cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ibalance.c (35159B)


      1/*
      2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
      3 */
      4
      5#include <linux/uaccess.h>
      6#include <linux/string.h>
      7#include <linux/time.h>
      8#include "reiserfs.h"
      9#include <linux/buffer_head.h>
     10
     11/* this is one and only function that is used outside (do_balance.c) */
     12int balance_internal(struct tree_balance *,
     13		     int, int, struct item_head *, struct buffer_head **);
     14
     15/*
     16 * modes of internal_shift_left, internal_shift_right and
     17 * internal_insert_childs
     18 */
     19#define INTERNAL_SHIFT_FROM_S_TO_L 0
     20#define INTERNAL_SHIFT_FROM_R_TO_S 1
     21#define INTERNAL_SHIFT_FROM_L_TO_S 2
     22#define INTERNAL_SHIFT_FROM_S_TO_R 3
     23#define INTERNAL_INSERT_TO_S 4
     24#define INTERNAL_INSERT_TO_L 5
     25#define INTERNAL_INSERT_TO_R 6
     26
     27static void internal_define_dest_src_infos(int shift_mode,
     28					   struct tree_balance *tb,
     29					   int h,
     30					   struct buffer_info *dest_bi,
     31					   struct buffer_info *src_bi,
     32					   int *d_key, struct buffer_head **cf)
     33{
     34	memset(dest_bi, 0, sizeof(struct buffer_info));
     35	memset(src_bi, 0, sizeof(struct buffer_info));
     36	/* define dest, src, dest parent, dest position */
     37	switch (shift_mode) {
     38
     39	/* used in internal_shift_left */
     40	case INTERNAL_SHIFT_FROM_S_TO_L:
     41		src_bi->tb = tb;
     42		src_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
     43		src_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
     44		src_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
     45		dest_bi->tb = tb;
     46		dest_bi->bi_bh = tb->L[h];
     47		dest_bi->bi_parent = tb->FL[h];
     48		dest_bi->bi_position = get_left_neighbor_position(tb, h);
     49		*d_key = tb->lkey[h];
     50		*cf = tb->CFL[h];
     51		break;
     52	case INTERNAL_SHIFT_FROM_L_TO_S:
     53		src_bi->tb = tb;
     54		src_bi->bi_bh = tb->L[h];
     55		src_bi->bi_parent = tb->FL[h];
     56		src_bi->bi_position = get_left_neighbor_position(tb, h);
     57		dest_bi->tb = tb;
     58		dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
     59		dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
     60		/* dest position is analog of dest->b_item_order */
     61		dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
     62		*d_key = tb->lkey[h];
     63		*cf = tb->CFL[h];
     64		break;
     65
     66	/* used in internal_shift_left */
     67	case INTERNAL_SHIFT_FROM_R_TO_S:
     68		src_bi->tb = tb;
     69		src_bi->bi_bh = tb->R[h];
     70		src_bi->bi_parent = tb->FR[h];
     71		src_bi->bi_position = get_right_neighbor_position(tb, h);
     72		dest_bi->tb = tb;
     73		dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
     74		dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
     75		dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
     76		*d_key = tb->rkey[h];
     77		*cf = tb->CFR[h];
     78		break;
     79
     80	case INTERNAL_SHIFT_FROM_S_TO_R:
     81		src_bi->tb = tb;
     82		src_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
     83		src_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
     84		src_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
     85		dest_bi->tb = tb;
     86		dest_bi->bi_bh = tb->R[h];
     87		dest_bi->bi_parent = tb->FR[h];
     88		dest_bi->bi_position = get_right_neighbor_position(tb, h);
     89		*d_key = tb->rkey[h];
     90		*cf = tb->CFR[h];
     91		break;
     92
     93	case INTERNAL_INSERT_TO_L:
     94		dest_bi->tb = tb;
     95		dest_bi->bi_bh = tb->L[h];
     96		dest_bi->bi_parent = tb->FL[h];
     97		dest_bi->bi_position = get_left_neighbor_position(tb, h);
     98		break;
     99
    100	case INTERNAL_INSERT_TO_S:
    101		dest_bi->tb = tb;
    102		dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
    103		dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
    104		dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
    105		break;
    106
    107	case INTERNAL_INSERT_TO_R:
    108		dest_bi->tb = tb;
    109		dest_bi->bi_bh = tb->R[h];
    110		dest_bi->bi_parent = tb->FR[h];
    111		dest_bi->bi_position = get_right_neighbor_position(tb, h);
    112		break;
    113
    114	default:
    115		reiserfs_panic(tb->tb_sb, "ibalance-1",
    116			       "shift type is unknown (%d)",
    117			       shift_mode);
    118	}
    119}
    120
    121/*
    122 * Insert count node pointers into buffer cur before position to + 1.
    123 * Insert count items into buffer cur before position to.
    124 * Items and node pointers are specified by inserted and bh respectively.
    125 */
    126static void internal_insert_childs(struct buffer_info *cur_bi,
    127				   int to, int count,
    128				   struct item_head *inserted,
    129				   struct buffer_head **bh)
    130{
    131	struct buffer_head *cur = cur_bi->bi_bh;
    132	struct block_head *blkh;
    133	int nr;
    134	struct reiserfs_key *ih;
    135	struct disk_child new_dc[2];
    136	struct disk_child *dc;
    137	int i;
    138
    139	if (count <= 0)
    140		return;
    141
    142	blkh = B_BLK_HEAD(cur);
    143	nr = blkh_nr_item(blkh);
    144
    145	RFALSE(count > 2, "too many children (%d) are to be inserted", count);
    146	RFALSE(B_FREE_SPACE(cur) < count * (KEY_SIZE + DC_SIZE),
    147	       "no enough free space (%d), needed %d bytes",
    148	       B_FREE_SPACE(cur), count * (KEY_SIZE + DC_SIZE));
    149
    150	/* prepare space for count disk_child */
    151	dc = B_N_CHILD(cur, to + 1);
    152
    153	memmove(dc + count, dc, (nr + 1 - (to + 1)) * DC_SIZE);
    154
    155	/* copy to_be_insert disk children */
    156	for (i = 0; i < count; i++) {
    157		put_dc_size(&new_dc[i],
    158			    MAX_CHILD_SIZE(bh[i]) - B_FREE_SPACE(bh[i]));
    159		put_dc_block_number(&new_dc[i], bh[i]->b_blocknr);
    160	}
    161	memcpy(dc, new_dc, DC_SIZE * count);
    162
    163	/* prepare space for count items  */
    164	ih = internal_key(cur, ((to == -1) ? 0 : to));
    165
    166	memmove(ih + count, ih,
    167		(nr - to) * KEY_SIZE + (nr + 1 + count) * DC_SIZE);
    168
    169	/* copy item headers (keys) */
    170	memcpy(ih, inserted, KEY_SIZE);
    171	if (count > 1)
    172		memcpy(ih + 1, inserted + 1, KEY_SIZE);
    173
    174	/* sizes, item number */
    175	set_blkh_nr_item(blkh, blkh_nr_item(blkh) + count);
    176	set_blkh_free_space(blkh,
    177			    blkh_free_space(blkh) - count * (DC_SIZE +
    178							     KEY_SIZE));
    179
    180	do_balance_mark_internal_dirty(cur_bi->tb, cur, 0);
    181
    182	/*&&&&&&&&&&&&&&&&&&&&&&&& */
    183	check_internal(cur);
    184	/*&&&&&&&&&&&&&&&&&&&&&&&& */
    185
    186	if (cur_bi->bi_parent) {
    187		struct disk_child *t_dc =
    188		    B_N_CHILD(cur_bi->bi_parent, cur_bi->bi_position);
    189		put_dc_size(t_dc,
    190			    dc_size(t_dc) + (count * (DC_SIZE + KEY_SIZE)));
    191		do_balance_mark_internal_dirty(cur_bi->tb, cur_bi->bi_parent,
    192					       0);
    193
    194		/*&&&&&&&&&&&&&&&&&&&&&&&& */
    195		check_internal(cur_bi->bi_parent);
    196		/*&&&&&&&&&&&&&&&&&&&&&&&& */
    197	}
    198
    199}
    200
    201/*
    202 * Delete del_num items and node pointers from buffer cur starting from
    203 * the first_i'th item and first_p'th pointers respectively.
    204 */
    205static void internal_delete_pointers_items(struct buffer_info *cur_bi,
    206					   int first_p,
    207					   int first_i, int del_num)
    208{
    209	struct buffer_head *cur = cur_bi->bi_bh;
    210	int nr;
    211	struct block_head *blkh;
    212	struct reiserfs_key *key;
    213	struct disk_child *dc;
    214
    215	RFALSE(cur == NULL, "buffer is 0");
    216	RFALSE(del_num < 0,
    217	       "negative number of items (%d) can not be deleted", del_num);
    218	RFALSE(first_p < 0 || first_p + del_num > B_NR_ITEMS(cur) + 1
    219	       || first_i < 0,
    220	       "first pointer order (%d) < 0 or "
    221	       "no so many pointers (%d), only (%d) or "
    222	       "first key order %d < 0", first_p, first_p + del_num,
    223	       B_NR_ITEMS(cur) + 1, first_i);
    224	if (del_num == 0)
    225		return;
    226
    227	blkh = B_BLK_HEAD(cur);
    228	nr = blkh_nr_item(blkh);
    229
    230	if (first_p == 0 && del_num == nr + 1) {
    231		RFALSE(first_i != 0,
    232		       "1st deleted key must have order 0, not %d", first_i);
    233		make_empty_node(cur_bi);
    234		return;
    235	}
    236
    237	RFALSE(first_i + del_num > B_NR_ITEMS(cur),
    238	       "first_i = %d del_num = %d "
    239	       "no so many keys (%d) in the node (%b)(%z)",
    240	       first_i, del_num, first_i + del_num, cur, cur);
    241
    242	/* deleting */
    243	dc = B_N_CHILD(cur, first_p);
    244
    245	memmove(dc, dc + del_num, (nr + 1 - first_p - del_num) * DC_SIZE);
    246	key = internal_key(cur, first_i);
    247	memmove(key, key + del_num,
    248		(nr - first_i - del_num) * KEY_SIZE + (nr + 1 -
    249						       del_num) * DC_SIZE);
    250
    251	/* sizes, item number */
    252	set_blkh_nr_item(blkh, blkh_nr_item(blkh) - del_num);
    253	set_blkh_free_space(blkh,
    254			    blkh_free_space(blkh) +
    255			    (del_num * (KEY_SIZE + DC_SIZE)));
    256
    257	do_balance_mark_internal_dirty(cur_bi->tb, cur, 0);
    258	/*&&&&&&&&&&&&&&&&&&&&&&& */
    259	check_internal(cur);
    260	/*&&&&&&&&&&&&&&&&&&&&&&& */
    261
    262	if (cur_bi->bi_parent) {
    263		struct disk_child *t_dc;
    264		t_dc = B_N_CHILD(cur_bi->bi_parent, cur_bi->bi_position);
    265		put_dc_size(t_dc,
    266			    dc_size(t_dc) - (del_num * (KEY_SIZE + DC_SIZE)));
    267
    268		do_balance_mark_internal_dirty(cur_bi->tb, cur_bi->bi_parent,
    269					       0);
    270		/*&&&&&&&&&&&&&&&&&&&&&&&& */
    271		check_internal(cur_bi->bi_parent);
    272		/*&&&&&&&&&&&&&&&&&&&&&&&& */
    273	}
    274}
    275
    276/* delete n node pointers and items starting from given position */
    277static void internal_delete_childs(struct buffer_info *cur_bi, int from, int n)
    278{
    279	int i_from;
    280
    281	i_from = (from == 0) ? from : from - 1;
    282
    283	/*
    284	 * delete n pointers starting from `from' position in CUR;
    285	 * delete n keys starting from 'i_from' position in CUR;
    286	 */
    287	internal_delete_pointers_items(cur_bi, from, i_from, n);
    288}
    289
    290/*
    291 * copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer
    292 * dest
    293 * last_first == FIRST_TO_LAST means that we copy first items
    294 *                             from src to tail of dest
    295 * last_first == LAST_TO_FIRST means that we copy last items
    296 *                             from src to head of dest
    297 */
    298static void internal_copy_pointers_items(struct buffer_info *dest_bi,
    299					 struct buffer_head *src,
    300					 int last_first, int cpy_num)
    301{
    302	/*
    303	 * ATTENTION! Number of node pointers in DEST is equal to number
    304	 * of items in DEST  as delimiting key have already inserted to
    305	 * buffer dest.
    306	 */
    307	struct buffer_head *dest = dest_bi->bi_bh;
    308	int nr_dest, nr_src;
    309	int dest_order, src_order;
    310	struct block_head *blkh;
    311	struct reiserfs_key *key;
    312	struct disk_child *dc;
    313
    314	nr_src = B_NR_ITEMS(src);
    315
    316	RFALSE(dest == NULL || src == NULL,
    317	       "src (%p) or dest (%p) buffer is 0", src, dest);
    318	RFALSE(last_first != FIRST_TO_LAST && last_first != LAST_TO_FIRST,
    319	       "invalid last_first parameter (%d)", last_first);
    320	RFALSE(nr_src < cpy_num - 1,
    321	       "no so many items (%d) in src (%d)", cpy_num, nr_src);
    322	RFALSE(cpy_num < 0, "cpy_num less than 0 (%d)", cpy_num);
    323	RFALSE(cpy_num - 1 + B_NR_ITEMS(dest) > (int)MAX_NR_KEY(dest),
    324	       "cpy_num (%d) + item number in dest (%d) can not be > MAX_NR_KEY(%d)",
    325	       cpy_num, B_NR_ITEMS(dest), MAX_NR_KEY(dest));
    326
    327	if (cpy_num == 0)
    328		return;
    329
    330	/* coping */
    331	blkh = B_BLK_HEAD(dest);
    332	nr_dest = blkh_nr_item(blkh);
    333
    334	/*dest_order = (last_first == LAST_TO_FIRST) ? 0 : nr_dest; */
    335	/*src_order = (last_first == LAST_TO_FIRST) ? (nr_src - cpy_num + 1) : 0; */
    336	(last_first == LAST_TO_FIRST) ? (dest_order = 0, src_order =
    337					 nr_src - cpy_num + 1) : (dest_order =
    338								  nr_dest,
    339								  src_order =
    340								  0);
    341
    342	/* prepare space for cpy_num pointers */
    343	dc = B_N_CHILD(dest, dest_order);
    344
    345	memmove(dc + cpy_num, dc, (nr_dest - dest_order) * DC_SIZE);
    346
    347	/* insert pointers */
    348	memcpy(dc, B_N_CHILD(src, src_order), DC_SIZE * cpy_num);
    349
    350	/* prepare space for cpy_num - 1 item headers */
    351	key = internal_key(dest, dest_order);
    352	memmove(key + cpy_num - 1, key,
    353		KEY_SIZE * (nr_dest - dest_order) + DC_SIZE * (nr_dest +
    354							       cpy_num));
    355
    356	/* insert headers */
    357	memcpy(key, internal_key(src, src_order), KEY_SIZE * (cpy_num - 1));
    358
    359	/* sizes, item number */
    360	set_blkh_nr_item(blkh, blkh_nr_item(blkh) + (cpy_num - 1));
    361	set_blkh_free_space(blkh,
    362			    blkh_free_space(blkh) - (KEY_SIZE * (cpy_num - 1) +
    363						     DC_SIZE * cpy_num));
    364
    365	do_balance_mark_internal_dirty(dest_bi->tb, dest, 0);
    366
    367	/*&&&&&&&&&&&&&&&&&&&&&&&& */
    368	check_internal(dest);
    369	/*&&&&&&&&&&&&&&&&&&&&&&&& */
    370
    371	if (dest_bi->bi_parent) {
    372		struct disk_child *t_dc;
    373		t_dc = B_N_CHILD(dest_bi->bi_parent, dest_bi->bi_position);
    374		put_dc_size(t_dc,
    375			    dc_size(t_dc) + (KEY_SIZE * (cpy_num - 1) +
    376					     DC_SIZE * cpy_num));
    377
    378		do_balance_mark_internal_dirty(dest_bi->tb, dest_bi->bi_parent,
    379					       0);
    380		/*&&&&&&&&&&&&&&&&&&&&&&&& */
    381		check_internal(dest_bi->bi_parent);
    382		/*&&&&&&&&&&&&&&&&&&&&&&&& */
    383	}
    384
    385}
    386
    387/*
    388 * Copy cpy_num node pointers and cpy_num - 1 items from buffer src to
    389 * buffer dest.
    390 * Delete cpy_num - del_par items and node pointers from buffer src.
    391 * last_first == FIRST_TO_LAST means, that we copy/delete first items from src.
    392 * last_first == LAST_TO_FIRST means, that we copy/delete last items from src.
    393 */
    394static void internal_move_pointers_items(struct buffer_info *dest_bi,
    395					 struct buffer_info *src_bi,
    396					 int last_first, int cpy_num,
    397					 int del_par)
    398{
    399	int first_pointer;
    400	int first_item;
    401
    402	internal_copy_pointers_items(dest_bi, src_bi->bi_bh, last_first,
    403				     cpy_num);
    404
    405	if (last_first == FIRST_TO_LAST) {	/* shift_left occurs */
    406		first_pointer = 0;
    407		first_item = 0;
    408		/*
    409		 * delete cpy_num - del_par pointers and keys starting for
    410		 * pointers with first_pointer, for key - with first_item
    411		 */
    412		internal_delete_pointers_items(src_bi, first_pointer,
    413					       first_item, cpy_num - del_par);
    414	} else {		/* shift_right occurs */
    415		int i, j;
    416
    417		i = (cpy_num - del_par ==
    418		     (j =
    419		      B_NR_ITEMS(src_bi->bi_bh)) + 1) ? 0 : j - cpy_num +
    420		    del_par;
    421
    422		internal_delete_pointers_items(src_bi,
    423					       j + 1 - cpy_num + del_par, i,
    424					       cpy_num - del_par);
    425	}
    426}
    427
    428/* Insert n_src'th key of buffer src before n_dest'th key of buffer dest. */
    429static void internal_insert_key(struct buffer_info *dest_bi,
    430				/* insert key before key with n_dest number */
    431				int dest_position_before,
    432				struct buffer_head *src, int src_position)
    433{
    434	struct buffer_head *dest = dest_bi->bi_bh;
    435	int nr;
    436	struct block_head *blkh;
    437	struct reiserfs_key *key;
    438
    439	RFALSE(dest == NULL || src == NULL,
    440	       "source(%p) or dest(%p) buffer is 0", src, dest);
    441	RFALSE(dest_position_before < 0 || src_position < 0,
    442	       "source(%d) or dest(%d) key number less than 0",
    443	       src_position, dest_position_before);
    444	RFALSE(dest_position_before > B_NR_ITEMS(dest) ||
    445	       src_position >= B_NR_ITEMS(src),
    446	       "invalid position in dest (%d (key number %d)) or in src (%d (key number %d))",
    447	       dest_position_before, B_NR_ITEMS(dest),
    448	       src_position, B_NR_ITEMS(src));
    449	RFALSE(B_FREE_SPACE(dest) < KEY_SIZE,
    450	       "no enough free space (%d) in dest buffer", B_FREE_SPACE(dest));
    451
    452	blkh = B_BLK_HEAD(dest);
    453	nr = blkh_nr_item(blkh);
    454
    455	/* prepare space for inserting key */
    456	key = internal_key(dest, dest_position_before);
    457	memmove(key + 1, key,
    458		(nr - dest_position_before) * KEY_SIZE + (nr + 1) * DC_SIZE);
    459
    460	/* insert key */
    461	memcpy(key, internal_key(src, src_position), KEY_SIZE);
    462
    463	/* Change dirt, free space, item number fields. */
    464
    465	set_blkh_nr_item(blkh, blkh_nr_item(blkh) + 1);
    466	set_blkh_free_space(blkh, blkh_free_space(blkh) - KEY_SIZE);
    467
    468	do_balance_mark_internal_dirty(dest_bi->tb, dest, 0);
    469
    470	if (dest_bi->bi_parent) {
    471		struct disk_child *t_dc;
    472		t_dc = B_N_CHILD(dest_bi->bi_parent, dest_bi->bi_position);
    473		put_dc_size(t_dc, dc_size(t_dc) + KEY_SIZE);
    474
    475		do_balance_mark_internal_dirty(dest_bi->tb, dest_bi->bi_parent,
    476					       0);
    477	}
    478}
    479
    480/*
    481 * Insert d_key'th (delimiting) key from buffer cfl to tail of dest.
    482 * Copy pointer_amount node pointers and pointer_amount - 1 items from
    483 * buffer src to buffer dest.
    484 * Replace  d_key'th key in buffer cfl.
    485 * Delete pointer_amount items and node pointers from buffer src.
    486 */
    487/* this can be invoked both to shift from S to L and from R to S */
    488static void internal_shift_left(
    489				/*
    490				 * INTERNAL_FROM_S_TO_L | INTERNAL_FROM_R_TO_S
    491				 */
    492				int mode,
    493				struct tree_balance *tb,
    494				int h, int pointer_amount)
    495{
    496	struct buffer_info dest_bi, src_bi;
    497	struct buffer_head *cf;
    498	int d_key_position;
    499
    500	internal_define_dest_src_infos(mode, tb, h, &dest_bi, &src_bi,
    501				       &d_key_position, &cf);
    502
    503	/*printk("pointer_amount = %d\n",pointer_amount); */
    504
    505	if (pointer_amount) {
    506		/*
    507		 * insert delimiting key from common father of dest and
    508		 * src to node dest into position B_NR_ITEM(dest)
    509		 */
    510		internal_insert_key(&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf,
    511				    d_key_position);
    512
    513		if (B_NR_ITEMS(src_bi.bi_bh) == pointer_amount - 1) {
    514			if (src_bi.bi_position /*src->b_item_order */  == 0)
    515				replace_key(tb, cf, d_key_position,
    516					    src_bi.
    517					    bi_parent /*src->b_parent */ , 0);
    518		} else
    519			replace_key(tb, cf, d_key_position, src_bi.bi_bh,
    520				    pointer_amount - 1);
    521	}
    522	/* last parameter is del_parameter */
    523	internal_move_pointers_items(&dest_bi, &src_bi, FIRST_TO_LAST,
    524				     pointer_amount, 0);
    525
    526}
    527
    528/*
    529 * Insert delimiting key to L[h].
    530 * Copy n node pointers and n - 1 items from buffer S[h] to L[h].
    531 * Delete n - 1 items and node pointers from buffer S[h].
    532 */
    533/* it always shifts from S[h] to L[h] */
    534static void internal_shift1_left(struct tree_balance *tb,
    535				 int h, int pointer_amount)
    536{
    537	struct buffer_info dest_bi, src_bi;
    538	struct buffer_head *cf;
    539	int d_key_position;
    540
    541	internal_define_dest_src_infos(INTERNAL_SHIFT_FROM_S_TO_L, tb, h,
    542				       &dest_bi, &src_bi, &d_key_position, &cf);
    543
    544	/* insert lkey[h]-th key  from CFL[h] to left neighbor L[h] */
    545	if (pointer_amount > 0)
    546		internal_insert_key(&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf,
    547				    d_key_position);
    548
    549	/* last parameter is del_parameter */
    550	internal_move_pointers_items(&dest_bi, &src_bi, FIRST_TO_LAST,
    551				     pointer_amount, 1);
    552}
    553
    554/*
    555 * Insert d_key'th (delimiting) key from buffer cfr to head of dest.
    556 * Copy n node pointers and n - 1 items from buffer src to buffer dest.
    557 * Replace  d_key'th key in buffer cfr.
    558 * Delete n items and node pointers from buffer src.
    559 */
    560static void internal_shift_right(
    561				 /*
    562				  * INTERNAL_FROM_S_TO_R | INTERNAL_FROM_L_TO_S
    563				  */
    564				 int mode,
    565				 struct tree_balance *tb,
    566				 int h, int pointer_amount)
    567{
    568	struct buffer_info dest_bi, src_bi;
    569	struct buffer_head *cf;
    570	int d_key_position;
    571	int nr;
    572
    573	internal_define_dest_src_infos(mode, tb, h, &dest_bi, &src_bi,
    574				       &d_key_position, &cf);
    575
    576	nr = B_NR_ITEMS(src_bi.bi_bh);
    577
    578	if (pointer_amount > 0) {
    579		/*
    580		 * insert delimiting key from common father of dest
    581		 * and src to dest node into position 0
    582		 */
    583		internal_insert_key(&dest_bi, 0, cf, d_key_position);
    584		if (nr == pointer_amount - 1) {
    585			RFALSE(src_bi.bi_bh != PATH_H_PBUFFER(tb->tb_path, h) /*tb->S[h] */ ||
    586			       dest_bi.bi_bh != tb->R[h],
    587			       "src (%p) must be == tb->S[h](%p) when it disappears",
    588			       src_bi.bi_bh, PATH_H_PBUFFER(tb->tb_path, h));
    589			/* when S[h] disappers replace left delemiting key as well */
    590			if (tb->CFL[h])
    591				replace_key(tb, cf, d_key_position, tb->CFL[h],
    592					    tb->lkey[h]);
    593		} else
    594			replace_key(tb, cf, d_key_position, src_bi.bi_bh,
    595				    nr - pointer_amount);
    596	}
    597
    598	/* last parameter is del_parameter */
    599	internal_move_pointers_items(&dest_bi, &src_bi, LAST_TO_FIRST,
    600				     pointer_amount, 0);
    601}
    602
    603/*
    604 * Insert delimiting key to R[h].
    605 * Copy n node pointers and n - 1 items from buffer S[h] to R[h].
    606 * Delete n - 1 items and node pointers from buffer S[h].
    607 */
    608/* it always shift from S[h] to R[h] */
    609static void internal_shift1_right(struct tree_balance *tb,
    610				  int h, int pointer_amount)
    611{
    612	struct buffer_info dest_bi, src_bi;
    613	struct buffer_head *cf;
    614	int d_key_position;
    615
    616	internal_define_dest_src_infos(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
    617				       &dest_bi, &src_bi, &d_key_position, &cf);
    618
    619	/* insert rkey from CFR[h] to right neighbor R[h] */
    620	if (pointer_amount > 0)
    621		internal_insert_key(&dest_bi, 0, cf, d_key_position);
    622
    623	/* last parameter is del_parameter */
    624	internal_move_pointers_items(&dest_bi, &src_bi, LAST_TO_FIRST,
    625				     pointer_amount, 1);
    626}
    627
    628/*
    629 * Delete insert_num node pointers together with their left items
    630 * and balance current node.
    631 */
    632static void balance_internal_when_delete(struct tree_balance *tb,
    633					 int h, int child_pos)
    634{
    635	int insert_num;
    636	int n;
    637	struct buffer_head *tbSh = PATH_H_PBUFFER(tb->tb_path, h);
    638	struct buffer_info bi;
    639
    640	insert_num = tb->insert_size[h] / ((int)(DC_SIZE + KEY_SIZE));
    641
    642	/* delete child-node-pointer(s) together with their left item(s) */
    643	bi.tb = tb;
    644	bi.bi_bh = tbSh;
    645	bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h);
    646	bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
    647
    648	internal_delete_childs(&bi, child_pos, -insert_num);
    649
    650	RFALSE(tb->blknum[h] > 1,
    651	       "tb->blknum[%d]=%d when insert_size < 0", h, tb->blknum[h]);
    652
    653	n = B_NR_ITEMS(tbSh);
    654
    655	if (tb->lnum[h] == 0 && tb->rnum[h] == 0) {
    656		if (tb->blknum[h] == 0) {
    657			/* node S[h] (root of the tree) is empty now */
    658			struct buffer_head *new_root;
    659
    660			RFALSE(n
    661			       || B_FREE_SPACE(tbSh) !=
    662			       MAX_CHILD_SIZE(tbSh) - DC_SIZE,
    663			       "buffer must have only 0 keys (%d)", n);
    664			RFALSE(bi.bi_parent, "root has parent (%p)",
    665			       bi.bi_parent);
    666
    667			/* choose a new root */
    668			if (!tb->L[h - 1] || !B_NR_ITEMS(tb->L[h - 1]))
    669				new_root = tb->R[h - 1];
    670			else
    671				new_root = tb->L[h - 1];
    672			/*
    673			 * switch super block's tree root block
    674			 * number to the new value */
    675			PUT_SB_ROOT_BLOCK(tb->tb_sb, new_root->b_blocknr);
    676			/*REISERFS_SB(tb->tb_sb)->s_rs->s_tree_height --; */
    677			PUT_SB_TREE_HEIGHT(tb->tb_sb,
    678					   SB_TREE_HEIGHT(tb->tb_sb) - 1);
    679
    680			do_balance_mark_sb_dirty(tb,
    681						 REISERFS_SB(tb->tb_sb)->s_sbh,
    682						 1);
    683			/*&&&&&&&&&&&&&&&&&&&&&& */
    684			/* use check_internal if new root is an internal node */
    685			if (h > 1)
    686				check_internal(new_root);
    687			/*&&&&&&&&&&&&&&&&&&&&&& */
    688
    689			/* do what is needed for buffer thrown from tree */
    690			reiserfs_invalidate_buffer(tb, tbSh);
    691			return;
    692		}
    693		return;
    694	}
    695
    696	/* join S[h] with L[h] */
    697	if (tb->L[h] && tb->lnum[h] == -B_NR_ITEMS(tb->L[h]) - 1) {
    698
    699		RFALSE(tb->rnum[h] != 0,
    700		       "invalid tb->rnum[%d]==%d when joining S[h] with L[h]",
    701		       h, tb->rnum[h]);
    702
    703		internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h, n + 1);
    704		reiserfs_invalidate_buffer(tb, tbSh);
    705
    706		return;
    707	}
    708
    709	/* join S[h] with R[h] */
    710	if (tb->R[h] && tb->rnum[h] == -B_NR_ITEMS(tb->R[h]) - 1) {
    711		RFALSE(tb->lnum[h] != 0,
    712		       "invalid tb->lnum[%d]==%d when joining S[h] with R[h]",
    713		       h, tb->lnum[h]);
    714
    715		internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h, n + 1);
    716
    717		reiserfs_invalidate_buffer(tb, tbSh);
    718		return;
    719	}
    720
    721	/* borrow from left neighbor L[h] */
    722	if (tb->lnum[h] < 0) {
    723		RFALSE(tb->rnum[h] != 0,
    724		       "wrong tb->rnum[%d]==%d when borrow from L[h]", h,
    725		       tb->rnum[h]);
    726		internal_shift_right(INTERNAL_SHIFT_FROM_L_TO_S, tb, h,
    727				     -tb->lnum[h]);
    728		return;
    729	}
    730
    731	/* borrow from right neighbor R[h] */
    732	if (tb->rnum[h] < 0) {
    733		RFALSE(tb->lnum[h] != 0,
    734		       "invalid tb->lnum[%d]==%d when borrow from R[h]",
    735		       h, tb->lnum[h]);
    736		internal_shift_left(INTERNAL_SHIFT_FROM_R_TO_S, tb, h, -tb->rnum[h]);	/*tb->S[h], tb->CFR[h], tb->rkey[h], tb->R[h], -tb->rnum[h]); */
    737		return;
    738	}
    739
    740	/* split S[h] into two parts and put them into neighbors */
    741	if (tb->lnum[h] > 0) {
    742		RFALSE(tb->rnum[h] == 0 || tb->lnum[h] + tb->rnum[h] != n + 1,
    743		       "invalid tb->lnum[%d]==%d or tb->rnum[%d]==%d when S[h](item number == %d) is split between them",
    744		       h, tb->lnum[h], h, tb->rnum[h], n);
    745
    746		internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h]);	/*tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], tb->lnum[h]); */
    747		internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
    748				     tb->rnum[h]);
    749
    750		reiserfs_invalidate_buffer(tb, tbSh);
    751
    752		return;
    753	}
    754	reiserfs_panic(tb->tb_sb, "ibalance-2",
    755		       "unexpected tb->lnum[%d]==%d or tb->rnum[%d]==%d",
    756		       h, tb->lnum[h], h, tb->rnum[h]);
    757}
    758
    759/* Replace delimiting key of buffers L[h] and S[h] by the given key.*/
    760static void replace_lkey(struct tree_balance *tb, int h, struct item_head *key)
    761{
    762	RFALSE(tb->L[h] == NULL || tb->CFL[h] == NULL,
    763	       "L[h](%p) and CFL[h](%p) must exist in replace_lkey",
    764	       tb->L[h], tb->CFL[h]);
    765
    766	if (B_NR_ITEMS(PATH_H_PBUFFER(tb->tb_path, h)) == 0)
    767		return;
    768
    769	memcpy(internal_key(tb->CFL[h], tb->lkey[h]), key, KEY_SIZE);
    770
    771	do_balance_mark_internal_dirty(tb, tb->CFL[h], 0);
    772}
    773
    774/* Replace delimiting key of buffers S[h] and R[h] by the given key.*/
    775static void replace_rkey(struct tree_balance *tb, int h, struct item_head *key)
    776{
    777	RFALSE(tb->R[h] == NULL || tb->CFR[h] == NULL,
    778	       "R[h](%p) and CFR[h](%p) must exist in replace_rkey",
    779	       tb->R[h], tb->CFR[h]);
    780	RFALSE(B_NR_ITEMS(tb->R[h]) == 0,
    781	       "R[h] can not be empty if it exists (item number=%d)",
    782	       B_NR_ITEMS(tb->R[h]));
    783
    784	memcpy(internal_key(tb->CFR[h], tb->rkey[h]), key, KEY_SIZE);
    785
    786	do_balance_mark_internal_dirty(tb, tb->CFR[h], 0);
    787}
    788
    789
    790/*
    791 * if inserting/pasting {
    792 *   child_pos is the position of the node-pointer in S[h] that
    793 *   pointed to S[h-1] before balancing of the h-1 level;
    794 *   this means that new pointers and items must be inserted AFTER
    795 *   child_pos
    796 * } else {
    797 *   it is the position of the leftmost pointer that must be deleted
    798 *   (together with its corresponding key to the left of the pointer)
    799 *   as a result of the previous level's balancing.
    800 * }
    801 */
    802
    803int balance_internal(struct tree_balance *tb,
    804		     int h,	/* level of the tree */
    805		     int child_pos,
    806		     /* key for insertion on higher level    */
    807		     struct item_head *insert_key,
    808		     /* node for insertion on higher level */
    809		     struct buffer_head **insert_ptr)
    810{
    811	struct buffer_head *tbSh = PATH_H_PBUFFER(tb->tb_path, h);
    812	struct buffer_info bi;
    813
    814	/*
    815	 * we return this: it is 0 if there is no S[h],
    816	 * else it is tb->S[h]->b_item_order
    817	 */
    818	int order;
    819	int insert_num, n, k;
    820	struct buffer_head *S_new;
    821	struct item_head new_insert_key;
    822	struct buffer_head *new_insert_ptr = NULL;
    823	struct item_head *new_insert_key_addr = insert_key;
    824
    825	RFALSE(h < 1, "h (%d) can not be < 1 on internal level", h);
    826
    827	PROC_INFO_INC(tb->tb_sb, balance_at[h]);
    828
    829	order =
    830	    (tbSh) ? PATH_H_POSITION(tb->tb_path,
    831				     h + 1) /*tb->S[h]->b_item_order */ : 0;
    832
    833	/*
    834	 * Using insert_size[h] calculate the number insert_num of items
    835	 * that must be inserted to or deleted from S[h].
    836	 */
    837	insert_num = tb->insert_size[h] / ((int)(KEY_SIZE + DC_SIZE));
    838
    839	/* Check whether insert_num is proper * */
    840	RFALSE(insert_num < -2 || insert_num > 2,
    841	       "incorrect number of items inserted to the internal node (%d)",
    842	       insert_num);
    843	RFALSE(h > 1 && (insert_num > 1 || insert_num < -1),
    844	       "incorrect number of items (%d) inserted to the internal node on a level (h=%d) higher than last internal level",
    845	       insert_num, h);
    846
    847	/* Make balance in case insert_num < 0 */
    848	if (insert_num < 0) {
    849		balance_internal_when_delete(tb, h, child_pos);
    850		return order;
    851	}
    852
    853	k = 0;
    854	if (tb->lnum[h] > 0) {
    855		/*
    856		 * shift lnum[h] items from S[h] to the left neighbor L[h].
    857		 * check how many of new items fall into L[h] or CFL[h] after
    858		 * shifting
    859		 */
    860		n = B_NR_ITEMS(tb->L[h]);	/* number of items in L[h] */
    861		if (tb->lnum[h] <= child_pos) {
    862			/* new items don't fall into L[h] or CFL[h] */
    863			internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h,
    864					    tb->lnum[h]);
    865			child_pos -= tb->lnum[h];
    866		} else if (tb->lnum[h] > child_pos + insert_num) {
    867			/* all new items fall into L[h] */
    868			internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h,
    869					    tb->lnum[h] - insert_num);
    870			/* insert insert_num keys and node-pointers into L[h] */
    871			bi.tb = tb;
    872			bi.bi_bh = tb->L[h];
    873			bi.bi_parent = tb->FL[h];
    874			bi.bi_position = get_left_neighbor_position(tb, h);
    875			internal_insert_childs(&bi,
    876					       /*tb->L[h], tb->S[h-1]->b_next */
    877					       n + child_pos + 1,
    878					       insert_num, insert_key,
    879					       insert_ptr);
    880
    881			insert_num = 0;
    882		} else {
    883			struct disk_child *dc;
    884
    885			/*
    886			 * some items fall into L[h] or CFL[h],
    887			 * but some don't fall
    888			 */
    889			internal_shift1_left(tb, h, child_pos + 1);
    890			/* calculate number of new items that fall into L[h] */
    891			k = tb->lnum[h] - child_pos - 1;
    892			bi.tb = tb;
    893			bi.bi_bh = tb->L[h];
    894			bi.bi_parent = tb->FL[h];
    895			bi.bi_position = get_left_neighbor_position(tb, h);
    896			internal_insert_childs(&bi,
    897					       /*tb->L[h], tb->S[h-1]->b_next, */
    898					       n + child_pos + 1, k,
    899					       insert_key, insert_ptr);
    900
    901			replace_lkey(tb, h, insert_key + k);
    902
    903			/*
    904			 * replace the first node-ptr in S[h] by
    905			 * node-ptr to insert_ptr[k]
    906			 */
    907			dc = B_N_CHILD(tbSh, 0);
    908			put_dc_size(dc,
    909				    MAX_CHILD_SIZE(insert_ptr[k]) -
    910				    B_FREE_SPACE(insert_ptr[k]));
    911			put_dc_block_number(dc, insert_ptr[k]->b_blocknr);
    912
    913			do_balance_mark_internal_dirty(tb, tbSh, 0);
    914
    915			k++;
    916			insert_key += k;
    917			insert_ptr += k;
    918			insert_num -= k;
    919			child_pos = 0;
    920		}
    921	}
    922	/* tb->lnum[h] > 0 */
    923	if (tb->rnum[h] > 0) {
    924		/*shift rnum[h] items from S[h] to the right neighbor R[h] */
    925		/*
    926		 * check how many of new items fall into R or CFR
    927		 * after shifting
    928		 */
    929		n = B_NR_ITEMS(tbSh);	/* number of items in S[h] */
    930		if (n - tb->rnum[h] >= child_pos)
    931			/* new items fall into S[h] */
    932			internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
    933					     tb->rnum[h]);
    934		else if (n + insert_num - tb->rnum[h] < child_pos) {
    935			/* all new items fall into R[h] */
    936			internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
    937					     tb->rnum[h] - insert_num);
    938
    939			/* insert insert_num keys and node-pointers into R[h] */
    940			bi.tb = tb;
    941			bi.bi_bh = tb->R[h];
    942			bi.bi_parent = tb->FR[h];
    943			bi.bi_position = get_right_neighbor_position(tb, h);
    944			internal_insert_childs(&bi,
    945					       /*tb->R[h],tb->S[h-1]->b_next */
    946					       child_pos - n - insert_num +
    947					       tb->rnum[h] - 1,
    948					       insert_num, insert_key,
    949					       insert_ptr);
    950			insert_num = 0;
    951		} else {
    952			struct disk_child *dc;
    953
    954			/* one of the items falls into CFR[h] */
    955			internal_shift1_right(tb, h, n - child_pos + 1);
    956			/* calculate number of new items that fall into R[h] */
    957			k = tb->rnum[h] - n + child_pos - 1;
    958			bi.tb = tb;
    959			bi.bi_bh = tb->R[h];
    960			bi.bi_parent = tb->FR[h];
    961			bi.bi_position = get_right_neighbor_position(tb, h);
    962			internal_insert_childs(&bi,
    963					       /*tb->R[h], tb->R[h]->b_child, */
    964					       0, k, insert_key + 1,
    965					       insert_ptr + 1);
    966
    967			replace_rkey(tb, h, insert_key + insert_num - k - 1);
    968
    969			/*
    970			 * replace the first node-ptr in R[h] by
    971			 * node-ptr insert_ptr[insert_num-k-1]
    972			 */
    973			dc = B_N_CHILD(tb->R[h], 0);
    974			put_dc_size(dc,
    975				    MAX_CHILD_SIZE(insert_ptr
    976						   [insert_num - k - 1]) -
    977				    B_FREE_SPACE(insert_ptr
    978						 [insert_num - k - 1]));
    979			put_dc_block_number(dc,
    980					    insert_ptr[insert_num - k -
    981						       1]->b_blocknr);
    982
    983			do_balance_mark_internal_dirty(tb, tb->R[h], 0);
    984
    985			insert_num -= (k + 1);
    986		}
    987	}
    988
    989	/** Fill new node that appears instead of S[h] **/
    990	RFALSE(tb->blknum[h] > 2, "blknum can not be > 2 for internal level");
    991	RFALSE(tb->blknum[h] < 0, "blknum can not be < 0");
    992
    993	if (!tb->blknum[h]) {	/* node S[h] is empty now */
    994		RFALSE(!tbSh, "S[h] is equal NULL");
    995
    996		/* do what is needed for buffer thrown from tree */
    997		reiserfs_invalidate_buffer(tb, tbSh);
    998		return order;
    999	}
   1000
   1001	if (!tbSh) {
   1002		/* create new root */
   1003		struct disk_child *dc;
   1004		struct buffer_head *tbSh_1 = PATH_H_PBUFFER(tb->tb_path, h - 1);
   1005		struct block_head *blkh;
   1006
   1007		if (tb->blknum[h] != 1)
   1008			reiserfs_panic(NULL, "ibalance-3", "One new node "
   1009				       "required for creating the new root");
   1010		/* S[h] = empty buffer from the list FEB. */
   1011		tbSh = get_FEB(tb);
   1012		blkh = B_BLK_HEAD(tbSh);
   1013		set_blkh_level(blkh, h + 1);
   1014
   1015		/* Put the unique node-pointer to S[h] that points to S[h-1]. */
   1016
   1017		dc = B_N_CHILD(tbSh, 0);
   1018		put_dc_block_number(dc, tbSh_1->b_blocknr);
   1019		put_dc_size(dc,
   1020			    (MAX_CHILD_SIZE(tbSh_1) - B_FREE_SPACE(tbSh_1)));
   1021
   1022		tb->insert_size[h] -= DC_SIZE;
   1023		set_blkh_free_space(blkh, blkh_free_space(blkh) - DC_SIZE);
   1024
   1025		do_balance_mark_internal_dirty(tb, tbSh, 0);
   1026
   1027		/*&&&&&&&&&&&&&&&&&&&&&&&& */
   1028		check_internal(tbSh);
   1029		/*&&&&&&&&&&&&&&&&&&&&&&&& */
   1030
   1031		/* put new root into path structure */
   1032		PATH_OFFSET_PBUFFER(tb->tb_path, ILLEGAL_PATH_ELEMENT_OFFSET) =
   1033		    tbSh;
   1034
   1035		/* Change root in structure super block. */
   1036		PUT_SB_ROOT_BLOCK(tb->tb_sb, tbSh->b_blocknr);
   1037		PUT_SB_TREE_HEIGHT(tb->tb_sb, SB_TREE_HEIGHT(tb->tb_sb) + 1);
   1038		do_balance_mark_sb_dirty(tb, REISERFS_SB(tb->tb_sb)->s_sbh, 1);
   1039	}
   1040
   1041	if (tb->blknum[h] == 2) {
   1042		int snum;
   1043		struct buffer_info dest_bi, src_bi;
   1044
   1045		/* S_new = free buffer from list FEB */
   1046		S_new = get_FEB(tb);
   1047
   1048		set_blkh_level(B_BLK_HEAD(S_new), h + 1);
   1049
   1050		dest_bi.tb = tb;
   1051		dest_bi.bi_bh = S_new;
   1052		dest_bi.bi_parent = NULL;
   1053		dest_bi.bi_position = 0;
   1054		src_bi.tb = tb;
   1055		src_bi.bi_bh = tbSh;
   1056		src_bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h);
   1057		src_bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
   1058
   1059		n = B_NR_ITEMS(tbSh);	/* number of items in S[h] */
   1060		snum = (insert_num + n + 1) / 2;
   1061		if (n - snum >= child_pos) {
   1062			/* new items don't fall into S_new */
   1063			/*  store the delimiting key for the next level */
   1064			/* new_insert_key = (n - snum)'th key in S[h] */
   1065			memcpy(&new_insert_key, internal_key(tbSh, n - snum),
   1066			       KEY_SIZE);
   1067			/* last parameter is del_par */
   1068			internal_move_pointers_items(&dest_bi, &src_bi,
   1069						     LAST_TO_FIRST, snum, 0);
   1070		} else if (n + insert_num - snum < child_pos) {
   1071			/* all new items fall into S_new */
   1072			/*  store the delimiting key for the next level */
   1073			/*
   1074			 * new_insert_key = (n + insert_item - snum)'th
   1075			 * key in S[h]
   1076			 */
   1077			memcpy(&new_insert_key,
   1078			       internal_key(tbSh, n + insert_num - snum),
   1079			       KEY_SIZE);
   1080			/* last parameter is del_par */
   1081			internal_move_pointers_items(&dest_bi, &src_bi,
   1082						     LAST_TO_FIRST,
   1083						     snum - insert_num, 0);
   1084
   1085			/*
   1086			 * insert insert_num keys and node-pointers
   1087			 * into S_new
   1088			 */
   1089			internal_insert_childs(&dest_bi,
   1090					       /*S_new,tb->S[h-1]->b_next, */
   1091					       child_pos - n - insert_num +
   1092					       snum - 1,
   1093					       insert_num, insert_key,
   1094					       insert_ptr);
   1095
   1096			insert_num = 0;
   1097		} else {
   1098			struct disk_child *dc;
   1099
   1100			/* some items fall into S_new, but some don't fall */
   1101			/* last parameter is del_par */
   1102			internal_move_pointers_items(&dest_bi, &src_bi,
   1103						     LAST_TO_FIRST,
   1104						     n - child_pos + 1, 1);
   1105			/* calculate number of new items that fall into S_new */
   1106			k = snum - n + child_pos - 1;
   1107
   1108			internal_insert_childs(&dest_bi, /*S_new, */ 0, k,
   1109					       insert_key + 1, insert_ptr + 1);
   1110
   1111			/* new_insert_key = insert_key[insert_num - k - 1] */
   1112			memcpy(&new_insert_key, insert_key + insert_num - k - 1,
   1113			       KEY_SIZE);
   1114			/*
   1115			 * replace first node-ptr in S_new by node-ptr
   1116			 * to insert_ptr[insert_num-k-1]
   1117			 */
   1118
   1119			dc = B_N_CHILD(S_new, 0);
   1120			put_dc_size(dc,
   1121				    (MAX_CHILD_SIZE
   1122				     (insert_ptr[insert_num - k - 1]) -
   1123				     B_FREE_SPACE(insert_ptr
   1124						  [insert_num - k - 1])));
   1125			put_dc_block_number(dc,
   1126					    insert_ptr[insert_num - k -
   1127						       1]->b_blocknr);
   1128
   1129			do_balance_mark_internal_dirty(tb, S_new, 0);
   1130
   1131			insert_num -= (k + 1);
   1132		}
   1133		/* new_insert_ptr = node_pointer to S_new */
   1134		new_insert_ptr = S_new;
   1135
   1136		RFALSE(!buffer_journaled(S_new) || buffer_journal_dirty(S_new)
   1137		       || buffer_dirty(S_new), "cm-00001: bad S_new (%b)",
   1138		       S_new);
   1139
   1140		/* S_new is released in unfix_nodes */
   1141	}
   1142
   1143	n = B_NR_ITEMS(tbSh);	/*number of items in S[h] */
   1144
   1145	if (0 <= child_pos && child_pos <= n && insert_num > 0) {
   1146		bi.tb = tb;
   1147		bi.bi_bh = tbSh;
   1148		bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h);
   1149		bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
   1150		internal_insert_childs(&bi,	/*tbSh, */
   1151				       /*          ( tb->S[h-1]->b_parent == tb->S[h] ) ? tb->S[h-1]->b_next :  tb->S[h]->b_child->b_next, */
   1152				       child_pos, insert_num, insert_key,
   1153				       insert_ptr);
   1154	}
   1155
   1156	insert_ptr[0] = new_insert_ptr;
   1157	if (new_insert_ptr)
   1158		memcpy(new_insert_key_addr, &new_insert_key, KEY_SIZE);
   1159
   1160	return order;
   1161}