cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

base.c (94657B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 *  linux/fs/proc/base.c
      4 *
      5 *  Copyright (C) 1991, 1992 Linus Torvalds
      6 *
      7 *  proc base directory handling functions
      8 *
      9 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
     10 *  Instead of using magical inumbers to determine the kind of object
     11 *  we allocate and fill in-core inodes upon lookup. They don't even
     12 *  go into icache. We cache the reference to task_struct upon lookup too.
     13 *  Eventually it should become a filesystem in its own. We don't use the
     14 *  rest of procfs anymore.
     15 *
     16 *
     17 *  Changelog:
     18 *  17-Jan-2005
     19 *  Allan Bezerra
     20 *  Bruna Moreira <bruna.moreira@indt.org.br>
     21 *  Edjard Mota <edjard.mota@indt.org.br>
     22 *  Ilias Biris <ilias.biris@indt.org.br>
     23 *  Mauricio Lin <mauricio.lin@indt.org.br>
     24 *
     25 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
     26 *
     27 *  A new process specific entry (smaps) included in /proc. It shows the
     28 *  size of rss for each memory area. The maps entry lacks information
     29 *  about physical memory size (rss) for each mapped file, i.e.,
     30 *  rss information for executables and library files.
     31 *  This additional information is useful for any tools that need to know
     32 *  about physical memory consumption for a process specific library.
     33 *
     34 *  Changelog:
     35 *  21-Feb-2005
     36 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
     37 *  Pud inclusion in the page table walking.
     38 *
     39 *  ChangeLog:
     40 *  10-Mar-2005
     41 *  10LE Instituto Nokia de Tecnologia - INdT:
     42 *  A better way to walks through the page table as suggested by Hugh Dickins.
     43 *
     44 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
     45 *  Smaps information related to shared, private, clean and dirty pages.
     46 *
     47 *  Paul Mundt <paul.mundt@nokia.com>:
     48 *  Overall revision about smaps.
     49 */
     50
     51#include <linux/uaccess.h>
     52
     53#include <linux/errno.h>
     54#include <linux/time.h>
     55#include <linux/proc_fs.h>
     56#include <linux/stat.h>
     57#include <linux/task_io_accounting_ops.h>
     58#include <linux/init.h>
     59#include <linux/capability.h>
     60#include <linux/file.h>
     61#include <linux/fdtable.h>
     62#include <linux/generic-radix-tree.h>
     63#include <linux/string.h>
     64#include <linux/seq_file.h>
     65#include <linux/namei.h>
     66#include <linux/mnt_namespace.h>
     67#include <linux/mm.h>
     68#include <linux/swap.h>
     69#include <linux/rcupdate.h>
     70#include <linux/kallsyms.h>
     71#include <linux/stacktrace.h>
     72#include <linux/resource.h>
     73#include <linux/module.h>
     74#include <linux/mount.h>
     75#include <linux/security.h>
     76#include <linux/ptrace.h>
     77#include <linux/printk.h>
     78#include <linux/cache.h>
     79#include <linux/cgroup.h>
     80#include <linux/cpuset.h>
     81#include <linux/audit.h>
     82#include <linux/poll.h>
     83#include <linux/nsproxy.h>
     84#include <linux/oom.h>
     85#include <linux/elf.h>
     86#include <linux/pid_namespace.h>
     87#include <linux/user_namespace.h>
     88#include <linux/fs_struct.h>
     89#include <linux/slab.h>
     90#include <linux/sched/autogroup.h>
     91#include <linux/sched/mm.h>
     92#include <linux/sched/coredump.h>
     93#include <linux/sched/debug.h>
     94#include <linux/sched/stat.h>
     95#include <linux/posix-timers.h>
     96#include <linux/time_namespace.h>
     97#include <linux/resctrl.h>
     98#include <linux/cn_proc.h>
     99#include <trace/events/oom.h>
    100#include "internal.h"
    101#include "fd.h"
    102
    103#include "../../lib/kstrtox.h"
    104
    105/* NOTE:
    106 *	Implementing inode permission operations in /proc is almost
    107 *	certainly an error.  Permission checks need to happen during
    108 *	each system call not at open time.  The reason is that most of
    109 *	what we wish to check for permissions in /proc varies at runtime.
    110 *
    111 *	The classic example of a problem is opening file descriptors
    112 *	in /proc for a task before it execs a suid executable.
    113 */
    114
    115static u8 nlink_tid __ro_after_init;
    116static u8 nlink_tgid __ro_after_init;
    117
    118struct pid_entry {
    119	const char *name;
    120	unsigned int len;
    121	umode_t mode;
    122	const struct inode_operations *iop;
    123	const struct file_operations *fop;
    124	union proc_op op;
    125};
    126
    127#define NOD(NAME, MODE, IOP, FOP, OP) {			\
    128	.name = (NAME),					\
    129	.len  = sizeof(NAME) - 1,			\
    130	.mode = MODE,					\
    131	.iop  = IOP,					\
    132	.fop  = FOP,					\
    133	.op   = OP,					\
    134}
    135
    136#define DIR(NAME, MODE, iops, fops)	\
    137	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
    138#define LNK(NAME, get_link)					\
    139	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
    140		&proc_pid_link_inode_operations, NULL,		\
    141		{ .proc_get_link = get_link } )
    142#define REG(NAME, MODE, fops)				\
    143	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
    144#define ONE(NAME, MODE, show)				\
    145	NOD(NAME, (S_IFREG|(MODE)),			\
    146		NULL, &proc_single_file_operations,	\
    147		{ .proc_show = show } )
    148#define ATTR(LSM, NAME, MODE)				\
    149	NOD(NAME, (S_IFREG|(MODE)),			\
    150		NULL, &proc_pid_attr_operations,	\
    151		{ .lsm = LSM })
    152
    153/*
    154 * Count the number of hardlinks for the pid_entry table, excluding the .
    155 * and .. links.
    156 */
    157static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
    158	unsigned int n)
    159{
    160	unsigned int i;
    161	unsigned int count;
    162
    163	count = 2;
    164	for (i = 0; i < n; ++i) {
    165		if (S_ISDIR(entries[i].mode))
    166			++count;
    167	}
    168
    169	return count;
    170}
    171
    172static int get_task_root(struct task_struct *task, struct path *root)
    173{
    174	int result = -ENOENT;
    175
    176	task_lock(task);
    177	if (task->fs) {
    178		get_fs_root(task->fs, root);
    179		result = 0;
    180	}
    181	task_unlock(task);
    182	return result;
    183}
    184
    185static int proc_cwd_link(struct dentry *dentry, struct path *path)
    186{
    187	struct task_struct *task = get_proc_task(d_inode(dentry));
    188	int result = -ENOENT;
    189
    190	if (task) {
    191		task_lock(task);
    192		if (task->fs) {
    193			get_fs_pwd(task->fs, path);
    194			result = 0;
    195		}
    196		task_unlock(task);
    197		put_task_struct(task);
    198	}
    199	return result;
    200}
    201
    202static int proc_root_link(struct dentry *dentry, struct path *path)
    203{
    204	struct task_struct *task = get_proc_task(d_inode(dentry));
    205	int result = -ENOENT;
    206
    207	if (task) {
    208		result = get_task_root(task, path);
    209		put_task_struct(task);
    210	}
    211	return result;
    212}
    213
    214/*
    215 * If the user used setproctitle(), we just get the string from
    216 * user space at arg_start, and limit it to a maximum of one page.
    217 */
    218static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
    219				size_t count, unsigned long pos,
    220				unsigned long arg_start)
    221{
    222	char *page;
    223	int ret, got;
    224
    225	if (pos >= PAGE_SIZE)
    226		return 0;
    227
    228	page = (char *)__get_free_page(GFP_KERNEL);
    229	if (!page)
    230		return -ENOMEM;
    231
    232	ret = 0;
    233	got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
    234	if (got > 0) {
    235		int len = strnlen(page, got);
    236
    237		/* Include the NUL character if it was found */
    238		if (len < got)
    239			len++;
    240
    241		if (len > pos) {
    242			len -= pos;
    243			if (len > count)
    244				len = count;
    245			len -= copy_to_user(buf, page+pos, len);
    246			if (!len)
    247				len = -EFAULT;
    248			ret = len;
    249		}
    250	}
    251	free_page((unsigned long)page);
    252	return ret;
    253}
    254
    255static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
    256			      size_t count, loff_t *ppos)
    257{
    258	unsigned long arg_start, arg_end, env_start, env_end;
    259	unsigned long pos, len;
    260	char *page, c;
    261
    262	/* Check if process spawned far enough to have cmdline. */
    263	if (!mm->env_end)
    264		return 0;
    265
    266	spin_lock(&mm->arg_lock);
    267	arg_start = mm->arg_start;
    268	arg_end = mm->arg_end;
    269	env_start = mm->env_start;
    270	env_end = mm->env_end;
    271	spin_unlock(&mm->arg_lock);
    272
    273	if (arg_start >= arg_end)
    274		return 0;
    275
    276	/*
    277	 * We allow setproctitle() to overwrite the argument
    278	 * strings, and overflow past the original end. But
    279	 * only when it overflows into the environment area.
    280	 */
    281	if (env_start != arg_end || env_end < env_start)
    282		env_start = env_end = arg_end;
    283	len = env_end - arg_start;
    284
    285	/* We're not going to care if "*ppos" has high bits set */
    286	pos = *ppos;
    287	if (pos >= len)
    288		return 0;
    289	if (count > len - pos)
    290		count = len - pos;
    291	if (!count)
    292		return 0;
    293
    294	/*
    295	 * Magical special case: if the argv[] end byte is not
    296	 * zero, the user has overwritten it with setproctitle(3).
    297	 *
    298	 * Possible future enhancement: do this only once when
    299	 * pos is 0, and set a flag in the 'struct file'.
    300	 */
    301	if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
    302		return get_mm_proctitle(mm, buf, count, pos, arg_start);
    303
    304	/*
    305	 * For the non-setproctitle() case we limit things strictly
    306	 * to the [arg_start, arg_end[ range.
    307	 */
    308	pos += arg_start;
    309	if (pos < arg_start || pos >= arg_end)
    310		return 0;
    311	if (count > arg_end - pos)
    312		count = arg_end - pos;
    313
    314	page = (char *)__get_free_page(GFP_KERNEL);
    315	if (!page)
    316		return -ENOMEM;
    317
    318	len = 0;
    319	while (count) {
    320		int got;
    321		size_t size = min_t(size_t, PAGE_SIZE, count);
    322
    323		got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
    324		if (got <= 0)
    325			break;
    326		got -= copy_to_user(buf, page, got);
    327		if (unlikely(!got)) {
    328			if (!len)
    329				len = -EFAULT;
    330			break;
    331		}
    332		pos += got;
    333		buf += got;
    334		len += got;
    335		count -= got;
    336	}
    337
    338	free_page((unsigned long)page);
    339	return len;
    340}
    341
    342static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
    343				size_t count, loff_t *pos)
    344{
    345	struct mm_struct *mm;
    346	ssize_t ret;
    347
    348	mm = get_task_mm(tsk);
    349	if (!mm)
    350		return 0;
    351
    352	ret = get_mm_cmdline(mm, buf, count, pos);
    353	mmput(mm);
    354	return ret;
    355}
    356
    357static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
    358				     size_t count, loff_t *pos)
    359{
    360	struct task_struct *tsk;
    361	ssize_t ret;
    362
    363	BUG_ON(*pos < 0);
    364
    365	tsk = get_proc_task(file_inode(file));
    366	if (!tsk)
    367		return -ESRCH;
    368	ret = get_task_cmdline(tsk, buf, count, pos);
    369	put_task_struct(tsk);
    370	if (ret > 0)
    371		*pos += ret;
    372	return ret;
    373}
    374
    375static const struct file_operations proc_pid_cmdline_ops = {
    376	.read	= proc_pid_cmdline_read,
    377	.llseek	= generic_file_llseek,
    378};
    379
    380#ifdef CONFIG_KALLSYMS
    381/*
    382 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
    383 * Returns the resolved symbol.  If that fails, simply return the address.
    384 */
    385static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
    386			  struct pid *pid, struct task_struct *task)
    387{
    388	unsigned long wchan;
    389	char symname[KSYM_NAME_LEN];
    390
    391	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
    392		goto print0;
    393
    394	wchan = get_wchan(task);
    395	if (wchan && !lookup_symbol_name(wchan, symname)) {
    396		seq_puts(m, symname);
    397		return 0;
    398	}
    399
    400print0:
    401	seq_putc(m, '0');
    402	return 0;
    403}
    404#endif /* CONFIG_KALLSYMS */
    405
    406static int lock_trace(struct task_struct *task)
    407{
    408	int err = down_read_killable(&task->signal->exec_update_lock);
    409	if (err)
    410		return err;
    411	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
    412		up_read(&task->signal->exec_update_lock);
    413		return -EPERM;
    414	}
    415	return 0;
    416}
    417
    418static void unlock_trace(struct task_struct *task)
    419{
    420	up_read(&task->signal->exec_update_lock);
    421}
    422
    423#ifdef CONFIG_STACKTRACE
    424
    425#define MAX_STACK_TRACE_DEPTH	64
    426
    427static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
    428			  struct pid *pid, struct task_struct *task)
    429{
    430	unsigned long *entries;
    431	int err;
    432
    433	/*
    434	 * The ability to racily run the kernel stack unwinder on a running task
    435	 * and then observe the unwinder output is scary; while it is useful for
    436	 * debugging kernel issues, it can also allow an attacker to leak kernel
    437	 * stack contents.
    438	 * Doing this in a manner that is at least safe from races would require
    439	 * some work to ensure that the remote task can not be scheduled; and
    440	 * even then, this would still expose the unwinder as local attack
    441	 * surface.
    442	 * Therefore, this interface is restricted to root.
    443	 */
    444	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
    445		return -EACCES;
    446
    447	entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
    448				GFP_KERNEL);
    449	if (!entries)
    450		return -ENOMEM;
    451
    452	err = lock_trace(task);
    453	if (!err) {
    454		unsigned int i, nr_entries;
    455
    456		nr_entries = stack_trace_save_tsk(task, entries,
    457						  MAX_STACK_TRACE_DEPTH, 0);
    458
    459		for (i = 0; i < nr_entries; i++) {
    460			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
    461		}
    462
    463		unlock_trace(task);
    464	}
    465	kfree(entries);
    466
    467	return err;
    468}
    469#endif
    470
    471#ifdef CONFIG_SCHED_INFO
    472/*
    473 * Provides /proc/PID/schedstat
    474 */
    475static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
    476			      struct pid *pid, struct task_struct *task)
    477{
    478	if (unlikely(!sched_info_on()))
    479		seq_puts(m, "0 0 0\n");
    480	else
    481		seq_printf(m, "%llu %llu %lu\n",
    482		   (unsigned long long)task->se.sum_exec_runtime,
    483		   (unsigned long long)task->sched_info.run_delay,
    484		   task->sched_info.pcount);
    485
    486	return 0;
    487}
    488#endif
    489
    490#ifdef CONFIG_LATENCYTOP
    491static int lstats_show_proc(struct seq_file *m, void *v)
    492{
    493	int i;
    494	struct inode *inode = m->private;
    495	struct task_struct *task = get_proc_task(inode);
    496
    497	if (!task)
    498		return -ESRCH;
    499	seq_puts(m, "Latency Top version : v0.1\n");
    500	for (i = 0; i < LT_SAVECOUNT; i++) {
    501		struct latency_record *lr = &task->latency_record[i];
    502		if (lr->backtrace[0]) {
    503			int q;
    504			seq_printf(m, "%i %li %li",
    505				   lr->count, lr->time, lr->max);
    506			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
    507				unsigned long bt = lr->backtrace[q];
    508
    509				if (!bt)
    510					break;
    511				seq_printf(m, " %ps", (void *)bt);
    512			}
    513			seq_putc(m, '\n');
    514		}
    515
    516	}
    517	put_task_struct(task);
    518	return 0;
    519}
    520
    521static int lstats_open(struct inode *inode, struct file *file)
    522{
    523	return single_open(file, lstats_show_proc, inode);
    524}
    525
    526static ssize_t lstats_write(struct file *file, const char __user *buf,
    527			    size_t count, loff_t *offs)
    528{
    529	struct task_struct *task = get_proc_task(file_inode(file));
    530
    531	if (!task)
    532		return -ESRCH;
    533	clear_tsk_latency_tracing(task);
    534	put_task_struct(task);
    535
    536	return count;
    537}
    538
    539static const struct file_operations proc_lstats_operations = {
    540	.open		= lstats_open,
    541	.read		= seq_read,
    542	.write		= lstats_write,
    543	.llseek		= seq_lseek,
    544	.release	= single_release,
    545};
    546
    547#endif
    548
    549static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
    550			  struct pid *pid, struct task_struct *task)
    551{
    552	unsigned long totalpages = totalram_pages() + total_swap_pages;
    553	unsigned long points = 0;
    554	long badness;
    555
    556	badness = oom_badness(task, totalpages);
    557	/*
    558	 * Special case OOM_SCORE_ADJ_MIN for all others scale the
    559	 * badness value into [0, 2000] range which we have been
    560	 * exporting for a long time so userspace might depend on it.
    561	 */
    562	if (badness != LONG_MIN)
    563		points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
    564
    565	seq_printf(m, "%lu\n", points);
    566
    567	return 0;
    568}
    569
    570struct limit_names {
    571	const char *name;
    572	const char *unit;
    573};
    574
    575static const struct limit_names lnames[RLIM_NLIMITS] = {
    576	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
    577	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
    578	[RLIMIT_DATA] = {"Max data size", "bytes"},
    579	[RLIMIT_STACK] = {"Max stack size", "bytes"},
    580	[RLIMIT_CORE] = {"Max core file size", "bytes"},
    581	[RLIMIT_RSS] = {"Max resident set", "bytes"},
    582	[RLIMIT_NPROC] = {"Max processes", "processes"},
    583	[RLIMIT_NOFILE] = {"Max open files", "files"},
    584	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
    585	[RLIMIT_AS] = {"Max address space", "bytes"},
    586	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
    587	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
    588	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
    589	[RLIMIT_NICE] = {"Max nice priority", NULL},
    590	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
    591	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
    592};
    593
    594/* Display limits for a process */
    595static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
    596			   struct pid *pid, struct task_struct *task)
    597{
    598	unsigned int i;
    599	unsigned long flags;
    600
    601	struct rlimit rlim[RLIM_NLIMITS];
    602
    603	if (!lock_task_sighand(task, &flags))
    604		return 0;
    605	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
    606	unlock_task_sighand(task, &flags);
    607
    608	/*
    609	 * print the file header
    610	 */
    611	seq_puts(m, "Limit                     "
    612		"Soft Limit           "
    613		"Hard Limit           "
    614		"Units     \n");
    615
    616	for (i = 0; i < RLIM_NLIMITS; i++) {
    617		if (rlim[i].rlim_cur == RLIM_INFINITY)
    618			seq_printf(m, "%-25s %-20s ",
    619				   lnames[i].name, "unlimited");
    620		else
    621			seq_printf(m, "%-25s %-20lu ",
    622				   lnames[i].name, rlim[i].rlim_cur);
    623
    624		if (rlim[i].rlim_max == RLIM_INFINITY)
    625			seq_printf(m, "%-20s ", "unlimited");
    626		else
    627			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
    628
    629		if (lnames[i].unit)
    630			seq_printf(m, "%-10s\n", lnames[i].unit);
    631		else
    632			seq_putc(m, '\n');
    633	}
    634
    635	return 0;
    636}
    637
    638#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
    639static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
    640			    struct pid *pid, struct task_struct *task)
    641{
    642	struct syscall_info info;
    643	u64 *args = &info.data.args[0];
    644	int res;
    645
    646	res = lock_trace(task);
    647	if (res)
    648		return res;
    649
    650	if (task_current_syscall(task, &info))
    651		seq_puts(m, "running\n");
    652	else if (info.data.nr < 0)
    653		seq_printf(m, "%d 0x%llx 0x%llx\n",
    654			   info.data.nr, info.sp, info.data.instruction_pointer);
    655	else
    656		seq_printf(m,
    657		       "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
    658		       info.data.nr,
    659		       args[0], args[1], args[2], args[3], args[4], args[5],
    660		       info.sp, info.data.instruction_pointer);
    661	unlock_trace(task);
    662
    663	return 0;
    664}
    665#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
    666
    667/************************************************************************/
    668/*                       Here the fs part begins                        */
    669/************************************************************************/
    670
    671/* permission checks */
    672static bool proc_fd_access_allowed(struct inode *inode)
    673{
    674	struct task_struct *task;
    675	bool allowed = false;
    676	/* Allow access to a task's file descriptors if it is us or we
    677	 * may use ptrace attach to the process and find out that
    678	 * information.
    679	 */
    680	task = get_proc_task(inode);
    681	if (task) {
    682		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
    683		put_task_struct(task);
    684	}
    685	return allowed;
    686}
    687
    688int proc_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
    689		 struct iattr *attr)
    690{
    691	int error;
    692	struct inode *inode = d_inode(dentry);
    693
    694	if (attr->ia_valid & ATTR_MODE)
    695		return -EPERM;
    696
    697	error = setattr_prepare(&init_user_ns, dentry, attr);
    698	if (error)
    699		return error;
    700
    701	setattr_copy(&init_user_ns, inode, attr);
    702	mark_inode_dirty(inode);
    703	return 0;
    704}
    705
    706/*
    707 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
    708 * or euid/egid (for hide_pid_min=2)?
    709 */
    710static bool has_pid_permissions(struct proc_fs_info *fs_info,
    711				 struct task_struct *task,
    712				 enum proc_hidepid hide_pid_min)
    713{
    714	/*
    715	 * If 'hidpid' mount option is set force a ptrace check,
    716	 * we indicate that we are using a filesystem syscall
    717	 * by passing PTRACE_MODE_READ_FSCREDS
    718	 */
    719	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
    720		return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
    721
    722	if (fs_info->hide_pid < hide_pid_min)
    723		return true;
    724	if (in_group_p(fs_info->pid_gid))
    725		return true;
    726	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
    727}
    728
    729
    730static int proc_pid_permission(struct user_namespace *mnt_userns,
    731			       struct inode *inode, int mask)
    732{
    733	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
    734	struct task_struct *task;
    735	bool has_perms;
    736
    737	task = get_proc_task(inode);
    738	if (!task)
    739		return -ESRCH;
    740	has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
    741	put_task_struct(task);
    742
    743	if (!has_perms) {
    744		if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
    745			/*
    746			 * Let's make getdents(), stat(), and open()
    747			 * consistent with each other.  If a process
    748			 * may not stat() a file, it shouldn't be seen
    749			 * in procfs at all.
    750			 */
    751			return -ENOENT;
    752		}
    753
    754		return -EPERM;
    755	}
    756	return generic_permission(&init_user_ns, inode, mask);
    757}
    758
    759
    760
    761static const struct inode_operations proc_def_inode_operations = {
    762	.setattr	= proc_setattr,
    763};
    764
    765static int proc_single_show(struct seq_file *m, void *v)
    766{
    767	struct inode *inode = m->private;
    768	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
    769	struct pid *pid = proc_pid(inode);
    770	struct task_struct *task;
    771	int ret;
    772
    773	task = get_pid_task(pid, PIDTYPE_PID);
    774	if (!task)
    775		return -ESRCH;
    776
    777	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
    778
    779	put_task_struct(task);
    780	return ret;
    781}
    782
    783static int proc_single_open(struct inode *inode, struct file *filp)
    784{
    785	return single_open(filp, proc_single_show, inode);
    786}
    787
    788static const struct file_operations proc_single_file_operations = {
    789	.open		= proc_single_open,
    790	.read		= seq_read,
    791	.llseek		= seq_lseek,
    792	.release	= single_release,
    793};
    794
    795
    796struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
    797{
    798	struct task_struct *task = get_proc_task(inode);
    799	struct mm_struct *mm = ERR_PTR(-ESRCH);
    800
    801	if (task) {
    802		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
    803		put_task_struct(task);
    804
    805		if (!IS_ERR_OR_NULL(mm)) {
    806			/* ensure this mm_struct can't be freed */
    807			mmgrab(mm);
    808			/* but do not pin its memory */
    809			mmput(mm);
    810		}
    811	}
    812
    813	return mm;
    814}
    815
    816static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
    817{
    818	struct mm_struct *mm = proc_mem_open(inode, mode);
    819
    820	if (IS_ERR(mm))
    821		return PTR_ERR(mm);
    822
    823	file->private_data = mm;
    824	return 0;
    825}
    826
    827static int mem_open(struct inode *inode, struct file *file)
    828{
    829	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
    830
    831	/* OK to pass negative loff_t, we can catch out-of-range */
    832	file->f_mode |= FMODE_UNSIGNED_OFFSET;
    833
    834	return ret;
    835}
    836
    837static ssize_t mem_rw(struct file *file, char __user *buf,
    838			size_t count, loff_t *ppos, int write)
    839{
    840	struct mm_struct *mm = file->private_data;
    841	unsigned long addr = *ppos;
    842	ssize_t copied;
    843	char *page;
    844	unsigned int flags;
    845
    846	if (!mm)
    847		return 0;
    848
    849	page = (char *)__get_free_page(GFP_KERNEL);
    850	if (!page)
    851		return -ENOMEM;
    852
    853	copied = 0;
    854	if (!mmget_not_zero(mm))
    855		goto free;
    856
    857	flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
    858
    859	while (count > 0) {
    860		size_t this_len = min_t(size_t, count, PAGE_SIZE);
    861
    862		if (write && copy_from_user(page, buf, this_len)) {
    863			copied = -EFAULT;
    864			break;
    865		}
    866
    867		this_len = access_remote_vm(mm, addr, page, this_len, flags);
    868		if (!this_len) {
    869			if (!copied)
    870				copied = -EIO;
    871			break;
    872		}
    873
    874		if (!write && copy_to_user(buf, page, this_len)) {
    875			copied = -EFAULT;
    876			break;
    877		}
    878
    879		buf += this_len;
    880		addr += this_len;
    881		copied += this_len;
    882		count -= this_len;
    883	}
    884	*ppos = addr;
    885
    886	mmput(mm);
    887free:
    888	free_page((unsigned long) page);
    889	return copied;
    890}
    891
    892static ssize_t mem_read(struct file *file, char __user *buf,
    893			size_t count, loff_t *ppos)
    894{
    895	return mem_rw(file, buf, count, ppos, 0);
    896}
    897
    898static ssize_t mem_write(struct file *file, const char __user *buf,
    899			 size_t count, loff_t *ppos)
    900{
    901	return mem_rw(file, (char __user*)buf, count, ppos, 1);
    902}
    903
    904loff_t mem_lseek(struct file *file, loff_t offset, int orig)
    905{
    906	switch (orig) {
    907	case 0:
    908		file->f_pos = offset;
    909		break;
    910	case 1:
    911		file->f_pos += offset;
    912		break;
    913	default:
    914		return -EINVAL;
    915	}
    916	force_successful_syscall_return();
    917	return file->f_pos;
    918}
    919
    920static int mem_release(struct inode *inode, struct file *file)
    921{
    922	struct mm_struct *mm = file->private_data;
    923	if (mm)
    924		mmdrop(mm);
    925	return 0;
    926}
    927
    928static const struct file_operations proc_mem_operations = {
    929	.llseek		= mem_lseek,
    930	.read		= mem_read,
    931	.write		= mem_write,
    932	.open		= mem_open,
    933	.release	= mem_release,
    934};
    935
    936static int environ_open(struct inode *inode, struct file *file)
    937{
    938	return __mem_open(inode, file, PTRACE_MODE_READ);
    939}
    940
    941static ssize_t environ_read(struct file *file, char __user *buf,
    942			size_t count, loff_t *ppos)
    943{
    944	char *page;
    945	unsigned long src = *ppos;
    946	int ret = 0;
    947	struct mm_struct *mm = file->private_data;
    948	unsigned long env_start, env_end;
    949
    950	/* Ensure the process spawned far enough to have an environment. */
    951	if (!mm || !mm->env_end)
    952		return 0;
    953
    954	page = (char *)__get_free_page(GFP_KERNEL);
    955	if (!page)
    956		return -ENOMEM;
    957
    958	ret = 0;
    959	if (!mmget_not_zero(mm))
    960		goto free;
    961
    962	spin_lock(&mm->arg_lock);
    963	env_start = mm->env_start;
    964	env_end = mm->env_end;
    965	spin_unlock(&mm->arg_lock);
    966
    967	while (count > 0) {
    968		size_t this_len, max_len;
    969		int retval;
    970
    971		if (src >= (env_end - env_start))
    972			break;
    973
    974		this_len = env_end - (env_start + src);
    975
    976		max_len = min_t(size_t, PAGE_SIZE, count);
    977		this_len = min(max_len, this_len);
    978
    979		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
    980
    981		if (retval <= 0) {
    982			ret = retval;
    983			break;
    984		}
    985
    986		if (copy_to_user(buf, page, retval)) {
    987			ret = -EFAULT;
    988			break;
    989		}
    990
    991		ret += retval;
    992		src += retval;
    993		buf += retval;
    994		count -= retval;
    995	}
    996	*ppos = src;
    997	mmput(mm);
    998
    999free:
   1000	free_page((unsigned long) page);
   1001	return ret;
   1002}
   1003
   1004static const struct file_operations proc_environ_operations = {
   1005	.open		= environ_open,
   1006	.read		= environ_read,
   1007	.llseek		= generic_file_llseek,
   1008	.release	= mem_release,
   1009};
   1010
   1011static int auxv_open(struct inode *inode, struct file *file)
   1012{
   1013	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
   1014}
   1015
   1016static ssize_t auxv_read(struct file *file, char __user *buf,
   1017			size_t count, loff_t *ppos)
   1018{
   1019	struct mm_struct *mm = file->private_data;
   1020	unsigned int nwords = 0;
   1021
   1022	if (!mm)
   1023		return 0;
   1024	do {
   1025		nwords += 2;
   1026	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
   1027	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
   1028				       nwords * sizeof(mm->saved_auxv[0]));
   1029}
   1030
   1031static const struct file_operations proc_auxv_operations = {
   1032	.open		= auxv_open,
   1033	.read		= auxv_read,
   1034	.llseek		= generic_file_llseek,
   1035	.release	= mem_release,
   1036};
   1037
   1038static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
   1039			    loff_t *ppos)
   1040{
   1041	struct task_struct *task = get_proc_task(file_inode(file));
   1042	char buffer[PROC_NUMBUF];
   1043	int oom_adj = OOM_ADJUST_MIN;
   1044	size_t len;
   1045
   1046	if (!task)
   1047		return -ESRCH;
   1048	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
   1049		oom_adj = OOM_ADJUST_MAX;
   1050	else
   1051		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
   1052			  OOM_SCORE_ADJ_MAX;
   1053	put_task_struct(task);
   1054	if (oom_adj > OOM_ADJUST_MAX)
   1055		oom_adj = OOM_ADJUST_MAX;
   1056	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
   1057	return simple_read_from_buffer(buf, count, ppos, buffer, len);
   1058}
   1059
   1060static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
   1061{
   1062	struct mm_struct *mm = NULL;
   1063	struct task_struct *task;
   1064	int err = 0;
   1065
   1066	task = get_proc_task(file_inode(file));
   1067	if (!task)
   1068		return -ESRCH;
   1069
   1070	mutex_lock(&oom_adj_mutex);
   1071	if (legacy) {
   1072		if (oom_adj < task->signal->oom_score_adj &&
   1073				!capable(CAP_SYS_RESOURCE)) {
   1074			err = -EACCES;
   1075			goto err_unlock;
   1076		}
   1077		/*
   1078		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
   1079		 * /proc/pid/oom_score_adj instead.
   1080		 */
   1081		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
   1082			  current->comm, task_pid_nr(current), task_pid_nr(task),
   1083			  task_pid_nr(task));
   1084	} else {
   1085		if ((short)oom_adj < task->signal->oom_score_adj_min &&
   1086				!capable(CAP_SYS_RESOURCE)) {
   1087			err = -EACCES;
   1088			goto err_unlock;
   1089		}
   1090	}
   1091
   1092	/*
   1093	 * Make sure we will check other processes sharing the mm if this is
   1094	 * not vfrok which wants its own oom_score_adj.
   1095	 * pin the mm so it doesn't go away and get reused after task_unlock
   1096	 */
   1097	if (!task->vfork_done) {
   1098		struct task_struct *p = find_lock_task_mm(task);
   1099
   1100		if (p) {
   1101			if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
   1102				mm = p->mm;
   1103				mmgrab(mm);
   1104			}
   1105			task_unlock(p);
   1106		}
   1107	}
   1108
   1109	task->signal->oom_score_adj = oom_adj;
   1110	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
   1111		task->signal->oom_score_adj_min = (short)oom_adj;
   1112	trace_oom_score_adj_update(task);
   1113
   1114	if (mm) {
   1115		struct task_struct *p;
   1116
   1117		rcu_read_lock();
   1118		for_each_process(p) {
   1119			if (same_thread_group(task, p))
   1120				continue;
   1121
   1122			/* do not touch kernel threads or the global init */
   1123			if (p->flags & PF_KTHREAD || is_global_init(p))
   1124				continue;
   1125
   1126			task_lock(p);
   1127			if (!p->vfork_done && process_shares_mm(p, mm)) {
   1128				p->signal->oom_score_adj = oom_adj;
   1129				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
   1130					p->signal->oom_score_adj_min = (short)oom_adj;
   1131			}
   1132			task_unlock(p);
   1133		}
   1134		rcu_read_unlock();
   1135		mmdrop(mm);
   1136	}
   1137err_unlock:
   1138	mutex_unlock(&oom_adj_mutex);
   1139	put_task_struct(task);
   1140	return err;
   1141}
   1142
   1143/*
   1144 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
   1145 * kernels.  The effective policy is defined by oom_score_adj, which has a
   1146 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
   1147 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
   1148 * Processes that become oom disabled via oom_adj will still be oom disabled
   1149 * with this implementation.
   1150 *
   1151 * oom_adj cannot be removed since existing userspace binaries use it.
   1152 */
   1153static ssize_t oom_adj_write(struct file *file, const char __user *buf,
   1154			     size_t count, loff_t *ppos)
   1155{
   1156	char buffer[PROC_NUMBUF];
   1157	int oom_adj;
   1158	int err;
   1159
   1160	memset(buffer, 0, sizeof(buffer));
   1161	if (count > sizeof(buffer) - 1)
   1162		count = sizeof(buffer) - 1;
   1163	if (copy_from_user(buffer, buf, count)) {
   1164		err = -EFAULT;
   1165		goto out;
   1166	}
   1167
   1168	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
   1169	if (err)
   1170		goto out;
   1171	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
   1172	     oom_adj != OOM_DISABLE) {
   1173		err = -EINVAL;
   1174		goto out;
   1175	}
   1176
   1177	/*
   1178	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
   1179	 * value is always attainable.
   1180	 */
   1181	if (oom_adj == OOM_ADJUST_MAX)
   1182		oom_adj = OOM_SCORE_ADJ_MAX;
   1183	else
   1184		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
   1185
   1186	err = __set_oom_adj(file, oom_adj, true);
   1187out:
   1188	return err < 0 ? err : count;
   1189}
   1190
   1191static const struct file_operations proc_oom_adj_operations = {
   1192	.read		= oom_adj_read,
   1193	.write		= oom_adj_write,
   1194	.llseek		= generic_file_llseek,
   1195};
   1196
   1197static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
   1198					size_t count, loff_t *ppos)
   1199{
   1200	struct task_struct *task = get_proc_task(file_inode(file));
   1201	char buffer[PROC_NUMBUF];
   1202	short oom_score_adj = OOM_SCORE_ADJ_MIN;
   1203	size_t len;
   1204
   1205	if (!task)
   1206		return -ESRCH;
   1207	oom_score_adj = task->signal->oom_score_adj;
   1208	put_task_struct(task);
   1209	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
   1210	return simple_read_from_buffer(buf, count, ppos, buffer, len);
   1211}
   1212
   1213static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
   1214					size_t count, loff_t *ppos)
   1215{
   1216	char buffer[PROC_NUMBUF];
   1217	int oom_score_adj;
   1218	int err;
   1219
   1220	memset(buffer, 0, sizeof(buffer));
   1221	if (count > sizeof(buffer) - 1)
   1222		count = sizeof(buffer) - 1;
   1223	if (copy_from_user(buffer, buf, count)) {
   1224		err = -EFAULT;
   1225		goto out;
   1226	}
   1227
   1228	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
   1229	if (err)
   1230		goto out;
   1231	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
   1232			oom_score_adj > OOM_SCORE_ADJ_MAX) {
   1233		err = -EINVAL;
   1234		goto out;
   1235	}
   1236
   1237	err = __set_oom_adj(file, oom_score_adj, false);
   1238out:
   1239	return err < 0 ? err : count;
   1240}
   1241
   1242static const struct file_operations proc_oom_score_adj_operations = {
   1243	.read		= oom_score_adj_read,
   1244	.write		= oom_score_adj_write,
   1245	.llseek		= default_llseek,
   1246};
   1247
   1248#ifdef CONFIG_AUDIT
   1249#define TMPBUFLEN 11
   1250static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
   1251				  size_t count, loff_t *ppos)
   1252{
   1253	struct inode * inode = file_inode(file);
   1254	struct task_struct *task = get_proc_task(inode);
   1255	ssize_t length;
   1256	char tmpbuf[TMPBUFLEN];
   1257
   1258	if (!task)
   1259		return -ESRCH;
   1260	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
   1261			   from_kuid(file->f_cred->user_ns,
   1262				     audit_get_loginuid(task)));
   1263	put_task_struct(task);
   1264	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
   1265}
   1266
   1267static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
   1268				   size_t count, loff_t *ppos)
   1269{
   1270	struct inode * inode = file_inode(file);
   1271	uid_t loginuid;
   1272	kuid_t kloginuid;
   1273	int rv;
   1274
   1275	/* Don't let kthreads write their own loginuid */
   1276	if (current->flags & PF_KTHREAD)
   1277		return -EPERM;
   1278
   1279	rcu_read_lock();
   1280	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
   1281		rcu_read_unlock();
   1282		return -EPERM;
   1283	}
   1284	rcu_read_unlock();
   1285
   1286	if (*ppos != 0) {
   1287		/* No partial writes. */
   1288		return -EINVAL;
   1289	}
   1290
   1291	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
   1292	if (rv < 0)
   1293		return rv;
   1294
   1295	/* is userspace tring to explicitly UNSET the loginuid? */
   1296	if (loginuid == AUDIT_UID_UNSET) {
   1297		kloginuid = INVALID_UID;
   1298	} else {
   1299		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
   1300		if (!uid_valid(kloginuid))
   1301			return -EINVAL;
   1302	}
   1303
   1304	rv = audit_set_loginuid(kloginuid);
   1305	if (rv < 0)
   1306		return rv;
   1307	return count;
   1308}
   1309
   1310static const struct file_operations proc_loginuid_operations = {
   1311	.read		= proc_loginuid_read,
   1312	.write		= proc_loginuid_write,
   1313	.llseek		= generic_file_llseek,
   1314};
   1315
   1316static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
   1317				  size_t count, loff_t *ppos)
   1318{
   1319	struct inode * inode = file_inode(file);
   1320	struct task_struct *task = get_proc_task(inode);
   1321	ssize_t length;
   1322	char tmpbuf[TMPBUFLEN];
   1323
   1324	if (!task)
   1325		return -ESRCH;
   1326	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
   1327				audit_get_sessionid(task));
   1328	put_task_struct(task);
   1329	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
   1330}
   1331
   1332static const struct file_operations proc_sessionid_operations = {
   1333	.read		= proc_sessionid_read,
   1334	.llseek		= generic_file_llseek,
   1335};
   1336#endif
   1337
   1338#ifdef CONFIG_FAULT_INJECTION
   1339static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
   1340				      size_t count, loff_t *ppos)
   1341{
   1342	struct task_struct *task = get_proc_task(file_inode(file));
   1343	char buffer[PROC_NUMBUF];
   1344	size_t len;
   1345	int make_it_fail;
   1346
   1347	if (!task)
   1348		return -ESRCH;
   1349	make_it_fail = task->make_it_fail;
   1350	put_task_struct(task);
   1351
   1352	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
   1353
   1354	return simple_read_from_buffer(buf, count, ppos, buffer, len);
   1355}
   1356
   1357static ssize_t proc_fault_inject_write(struct file * file,
   1358			const char __user * buf, size_t count, loff_t *ppos)
   1359{
   1360	struct task_struct *task;
   1361	char buffer[PROC_NUMBUF];
   1362	int make_it_fail;
   1363	int rv;
   1364
   1365	if (!capable(CAP_SYS_RESOURCE))
   1366		return -EPERM;
   1367	memset(buffer, 0, sizeof(buffer));
   1368	if (count > sizeof(buffer) - 1)
   1369		count = sizeof(buffer) - 1;
   1370	if (copy_from_user(buffer, buf, count))
   1371		return -EFAULT;
   1372	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
   1373	if (rv < 0)
   1374		return rv;
   1375	if (make_it_fail < 0 || make_it_fail > 1)
   1376		return -EINVAL;
   1377
   1378	task = get_proc_task(file_inode(file));
   1379	if (!task)
   1380		return -ESRCH;
   1381	task->make_it_fail = make_it_fail;
   1382	put_task_struct(task);
   1383
   1384	return count;
   1385}
   1386
   1387static const struct file_operations proc_fault_inject_operations = {
   1388	.read		= proc_fault_inject_read,
   1389	.write		= proc_fault_inject_write,
   1390	.llseek		= generic_file_llseek,
   1391};
   1392
   1393static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
   1394				   size_t count, loff_t *ppos)
   1395{
   1396	struct task_struct *task;
   1397	int err;
   1398	unsigned int n;
   1399
   1400	err = kstrtouint_from_user(buf, count, 0, &n);
   1401	if (err)
   1402		return err;
   1403
   1404	task = get_proc_task(file_inode(file));
   1405	if (!task)
   1406		return -ESRCH;
   1407	task->fail_nth = n;
   1408	put_task_struct(task);
   1409
   1410	return count;
   1411}
   1412
   1413static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
   1414				  size_t count, loff_t *ppos)
   1415{
   1416	struct task_struct *task;
   1417	char numbuf[PROC_NUMBUF];
   1418	ssize_t len;
   1419
   1420	task = get_proc_task(file_inode(file));
   1421	if (!task)
   1422		return -ESRCH;
   1423	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
   1424	put_task_struct(task);
   1425	return simple_read_from_buffer(buf, count, ppos, numbuf, len);
   1426}
   1427
   1428static const struct file_operations proc_fail_nth_operations = {
   1429	.read		= proc_fail_nth_read,
   1430	.write		= proc_fail_nth_write,
   1431};
   1432#endif
   1433
   1434
   1435#ifdef CONFIG_SCHED_DEBUG
   1436/*
   1437 * Print out various scheduling related per-task fields:
   1438 */
   1439static int sched_show(struct seq_file *m, void *v)
   1440{
   1441	struct inode *inode = m->private;
   1442	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
   1443	struct task_struct *p;
   1444
   1445	p = get_proc_task(inode);
   1446	if (!p)
   1447		return -ESRCH;
   1448	proc_sched_show_task(p, ns, m);
   1449
   1450	put_task_struct(p);
   1451
   1452	return 0;
   1453}
   1454
   1455static ssize_t
   1456sched_write(struct file *file, const char __user *buf,
   1457	    size_t count, loff_t *offset)
   1458{
   1459	struct inode *inode = file_inode(file);
   1460	struct task_struct *p;
   1461
   1462	p = get_proc_task(inode);
   1463	if (!p)
   1464		return -ESRCH;
   1465	proc_sched_set_task(p);
   1466
   1467	put_task_struct(p);
   1468
   1469	return count;
   1470}
   1471
   1472static int sched_open(struct inode *inode, struct file *filp)
   1473{
   1474	return single_open(filp, sched_show, inode);
   1475}
   1476
   1477static const struct file_operations proc_pid_sched_operations = {
   1478	.open		= sched_open,
   1479	.read		= seq_read,
   1480	.write		= sched_write,
   1481	.llseek		= seq_lseek,
   1482	.release	= single_release,
   1483};
   1484
   1485#endif
   1486
   1487#ifdef CONFIG_SCHED_AUTOGROUP
   1488/*
   1489 * Print out autogroup related information:
   1490 */
   1491static int sched_autogroup_show(struct seq_file *m, void *v)
   1492{
   1493	struct inode *inode = m->private;
   1494	struct task_struct *p;
   1495
   1496	p = get_proc_task(inode);
   1497	if (!p)
   1498		return -ESRCH;
   1499	proc_sched_autogroup_show_task(p, m);
   1500
   1501	put_task_struct(p);
   1502
   1503	return 0;
   1504}
   1505
   1506static ssize_t
   1507sched_autogroup_write(struct file *file, const char __user *buf,
   1508	    size_t count, loff_t *offset)
   1509{
   1510	struct inode *inode = file_inode(file);
   1511	struct task_struct *p;
   1512	char buffer[PROC_NUMBUF];
   1513	int nice;
   1514	int err;
   1515
   1516	memset(buffer, 0, sizeof(buffer));
   1517	if (count > sizeof(buffer) - 1)
   1518		count = sizeof(buffer) - 1;
   1519	if (copy_from_user(buffer, buf, count))
   1520		return -EFAULT;
   1521
   1522	err = kstrtoint(strstrip(buffer), 0, &nice);
   1523	if (err < 0)
   1524		return err;
   1525
   1526	p = get_proc_task(inode);
   1527	if (!p)
   1528		return -ESRCH;
   1529
   1530	err = proc_sched_autogroup_set_nice(p, nice);
   1531	if (err)
   1532		count = err;
   1533
   1534	put_task_struct(p);
   1535
   1536	return count;
   1537}
   1538
   1539static int sched_autogroup_open(struct inode *inode, struct file *filp)
   1540{
   1541	int ret;
   1542
   1543	ret = single_open(filp, sched_autogroup_show, NULL);
   1544	if (!ret) {
   1545		struct seq_file *m = filp->private_data;
   1546
   1547		m->private = inode;
   1548	}
   1549	return ret;
   1550}
   1551
   1552static const struct file_operations proc_pid_sched_autogroup_operations = {
   1553	.open		= sched_autogroup_open,
   1554	.read		= seq_read,
   1555	.write		= sched_autogroup_write,
   1556	.llseek		= seq_lseek,
   1557	.release	= single_release,
   1558};
   1559
   1560#endif /* CONFIG_SCHED_AUTOGROUP */
   1561
   1562#ifdef CONFIG_TIME_NS
   1563static int timens_offsets_show(struct seq_file *m, void *v)
   1564{
   1565	struct task_struct *p;
   1566
   1567	p = get_proc_task(file_inode(m->file));
   1568	if (!p)
   1569		return -ESRCH;
   1570	proc_timens_show_offsets(p, m);
   1571
   1572	put_task_struct(p);
   1573
   1574	return 0;
   1575}
   1576
   1577static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
   1578				    size_t count, loff_t *ppos)
   1579{
   1580	struct inode *inode = file_inode(file);
   1581	struct proc_timens_offset offsets[2];
   1582	char *kbuf = NULL, *pos, *next_line;
   1583	struct task_struct *p;
   1584	int ret, noffsets;
   1585
   1586	/* Only allow < page size writes at the beginning of the file */
   1587	if ((*ppos != 0) || (count >= PAGE_SIZE))
   1588		return -EINVAL;
   1589
   1590	/* Slurp in the user data */
   1591	kbuf = memdup_user_nul(buf, count);
   1592	if (IS_ERR(kbuf))
   1593		return PTR_ERR(kbuf);
   1594
   1595	/* Parse the user data */
   1596	ret = -EINVAL;
   1597	noffsets = 0;
   1598	for (pos = kbuf; pos; pos = next_line) {
   1599		struct proc_timens_offset *off = &offsets[noffsets];
   1600		char clock[10];
   1601		int err;
   1602
   1603		/* Find the end of line and ensure we don't look past it */
   1604		next_line = strchr(pos, '\n');
   1605		if (next_line) {
   1606			*next_line = '\0';
   1607			next_line++;
   1608			if (*next_line == '\0')
   1609				next_line = NULL;
   1610		}
   1611
   1612		err = sscanf(pos, "%9s %lld %lu", clock,
   1613				&off->val.tv_sec, &off->val.tv_nsec);
   1614		if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
   1615			goto out;
   1616
   1617		clock[sizeof(clock) - 1] = 0;
   1618		if (strcmp(clock, "monotonic") == 0 ||
   1619		    strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
   1620			off->clockid = CLOCK_MONOTONIC;
   1621		else if (strcmp(clock, "boottime") == 0 ||
   1622			 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
   1623			off->clockid = CLOCK_BOOTTIME;
   1624		else
   1625			goto out;
   1626
   1627		noffsets++;
   1628		if (noffsets == ARRAY_SIZE(offsets)) {
   1629			if (next_line)
   1630				count = next_line - kbuf;
   1631			break;
   1632		}
   1633	}
   1634
   1635	ret = -ESRCH;
   1636	p = get_proc_task(inode);
   1637	if (!p)
   1638		goto out;
   1639	ret = proc_timens_set_offset(file, p, offsets, noffsets);
   1640	put_task_struct(p);
   1641	if (ret)
   1642		goto out;
   1643
   1644	ret = count;
   1645out:
   1646	kfree(kbuf);
   1647	return ret;
   1648}
   1649
   1650static int timens_offsets_open(struct inode *inode, struct file *filp)
   1651{
   1652	return single_open(filp, timens_offsets_show, inode);
   1653}
   1654
   1655static const struct file_operations proc_timens_offsets_operations = {
   1656	.open		= timens_offsets_open,
   1657	.read		= seq_read,
   1658	.write		= timens_offsets_write,
   1659	.llseek		= seq_lseek,
   1660	.release	= single_release,
   1661};
   1662#endif /* CONFIG_TIME_NS */
   1663
   1664static ssize_t comm_write(struct file *file, const char __user *buf,
   1665				size_t count, loff_t *offset)
   1666{
   1667	struct inode *inode = file_inode(file);
   1668	struct task_struct *p;
   1669	char buffer[TASK_COMM_LEN];
   1670	const size_t maxlen = sizeof(buffer) - 1;
   1671
   1672	memset(buffer, 0, sizeof(buffer));
   1673	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
   1674		return -EFAULT;
   1675
   1676	p = get_proc_task(inode);
   1677	if (!p)
   1678		return -ESRCH;
   1679
   1680	if (same_thread_group(current, p)) {
   1681		set_task_comm(p, buffer);
   1682		proc_comm_connector(p);
   1683	}
   1684	else
   1685		count = -EINVAL;
   1686
   1687	put_task_struct(p);
   1688
   1689	return count;
   1690}
   1691
   1692static int comm_show(struct seq_file *m, void *v)
   1693{
   1694	struct inode *inode = m->private;
   1695	struct task_struct *p;
   1696
   1697	p = get_proc_task(inode);
   1698	if (!p)
   1699		return -ESRCH;
   1700
   1701	proc_task_name(m, p, false);
   1702	seq_putc(m, '\n');
   1703
   1704	put_task_struct(p);
   1705
   1706	return 0;
   1707}
   1708
   1709static int comm_open(struct inode *inode, struct file *filp)
   1710{
   1711	return single_open(filp, comm_show, inode);
   1712}
   1713
   1714static const struct file_operations proc_pid_set_comm_operations = {
   1715	.open		= comm_open,
   1716	.read		= seq_read,
   1717	.write		= comm_write,
   1718	.llseek		= seq_lseek,
   1719	.release	= single_release,
   1720};
   1721
   1722static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
   1723{
   1724	struct task_struct *task;
   1725	struct file *exe_file;
   1726
   1727	task = get_proc_task(d_inode(dentry));
   1728	if (!task)
   1729		return -ENOENT;
   1730	exe_file = get_task_exe_file(task);
   1731	put_task_struct(task);
   1732	if (exe_file) {
   1733		*exe_path = exe_file->f_path;
   1734		path_get(&exe_file->f_path);
   1735		fput(exe_file);
   1736		return 0;
   1737	} else
   1738		return -ENOENT;
   1739}
   1740
   1741static const char *proc_pid_get_link(struct dentry *dentry,
   1742				     struct inode *inode,
   1743				     struct delayed_call *done)
   1744{
   1745	struct path path;
   1746	int error = -EACCES;
   1747
   1748	if (!dentry)
   1749		return ERR_PTR(-ECHILD);
   1750
   1751	/* Are we allowed to snoop on the tasks file descriptors? */
   1752	if (!proc_fd_access_allowed(inode))
   1753		goto out;
   1754
   1755	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
   1756	if (error)
   1757		goto out;
   1758
   1759	error = nd_jump_link(&path);
   1760out:
   1761	return ERR_PTR(error);
   1762}
   1763
   1764static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
   1765{
   1766	char *tmp = kmalloc(PATH_MAX, GFP_KERNEL);
   1767	char *pathname;
   1768	int len;
   1769
   1770	if (!tmp)
   1771		return -ENOMEM;
   1772
   1773	pathname = d_path(path, tmp, PATH_MAX);
   1774	len = PTR_ERR(pathname);
   1775	if (IS_ERR(pathname))
   1776		goto out;
   1777	len = tmp + PATH_MAX - 1 - pathname;
   1778
   1779	if (len > buflen)
   1780		len = buflen;
   1781	if (copy_to_user(buffer, pathname, len))
   1782		len = -EFAULT;
   1783 out:
   1784	kfree(tmp);
   1785	return len;
   1786}
   1787
   1788static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
   1789{
   1790	int error = -EACCES;
   1791	struct inode *inode = d_inode(dentry);
   1792	struct path path;
   1793
   1794	/* Are we allowed to snoop on the tasks file descriptors? */
   1795	if (!proc_fd_access_allowed(inode))
   1796		goto out;
   1797
   1798	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
   1799	if (error)
   1800		goto out;
   1801
   1802	error = do_proc_readlink(&path, buffer, buflen);
   1803	path_put(&path);
   1804out:
   1805	return error;
   1806}
   1807
   1808const struct inode_operations proc_pid_link_inode_operations = {
   1809	.readlink	= proc_pid_readlink,
   1810	.get_link	= proc_pid_get_link,
   1811	.setattr	= proc_setattr,
   1812};
   1813
   1814
   1815/* building an inode */
   1816
   1817void task_dump_owner(struct task_struct *task, umode_t mode,
   1818		     kuid_t *ruid, kgid_t *rgid)
   1819{
   1820	/* Depending on the state of dumpable compute who should own a
   1821	 * proc file for a task.
   1822	 */
   1823	const struct cred *cred;
   1824	kuid_t uid;
   1825	kgid_t gid;
   1826
   1827	if (unlikely(task->flags & PF_KTHREAD)) {
   1828		*ruid = GLOBAL_ROOT_UID;
   1829		*rgid = GLOBAL_ROOT_GID;
   1830		return;
   1831	}
   1832
   1833	/* Default to the tasks effective ownership */
   1834	rcu_read_lock();
   1835	cred = __task_cred(task);
   1836	uid = cred->euid;
   1837	gid = cred->egid;
   1838	rcu_read_unlock();
   1839
   1840	/*
   1841	 * Before the /proc/pid/status file was created the only way to read
   1842	 * the effective uid of a /process was to stat /proc/pid.  Reading
   1843	 * /proc/pid/status is slow enough that procps and other packages
   1844	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
   1845	 * made this apply to all per process world readable and executable
   1846	 * directories.
   1847	 */
   1848	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
   1849		struct mm_struct *mm;
   1850		task_lock(task);
   1851		mm = task->mm;
   1852		/* Make non-dumpable tasks owned by some root */
   1853		if (mm) {
   1854			if (get_dumpable(mm) != SUID_DUMP_USER) {
   1855				struct user_namespace *user_ns = mm->user_ns;
   1856
   1857				uid = make_kuid(user_ns, 0);
   1858				if (!uid_valid(uid))
   1859					uid = GLOBAL_ROOT_UID;
   1860
   1861				gid = make_kgid(user_ns, 0);
   1862				if (!gid_valid(gid))
   1863					gid = GLOBAL_ROOT_GID;
   1864			}
   1865		} else {
   1866			uid = GLOBAL_ROOT_UID;
   1867			gid = GLOBAL_ROOT_GID;
   1868		}
   1869		task_unlock(task);
   1870	}
   1871	*ruid = uid;
   1872	*rgid = gid;
   1873}
   1874
   1875void proc_pid_evict_inode(struct proc_inode *ei)
   1876{
   1877	struct pid *pid = ei->pid;
   1878
   1879	if (S_ISDIR(ei->vfs_inode.i_mode)) {
   1880		spin_lock(&pid->lock);
   1881		hlist_del_init_rcu(&ei->sibling_inodes);
   1882		spin_unlock(&pid->lock);
   1883	}
   1884
   1885	put_pid(pid);
   1886}
   1887
   1888struct inode *proc_pid_make_inode(struct super_block * sb,
   1889				  struct task_struct *task, umode_t mode)
   1890{
   1891	struct inode * inode;
   1892	struct proc_inode *ei;
   1893	struct pid *pid;
   1894
   1895	/* We need a new inode */
   1896
   1897	inode = new_inode(sb);
   1898	if (!inode)
   1899		goto out;
   1900
   1901	/* Common stuff */
   1902	ei = PROC_I(inode);
   1903	inode->i_mode = mode;
   1904	inode->i_ino = get_next_ino();
   1905	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
   1906	inode->i_op = &proc_def_inode_operations;
   1907
   1908	/*
   1909	 * grab the reference to task.
   1910	 */
   1911	pid = get_task_pid(task, PIDTYPE_PID);
   1912	if (!pid)
   1913		goto out_unlock;
   1914
   1915	/* Let the pid remember us for quick removal */
   1916	ei->pid = pid;
   1917	if (S_ISDIR(mode)) {
   1918		spin_lock(&pid->lock);
   1919		hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
   1920		spin_unlock(&pid->lock);
   1921	}
   1922
   1923	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
   1924	security_task_to_inode(task, inode);
   1925
   1926out:
   1927	return inode;
   1928
   1929out_unlock:
   1930	iput(inode);
   1931	return NULL;
   1932}
   1933
   1934int pid_getattr(struct user_namespace *mnt_userns, const struct path *path,
   1935		struct kstat *stat, u32 request_mask, unsigned int query_flags)
   1936{
   1937	struct inode *inode = d_inode(path->dentry);
   1938	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
   1939	struct task_struct *task;
   1940
   1941	generic_fillattr(&init_user_ns, inode, stat);
   1942
   1943	stat->uid = GLOBAL_ROOT_UID;
   1944	stat->gid = GLOBAL_ROOT_GID;
   1945	rcu_read_lock();
   1946	task = pid_task(proc_pid(inode), PIDTYPE_PID);
   1947	if (task) {
   1948		if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
   1949			rcu_read_unlock();
   1950			/*
   1951			 * This doesn't prevent learning whether PID exists,
   1952			 * it only makes getattr() consistent with readdir().
   1953			 */
   1954			return -ENOENT;
   1955		}
   1956		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
   1957	}
   1958	rcu_read_unlock();
   1959	return 0;
   1960}
   1961
   1962/* dentry stuff */
   1963
   1964/*
   1965 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
   1966 */
   1967void pid_update_inode(struct task_struct *task, struct inode *inode)
   1968{
   1969	task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
   1970
   1971	inode->i_mode &= ~(S_ISUID | S_ISGID);
   1972	security_task_to_inode(task, inode);
   1973}
   1974
   1975/*
   1976 * Rewrite the inode's ownerships here because the owning task may have
   1977 * performed a setuid(), etc.
   1978 *
   1979 */
   1980static int pid_revalidate(struct dentry *dentry, unsigned int flags)
   1981{
   1982	struct inode *inode;
   1983	struct task_struct *task;
   1984	int ret = 0;
   1985
   1986	rcu_read_lock();
   1987	inode = d_inode_rcu(dentry);
   1988	if (!inode)
   1989		goto out;
   1990	task = pid_task(proc_pid(inode), PIDTYPE_PID);
   1991
   1992	if (task) {
   1993		pid_update_inode(task, inode);
   1994		ret = 1;
   1995	}
   1996out:
   1997	rcu_read_unlock();
   1998	return ret;
   1999}
   2000
   2001static inline bool proc_inode_is_dead(struct inode *inode)
   2002{
   2003	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
   2004}
   2005
   2006int pid_delete_dentry(const struct dentry *dentry)
   2007{
   2008	/* Is the task we represent dead?
   2009	 * If so, then don't put the dentry on the lru list,
   2010	 * kill it immediately.
   2011	 */
   2012	return proc_inode_is_dead(d_inode(dentry));
   2013}
   2014
   2015const struct dentry_operations pid_dentry_operations =
   2016{
   2017	.d_revalidate	= pid_revalidate,
   2018	.d_delete	= pid_delete_dentry,
   2019};
   2020
   2021/* Lookups */
   2022
   2023/*
   2024 * Fill a directory entry.
   2025 *
   2026 * If possible create the dcache entry and derive our inode number and
   2027 * file type from dcache entry.
   2028 *
   2029 * Since all of the proc inode numbers are dynamically generated, the inode
   2030 * numbers do not exist until the inode is cache.  This means creating
   2031 * the dcache entry in readdir is necessary to keep the inode numbers
   2032 * reported by readdir in sync with the inode numbers reported
   2033 * by stat.
   2034 */
   2035bool proc_fill_cache(struct file *file, struct dir_context *ctx,
   2036	const char *name, unsigned int len,
   2037	instantiate_t instantiate, struct task_struct *task, const void *ptr)
   2038{
   2039	struct dentry *child, *dir = file->f_path.dentry;
   2040	struct qstr qname = QSTR_INIT(name, len);
   2041	struct inode *inode;
   2042	unsigned type = DT_UNKNOWN;
   2043	ino_t ino = 1;
   2044
   2045	child = d_hash_and_lookup(dir, &qname);
   2046	if (!child) {
   2047		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
   2048		child = d_alloc_parallel(dir, &qname, &wq);
   2049		if (IS_ERR(child))
   2050			goto end_instantiate;
   2051		if (d_in_lookup(child)) {
   2052			struct dentry *res;
   2053			res = instantiate(child, task, ptr);
   2054			d_lookup_done(child);
   2055			if (unlikely(res)) {
   2056				dput(child);
   2057				child = res;
   2058				if (IS_ERR(child))
   2059					goto end_instantiate;
   2060			}
   2061		}
   2062	}
   2063	inode = d_inode(child);
   2064	ino = inode->i_ino;
   2065	type = inode->i_mode >> 12;
   2066	dput(child);
   2067end_instantiate:
   2068	return dir_emit(ctx, name, len, ino, type);
   2069}
   2070
   2071/*
   2072 * dname_to_vma_addr - maps a dentry name into two unsigned longs
   2073 * which represent vma start and end addresses.
   2074 */
   2075static int dname_to_vma_addr(struct dentry *dentry,
   2076			     unsigned long *start, unsigned long *end)
   2077{
   2078	const char *str = dentry->d_name.name;
   2079	unsigned long long sval, eval;
   2080	unsigned int len;
   2081
   2082	if (str[0] == '0' && str[1] != '-')
   2083		return -EINVAL;
   2084	len = _parse_integer(str, 16, &sval);
   2085	if (len & KSTRTOX_OVERFLOW)
   2086		return -EINVAL;
   2087	if (sval != (unsigned long)sval)
   2088		return -EINVAL;
   2089	str += len;
   2090
   2091	if (*str != '-')
   2092		return -EINVAL;
   2093	str++;
   2094
   2095	if (str[0] == '0' && str[1])
   2096		return -EINVAL;
   2097	len = _parse_integer(str, 16, &eval);
   2098	if (len & KSTRTOX_OVERFLOW)
   2099		return -EINVAL;
   2100	if (eval != (unsigned long)eval)
   2101		return -EINVAL;
   2102	str += len;
   2103
   2104	if (*str != '\0')
   2105		return -EINVAL;
   2106
   2107	*start = sval;
   2108	*end = eval;
   2109
   2110	return 0;
   2111}
   2112
   2113static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
   2114{
   2115	unsigned long vm_start, vm_end;
   2116	bool exact_vma_exists = false;
   2117	struct mm_struct *mm = NULL;
   2118	struct task_struct *task;
   2119	struct inode *inode;
   2120	int status = 0;
   2121
   2122	if (flags & LOOKUP_RCU)
   2123		return -ECHILD;
   2124
   2125	inode = d_inode(dentry);
   2126	task = get_proc_task(inode);
   2127	if (!task)
   2128		goto out_notask;
   2129
   2130	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
   2131	if (IS_ERR_OR_NULL(mm))
   2132		goto out;
   2133
   2134	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
   2135		status = mmap_read_lock_killable(mm);
   2136		if (!status) {
   2137			exact_vma_exists = !!find_exact_vma(mm, vm_start,
   2138							    vm_end);
   2139			mmap_read_unlock(mm);
   2140		}
   2141	}
   2142
   2143	mmput(mm);
   2144
   2145	if (exact_vma_exists) {
   2146		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
   2147
   2148		security_task_to_inode(task, inode);
   2149		status = 1;
   2150	}
   2151
   2152out:
   2153	put_task_struct(task);
   2154
   2155out_notask:
   2156	return status;
   2157}
   2158
   2159static const struct dentry_operations tid_map_files_dentry_operations = {
   2160	.d_revalidate	= map_files_d_revalidate,
   2161	.d_delete	= pid_delete_dentry,
   2162};
   2163
   2164static int map_files_get_link(struct dentry *dentry, struct path *path)
   2165{
   2166	unsigned long vm_start, vm_end;
   2167	struct vm_area_struct *vma;
   2168	struct task_struct *task;
   2169	struct mm_struct *mm;
   2170	int rc;
   2171
   2172	rc = -ENOENT;
   2173	task = get_proc_task(d_inode(dentry));
   2174	if (!task)
   2175		goto out;
   2176
   2177	mm = get_task_mm(task);
   2178	put_task_struct(task);
   2179	if (!mm)
   2180		goto out;
   2181
   2182	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
   2183	if (rc)
   2184		goto out_mmput;
   2185
   2186	rc = mmap_read_lock_killable(mm);
   2187	if (rc)
   2188		goto out_mmput;
   2189
   2190	rc = -ENOENT;
   2191	vma = find_exact_vma(mm, vm_start, vm_end);
   2192	if (vma && vma->vm_file) {
   2193		*path = vma->vm_file->f_path;
   2194		path_get(path);
   2195		rc = 0;
   2196	}
   2197	mmap_read_unlock(mm);
   2198
   2199out_mmput:
   2200	mmput(mm);
   2201out:
   2202	return rc;
   2203}
   2204
   2205struct map_files_info {
   2206	unsigned long	start;
   2207	unsigned long	end;
   2208	fmode_t		mode;
   2209};
   2210
   2211/*
   2212 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
   2213 * to concerns about how the symlinks may be used to bypass permissions on
   2214 * ancestor directories in the path to the file in question.
   2215 */
   2216static const char *
   2217proc_map_files_get_link(struct dentry *dentry,
   2218			struct inode *inode,
   2219		        struct delayed_call *done)
   2220{
   2221	if (!checkpoint_restore_ns_capable(&init_user_ns))
   2222		return ERR_PTR(-EPERM);
   2223
   2224	return proc_pid_get_link(dentry, inode, done);
   2225}
   2226
   2227/*
   2228 * Identical to proc_pid_link_inode_operations except for get_link()
   2229 */
   2230static const struct inode_operations proc_map_files_link_inode_operations = {
   2231	.readlink	= proc_pid_readlink,
   2232	.get_link	= proc_map_files_get_link,
   2233	.setattr	= proc_setattr,
   2234};
   2235
   2236static struct dentry *
   2237proc_map_files_instantiate(struct dentry *dentry,
   2238			   struct task_struct *task, const void *ptr)
   2239{
   2240	fmode_t mode = (fmode_t)(unsigned long)ptr;
   2241	struct proc_inode *ei;
   2242	struct inode *inode;
   2243
   2244	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
   2245				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
   2246				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
   2247	if (!inode)
   2248		return ERR_PTR(-ENOENT);
   2249
   2250	ei = PROC_I(inode);
   2251	ei->op.proc_get_link = map_files_get_link;
   2252
   2253	inode->i_op = &proc_map_files_link_inode_operations;
   2254	inode->i_size = 64;
   2255
   2256	d_set_d_op(dentry, &tid_map_files_dentry_operations);
   2257	return d_splice_alias(inode, dentry);
   2258}
   2259
   2260static struct dentry *proc_map_files_lookup(struct inode *dir,
   2261		struct dentry *dentry, unsigned int flags)
   2262{
   2263	unsigned long vm_start, vm_end;
   2264	struct vm_area_struct *vma;
   2265	struct task_struct *task;
   2266	struct dentry *result;
   2267	struct mm_struct *mm;
   2268
   2269	result = ERR_PTR(-ENOENT);
   2270	task = get_proc_task(dir);
   2271	if (!task)
   2272		goto out;
   2273
   2274	result = ERR_PTR(-EACCES);
   2275	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
   2276		goto out_put_task;
   2277
   2278	result = ERR_PTR(-ENOENT);
   2279	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
   2280		goto out_put_task;
   2281
   2282	mm = get_task_mm(task);
   2283	if (!mm)
   2284		goto out_put_task;
   2285
   2286	result = ERR_PTR(-EINTR);
   2287	if (mmap_read_lock_killable(mm))
   2288		goto out_put_mm;
   2289
   2290	result = ERR_PTR(-ENOENT);
   2291	vma = find_exact_vma(mm, vm_start, vm_end);
   2292	if (!vma)
   2293		goto out_no_vma;
   2294
   2295	if (vma->vm_file)
   2296		result = proc_map_files_instantiate(dentry, task,
   2297				(void *)(unsigned long)vma->vm_file->f_mode);
   2298
   2299out_no_vma:
   2300	mmap_read_unlock(mm);
   2301out_put_mm:
   2302	mmput(mm);
   2303out_put_task:
   2304	put_task_struct(task);
   2305out:
   2306	return result;
   2307}
   2308
   2309static const struct inode_operations proc_map_files_inode_operations = {
   2310	.lookup		= proc_map_files_lookup,
   2311	.permission	= proc_fd_permission,
   2312	.setattr	= proc_setattr,
   2313};
   2314
   2315static int
   2316proc_map_files_readdir(struct file *file, struct dir_context *ctx)
   2317{
   2318	struct vm_area_struct *vma;
   2319	struct task_struct *task;
   2320	struct mm_struct *mm;
   2321	unsigned long nr_files, pos, i;
   2322	GENRADIX(struct map_files_info) fa;
   2323	struct map_files_info *p;
   2324	int ret;
   2325
   2326	genradix_init(&fa);
   2327
   2328	ret = -ENOENT;
   2329	task = get_proc_task(file_inode(file));
   2330	if (!task)
   2331		goto out;
   2332
   2333	ret = -EACCES;
   2334	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
   2335		goto out_put_task;
   2336
   2337	ret = 0;
   2338	if (!dir_emit_dots(file, ctx))
   2339		goto out_put_task;
   2340
   2341	mm = get_task_mm(task);
   2342	if (!mm)
   2343		goto out_put_task;
   2344
   2345	ret = mmap_read_lock_killable(mm);
   2346	if (ret) {
   2347		mmput(mm);
   2348		goto out_put_task;
   2349	}
   2350
   2351	nr_files = 0;
   2352
   2353	/*
   2354	 * We need two passes here:
   2355	 *
   2356	 *  1) Collect vmas of mapped files with mmap_lock taken
   2357	 *  2) Release mmap_lock and instantiate entries
   2358	 *
   2359	 * otherwise we get lockdep complained, since filldir()
   2360	 * routine might require mmap_lock taken in might_fault().
   2361	 */
   2362
   2363	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
   2364		if (!vma->vm_file)
   2365			continue;
   2366		if (++pos <= ctx->pos)
   2367			continue;
   2368
   2369		p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
   2370		if (!p) {
   2371			ret = -ENOMEM;
   2372			mmap_read_unlock(mm);
   2373			mmput(mm);
   2374			goto out_put_task;
   2375		}
   2376
   2377		p->start = vma->vm_start;
   2378		p->end = vma->vm_end;
   2379		p->mode = vma->vm_file->f_mode;
   2380	}
   2381	mmap_read_unlock(mm);
   2382	mmput(mm);
   2383
   2384	for (i = 0; i < nr_files; i++) {
   2385		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
   2386		unsigned int len;
   2387
   2388		p = genradix_ptr(&fa, i);
   2389		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
   2390		if (!proc_fill_cache(file, ctx,
   2391				      buf, len,
   2392				      proc_map_files_instantiate,
   2393				      task,
   2394				      (void *)(unsigned long)p->mode))
   2395			break;
   2396		ctx->pos++;
   2397	}
   2398
   2399out_put_task:
   2400	put_task_struct(task);
   2401out:
   2402	genradix_free(&fa);
   2403	return ret;
   2404}
   2405
   2406static const struct file_operations proc_map_files_operations = {
   2407	.read		= generic_read_dir,
   2408	.iterate_shared	= proc_map_files_readdir,
   2409	.llseek		= generic_file_llseek,
   2410};
   2411
   2412#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
   2413struct timers_private {
   2414	struct pid *pid;
   2415	struct task_struct *task;
   2416	struct sighand_struct *sighand;
   2417	struct pid_namespace *ns;
   2418	unsigned long flags;
   2419};
   2420
   2421static void *timers_start(struct seq_file *m, loff_t *pos)
   2422{
   2423	struct timers_private *tp = m->private;
   2424
   2425	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
   2426	if (!tp->task)
   2427		return ERR_PTR(-ESRCH);
   2428
   2429	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
   2430	if (!tp->sighand)
   2431		return ERR_PTR(-ESRCH);
   2432
   2433	return seq_list_start(&tp->task->signal->posix_timers, *pos);
   2434}
   2435
   2436static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
   2437{
   2438	struct timers_private *tp = m->private;
   2439	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
   2440}
   2441
   2442static void timers_stop(struct seq_file *m, void *v)
   2443{
   2444	struct timers_private *tp = m->private;
   2445
   2446	if (tp->sighand) {
   2447		unlock_task_sighand(tp->task, &tp->flags);
   2448		tp->sighand = NULL;
   2449	}
   2450
   2451	if (tp->task) {
   2452		put_task_struct(tp->task);
   2453		tp->task = NULL;
   2454	}
   2455}
   2456
   2457static int show_timer(struct seq_file *m, void *v)
   2458{
   2459	struct k_itimer *timer;
   2460	struct timers_private *tp = m->private;
   2461	int notify;
   2462	static const char * const nstr[] = {
   2463		[SIGEV_SIGNAL] = "signal",
   2464		[SIGEV_NONE] = "none",
   2465		[SIGEV_THREAD] = "thread",
   2466	};
   2467
   2468	timer = list_entry((struct list_head *)v, struct k_itimer, list);
   2469	notify = timer->it_sigev_notify;
   2470
   2471	seq_printf(m, "ID: %d\n", timer->it_id);
   2472	seq_printf(m, "signal: %d/%px\n",
   2473		   timer->sigq->info.si_signo,
   2474		   timer->sigq->info.si_value.sival_ptr);
   2475	seq_printf(m, "notify: %s/%s.%d\n",
   2476		   nstr[notify & ~SIGEV_THREAD_ID],
   2477		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
   2478		   pid_nr_ns(timer->it_pid, tp->ns));
   2479	seq_printf(m, "ClockID: %d\n", timer->it_clock);
   2480
   2481	return 0;
   2482}
   2483
   2484static const struct seq_operations proc_timers_seq_ops = {
   2485	.start	= timers_start,
   2486	.next	= timers_next,
   2487	.stop	= timers_stop,
   2488	.show	= show_timer,
   2489};
   2490
   2491static int proc_timers_open(struct inode *inode, struct file *file)
   2492{
   2493	struct timers_private *tp;
   2494
   2495	tp = __seq_open_private(file, &proc_timers_seq_ops,
   2496			sizeof(struct timers_private));
   2497	if (!tp)
   2498		return -ENOMEM;
   2499
   2500	tp->pid = proc_pid(inode);
   2501	tp->ns = proc_pid_ns(inode->i_sb);
   2502	return 0;
   2503}
   2504
   2505static const struct file_operations proc_timers_operations = {
   2506	.open		= proc_timers_open,
   2507	.read		= seq_read,
   2508	.llseek		= seq_lseek,
   2509	.release	= seq_release_private,
   2510};
   2511#endif
   2512
   2513static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
   2514					size_t count, loff_t *offset)
   2515{
   2516	struct inode *inode = file_inode(file);
   2517	struct task_struct *p;
   2518	u64 slack_ns;
   2519	int err;
   2520
   2521	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
   2522	if (err < 0)
   2523		return err;
   2524
   2525	p = get_proc_task(inode);
   2526	if (!p)
   2527		return -ESRCH;
   2528
   2529	if (p != current) {
   2530		rcu_read_lock();
   2531		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
   2532			rcu_read_unlock();
   2533			count = -EPERM;
   2534			goto out;
   2535		}
   2536		rcu_read_unlock();
   2537
   2538		err = security_task_setscheduler(p);
   2539		if (err) {
   2540			count = err;
   2541			goto out;
   2542		}
   2543	}
   2544
   2545	task_lock(p);
   2546	if (slack_ns == 0)
   2547		p->timer_slack_ns = p->default_timer_slack_ns;
   2548	else
   2549		p->timer_slack_ns = slack_ns;
   2550	task_unlock(p);
   2551
   2552out:
   2553	put_task_struct(p);
   2554
   2555	return count;
   2556}
   2557
   2558static int timerslack_ns_show(struct seq_file *m, void *v)
   2559{
   2560	struct inode *inode = m->private;
   2561	struct task_struct *p;
   2562	int err = 0;
   2563
   2564	p = get_proc_task(inode);
   2565	if (!p)
   2566		return -ESRCH;
   2567
   2568	if (p != current) {
   2569		rcu_read_lock();
   2570		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
   2571			rcu_read_unlock();
   2572			err = -EPERM;
   2573			goto out;
   2574		}
   2575		rcu_read_unlock();
   2576
   2577		err = security_task_getscheduler(p);
   2578		if (err)
   2579			goto out;
   2580	}
   2581
   2582	task_lock(p);
   2583	seq_printf(m, "%llu\n", p->timer_slack_ns);
   2584	task_unlock(p);
   2585
   2586out:
   2587	put_task_struct(p);
   2588
   2589	return err;
   2590}
   2591
   2592static int timerslack_ns_open(struct inode *inode, struct file *filp)
   2593{
   2594	return single_open(filp, timerslack_ns_show, inode);
   2595}
   2596
   2597static const struct file_operations proc_pid_set_timerslack_ns_operations = {
   2598	.open		= timerslack_ns_open,
   2599	.read		= seq_read,
   2600	.write		= timerslack_ns_write,
   2601	.llseek		= seq_lseek,
   2602	.release	= single_release,
   2603};
   2604
   2605static struct dentry *proc_pident_instantiate(struct dentry *dentry,
   2606	struct task_struct *task, const void *ptr)
   2607{
   2608	const struct pid_entry *p = ptr;
   2609	struct inode *inode;
   2610	struct proc_inode *ei;
   2611
   2612	inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
   2613	if (!inode)
   2614		return ERR_PTR(-ENOENT);
   2615
   2616	ei = PROC_I(inode);
   2617	if (S_ISDIR(inode->i_mode))
   2618		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
   2619	if (p->iop)
   2620		inode->i_op = p->iop;
   2621	if (p->fop)
   2622		inode->i_fop = p->fop;
   2623	ei->op = p->op;
   2624	pid_update_inode(task, inode);
   2625	d_set_d_op(dentry, &pid_dentry_operations);
   2626	return d_splice_alias(inode, dentry);
   2627}
   2628
   2629static struct dentry *proc_pident_lookup(struct inode *dir, 
   2630					 struct dentry *dentry,
   2631					 const struct pid_entry *p,
   2632					 const struct pid_entry *end)
   2633{
   2634	struct task_struct *task = get_proc_task(dir);
   2635	struct dentry *res = ERR_PTR(-ENOENT);
   2636
   2637	if (!task)
   2638		goto out_no_task;
   2639
   2640	/*
   2641	 * Yes, it does not scale. And it should not. Don't add
   2642	 * new entries into /proc/<tgid>/ without very good reasons.
   2643	 */
   2644	for (; p < end; p++) {
   2645		if (p->len != dentry->d_name.len)
   2646			continue;
   2647		if (!memcmp(dentry->d_name.name, p->name, p->len)) {
   2648			res = proc_pident_instantiate(dentry, task, p);
   2649			break;
   2650		}
   2651	}
   2652	put_task_struct(task);
   2653out_no_task:
   2654	return res;
   2655}
   2656
   2657static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
   2658		const struct pid_entry *ents, unsigned int nents)
   2659{
   2660	struct task_struct *task = get_proc_task(file_inode(file));
   2661	const struct pid_entry *p;
   2662
   2663	if (!task)
   2664		return -ENOENT;
   2665
   2666	if (!dir_emit_dots(file, ctx))
   2667		goto out;
   2668
   2669	if (ctx->pos >= nents + 2)
   2670		goto out;
   2671
   2672	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
   2673		if (!proc_fill_cache(file, ctx, p->name, p->len,
   2674				proc_pident_instantiate, task, p))
   2675			break;
   2676		ctx->pos++;
   2677	}
   2678out:
   2679	put_task_struct(task);
   2680	return 0;
   2681}
   2682
   2683#ifdef CONFIG_SECURITY
   2684static int proc_pid_attr_open(struct inode *inode, struct file *file)
   2685{
   2686	file->private_data = NULL;
   2687	__mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
   2688	return 0;
   2689}
   2690
   2691static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
   2692				  size_t count, loff_t *ppos)
   2693{
   2694	struct inode * inode = file_inode(file);
   2695	char *p = NULL;
   2696	ssize_t length;
   2697	struct task_struct *task = get_proc_task(inode);
   2698
   2699	if (!task)
   2700		return -ESRCH;
   2701
   2702	length = security_getprocattr(task, PROC_I(inode)->op.lsm,
   2703				      (char*)file->f_path.dentry->d_name.name,
   2704				      &p);
   2705	put_task_struct(task);
   2706	if (length > 0)
   2707		length = simple_read_from_buffer(buf, count, ppos, p, length);
   2708	kfree(p);
   2709	return length;
   2710}
   2711
   2712static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
   2713				   size_t count, loff_t *ppos)
   2714{
   2715	struct inode * inode = file_inode(file);
   2716	struct task_struct *task;
   2717	void *page;
   2718	int rv;
   2719
   2720	/* A task may only write when it was the opener. */
   2721	if (file->private_data != current->mm)
   2722		return -EPERM;
   2723
   2724	rcu_read_lock();
   2725	task = pid_task(proc_pid(inode), PIDTYPE_PID);
   2726	if (!task) {
   2727		rcu_read_unlock();
   2728		return -ESRCH;
   2729	}
   2730	/* A task may only write its own attributes. */
   2731	if (current != task) {
   2732		rcu_read_unlock();
   2733		return -EACCES;
   2734	}
   2735	/* Prevent changes to overridden credentials. */
   2736	if (current_cred() != current_real_cred()) {
   2737		rcu_read_unlock();
   2738		return -EBUSY;
   2739	}
   2740	rcu_read_unlock();
   2741
   2742	if (count > PAGE_SIZE)
   2743		count = PAGE_SIZE;
   2744
   2745	/* No partial writes. */
   2746	if (*ppos != 0)
   2747		return -EINVAL;
   2748
   2749	page = memdup_user(buf, count);
   2750	if (IS_ERR(page)) {
   2751		rv = PTR_ERR(page);
   2752		goto out;
   2753	}
   2754
   2755	/* Guard against adverse ptrace interaction */
   2756	rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
   2757	if (rv < 0)
   2758		goto out_free;
   2759
   2760	rv = security_setprocattr(PROC_I(inode)->op.lsm,
   2761				  file->f_path.dentry->d_name.name, page,
   2762				  count);
   2763	mutex_unlock(&current->signal->cred_guard_mutex);
   2764out_free:
   2765	kfree(page);
   2766out:
   2767	return rv;
   2768}
   2769
   2770static const struct file_operations proc_pid_attr_operations = {
   2771	.open		= proc_pid_attr_open,
   2772	.read		= proc_pid_attr_read,
   2773	.write		= proc_pid_attr_write,
   2774	.llseek		= generic_file_llseek,
   2775	.release	= mem_release,
   2776};
   2777
   2778#define LSM_DIR_OPS(LSM) \
   2779static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
   2780			     struct dir_context *ctx) \
   2781{ \
   2782	return proc_pident_readdir(filp, ctx, \
   2783				   LSM##_attr_dir_stuff, \
   2784				   ARRAY_SIZE(LSM##_attr_dir_stuff)); \
   2785} \
   2786\
   2787static const struct file_operations proc_##LSM##_attr_dir_ops = { \
   2788	.read		= generic_read_dir, \
   2789	.iterate	= proc_##LSM##_attr_dir_iterate, \
   2790	.llseek		= default_llseek, \
   2791}; \
   2792\
   2793static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
   2794				struct dentry *dentry, unsigned int flags) \
   2795{ \
   2796	return proc_pident_lookup(dir, dentry, \
   2797				  LSM##_attr_dir_stuff, \
   2798				  LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
   2799} \
   2800\
   2801static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
   2802	.lookup		= proc_##LSM##_attr_dir_lookup, \
   2803	.getattr	= pid_getattr, \
   2804	.setattr	= proc_setattr, \
   2805}
   2806
   2807#ifdef CONFIG_SECURITY_SMACK
   2808static const struct pid_entry smack_attr_dir_stuff[] = {
   2809	ATTR("smack", "current",	0666),
   2810};
   2811LSM_DIR_OPS(smack);
   2812#endif
   2813
   2814#ifdef CONFIG_SECURITY_APPARMOR
   2815static const struct pid_entry apparmor_attr_dir_stuff[] = {
   2816	ATTR("apparmor", "current",	0666),
   2817	ATTR("apparmor", "prev",	0444),
   2818	ATTR("apparmor", "exec",	0666),
   2819};
   2820LSM_DIR_OPS(apparmor);
   2821#endif
   2822
   2823static const struct pid_entry attr_dir_stuff[] = {
   2824	ATTR(NULL, "current",		0666),
   2825	ATTR(NULL, "prev",		0444),
   2826	ATTR(NULL, "exec",		0666),
   2827	ATTR(NULL, "fscreate",		0666),
   2828	ATTR(NULL, "keycreate",		0666),
   2829	ATTR(NULL, "sockcreate",	0666),
   2830#ifdef CONFIG_SECURITY_SMACK
   2831	DIR("smack",			0555,
   2832	    proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
   2833#endif
   2834#ifdef CONFIG_SECURITY_APPARMOR
   2835	DIR("apparmor",			0555,
   2836	    proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
   2837#endif
   2838};
   2839
   2840static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
   2841{
   2842	return proc_pident_readdir(file, ctx, 
   2843				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
   2844}
   2845
   2846static const struct file_operations proc_attr_dir_operations = {
   2847	.read		= generic_read_dir,
   2848	.iterate_shared	= proc_attr_dir_readdir,
   2849	.llseek		= generic_file_llseek,
   2850};
   2851
   2852static struct dentry *proc_attr_dir_lookup(struct inode *dir,
   2853				struct dentry *dentry, unsigned int flags)
   2854{
   2855	return proc_pident_lookup(dir, dentry,
   2856				  attr_dir_stuff,
   2857				  attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
   2858}
   2859
   2860static const struct inode_operations proc_attr_dir_inode_operations = {
   2861	.lookup		= proc_attr_dir_lookup,
   2862	.getattr	= pid_getattr,
   2863	.setattr	= proc_setattr,
   2864};
   2865
   2866#endif
   2867
   2868#ifdef CONFIG_ELF_CORE
   2869static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
   2870					 size_t count, loff_t *ppos)
   2871{
   2872	struct task_struct *task = get_proc_task(file_inode(file));
   2873	struct mm_struct *mm;
   2874	char buffer[PROC_NUMBUF];
   2875	size_t len;
   2876	int ret;
   2877
   2878	if (!task)
   2879		return -ESRCH;
   2880
   2881	ret = 0;
   2882	mm = get_task_mm(task);
   2883	if (mm) {
   2884		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
   2885			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
   2886				MMF_DUMP_FILTER_SHIFT));
   2887		mmput(mm);
   2888		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
   2889	}
   2890
   2891	put_task_struct(task);
   2892
   2893	return ret;
   2894}
   2895
   2896static ssize_t proc_coredump_filter_write(struct file *file,
   2897					  const char __user *buf,
   2898					  size_t count,
   2899					  loff_t *ppos)
   2900{
   2901	struct task_struct *task;
   2902	struct mm_struct *mm;
   2903	unsigned int val;
   2904	int ret;
   2905	int i;
   2906	unsigned long mask;
   2907
   2908	ret = kstrtouint_from_user(buf, count, 0, &val);
   2909	if (ret < 0)
   2910		return ret;
   2911
   2912	ret = -ESRCH;
   2913	task = get_proc_task(file_inode(file));
   2914	if (!task)
   2915		goto out_no_task;
   2916
   2917	mm = get_task_mm(task);
   2918	if (!mm)
   2919		goto out_no_mm;
   2920	ret = 0;
   2921
   2922	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
   2923		if (val & mask)
   2924			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
   2925		else
   2926			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
   2927	}
   2928
   2929	mmput(mm);
   2930 out_no_mm:
   2931	put_task_struct(task);
   2932 out_no_task:
   2933	if (ret < 0)
   2934		return ret;
   2935	return count;
   2936}
   2937
   2938static const struct file_operations proc_coredump_filter_operations = {
   2939	.read		= proc_coredump_filter_read,
   2940	.write		= proc_coredump_filter_write,
   2941	.llseek		= generic_file_llseek,
   2942};
   2943#endif
   2944
   2945#ifdef CONFIG_TASK_IO_ACCOUNTING
   2946static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
   2947{
   2948	struct task_io_accounting acct = task->ioac;
   2949	unsigned long flags;
   2950	int result;
   2951
   2952	result = down_read_killable(&task->signal->exec_update_lock);
   2953	if (result)
   2954		return result;
   2955
   2956	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
   2957		result = -EACCES;
   2958		goto out_unlock;
   2959	}
   2960
   2961	if (whole && lock_task_sighand(task, &flags)) {
   2962		struct task_struct *t = task;
   2963
   2964		task_io_accounting_add(&acct, &task->signal->ioac);
   2965		while_each_thread(task, t)
   2966			task_io_accounting_add(&acct, &t->ioac);
   2967
   2968		unlock_task_sighand(task, &flags);
   2969	}
   2970	seq_printf(m,
   2971		   "rchar: %llu\n"
   2972		   "wchar: %llu\n"
   2973		   "syscr: %llu\n"
   2974		   "syscw: %llu\n"
   2975		   "read_bytes: %llu\n"
   2976		   "write_bytes: %llu\n"
   2977		   "cancelled_write_bytes: %llu\n",
   2978		   (unsigned long long)acct.rchar,
   2979		   (unsigned long long)acct.wchar,
   2980		   (unsigned long long)acct.syscr,
   2981		   (unsigned long long)acct.syscw,
   2982		   (unsigned long long)acct.read_bytes,
   2983		   (unsigned long long)acct.write_bytes,
   2984		   (unsigned long long)acct.cancelled_write_bytes);
   2985	result = 0;
   2986
   2987out_unlock:
   2988	up_read(&task->signal->exec_update_lock);
   2989	return result;
   2990}
   2991
   2992static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
   2993				  struct pid *pid, struct task_struct *task)
   2994{
   2995	return do_io_accounting(task, m, 0);
   2996}
   2997
   2998static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
   2999				   struct pid *pid, struct task_struct *task)
   3000{
   3001	return do_io_accounting(task, m, 1);
   3002}
   3003#endif /* CONFIG_TASK_IO_ACCOUNTING */
   3004
   3005#ifdef CONFIG_USER_NS
   3006static int proc_id_map_open(struct inode *inode, struct file *file,
   3007	const struct seq_operations *seq_ops)
   3008{
   3009	struct user_namespace *ns = NULL;
   3010	struct task_struct *task;
   3011	struct seq_file *seq;
   3012	int ret = -EINVAL;
   3013
   3014	task = get_proc_task(inode);
   3015	if (task) {
   3016		rcu_read_lock();
   3017		ns = get_user_ns(task_cred_xxx(task, user_ns));
   3018		rcu_read_unlock();
   3019		put_task_struct(task);
   3020	}
   3021	if (!ns)
   3022		goto err;
   3023
   3024	ret = seq_open(file, seq_ops);
   3025	if (ret)
   3026		goto err_put_ns;
   3027
   3028	seq = file->private_data;
   3029	seq->private = ns;
   3030
   3031	return 0;
   3032err_put_ns:
   3033	put_user_ns(ns);
   3034err:
   3035	return ret;
   3036}
   3037
   3038static int proc_id_map_release(struct inode *inode, struct file *file)
   3039{
   3040	struct seq_file *seq = file->private_data;
   3041	struct user_namespace *ns = seq->private;
   3042	put_user_ns(ns);
   3043	return seq_release(inode, file);
   3044}
   3045
   3046static int proc_uid_map_open(struct inode *inode, struct file *file)
   3047{
   3048	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
   3049}
   3050
   3051static int proc_gid_map_open(struct inode *inode, struct file *file)
   3052{
   3053	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
   3054}
   3055
   3056static int proc_projid_map_open(struct inode *inode, struct file *file)
   3057{
   3058	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
   3059}
   3060
   3061static const struct file_operations proc_uid_map_operations = {
   3062	.open		= proc_uid_map_open,
   3063	.write		= proc_uid_map_write,
   3064	.read		= seq_read,
   3065	.llseek		= seq_lseek,
   3066	.release	= proc_id_map_release,
   3067};
   3068
   3069static const struct file_operations proc_gid_map_operations = {
   3070	.open		= proc_gid_map_open,
   3071	.write		= proc_gid_map_write,
   3072	.read		= seq_read,
   3073	.llseek		= seq_lseek,
   3074	.release	= proc_id_map_release,
   3075};
   3076
   3077static const struct file_operations proc_projid_map_operations = {
   3078	.open		= proc_projid_map_open,
   3079	.write		= proc_projid_map_write,
   3080	.read		= seq_read,
   3081	.llseek		= seq_lseek,
   3082	.release	= proc_id_map_release,
   3083};
   3084
   3085static int proc_setgroups_open(struct inode *inode, struct file *file)
   3086{
   3087	struct user_namespace *ns = NULL;
   3088	struct task_struct *task;
   3089	int ret;
   3090
   3091	ret = -ESRCH;
   3092	task = get_proc_task(inode);
   3093	if (task) {
   3094		rcu_read_lock();
   3095		ns = get_user_ns(task_cred_xxx(task, user_ns));
   3096		rcu_read_unlock();
   3097		put_task_struct(task);
   3098	}
   3099	if (!ns)
   3100		goto err;
   3101
   3102	if (file->f_mode & FMODE_WRITE) {
   3103		ret = -EACCES;
   3104		if (!ns_capable(ns, CAP_SYS_ADMIN))
   3105			goto err_put_ns;
   3106	}
   3107
   3108	ret = single_open(file, &proc_setgroups_show, ns);
   3109	if (ret)
   3110		goto err_put_ns;
   3111
   3112	return 0;
   3113err_put_ns:
   3114	put_user_ns(ns);
   3115err:
   3116	return ret;
   3117}
   3118
   3119static int proc_setgroups_release(struct inode *inode, struct file *file)
   3120{
   3121	struct seq_file *seq = file->private_data;
   3122	struct user_namespace *ns = seq->private;
   3123	int ret = single_release(inode, file);
   3124	put_user_ns(ns);
   3125	return ret;
   3126}
   3127
   3128static const struct file_operations proc_setgroups_operations = {
   3129	.open		= proc_setgroups_open,
   3130	.write		= proc_setgroups_write,
   3131	.read		= seq_read,
   3132	.llseek		= seq_lseek,
   3133	.release	= proc_setgroups_release,
   3134};
   3135#endif /* CONFIG_USER_NS */
   3136
   3137static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
   3138				struct pid *pid, struct task_struct *task)
   3139{
   3140	int err = lock_trace(task);
   3141	if (!err) {
   3142		seq_printf(m, "%08x\n", task->personality);
   3143		unlock_trace(task);
   3144	}
   3145	return err;
   3146}
   3147
   3148#ifdef CONFIG_LIVEPATCH
   3149static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
   3150				struct pid *pid, struct task_struct *task)
   3151{
   3152	seq_printf(m, "%d\n", task->patch_state);
   3153	return 0;
   3154}
   3155#endif /* CONFIG_LIVEPATCH */
   3156
   3157#ifdef CONFIG_KSM
   3158static int proc_pid_ksm_merging_pages(struct seq_file *m, struct pid_namespace *ns,
   3159				struct pid *pid, struct task_struct *task)
   3160{
   3161	struct mm_struct *mm;
   3162
   3163	mm = get_task_mm(task);
   3164	if (mm) {
   3165		seq_printf(m, "%lu\n", mm->ksm_merging_pages);
   3166		mmput(mm);
   3167	}
   3168
   3169	return 0;
   3170}
   3171#endif /* CONFIG_KSM */
   3172
   3173#ifdef CONFIG_STACKLEAK_METRICS
   3174static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
   3175				struct pid *pid, struct task_struct *task)
   3176{
   3177	unsigned long prev_depth = THREAD_SIZE -
   3178				(task->prev_lowest_stack & (THREAD_SIZE - 1));
   3179	unsigned long depth = THREAD_SIZE -
   3180				(task->lowest_stack & (THREAD_SIZE - 1));
   3181
   3182	seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
   3183							prev_depth, depth);
   3184	return 0;
   3185}
   3186#endif /* CONFIG_STACKLEAK_METRICS */
   3187
   3188/*
   3189 * Thread groups
   3190 */
   3191static const struct file_operations proc_task_operations;
   3192static const struct inode_operations proc_task_inode_operations;
   3193
   3194static const struct pid_entry tgid_base_stuff[] = {
   3195	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
   3196	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
   3197	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
   3198	DIR("fdinfo",     S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
   3199	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
   3200#ifdef CONFIG_NET
   3201	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
   3202#endif
   3203	REG("environ",    S_IRUSR, proc_environ_operations),
   3204	REG("auxv",       S_IRUSR, proc_auxv_operations),
   3205	ONE("status",     S_IRUGO, proc_pid_status),
   3206	ONE("personality", S_IRUSR, proc_pid_personality),
   3207	ONE("limits",	  S_IRUGO, proc_pid_limits),
   3208#ifdef CONFIG_SCHED_DEBUG
   3209	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
   3210#endif
   3211#ifdef CONFIG_SCHED_AUTOGROUP
   3212	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
   3213#endif
   3214#ifdef CONFIG_TIME_NS
   3215	REG("timens_offsets",  S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
   3216#endif
   3217	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
   3218#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
   3219	ONE("syscall",    S_IRUSR, proc_pid_syscall),
   3220#endif
   3221	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
   3222	ONE("stat",       S_IRUGO, proc_tgid_stat),
   3223	ONE("statm",      S_IRUGO, proc_pid_statm),
   3224	REG("maps",       S_IRUGO, proc_pid_maps_operations),
   3225#ifdef CONFIG_NUMA
   3226	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
   3227#endif
   3228	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
   3229	LNK("cwd",        proc_cwd_link),
   3230	LNK("root",       proc_root_link),
   3231	LNK("exe",        proc_exe_link),
   3232	REG("mounts",     S_IRUGO, proc_mounts_operations),
   3233	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
   3234	REG("mountstats", S_IRUSR, proc_mountstats_operations),
   3235#ifdef CONFIG_PROC_PAGE_MONITOR
   3236	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
   3237	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
   3238	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
   3239	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
   3240#endif
   3241#ifdef CONFIG_SECURITY
   3242	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
   3243#endif
   3244#ifdef CONFIG_KALLSYMS
   3245	ONE("wchan",      S_IRUGO, proc_pid_wchan),
   3246#endif
   3247#ifdef CONFIG_STACKTRACE
   3248	ONE("stack",      S_IRUSR, proc_pid_stack),
   3249#endif
   3250#ifdef CONFIG_SCHED_INFO
   3251	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
   3252#endif
   3253#ifdef CONFIG_LATENCYTOP
   3254	REG("latency",  S_IRUGO, proc_lstats_operations),
   3255#endif
   3256#ifdef CONFIG_PROC_PID_CPUSET
   3257	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
   3258#endif
   3259#ifdef CONFIG_CGROUPS
   3260	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
   3261#endif
   3262#ifdef CONFIG_PROC_CPU_RESCTRL
   3263	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
   3264#endif
   3265	ONE("oom_score",  S_IRUGO, proc_oom_score),
   3266	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
   3267	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
   3268#ifdef CONFIG_AUDIT
   3269	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
   3270	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
   3271#endif
   3272#ifdef CONFIG_FAULT_INJECTION
   3273	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
   3274	REG("fail-nth", 0644, proc_fail_nth_operations),
   3275#endif
   3276#ifdef CONFIG_ELF_CORE
   3277	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
   3278#endif
   3279#ifdef CONFIG_TASK_IO_ACCOUNTING
   3280	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
   3281#endif
   3282#ifdef CONFIG_USER_NS
   3283	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
   3284	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
   3285	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
   3286	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
   3287#endif
   3288#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
   3289	REG("timers",	  S_IRUGO, proc_timers_operations),
   3290#endif
   3291	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
   3292#ifdef CONFIG_LIVEPATCH
   3293	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
   3294#endif
   3295#ifdef CONFIG_STACKLEAK_METRICS
   3296	ONE("stack_depth", S_IRUGO, proc_stack_depth),
   3297#endif
   3298#ifdef CONFIG_PROC_PID_ARCH_STATUS
   3299	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
   3300#endif
   3301#ifdef CONFIG_SECCOMP_CACHE_DEBUG
   3302	ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
   3303#endif
   3304#ifdef CONFIG_KSM
   3305	ONE("ksm_merging_pages",  S_IRUSR, proc_pid_ksm_merging_pages),
   3306#endif
   3307};
   3308
   3309static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
   3310{
   3311	return proc_pident_readdir(file, ctx,
   3312				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
   3313}
   3314
   3315static const struct file_operations proc_tgid_base_operations = {
   3316	.read		= generic_read_dir,
   3317	.iterate_shared	= proc_tgid_base_readdir,
   3318	.llseek		= generic_file_llseek,
   3319};
   3320
   3321struct pid *tgid_pidfd_to_pid(const struct file *file)
   3322{
   3323	if (file->f_op != &proc_tgid_base_operations)
   3324		return ERR_PTR(-EBADF);
   3325
   3326	return proc_pid(file_inode(file));
   3327}
   3328
   3329static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
   3330{
   3331	return proc_pident_lookup(dir, dentry,
   3332				  tgid_base_stuff,
   3333				  tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
   3334}
   3335
   3336static const struct inode_operations proc_tgid_base_inode_operations = {
   3337	.lookup		= proc_tgid_base_lookup,
   3338	.getattr	= pid_getattr,
   3339	.setattr	= proc_setattr,
   3340	.permission	= proc_pid_permission,
   3341};
   3342
   3343/**
   3344 * proc_flush_pid -  Remove dcache entries for @pid from the /proc dcache.
   3345 * @pid: pid that should be flushed.
   3346 *
   3347 * This function walks a list of inodes (that belong to any proc
   3348 * filesystem) that are attached to the pid and flushes them from
   3349 * the dentry cache.
   3350 *
   3351 * It is safe and reasonable to cache /proc entries for a task until
   3352 * that task exits.  After that they just clog up the dcache with
   3353 * useless entries, possibly causing useful dcache entries to be
   3354 * flushed instead.  This routine is provided to flush those useless
   3355 * dcache entries when a process is reaped.
   3356 *
   3357 * NOTE: This routine is just an optimization so it does not guarantee
   3358 *       that no dcache entries will exist after a process is reaped
   3359 *       it just makes it very unlikely that any will persist.
   3360 */
   3361
   3362void proc_flush_pid(struct pid *pid)
   3363{
   3364	proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
   3365}
   3366
   3367static struct dentry *proc_pid_instantiate(struct dentry * dentry,
   3368				   struct task_struct *task, const void *ptr)
   3369{
   3370	struct inode *inode;
   3371
   3372	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
   3373	if (!inode)
   3374		return ERR_PTR(-ENOENT);
   3375
   3376	inode->i_op = &proc_tgid_base_inode_operations;
   3377	inode->i_fop = &proc_tgid_base_operations;
   3378	inode->i_flags|=S_IMMUTABLE;
   3379
   3380	set_nlink(inode, nlink_tgid);
   3381	pid_update_inode(task, inode);
   3382
   3383	d_set_d_op(dentry, &pid_dentry_operations);
   3384	return d_splice_alias(inode, dentry);
   3385}
   3386
   3387struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
   3388{
   3389	struct task_struct *task;
   3390	unsigned tgid;
   3391	struct proc_fs_info *fs_info;
   3392	struct pid_namespace *ns;
   3393	struct dentry *result = ERR_PTR(-ENOENT);
   3394
   3395	tgid = name_to_int(&dentry->d_name);
   3396	if (tgid == ~0U)
   3397		goto out;
   3398
   3399	fs_info = proc_sb_info(dentry->d_sb);
   3400	ns = fs_info->pid_ns;
   3401	rcu_read_lock();
   3402	task = find_task_by_pid_ns(tgid, ns);
   3403	if (task)
   3404		get_task_struct(task);
   3405	rcu_read_unlock();
   3406	if (!task)
   3407		goto out;
   3408
   3409	/* Limit procfs to only ptraceable tasks */
   3410	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
   3411		if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
   3412			goto out_put_task;
   3413	}
   3414
   3415	result = proc_pid_instantiate(dentry, task, NULL);
   3416out_put_task:
   3417	put_task_struct(task);
   3418out:
   3419	return result;
   3420}
   3421
   3422/*
   3423 * Find the first task with tgid >= tgid
   3424 *
   3425 */
   3426struct tgid_iter {
   3427	unsigned int tgid;
   3428	struct task_struct *task;
   3429};
   3430static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
   3431{
   3432	struct pid *pid;
   3433
   3434	if (iter.task)
   3435		put_task_struct(iter.task);
   3436	rcu_read_lock();
   3437retry:
   3438	iter.task = NULL;
   3439	pid = find_ge_pid(iter.tgid, ns);
   3440	if (pid) {
   3441		iter.tgid = pid_nr_ns(pid, ns);
   3442		iter.task = pid_task(pid, PIDTYPE_TGID);
   3443		if (!iter.task) {
   3444			iter.tgid += 1;
   3445			goto retry;
   3446		}
   3447		get_task_struct(iter.task);
   3448	}
   3449	rcu_read_unlock();
   3450	return iter;
   3451}
   3452
   3453#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
   3454
   3455/* for the /proc/ directory itself, after non-process stuff has been done */
   3456int proc_pid_readdir(struct file *file, struct dir_context *ctx)
   3457{
   3458	struct tgid_iter iter;
   3459	struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
   3460	struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
   3461	loff_t pos = ctx->pos;
   3462
   3463	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
   3464		return 0;
   3465
   3466	if (pos == TGID_OFFSET - 2) {
   3467		struct inode *inode = d_inode(fs_info->proc_self);
   3468		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
   3469			return 0;
   3470		ctx->pos = pos = pos + 1;
   3471	}
   3472	if (pos == TGID_OFFSET - 1) {
   3473		struct inode *inode = d_inode(fs_info->proc_thread_self);
   3474		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
   3475			return 0;
   3476		ctx->pos = pos = pos + 1;
   3477	}
   3478	iter.tgid = pos - TGID_OFFSET;
   3479	iter.task = NULL;
   3480	for (iter = next_tgid(ns, iter);
   3481	     iter.task;
   3482	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
   3483		char name[10 + 1];
   3484		unsigned int len;
   3485
   3486		cond_resched();
   3487		if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
   3488			continue;
   3489
   3490		len = snprintf(name, sizeof(name), "%u", iter.tgid);
   3491		ctx->pos = iter.tgid + TGID_OFFSET;
   3492		if (!proc_fill_cache(file, ctx, name, len,
   3493				     proc_pid_instantiate, iter.task, NULL)) {
   3494			put_task_struct(iter.task);
   3495			return 0;
   3496		}
   3497	}
   3498	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
   3499	return 0;
   3500}
   3501
   3502/*
   3503 * proc_tid_comm_permission is a special permission function exclusively
   3504 * used for the node /proc/<pid>/task/<tid>/comm.
   3505 * It bypasses generic permission checks in the case where a task of the same
   3506 * task group attempts to access the node.
   3507 * The rationale behind this is that glibc and bionic access this node for
   3508 * cross thread naming (pthread_set/getname_np(!self)). However, if
   3509 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
   3510 * which locks out the cross thread naming implementation.
   3511 * This function makes sure that the node is always accessible for members of
   3512 * same thread group.
   3513 */
   3514static int proc_tid_comm_permission(struct user_namespace *mnt_userns,
   3515				    struct inode *inode, int mask)
   3516{
   3517	bool is_same_tgroup;
   3518	struct task_struct *task;
   3519
   3520	task = get_proc_task(inode);
   3521	if (!task)
   3522		return -ESRCH;
   3523	is_same_tgroup = same_thread_group(current, task);
   3524	put_task_struct(task);
   3525
   3526	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
   3527		/* This file (/proc/<pid>/task/<tid>/comm) can always be
   3528		 * read or written by the members of the corresponding
   3529		 * thread group.
   3530		 */
   3531		return 0;
   3532	}
   3533
   3534	return generic_permission(&init_user_ns, inode, mask);
   3535}
   3536
   3537static const struct inode_operations proc_tid_comm_inode_operations = {
   3538		.permission = proc_tid_comm_permission,
   3539};
   3540
   3541/*
   3542 * Tasks
   3543 */
   3544static const struct pid_entry tid_base_stuff[] = {
   3545	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
   3546	DIR("fdinfo",    S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
   3547	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
   3548#ifdef CONFIG_NET
   3549	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
   3550#endif
   3551	REG("environ",   S_IRUSR, proc_environ_operations),
   3552	REG("auxv",      S_IRUSR, proc_auxv_operations),
   3553	ONE("status",    S_IRUGO, proc_pid_status),
   3554	ONE("personality", S_IRUSR, proc_pid_personality),
   3555	ONE("limits",	 S_IRUGO, proc_pid_limits),
   3556#ifdef CONFIG_SCHED_DEBUG
   3557	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
   3558#endif
   3559	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
   3560			 &proc_tid_comm_inode_operations,
   3561			 &proc_pid_set_comm_operations, {}),
   3562#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
   3563	ONE("syscall",   S_IRUSR, proc_pid_syscall),
   3564#endif
   3565	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
   3566	ONE("stat",      S_IRUGO, proc_tid_stat),
   3567	ONE("statm",     S_IRUGO, proc_pid_statm),
   3568	REG("maps",      S_IRUGO, proc_pid_maps_operations),
   3569#ifdef CONFIG_PROC_CHILDREN
   3570	REG("children",  S_IRUGO, proc_tid_children_operations),
   3571#endif
   3572#ifdef CONFIG_NUMA
   3573	REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
   3574#endif
   3575	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
   3576	LNK("cwd",       proc_cwd_link),
   3577	LNK("root",      proc_root_link),
   3578	LNK("exe",       proc_exe_link),
   3579	REG("mounts",    S_IRUGO, proc_mounts_operations),
   3580	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
   3581#ifdef CONFIG_PROC_PAGE_MONITOR
   3582	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
   3583	REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
   3584	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
   3585	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
   3586#endif
   3587#ifdef CONFIG_SECURITY
   3588	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
   3589#endif
   3590#ifdef CONFIG_KALLSYMS
   3591	ONE("wchan",     S_IRUGO, proc_pid_wchan),
   3592#endif
   3593#ifdef CONFIG_STACKTRACE
   3594	ONE("stack",      S_IRUSR, proc_pid_stack),
   3595#endif
   3596#ifdef CONFIG_SCHED_INFO
   3597	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
   3598#endif
   3599#ifdef CONFIG_LATENCYTOP
   3600	REG("latency",  S_IRUGO, proc_lstats_operations),
   3601#endif
   3602#ifdef CONFIG_PROC_PID_CPUSET
   3603	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
   3604#endif
   3605#ifdef CONFIG_CGROUPS
   3606	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
   3607#endif
   3608#ifdef CONFIG_PROC_CPU_RESCTRL
   3609	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
   3610#endif
   3611	ONE("oom_score", S_IRUGO, proc_oom_score),
   3612	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
   3613	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
   3614#ifdef CONFIG_AUDIT
   3615	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
   3616	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
   3617#endif
   3618#ifdef CONFIG_FAULT_INJECTION
   3619	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
   3620	REG("fail-nth", 0644, proc_fail_nth_operations),
   3621#endif
   3622#ifdef CONFIG_TASK_IO_ACCOUNTING
   3623	ONE("io",	S_IRUSR, proc_tid_io_accounting),
   3624#endif
   3625#ifdef CONFIG_USER_NS
   3626	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
   3627	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
   3628	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
   3629	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
   3630#endif
   3631#ifdef CONFIG_LIVEPATCH
   3632	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
   3633#endif
   3634#ifdef CONFIG_PROC_PID_ARCH_STATUS
   3635	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
   3636#endif
   3637#ifdef CONFIG_SECCOMP_CACHE_DEBUG
   3638	ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
   3639#endif
   3640#ifdef CONFIG_KSM
   3641	ONE("ksm_merging_pages",  S_IRUSR, proc_pid_ksm_merging_pages),
   3642#endif
   3643};
   3644
   3645static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
   3646{
   3647	return proc_pident_readdir(file, ctx,
   3648				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
   3649}
   3650
   3651static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
   3652{
   3653	return proc_pident_lookup(dir, dentry,
   3654				  tid_base_stuff,
   3655				  tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
   3656}
   3657
   3658static const struct file_operations proc_tid_base_operations = {
   3659	.read		= generic_read_dir,
   3660	.iterate_shared	= proc_tid_base_readdir,
   3661	.llseek		= generic_file_llseek,
   3662};
   3663
   3664static const struct inode_operations proc_tid_base_inode_operations = {
   3665	.lookup		= proc_tid_base_lookup,
   3666	.getattr	= pid_getattr,
   3667	.setattr	= proc_setattr,
   3668};
   3669
   3670static struct dentry *proc_task_instantiate(struct dentry *dentry,
   3671	struct task_struct *task, const void *ptr)
   3672{
   3673	struct inode *inode;
   3674	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
   3675	if (!inode)
   3676		return ERR_PTR(-ENOENT);
   3677
   3678	inode->i_op = &proc_tid_base_inode_operations;
   3679	inode->i_fop = &proc_tid_base_operations;
   3680	inode->i_flags |= S_IMMUTABLE;
   3681
   3682	set_nlink(inode, nlink_tid);
   3683	pid_update_inode(task, inode);
   3684
   3685	d_set_d_op(dentry, &pid_dentry_operations);
   3686	return d_splice_alias(inode, dentry);
   3687}
   3688
   3689static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
   3690{
   3691	struct task_struct *task;
   3692	struct task_struct *leader = get_proc_task(dir);
   3693	unsigned tid;
   3694	struct proc_fs_info *fs_info;
   3695	struct pid_namespace *ns;
   3696	struct dentry *result = ERR_PTR(-ENOENT);
   3697
   3698	if (!leader)
   3699		goto out_no_task;
   3700
   3701	tid = name_to_int(&dentry->d_name);
   3702	if (tid == ~0U)
   3703		goto out;
   3704
   3705	fs_info = proc_sb_info(dentry->d_sb);
   3706	ns = fs_info->pid_ns;
   3707	rcu_read_lock();
   3708	task = find_task_by_pid_ns(tid, ns);
   3709	if (task)
   3710		get_task_struct(task);
   3711	rcu_read_unlock();
   3712	if (!task)
   3713		goto out;
   3714	if (!same_thread_group(leader, task))
   3715		goto out_drop_task;
   3716
   3717	result = proc_task_instantiate(dentry, task, NULL);
   3718out_drop_task:
   3719	put_task_struct(task);
   3720out:
   3721	put_task_struct(leader);
   3722out_no_task:
   3723	return result;
   3724}
   3725
   3726/*
   3727 * Find the first tid of a thread group to return to user space.
   3728 *
   3729 * Usually this is just the thread group leader, but if the users
   3730 * buffer was too small or there was a seek into the middle of the
   3731 * directory we have more work todo.
   3732 *
   3733 * In the case of a short read we start with find_task_by_pid.
   3734 *
   3735 * In the case of a seek we start with the leader and walk nr
   3736 * threads past it.
   3737 */
   3738static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
   3739					struct pid_namespace *ns)
   3740{
   3741	struct task_struct *pos, *task;
   3742	unsigned long nr = f_pos;
   3743
   3744	if (nr != f_pos)	/* 32bit overflow? */
   3745		return NULL;
   3746
   3747	rcu_read_lock();
   3748	task = pid_task(pid, PIDTYPE_PID);
   3749	if (!task)
   3750		goto fail;
   3751
   3752	/* Attempt to start with the tid of a thread */
   3753	if (tid && nr) {
   3754		pos = find_task_by_pid_ns(tid, ns);
   3755		if (pos && same_thread_group(pos, task))
   3756			goto found;
   3757	}
   3758
   3759	/* If nr exceeds the number of threads there is nothing todo */
   3760	if (nr >= get_nr_threads(task))
   3761		goto fail;
   3762
   3763	/* If we haven't found our starting place yet start
   3764	 * with the leader and walk nr threads forward.
   3765	 */
   3766	pos = task = task->group_leader;
   3767	do {
   3768		if (!nr--)
   3769			goto found;
   3770	} while_each_thread(task, pos);
   3771fail:
   3772	pos = NULL;
   3773	goto out;
   3774found:
   3775	get_task_struct(pos);
   3776out:
   3777	rcu_read_unlock();
   3778	return pos;
   3779}
   3780
   3781/*
   3782 * Find the next thread in the thread list.
   3783 * Return NULL if there is an error or no next thread.
   3784 *
   3785 * The reference to the input task_struct is released.
   3786 */
   3787static struct task_struct *next_tid(struct task_struct *start)
   3788{
   3789	struct task_struct *pos = NULL;
   3790	rcu_read_lock();
   3791	if (pid_alive(start)) {
   3792		pos = next_thread(start);
   3793		if (thread_group_leader(pos))
   3794			pos = NULL;
   3795		else
   3796			get_task_struct(pos);
   3797	}
   3798	rcu_read_unlock();
   3799	put_task_struct(start);
   3800	return pos;
   3801}
   3802
   3803/* for the /proc/TGID/task/ directories */
   3804static int proc_task_readdir(struct file *file, struct dir_context *ctx)
   3805{
   3806	struct inode *inode = file_inode(file);
   3807	struct task_struct *task;
   3808	struct pid_namespace *ns;
   3809	int tid;
   3810
   3811	if (proc_inode_is_dead(inode))
   3812		return -ENOENT;
   3813
   3814	if (!dir_emit_dots(file, ctx))
   3815		return 0;
   3816
   3817	/* f_version caches the tgid value that the last readdir call couldn't
   3818	 * return. lseek aka telldir automagically resets f_version to 0.
   3819	 */
   3820	ns = proc_pid_ns(inode->i_sb);
   3821	tid = (int)file->f_version;
   3822	file->f_version = 0;
   3823	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
   3824	     task;
   3825	     task = next_tid(task), ctx->pos++) {
   3826		char name[10 + 1];
   3827		unsigned int len;
   3828
   3829		tid = task_pid_nr_ns(task, ns);
   3830		if (!tid)
   3831			continue;	/* The task has just exited. */
   3832		len = snprintf(name, sizeof(name), "%u", tid);
   3833		if (!proc_fill_cache(file, ctx, name, len,
   3834				proc_task_instantiate, task, NULL)) {
   3835			/* returning this tgid failed, save it as the first
   3836			 * pid for the next readir call */
   3837			file->f_version = (u64)tid;
   3838			put_task_struct(task);
   3839			break;
   3840		}
   3841	}
   3842
   3843	return 0;
   3844}
   3845
   3846static int proc_task_getattr(struct user_namespace *mnt_userns,
   3847			     const struct path *path, struct kstat *stat,
   3848			     u32 request_mask, unsigned int query_flags)
   3849{
   3850	struct inode *inode = d_inode(path->dentry);
   3851	struct task_struct *p = get_proc_task(inode);
   3852	generic_fillattr(&init_user_ns, inode, stat);
   3853
   3854	if (p) {
   3855		stat->nlink += get_nr_threads(p);
   3856		put_task_struct(p);
   3857	}
   3858
   3859	return 0;
   3860}
   3861
   3862static const struct inode_operations proc_task_inode_operations = {
   3863	.lookup		= proc_task_lookup,
   3864	.getattr	= proc_task_getattr,
   3865	.setattr	= proc_setattr,
   3866	.permission	= proc_pid_permission,
   3867};
   3868
   3869static const struct file_operations proc_task_operations = {
   3870	.read		= generic_read_dir,
   3871	.iterate_shared	= proc_task_readdir,
   3872	.llseek		= generic_file_llseek,
   3873};
   3874
   3875void __init set_proc_pid_nlink(void)
   3876{
   3877	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
   3878	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
   3879}