery for it's own and offline slot(s). */
   1361void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
   1362{
   1363	struct ocfs2_journal *journal = osb->journal;
   1364
   1365	if (ocfs2_is_hard_readonly(osb))
   1366		return;
   1367
   1368	/* No need to queue up our truncate_log as regular cleanup will catch
   1369	 * that */
   1370	ocfs2_queue_recovery_completion(journal, osb->slot_num,
   1371					osb->local_alloc_copy, NULL, NULL,
   1372					ORPHAN_NEED_TRUNCATE);
   1373	ocfs2_schedule_truncate_log_flush(osb, 0);
   1374
   1375	osb->local_alloc_copy = NULL;
   1376
   1377	/* queue to recover orphan slots for all offline slots */
   1378	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
   1379	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
   1380	ocfs2_free_replay_slots(osb);
   1381}
   1382
   1383void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
   1384{
   1385	if (osb->quota_rec) {
   1386		ocfs2_queue_recovery_completion(osb->journal,
   1387						osb->slot_num,
   1388						NULL,
   1389						NULL,
   1390						osb->quota_rec,
   1391						ORPHAN_NEED_TRUNCATE);
   1392		osb->quota_rec = NULL;
   1393	}
   1394}
   1395
   1396static int __ocfs2_recovery_thread(void *arg)
   1397{
   1398	int status, node_num, slot_num;
   1399	struct ocfs2_super *osb = arg;
   1400	struct ocfs2_recovery_map *rm = osb->recovery_map;
   1401	int *rm_quota = NULL;
   1402	int rm_quota_used = 0, i;
   1403	struct ocfs2_quota_recovery *qrec;
   1404
   1405	/* Whether the quota supported. */
   1406	int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
   1407			OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
   1408		|| OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
   1409			OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
   1410
   1411	status = ocfs2_wait_on_mount(osb);
   1412	if (status < 0) {
   1413		goto bail;
   1414	}
   1415
   1416	if (quota_enabled) {
   1417		rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
   1418		if (!rm_quota) {
   1419			status = -ENOMEM;
   1420			goto bail;
   1421		}
   1422	}
   1423restart:
   1424	status = ocfs2_super_lock(osb, 1);
   1425	if (status < 0) {
   1426		mlog_errno(status);
   1427		goto bail;
   1428	}
   1429
   1430	status = ocfs2_compute_replay_slots(osb);
   1431	if (status < 0)
   1432		mlog_errno(status);
   1433
   1434	/* queue recovery for our own slot */
   1435	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
   1436					NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
   1437
   1438	spin_lock(&osb->osb_lock);
   1439	while (rm->rm_used) {
   1440		/* It's always safe to remove entry zero, as we won't
   1441		 * clear it until ocfs2_recover_node() has succeeded. */
   1442		node_num = rm->rm_entries[0];
   1443		spin_unlock(&osb->osb_lock);
   1444		slot_num = ocfs2_node_num_to_slot(osb, node_num);
   1445		trace_ocfs2_recovery_thread_node(node_num, slot_num);
   1446		if (slot_num == -ENOENT) {
   1447			status = 0;
   1448			goto skip_recovery;
   1449		}
   1450
   1451		/* It is a bit subtle with quota recovery. We cannot do it
   1452		 * immediately because we have to obtain cluster locks from
   1453		 * quota files and we also don't want to just skip it because
   1454		 * then quota usage would be out of sync until some node takes
   1455		 * the slot. So we remember which nodes need quota recovery
   1456		 * and when everything else is done, we recover quotas. */
   1457		if (quota_enabled) {
   1458			for (i = 0; i < rm_quota_used
   1459					&& rm_quota[i] != slot_num; i++)
   1460				;
   1461
   1462			if (i == rm_quota_used)
   1463				rm_quota[rm_quota_used++] = slot_num;
   1464		}
   1465
   1466		status = ocfs2_recover_node(osb, node_num, slot_num);
   1467skip_recovery:
   1468		if (!status) {
   1469			ocfs2_recovery_map_clear(osb, node_num);
   1470		} else {
   1471			mlog(ML_ERROR,
   1472			     "Error %d recovering node %d on device (%u,%u)!\n",
   1473			     status, node_num,
   1474			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
   1475			mlog(ML_ERROR, "Volume requires unmount.\n");
   1476		}
   1477
   1478		spin_lock(&osb->osb_lock);
   1479	}
   1480	spin_unlock(&osb->osb_lock);
   1481	trace_ocfs2_recovery_thread_end(status);
   1482
   1483	/* Refresh all journal recovery generations from disk */
   1484	status = ocfs2_check_journals_nolocks(osb);
   1485	status = (status == -EROFS) ? 0 : status;
   1486	if (status < 0)
   1487		mlog_errno(status);
   1488
   1489	/* Now it is right time to recover quotas... We have to do this under
   1490	 * superblock lock so that no one can start using the slot (and crash)
   1491	 * before we recover it */
   1492	if (quota_enabled) {
   1493		for (i = 0; i < rm_quota_used; i++) {
   1494			qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
   1495			if (IS_ERR(qrec)) {
   1496				status = PTR_ERR(qrec);
   1497				mlog_errno(status);
   1498				continue;
   1499			}
   1500			ocfs2_queue_recovery_completion(osb->journal,
   1501					rm_quota[i],
   1502					NULL, NULL, qrec,
   1503					ORPHAN_NEED_TRUNCATE);
   1504		}
   1505	}
   1506
   1507	ocfs2_super_unlock(osb, 1);
   1508
   1509	/* queue recovery for offline slots */
   1510	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
   1511
   1512bail:
   1513	mutex_lock(&osb->recovery_lock);
   1514	if (!status && !ocfs2_recovery_completed(osb)) {
   1515		mutex_unlock(&osb->recovery_lock);
   1516		goto restart;
   1517	}
   1518
   1519	ocfs2_free_replay_slots(osb);
   1520	osb->recovery_thread_task = NULL;
   1521	mb(); /* sync with ocfs2_recovery_thread_running */
   1522	wake_up(&osb->recovery_event);
   1523
   1524	mutex_unlock(&osb->recovery_lock);
   1525
   1526	if (quota_enabled)
   1527		kfree(rm_quota);
   1528
   1529	return status;
   1530}
   1531
   1532void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
   1533{
   1534	mutex_lock(&osb->recovery_lock);
   1535
   1536	trace_ocfs2_recovery_thread(node_num, osb->node_num,
   1537		osb->disable_recovery, osb->recovery_thread_task,
   1538		osb->disable_recovery ?
   1539		-1 : ocfs2_recovery_map_set(osb, node_num));
   1540
   1541	if (osb->disable_recovery)
   1542		goto out;
   1543
   1544	if (osb->recovery_thread_task)
   1545		goto out;
   1546
   1547	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
   1548			"ocfs2rec-%s", osb->uuid_str);
   1549	if (IS_ERR(osb->recovery_thread_task)) {
   1550		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
   1551		osb->recovery_thread_task = NULL;
   1552	}
   1553
   1554out:
   1555	mutex_unlock(&osb->recovery_lock);
   1556	wake_up(&osb->recovery_event);
   1557}
   1558
   1559static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
   1560				    int slot_num,
   1561				    struct buffer_head **bh,
   1562				    struct inode **ret_inode)
   1563{
   1564	int status = -EACCES;
   1565	struct inode *inode = NULL;
   1566
   1567	BUG_ON(slot_num >= osb->max_slots);
   1568
   1569	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
   1570					    slot_num);
   1571	if (!inode || is_bad_inode(inode)) {
   1572		mlog_errno(status);
   1573		goto bail;
   1574	}
   1575	SET_INODE_JOURNAL(inode);
   1576
   1577	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
   1578	if (status < 0) {
   1579		mlog_errno(status);
   1580		goto bail;
   1581	}
   1582
   1583	status = 0;
   1584
   1585bail:
   1586	if (inode) {
   1587		if (status || !ret_inode)
   1588			iput(inode);
   1589		else
   1590			*ret_inode = inode;
   1591	}
   1592	return status;
   1593}
   1594
   1595/* Does the actual journal replay and marks the journal inode as
   1596 * clean. Will only replay if the journal inode is marked dirty. */
   1597static int ocfs2_replay_journal(struct ocfs2_super *osb,
   1598				int node_num,
   1599				int slot_num)
   1600{
   1601	int status;
   1602	int got_lock = 0;
   1603	unsigned int flags;
   1604	struct inode *inode = NULL;
   1605	struct ocfs2_dinode *fe;
   1606	journal_t *journal = NULL;
   1607	struct buffer_head *bh = NULL;
   1608	u32 slot_reco_gen;
   1609
   1610	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
   1611	if (status) {
   1612		mlog_errno(status);
   1613		goto done;
   1614	}
   1615
   1616	fe = (struct ocfs2_dinode *)bh->b_data;
   1617	slot_reco_gen = ocfs2_get_recovery_generation(fe);
   1618	brelse(bh);
   1619	bh = NULL;
   1620
   1621	/*
   1622	 * As the fs recovery is asynchronous, there is a small chance that
   1623	 * another node mounted (and recovered) the slot before the recovery
   1624	 * thread could get the lock. To handle that, we dirty read the journal
   1625	 * inode for that slot to get the recovery generation. If it is
   1626	 * different than what we expected, the slot has been recovered.
   1627	 * If not, it needs recovery.
   1628	 */
   1629	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
   1630		trace_ocfs2_replay_journal_recovered(slot_num,
   1631		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
   1632		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
   1633		status = -EBUSY;
   1634		goto done;
   1635	}
   1636
   1637	/* Continue with recovery as the journal has not yet been recovered */
   1638
   1639	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
   1640	if (status < 0) {
   1641		trace_ocfs2_replay_journal_lock_err(status);
   1642		if (status != -ERESTARTSYS)
   1643			mlog(ML_ERROR, "Could not lock journal!\n");
   1644		goto done;
   1645	}
   1646	got_lock = 1;
   1647
   1648	fe = (struct ocfs2_dinode *) bh->b_data;
   1649
   1650	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
   1651	slot_reco_gen = ocfs2_get_recovery_generation(fe);
   1652
   1653	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
   1654		trace_ocfs2_replay_journal_skip(node_num);
   1655		/* Refresh recovery generation for the slot */
   1656		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
   1657		goto done;
   1658	}
   1659
   1660	/* we need to run complete recovery for offline orphan slots */
   1661	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
   1662
   1663	printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
   1664	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
   1665	       MINOR(osb->sb->s_dev));
   1666
   1667	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
   1668
   1669	status = ocfs2_force_read_journal(inode);
   1670	if (status < 0) {
   1671		mlog_errno(status);
   1672		goto done;
   1673	}
   1674
   1675	journal = jbd2_journal_init_inode(inode);
   1676	if (journal == NULL) {
   1677		mlog(ML_ERROR, "Linux journal layer error\n");
   1678		status = -EIO;
   1679		goto done;
   1680	}
   1681
   1682	status = jbd2_journal_load(journal);
   1683	if (status < 0) {
   1684		mlog_errno(status);
   1685		BUG_ON(!igrab(inode));
   1686		jbd2_journal_destroy(journal);
   1687		goto done;
   1688	}
   1689
   1690	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
   1691
   1692	/* wipe the journal */
   1693	jbd2_journal_lock_updates(journal);
   1694	status = jbd2_journal_flush(journal, 0);
   1695	jbd2_journal_unlock_updates(journal);
   1696	if (status < 0)
   1697		mlog_errno(status);
   1698
   1699	/* This will mark the node clean */
   1700	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
   1701	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
   1702	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
   1703
   1704	/* Increment recovery generation to indicate successful recovery */
   1705	ocfs2_bump_recovery_generation(fe);
   1706	osb->slot_recovery_generations[slot_num] =
   1707					ocfs2_get_recovery_generation(fe);
   1708
   1709	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
   1710	status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
   1711	if (status < 0)
   1712		mlog_errno(status);
   1713
   1714	BUG_ON(!igrab(inode));
   1715
   1716	jbd2_journal_destroy(journal);
   1717
   1718	printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
   1719	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
   1720	       MINOR(osb->sb->s_dev));
   1721done:
   1722	/* drop the lock on this nodes journal */
   1723	if (got_lock)
   1724		ocfs2_inode_unlock(inode, 1);
   1725
   1726	iput(inode);
   1727	brelse(bh);
   1728
   1729	return status;
   1730}
   1731
   1732/*
   1733 * Do the most important parts of node recovery:
   1734 *  - Replay it's journal
   1735 *  - Stamp a clean local allocator file
   1736 *  - Stamp a clean truncate log
   1737 *  - Mark the node clean
   1738 *
   1739 * If this function completes without error, a node in OCFS2 can be
   1740 * said to have been safely recovered. As a result, failure during the
   1741 * second part of a nodes recovery process (local alloc recovery) is
   1742 * far less concerning.
   1743 */
   1744static int ocfs2_recover_node(struct ocfs2_super *osb,
   1745			      int node_num, int slot_num)
   1746{
   1747	int status = 0;
   1748	struct ocfs2_dinode *la_copy = NULL;
   1749	struct ocfs2_dinode *tl_copy = NULL;
   1750
   1751	trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
   1752
   1753	/* Should not ever be called to recover ourselves -- in that
   1754	 * case we should've called ocfs2_journal_load instead. */
   1755	BUG_ON(osb->node_num == node_num);
   1756
   1757	status = ocfs2_replay_journal(osb, node_num, slot_num);
   1758	if (status < 0) {
   1759		if (status == -EBUSY) {
   1760			trace_ocfs2_recover_node_skip(slot_num, node_num);
   1761			status = 0;
   1762			goto done;
   1763		}
   1764		mlog_errno(status);
   1765		goto done;
   1766	}
   1767
   1768	/* Stamp a clean local alloc file AFTER recovering the journal... */
   1769	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
   1770	if (status < 0) {
   1771		mlog_errno(status);
   1772		goto done;
   1773	}
   1774
   1775	/* An error from begin_truncate_log_recovery is not
   1776	 * serious enough to warrant halting the rest of
   1777	 * recovery. */
   1778	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
   1779	if (status < 0)
   1780		mlog_errno(status);
   1781
   1782	/* Likewise, this would be a strange but ultimately not so
   1783	 * harmful place to get an error... */
   1784	status = ocfs2_clear_slot(osb, slot_num);
   1785	if (status < 0)
   1786		mlog_errno(status);
   1787
   1788	/* This will kfree the memory pointed to by la_copy and tl_copy */
   1789	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
   1790					tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
   1791
   1792	status = 0;
   1793done:
   1794
   1795	return status;
   1796}
   1797
   1798/* Test node liveness by trylocking his journal. If we get the lock,
   1799 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
   1800 * still alive (we couldn't get the lock) and < 0 on error. */
   1801static int ocfs2_trylock_journal(struct ocfs2_super *osb,
   1802				 int slot_num)
   1803{
   1804	int status, flags;
   1805	struct inode *inode = NULL;
   1806
   1807	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
   1808					    slot_num);
   1809	if (inode == NULL) {
   1810		mlog(ML_ERROR, "access error\n");
   1811		status = -EACCES;
   1812		goto bail;
   1813	}
   1814	if (is_bad_inode(inode)) {
   1815		mlog(ML_ERROR, "access error (bad inode)\n");
   1816		iput(inode);
   1817		inode = NULL;
   1818		status = -EACCES;
   1819		goto bail;
   1820	}
   1821	SET_INODE_JOURNAL(inode);
   1822
   1823	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
   1824	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
   1825	if (status < 0) {
   1826		if (status != -EAGAIN)
   1827			mlog_errno(status);
   1828		goto bail;
   1829	}
   1830
   1831	ocfs2_inode_unlock(inode, 1);
   1832bail:
   1833	iput(inode);
   1834
   1835	return status;
   1836}
   1837
   1838/* Call this underneath ocfs2_super_lock. It also assumes that the
   1839 * slot info struct has been updated from disk. */
   1840int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
   1841{
   1842	unsigned int node_num;
   1843	int status, i;
   1844	u32 gen;
   1845	struct buffer_head *bh = NULL;
   1846	struct ocfs2_dinode *di;
   1847
   1848	/* This is called with the super block cluster lock, so we
   1849	 * know that the slot map can't change underneath us. */
   1850
   1851	for (i = 0; i < osb->max_slots; i++) {
   1852		/* Read journal inode to get the recovery generation */
   1853		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
   1854		if (status) {
   1855			mlog_errno(status);
   1856			goto bail;
   1857		}
   1858		di = (struct ocfs2_dinode *)bh->b_data;
   1859		gen = ocfs2_get_recovery_generation(di);
   1860		brelse(bh);
   1861		bh = NULL;
   1862
   1863		spin_lock(&osb->osb_lock);
   1864		osb->slot_recovery_generations[i] = gen;
   1865
   1866		trace_ocfs2_mark_dead_nodes(i,
   1867					    osb->slot_recovery_generations[i]);
   1868
   1869		if (i == osb->slot_num) {
   1870			spin_unlock(&osb->osb_lock);
   1871			continue;
   1872		}
   1873
   1874		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
   1875		if (status == -ENOENT) {
   1876			spin_unlock(&osb->osb_lock);
   1877			continue;
   1878		}
   1879
   1880		if (__ocfs2_recovery_map_test(osb, node_num)) {
   1881			spin_unlock(&osb->osb_lock);
   1882			continue;
   1883		}
   1884		spin_unlock(&osb->osb_lock);
   1885
   1886		/* Ok, we have a slot occupied by another node which
   1887		 * is not in the recovery map. We trylock his journal
   1888		 * file here to test if he's alive. */
   1889		status = ocfs2_trylock_journal(osb, i);
   1890		if (!status) {
   1891			/* Since we're called from mount, we know that
   1892			 * the recovery thread can't race us on
   1893			 * setting / checking the recovery bits. */
   1894			ocfs2_recovery_thread(osb, node_num);
   1895		} else if ((status < 0) && (status != -EAGAIN)) {
   1896			mlog_errno(status);
   1897			goto bail;
   1898		}
   1899	}
   1900
   1901	status = 0;
   1902bail:
   1903	return status;
   1904}
   1905
   1906/*
   1907 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
   1908 * randomness to the timeout to minimize multple nodes firing the timer at the
   1909 * same time.
   1910 */
   1911static inline unsigned long ocfs2_orphan_scan_timeout(void)
   1912{
   1913	unsigned long time;
   1914
   1915	get_random_bytes(&time, sizeof(time));
   1916	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
   1917	return msecs_to_jiffies(time);
   1918}
   1919
   1920/*
   1921 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
   1922 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
   1923 * is done to catch any orphans that are left over in orphan directories.
   1924 *
   1925 * It scans all slots, even ones that are in use. It does so to handle the
   1926 * case described below:
   1927 *
   1928 *   Node 1 has an inode it was using. The dentry went away due to memory
   1929 *   pressure.  Node 1 closes the inode, but it's on the free list. The node
   1930 *   has the open lock.
   1931 *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
   1932 *   but node 1 has no dentry and doesn't get the message. It trylocks the
   1933 *   open lock, sees that another node has a PR, and does nothing.
   1934 *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
   1935 *   open lock, sees the PR still, and does nothing.
   1936 *   Basically, we have to trigger an orphan iput on node 1. The only way
   1937 *   for this to happen is if node 1 runs node 2's orphan dir.
   1938 *
   1939 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
   1940 * seconds.  It gets an EX lock on os_lockres and checks sequence number
   1941 * stored in LVB. If the sequence number has changed, it means some other
   1942 * node has done the scan.  This node skips the scan and tracks the
   1943 * sequence number.  If the sequence number didn't change, it means a scan
   1944 * hasn't happened.  The node queues a scan and increments the
   1945 * sequence number in the LVB.
   1946 */
   1947static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
   1948{
   1949	struct ocfs2_orphan_scan *os;
   1950	int status, i;
   1951	u32 seqno = 0;
   1952
   1953	os = &osb->osb_orphan_scan;
   1954
   1955	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
   1956		goto out;
   1957
   1958	trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
   1959					    atomic_read(&os->os_state));
   1960
   1961	status = ocfs2_orphan_scan_lock(osb, &seqno);
   1962	if (status < 0) {
   1963		if (status != -EAGAIN)
   1964			mlog_errno(status);
   1965		goto out;
   1966	}
   1967
   1968	/* Do no queue the tasks if the volume is being umounted */
   1969	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
   1970		goto unlock;
   1971
   1972	if (os->os_seqno != seqno) {
   1973		os->os_seqno = seqno;
   1974		goto unlock;
   1975	}
   1976
   1977	for (i = 0; i < osb->max_slots; i++)
   1978		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
   1979						NULL, ORPHAN_NO_NEED_TRUNCATE);
   1980	/*
   1981	 * We queued a recovery on orphan slots, increment the sequence
   1982	 * number and update LVB so other node will skip the scan for a while
   1983	 */
   1984	seqno++;
   1985	os->os_count++;
   1986	os->os_scantime = ktime_get_seconds();
   1987unlock:
   1988	ocfs2_orphan_scan_unlock(osb, seqno);
   1989out:
   1990	trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
   1991					  atomic_read(&os->os_state));
   1992	return;
   1993}
   1994
   1995/* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
   1996static void ocfs2_orphan_scan_work(struct work_struct *work)
   1997{
   1998	struct ocfs2_orphan_scan *os;
   1999	struct ocfs2_super *osb;
   2000
   2001	os = container_of(work, struct ocfs2_orphan_scan,
   2002			  os_orphan_scan_work.work);
   2003	osb = os->os_osb;
   2004
   2005	mutex_lock(&os->os_lock);
   2006	ocfs2_queue_orphan_scan(osb);
   2007	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
   2008		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
   2009				      ocfs2_orphan_scan_timeout());
   2010	mutex_unlock(&os->os_lock);
   2011}
   2012
   2013void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
   2014{
   2015	struct ocfs2_orphan_scan *os;
   2016
   2017	os = &osb->osb_orphan_scan;
   2018	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
   2019		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
   2020		mutex_lock(&os->os_lock);
   2021		cancel_delayed_work(&os->os_orphan_scan_work);
   2022		mutex_unlock(&os->os_lock);
   2023	}
   2024}
   2025
   2026void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
   2027{
   2028	struct ocfs2_orphan_scan *os;
   2029
   2030	os = &osb->osb_orphan_scan;
   2031	os->os_osb = osb;
   2032	os->os_count = 0;
   2033	os->os_seqno = 0;
   2034	mutex_init(&os->os_lock);
   2035	INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
   2036}
   2037
   2038void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
   2039{
   2040	struct ocfs2_orphan_scan *os;
   2041
   2042	os = &osb->osb_orphan_scan;
   2043	os->os_scantime = ktime_get_seconds();
   2044	if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
   2045		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
   2046	else {
   2047		atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
   2048		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
   2049				   ocfs2_orphan_scan_timeout());
   2050	}
   2051}
   2052
   2053struct ocfs2_orphan_filldir_priv {
   2054	struct dir_context	ctx;
   2055	struct inode		*head;
   2056	struct ocfs2_super	*osb;
   2057	enum ocfs2_orphan_reco_type orphan_reco_type;
   2058};
   2059
   2060static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
   2061				int name_len, loff_t pos, u64 ino,
   2062				unsigned type)
   2063{
   2064	struct ocfs2_orphan_filldir_priv *p =
   2065		container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
   2066	struct inode *iter;
   2067
   2068	if (name_len == 1 && !strncmp(".", name, 1))
   2069		return 0;
   2070	if (name_len == 2 && !strncmp("..", name, 2))
   2071		return 0;
   2072
   2073	/* do not include dio entry in case of orphan scan */
   2074	if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
   2075			(!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
   2076			OCFS2_DIO_ORPHAN_PREFIX_LEN)))
   2077		return 0;
   2078
   2079	/* Skip bad inodes so that recovery can continue */
   2080	iter = ocfs2_iget(p->osb, ino,
   2081			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
   2082	if (IS_ERR(iter))
   2083		return 0;
   2084
   2085	if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
   2086			OCFS2_DIO_ORPHAN_PREFIX_LEN))
   2087		OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
   2088
   2089	/* Skip inodes which are already added to recover list, since dio may
   2090	 * happen concurrently with unlink/rename */
   2091	if (OCFS2_I(iter)->ip_next_orphan) {
   2092		iput(iter);
   2093		return 0;
   2094	}
   2095
   2096	trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
   2097	/* No locking is required for the next_orphan queue as there
   2098	 * is only ever a single process doing orphan recovery. */
   2099	OCFS2_I(iter)->ip_next_orphan = p->head;
   2100	p->head = iter;
   2101
   2102	return 0;
   2103}
   2104
   2105static int ocfs2_queue_orphans(struct ocfs2_super *osb,
   2106			       int slot,
   2107			       struct inode **head,
   2108			       enum ocfs2_orphan_reco_type orphan_reco_type)
   2109{
   2110	int status;
   2111	struct inode *orphan_dir_inode = NULL;
   2112	struct ocfs2_orphan_filldir_priv priv = {
   2113		.ctx.actor = ocfs2_orphan_filldir,
   2114		.osb = osb,
   2115		.head = *head,
   2116		.orphan_reco_type = orphan_reco_type
   2117	};
   2118
   2119	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
   2120						       ORPHAN_DIR_SYSTEM_INODE,
   2121						       slot);
   2122	if  (!orphan_dir_inode) {
   2123		status = -ENOENT;
   2124		mlog_errno(status);
   2125		return status;
   2126	}
   2127
   2128	inode_lock(orphan_dir_inode);
   2129	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
   2130	if (status < 0) {
   2131		mlog_errno(status);
   2132		goto out;
   2133	}
   2134
   2135	status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
   2136	if (status) {
   2137		mlog_errno(status);
   2138		goto out_cluster;
   2139	}
   2140
   2141	*head = priv.head;
   2142
   2143out_cluster:
   2144	ocfs2_inode_unlock(orphan_dir_inode, 0);
   2145out:
   2146	inode_unlock(orphan_dir_inode);
   2147	iput(orphan_dir_inode);
   2148	return status;
   2149}
   2150
   2151static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
   2152					      int slot)
   2153{
   2154	int ret;
   2155
   2156	spin_lock(&osb->osb_lock);
   2157	ret = !osb->osb_orphan_wipes[slot];
   2158	spin_unlock(&osb->osb_lock);
   2159	return ret;
   2160}
   2161
   2162static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
   2163					     int slot)
   2164{
   2165	spin_lock(&osb->osb_lock);
   2166	/* Mark ourselves such that new processes in delete_inode()
   2167	 * know to quit early. */
   2168	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
   2169	while (osb->osb_orphan_wipes[slot]) {
   2170		/* If any processes are already in the middle of an
   2171		 * orphan wipe on this dir, then we need to wait for
   2172		 * them. */
   2173		spin_unlock(&osb->osb_lock);
   2174		wait_event_interruptible(osb->osb_wipe_event,
   2175					 ocfs2_orphan_recovery_can_continue(osb, slot));
   2176		spin_lock(&osb->osb_lock);
   2177	}
   2178	spin_unlock(&osb->osb_lock);
   2179}
   2180
   2181static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
   2182					      int slot)
   2183{
   2184	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
   2185}
   2186
   2187/*
   2188 * Orphan recovery. Each mounted node has it's own orphan dir which we
   2189 * must run during recovery. Our strategy here is to build a list of
   2190 * the inodes in the orphan dir and iget/iput them. The VFS does
   2191 * (most) of the rest of the work.
   2192 *
   2193 * Orphan recovery can happen at any time, not just mount so we have a
   2194 * couple of extra considerations.
   2195 *
   2196 * - We grab as many inodes as we can under the orphan dir lock -
   2197 *   doing iget() outside the orphan dir risks getting a reference on
   2198 *   an invalid inode.
   2199 * - We must be sure not to deadlock with other processes on the
   2200 *   system wanting to run delete_inode(). This can happen when they go
   2201 *   to lock the orphan dir and the orphan recovery process attempts to
   2202 *   iget() inside the orphan dir lock. This can be avoided by
   2203 *   advertising our state to ocfs2_delete_inode().
   2204 */
   2205static int ocfs2_recover_orphans(struct ocfs2_super *osb,
   2206				 int slot,
   2207				 enum ocfs2_orphan_reco_type orphan_reco_type)
   2208{
   2209	int ret = 0;
   2210	struct inode *inode = NULL;
   2211	struct inode *iter;
   2212	struct ocfs2_inode_info *oi;
   2213	struct buffer_head *di_bh = NULL;
   2214	struct ocfs2_dinode *di = NULL;
   2215
   2216	trace_ocfs2_recover_orphans(slot);
   2217
   2218	ocfs2_mark_recovering_orphan_dir(osb, slot);
   2219	ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
   2220	ocfs2_clear_recovering_orphan_dir(osb, slot);
   2221
   2222	/* Error here should be noted, but we want to continue with as
   2223	 * many queued inodes as we've got. */
   2224	if (ret)
   2225		mlog_errno(ret);
   2226
   2227	while (inode) {
   2228		oi = OCFS2_I(inode);
   2229		trace_ocfs2_recover_orphans_iput(
   2230					(unsigned long long)oi->ip_blkno);
   2231
   2232		iter = oi->ip_next_orphan;
   2233		oi->ip_next_orphan = NULL;
   2234
   2235		if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
   2236			inode_lock(inode);
   2237			ret = ocfs2_rw_lock(inode, 1);
   2238			if (ret < 0) {
   2239				mlog_errno(ret);
   2240				goto unlock_mutex;
   2241			}
   2242			/*
   2243			 * We need to take and drop the inode lock to
   2244			 * force read inode from disk.
   2245			 */
   2246			ret = ocfs2_inode_lock(inode, &di_bh, 1);
   2247			if (ret) {
   2248				mlog_errno(ret);
   2249				goto unlock_rw;
   2250			}
   2251
   2252			di = (struct ocfs2_dinode *)di_bh->b_data;
   2253
   2254			if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
   2255				ret = ocfs2_truncate_file(inode, di_bh,
   2256						i_size_read(inode));
   2257				if (ret < 0) {
   2258					if (ret != -ENOSPC)
   2259						mlog_errno(ret);
   2260					goto unlock_inode;
   2261				}
   2262
   2263				ret = ocfs2_del_inode_from_orphan(osb, inode,
   2264						di_bh, 0, 0);
   2265				if (ret)
   2266					mlog_errno(ret);
   2267			}
   2268unlock_inode:
   2269			ocfs2_inode_unlock(inode, 1);
   2270			brelse(di_bh);
   2271			di_bh = NULL;
   2272unlock_rw:
   2273			ocfs2_rw_unlock(inode, 1);
   2274unlock_mutex:
   2275			inode_unlock(inode);
   2276
   2277			/* clear dio flag in ocfs2_inode_info */
   2278			oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
   2279		} else {
   2280			spin_lock(&oi->ip_lock);
   2281			/* Set the proper information to get us going into
   2282			 * ocfs2_delete_inode. */
   2283			oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
   2284			spin_unlock(&oi->ip_lock);
   2285		}
   2286
   2287		iput(inode);
   2288		inode = iter;
   2289	}
   2290
   2291	return ret;
   2292}
   2293
   2294static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
   2295{
   2296	/* This check is good because ocfs2 will wait on our recovery
   2297	 * thread before changing it to something other than MOUNTED
   2298	 * or DISABLED. */
   2299	wait_event(osb->osb_mount_event,
   2300		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
   2301		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
   2302		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
   2303
   2304	/* If there's an error on mount, then we may never get to the
   2305	 * MOUNTED flag, but this is set right before
   2306	 * dismount_volume() so we can trust it. */
   2307	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
   2308		trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
   2309		mlog(0, "mount error, exiting!\n");
   2310		return -EBUSY;
   2311	}
   2312
   2313	return 0;
   2314}
   2315
   2316static int ocfs2_commit_thread(void *arg)
   2317{
   2318	int status;
   2319	struct ocfs2_super *osb = arg;
   2320	struct ocfs2_journal *journal = osb->journal;
   2321
   2322	/* we can trust j_num_trans here because _should_stop() is only set in
   2323	 * shutdown and nobody other than ourselves should be able to start
   2324	 * transactions.  committing on shutdown might take a few iterations
   2325	 * as final transactions put deleted inodes on the list */
   2326	while (!(kthread_should_stop() &&
   2327		 atomic_read(&journal->j_num_trans) == 0)) {
   2328
   2329		wait_event_interruptible(osb->checkpoint_event,
   2330					 atomic_read(&journal->j_num_trans)
   2331					 || kthread_should_stop());
   2332
   2333		status = ocfs2_commit_cache(osb);
   2334		if (status < 0) {
   2335			static unsigned long abort_warn_time;
   2336
   2337			/* Warn about this once per minute */
   2338			if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
   2339				mlog(ML_ERROR, "status = %d, journal is "
   2340						"already aborted.\n", status);
   2341			/*
   2342			 * After ocfs2_commit_cache() fails, j_num_trans has a
   2343			 * non-zero value.  Sleep here to avoid a busy-wait
   2344			 * loop.
   2345			 */
   2346			msleep_interruptible(1000);
   2347		}
   2348
   2349		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
   2350			mlog(ML_KTHREAD,
   2351			     "commit_thread: %u transactions pending on "
   2352			     "shutdown\n",
   2353			     atomic_read(&journal->j_num_trans));
   2354		}
   2355	}
   2356
   2357	return 0;
   2358}
   2359
   2360/* Reads all the journal inodes without taking any cluster locks. Used
   2361 * for hard readonly access to determine whether any journal requires
   2362 * recovery. Also used to refresh the recovery generation numbers after
   2363 * a journal has been recovered by another node.
   2364 */
   2365int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
   2366{
   2367	int ret = 0;
   2368	unsigned int slot;
   2369	struct buffer_head *di_bh = NULL;
   2370	struct ocfs2_dinode *di;
   2371	int journal_dirty = 0;
   2372
   2373	for(slot = 0; slot < osb->max_slots; slot++) {
   2374		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
   2375		if (ret) {
   2376			mlog_errno(ret);
   2377			goto out;
   2378		}
   2379
   2380		di = (struct ocfs2_dinode *) di_bh->b_data;
   2381
   2382		osb->slot_recovery_generations[slot] =
   2383					ocfs2_get_recovery_generation(di);
   2384
   2385		if (le32_to_cpu(di->id1.journal1.ij_flags) &
   2386		    OCFS2_JOURNAL_DIRTY_FL)
   2387			journal_dirty = 1;
   2388
   2389		brelse(di_bh);
   2390		di_bh = NULL;
   2391	}
   2392
   2393out:
   2394	if (journal_dirty)
   2395		ret = -EROFS;
   2396	return ret;
   2397}