cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

inode.c (94344B)


      1/*
      2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
      3 */
      4
      5#include <linux/time.h>
      6#include <linux/fs.h>
      7#include "reiserfs.h"
      8#include "acl.h"
      9#include "xattr.h"
     10#include <linux/exportfs.h>
     11#include <linux/pagemap.h>
     12#include <linux/highmem.h>
     13#include <linux/slab.h>
     14#include <linux/uaccess.h>
     15#include <asm/unaligned.h>
     16#include <linux/buffer_head.h>
     17#include <linux/mpage.h>
     18#include <linux/writeback.h>
     19#include <linux/quotaops.h>
     20#include <linux/swap.h>
     21#include <linux/uio.h>
     22#include <linux/bio.h>
     23
     24int reiserfs_commit_write(struct file *f, struct page *page,
     25			  unsigned from, unsigned to);
     26
     27void reiserfs_evict_inode(struct inode *inode)
     28{
     29	/*
     30	 * We need blocks for transaction + (user+group) quota
     31	 * update (possibly delete)
     32	 */
     33	int jbegin_count =
     34	    JOURNAL_PER_BALANCE_CNT * 2 +
     35	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
     36	struct reiserfs_transaction_handle th;
     37	int err;
     38
     39	if (!inode->i_nlink && !is_bad_inode(inode))
     40		dquot_initialize(inode);
     41
     42	truncate_inode_pages_final(&inode->i_data);
     43	if (inode->i_nlink)
     44		goto no_delete;
     45
     46	/*
     47	 * The = 0 happens when we abort creating a new inode
     48	 * for some reason like lack of space..
     49	 * also handles bad_inode case
     50	 */
     51	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {
     52
     53		reiserfs_delete_xattrs(inode);
     54
     55		reiserfs_write_lock(inode->i_sb);
     56
     57		if (journal_begin(&th, inode->i_sb, jbegin_count))
     58			goto out;
     59		reiserfs_update_inode_transaction(inode);
     60
     61		reiserfs_discard_prealloc(&th, inode);
     62
     63		err = reiserfs_delete_object(&th, inode);
     64
     65		/*
     66		 * Do quota update inside a transaction for journaled quotas.
     67		 * We must do that after delete_object so that quota updates
     68		 * go into the same transaction as stat data deletion
     69		 */
     70		if (!err) {
     71			int depth = reiserfs_write_unlock_nested(inode->i_sb);
     72			dquot_free_inode(inode);
     73			reiserfs_write_lock_nested(inode->i_sb, depth);
     74		}
     75
     76		if (journal_end(&th))
     77			goto out;
     78
     79		/*
     80		 * check return value from reiserfs_delete_object after
     81		 * ending the transaction
     82		 */
     83		if (err)
     84		    goto out;
     85
     86		/*
     87		 * all items of file are deleted, so we can remove
     88		 * "save" link
     89		 * we can't do anything about an error here
     90		 */
     91		remove_save_link(inode, 0 /* not truncate */);
     92out:
     93		reiserfs_write_unlock(inode->i_sb);
     94	} else {
     95		/* no object items are in the tree */
     96		;
     97	}
     98
     99	/* note this must go after the journal_end to prevent deadlock */
    100	clear_inode(inode);
    101
    102	dquot_drop(inode);
    103	inode->i_blocks = 0;
    104	return;
    105
    106no_delete:
    107	clear_inode(inode);
    108	dquot_drop(inode);
    109}
    110
    111static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
    112			  __u32 objectid, loff_t offset, int type, int length)
    113{
    114	key->version = version;
    115
    116	key->on_disk_key.k_dir_id = dirid;
    117	key->on_disk_key.k_objectid = objectid;
    118	set_cpu_key_k_offset(key, offset);
    119	set_cpu_key_k_type(key, type);
    120	key->key_length = length;
    121}
    122
    123/*
    124 * take base of inode_key (it comes from inode always) (dirid, objectid)
    125 * and version from an inode, set offset and type of key
    126 */
    127void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
    128		  int type, int length)
    129{
    130	_make_cpu_key(key, get_inode_item_key_version(inode),
    131		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
    132		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
    133		      length);
    134}
    135
    136/* when key is 0, do not set version and short key */
    137inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
    138			      int version,
    139			      loff_t offset, int type, int length,
    140			      int entry_count /*or ih_free_space */ )
    141{
    142	if (key) {
    143		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
    144		ih->ih_key.k_objectid =
    145		    cpu_to_le32(key->on_disk_key.k_objectid);
    146	}
    147	put_ih_version(ih, version);
    148	set_le_ih_k_offset(ih, offset);
    149	set_le_ih_k_type(ih, type);
    150	put_ih_item_len(ih, length);
    151	/*    set_ih_free_space (ih, 0); */
    152	/*
    153	 * for directory items it is entry count, for directs and stat
    154	 * datas - 0xffff, for indirects - 0
    155	 */
    156	put_ih_entry_count(ih, entry_count);
    157}
    158
    159/*
    160 * FIXME: we might cache recently accessed indirect item
    161 * Ugh.  Not too eager for that....
    162 * I cut the code until such time as I see a convincing argument (benchmark).
    163 * I don't want a bloated inode struct..., and I don't like code complexity....
    164 */
    165
    166/*
    167 * cutting the code is fine, since it really isn't in use yet and is easy
    168 * to add back in.  But, Vladimir has a really good idea here.  Think
    169 * about what happens for reading a file.  For each page,
    170 * The VFS layer calls reiserfs_read_folio, who searches the tree to find
    171 * an indirect item.  This indirect item has X number of pointers, where
    172 * X is a big number if we've done the block allocation right.  But,
    173 * we only use one or two of these pointers during each call to read_folio,
    174 * needlessly researching again later on.
    175 *
    176 * The size of the cache could be dynamic based on the size of the file.
    177 *
    178 * I'd also like to see us cache the location the stat data item, since
    179 * we are needlessly researching for that frequently.
    180 *
    181 * --chris
    182 */
    183
    184/*
    185 * If this page has a file tail in it, and
    186 * it was read in by get_block_create_0, the page data is valid,
    187 * but tail is still sitting in a direct item, and we can't write to
    188 * it.  So, look through this page, and check all the mapped buffers
    189 * to make sure they have valid block numbers.  Any that don't need
    190 * to be unmapped, so that __block_write_begin will correctly call
    191 * reiserfs_get_block to convert the tail into an unformatted node
    192 */
    193static inline void fix_tail_page_for_writing(struct page *page)
    194{
    195	struct buffer_head *head, *next, *bh;
    196
    197	if (page && page_has_buffers(page)) {
    198		head = page_buffers(page);
    199		bh = head;
    200		do {
    201			next = bh->b_this_page;
    202			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
    203				reiserfs_unmap_buffer(bh);
    204			}
    205			bh = next;
    206		} while (bh != head);
    207	}
    208}
    209
    210/*
    211 * reiserfs_get_block does not need to allocate a block only if it has been
    212 * done already or non-hole position has been found in the indirect item
    213 */
    214static inline int allocation_needed(int retval, b_blocknr_t allocated,
    215				    struct item_head *ih,
    216				    __le32 * item, int pos_in_item)
    217{
    218	if (allocated)
    219		return 0;
    220	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
    221	    get_block_num(item, pos_in_item))
    222		return 0;
    223	return 1;
    224}
    225
    226static inline int indirect_item_found(int retval, struct item_head *ih)
    227{
    228	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
    229}
    230
    231static inline void set_block_dev_mapped(struct buffer_head *bh,
    232					b_blocknr_t block, struct inode *inode)
    233{
    234	map_bh(bh, inode->i_sb, block);
    235}
    236
    237/*
    238 * files which were created in the earlier version can not be longer,
    239 * than 2 gb
    240 */
    241static int file_capable(struct inode *inode, sector_t block)
    242{
    243	/* it is new file. */
    244	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||
    245	    /* old file, but 'block' is inside of 2gb */
    246	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))
    247		return 1;
    248
    249	return 0;
    250}
    251
    252static int restart_transaction(struct reiserfs_transaction_handle *th,
    253			       struct inode *inode, struct treepath *path)
    254{
    255	struct super_block *s = th->t_super;
    256	int err;
    257
    258	BUG_ON(!th->t_trans_id);
    259	BUG_ON(!th->t_refcount);
    260
    261	pathrelse(path);
    262
    263	/* we cannot restart while nested */
    264	if (th->t_refcount > 1) {
    265		return 0;
    266	}
    267	reiserfs_update_sd(th, inode);
    268	err = journal_end(th);
    269	if (!err) {
    270		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
    271		if (!err)
    272			reiserfs_update_inode_transaction(inode);
    273	}
    274	return err;
    275}
    276
    277/*
    278 * it is called by get_block when create == 0. Returns block number
    279 * for 'block'-th logical block of file. When it hits direct item it
    280 * returns 0 (being called from bmap) or read direct item into piece
    281 * of page (bh_result)
    282 * Please improve the english/clarity in the comment above, as it is
    283 * hard to understand.
    284 */
    285static int _get_block_create_0(struct inode *inode, sector_t block,
    286			       struct buffer_head *bh_result, int args)
    287{
    288	INITIALIZE_PATH(path);
    289	struct cpu_key key;
    290	struct buffer_head *bh;
    291	struct item_head *ih, tmp_ih;
    292	b_blocknr_t blocknr;
    293	char *p = NULL;
    294	int chars;
    295	int ret;
    296	int result;
    297	int done = 0;
    298	unsigned long offset;
    299
    300	/* prepare the key to look for the 'block'-th block of file */
    301	make_cpu_key(&key, inode,
    302		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
    303		     3);
    304
    305	result = search_for_position_by_key(inode->i_sb, &key, &path);
    306	if (result != POSITION_FOUND) {
    307		pathrelse(&path);
    308		if (p)
    309			kunmap(bh_result->b_page);
    310		if (result == IO_ERROR)
    311			return -EIO;
    312		/*
    313		 * We do not return -ENOENT if there is a hole but page is
    314		 * uptodate, because it means that there is some MMAPED data
    315		 * associated with it that is yet to be written to disk.
    316		 */
    317		if ((args & GET_BLOCK_NO_HOLE)
    318		    && !PageUptodate(bh_result->b_page)) {
    319			return -ENOENT;
    320		}
    321		return 0;
    322	}
    323
    324	bh = get_last_bh(&path);
    325	ih = tp_item_head(&path);
    326	if (is_indirect_le_ih(ih)) {
    327		__le32 *ind_item = (__le32 *) ih_item_body(bh, ih);
    328
    329		/*
    330		 * FIXME: here we could cache indirect item or part of it in
    331		 * the inode to avoid search_by_key in case of subsequent
    332		 * access to file
    333		 */
    334		blocknr = get_block_num(ind_item, path.pos_in_item);
    335		ret = 0;
    336		if (blocknr) {
    337			map_bh(bh_result, inode->i_sb, blocknr);
    338			if (path.pos_in_item ==
    339			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
    340				set_buffer_boundary(bh_result);
    341			}
    342		} else
    343			/*
    344			 * We do not return -ENOENT if there is a hole but
    345			 * page is uptodate, because it means that there is
    346			 * some MMAPED data associated with it that is
    347			 * yet to be written to disk.
    348			 */
    349		if ((args & GET_BLOCK_NO_HOLE)
    350			    && !PageUptodate(bh_result->b_page)) {
    351			ret = -ENOENT;
    352		}
    353
    354		pathrelse(&path);
    355		if (p)
    356			kunmap(bh_result->b_page);
    357		return ret;
    358	}
    359	/* requested data are in direct item(s) */
    360	if (!(args & GET_BLOCK_READ_DIRECT)) {
    361		/*
    362		 * we are called by bmap. FIXME: we can not map block of file
    363		 * when it is stored in direct item(s)
    364		 */
    365		pathrelse(&path);
    366		if (p)
    367			kunmap(bh_result->b_page);
    368		return -ENOENT;
    369	}
    370
    371	/*
    372	 * if we've got a direct item, and the buffer or page was uptodate,
    373	 * we don't want to pull data off disk again.  skip to the
    374	 * end, where we map the buffer and return
    375	 */
    376	if (buffer_uptodate(bh_result)) {
    377		goto finished;
    378	} else
    379		/*
    380		 * grab_tail_page can trigger calls to reiserfs_get_block on
    381		 * up to date pages without any buffers.  If the page is up
    382		 * to date, we don't want read old data off disk.  Set the up
    383		 * to date bit on the buffer instead and jump to the end
    384		 */
    385	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
    386		set_buffer_uptodate(bh_result);
    387		goto finished;
    388	}
    389	/* read file tail into part of page */
    390	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_SIZE - 1);
    391	copy_item_head(&tmp_ih, ih);
    392
    393	/*
    394	 * we only want to kmap if we are reading the tail into the page.
    395	 * this is not the common case, so we don't kmap until we are
    396	 * sure we need to.  But, this means the item might move if
    397	 * kmap schedules
    398	 */
    399	if (!p)
    400		p = (char *)kmap(bh_result->b_page);
    401
    402	p += offset;
    403	memset(p, 0, inode->i_sb->s_blocksize);
    404	do {
    405		if (!is_direct_le_ih(ih)) {
    406			BUG();
    407		}
    408		/*
    409		 * make sure we don't read more bytes than actually exist in
    410		 * the file.  This can happen in odd cases where i_size isn't
    411		 * correct, and when direct item padding results in a few
    412		 * extra bytes at the end of the direct item
    413		 */
    414		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
    415			break;
    416		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
    417			chars =
    418			    inode->i_size - (le_ih_k_offset(ih) - 1) -
    419			    path.pos_in_item;
    420			done = 1;
    421		} else {
    422			chars = ih_item_len(ih) - path.pos_in_item;
    423		}
    424		memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars);
    425
    426		if (done)
    427			break;
    428
    429		p += chars;
    430
    431		/*
    432		 * we done, if read direct item is not the last item of
    433		 * node FIXME: we could try to check right delimiting key
    434		 * to see whether direct item continues in the right
    435		 * neighbor or rely on i_size
    436		 */
    437		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
    438			break;
    439
    440		/* update key to look for the next piece */
    441		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
    442		result = search_for_position_by_key(inode->i_sb, &key, &path);
    443		if (result != POSITION_FOUND)
    444			/* i/o error most likely */
    445			break;
    446		bh = get_last_bh(&path);
    447		ih = tp_item_head(&path);
    448	} while (1);
    449
    450	flush_dcache_page(bh_result->b_page);
    451	kunmap(bh_result->b_page);
    452
    453finished:
    454	pathrelse(&path);
    455
    456	if (result == IO_ERROR)
    457		return -EIO;
    458
    459	/*
    460	 * this buffer has valid data, but isn't valid for io.  mapping it to
    461	 * block #0 tells the rest of reiserfs it just has a tail in it
    462	 */
    463	map_bh(bh_result, inode->i_sb, 0);
    464	set_buffer_uptodate(bh_result);
    465	return 0;
    466}
    467
    468/*
    469 * this is called to create file map. So, _get_block_create_0 will not
    470 * read direct item
    471 */
    472static int reiserfs_bmap(struct inode *inode, sector_t block,
    473			 struct buffer_head *bh_result, int create)
    474{
    475	if (!file_capable(inode, block))
    476		return -EFBIG;
    477
    478	reiserfs_write_lock(inode->i_sb);
    479	/* do not read the direct item */
    480	_get_block_create_0(inode, block, bh_result, 0);
    481	reiserfs_write_unlock(inode->i_sb);
    482	return 0;
    483}
    484
    485/*
    486 * special version of get_block that is only used by grab_tail_page right
    487 * now.  It is sent to __block_write_begin, and when you try to get a
    488 * block past the end of the file (or a block from a hole) it returns
    489 * -ENOENT instead of a valid buffer.  __block_write_begin expects to
    490 * be able to do i/o on the buffers returned, unless an error value
    491 * is also returned.
    492 *
    493 * So, this allows __block_write_begin to be used for reading a single block
    494 * in a page.  Where it does not produce a valid page for holes, or past the
    495 * end of the file.  This turns out to be exactly what we need for reading
    496 * tails for conversion.
    497 *
    498 * The point of the wrapper is forcing a certain value for create, even
    499 * though the VFS layer is calling this function with create==1.  If you
    500 * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
    501 * don't use this function.
    502*/
    503static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
    504				       struct buffer_head *bh_result,
    505				       int create)
    506{
    507	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
    508}
    509
    510/*
    511 * This is special helper for reiserfs_get_block in case we are executing
    512 * direct_IO request.
    513 */
    514static int reiserfs_get_blocks_direct_io(struct inode *inode,
    515					 sector_t iblock,
    516					 struct buffer_head *bh_result,
    517					 int create)
    518{
    519	int ret;
    520
    521	bh_result->b_page = NULL;
    522
    523	/*
    524	 * We set the b_size before reiserfs_get_block call since it is
    525	 * referenced in convert_tail_for_hole() that may be called from
    526	 * reiserfs_get_block()
    527	 */
    528	bh_result->b_size = i_blocksize(inode);
    529
    530	ret = reiserfs_get_block(inode, iblock, bh_result,
    531				 create | GET_BLOCK_NO_DANGLE);
    532	if (ret)
    533		goto out;
    534
    535	/* don't allow direct io onto tail pages */
    536	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
    537		/*
    538		 * make sure future calls to the direct io funcs for this
    539		 * offset in the file fail by unmapping the buffer
    540		 */
    541		clear_buffer_mapped(bh_result);
    542		ret = -EINVAL;
    543	}
    544
    545	/*
    546	 * Possible unpacked tail. Flush the data before pages have
    547	 * disappeared
    548	 */
    549	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
    550		int err;
    551
    552		reiserfs_write_lock(inode->i_sb);
    553
    554		err = reiserfs_commit_for_inode(inode);
    555		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
    556
    557		reiserfs_write_unlock(inode->i_sb);
    558
    559		if (err < 0)
    560			ret = err;
    561	}
    562out:
    563	return ret;
    564}
    565
    566/*
    567 * helper function for when reiserfs_get_block is called for a hole
    568 * but the file tail is still in a direct item
    569 * bh_result is the buffer head for the hole
    570 * tail_offset is the offset of the start of the tail in the file
    571 *
    572 * This calls prepare_write, which will start a new transaction
    573 * you should not be in a transaction, or have any paths held when you
    574 * call this.
    575 */
    576static int convert_tail_for_hole(struct inode *inode,
    577				 struct buffer_head *bh_result,
    578				 loff_t tail_offset)
    579{
    580	unsigned long index;
    581	unsigned long tail_end;
    582	unsigned long tail_start;
    583	struct page *tail_page;
    584	struct page *hole_page = bh_result->b_page;
    585	int retval = 0;
    586
    587	if ((tail_offset & (bh_result->b_size - 1)) != 1)
    588		return -EIO;
    589
    590	/* always try to read until the end of the block */
    591	tail_start = tail_offset & (PAGE_SIZE - 1);
    592	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
    593
    594	index = tail_offset >> PAGE_SHIFT;
    595	/*
    596	 * hole_page can be zero in case of direct_io, we are sure
    597	 * that we cannot get here if we write with O_DIRECT into tail page
    598	 */
    599	if (!hole_page || index != hole_page->index) {
    600		tail_page = grab_cache_page(inode->i_mapping, index);
    601		retval = -ENOMEM;
    602		if (!tail_page) {
    603			goto out;
    604		}
    605	} else {
    606		tail_page = hole_page;
    607	}
    608
    609	/*
    610	 * we don't have to make sure the conversion did not happen while
    611	 * we were locking the page because anyone that could convert
    612	 * must first take i_mutex.
    613	 *
    614	 * We must fix the tail page for writing because it might have buffers
    615	 * that are mapped, but have a block number of 0.  This indicates tail
    616	 * data that has been read directly into the page, and
    617	 * __block_write_begin won't trigger a get_block in this case.
    618	 */
    619	fix_tail_page_for_writing(tail_page);
    620	retval = __reiserfs_write_begin(tail_page, tail_start,
    621				      tail_end - tail_start);
    622	if (retval)
    623		goto unlock;
    624
    625	/* tail conversion might change the data in the page */
    626	flush_dcache_page(tail_page);
    627
    628	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
    629
    630unlock:
    631	if (tail_page != hole_page) {
    632		unlock_page(tail_page);
    633		put_page(tail_page);
    634	}
    635out:
    636	return retval;
    637}
    638
    639static inline int _allocate_block(struct reiserfs_transaction_handle *th,
    640				  sector_t block,
    641				  struct inode *inode,
    642				  b_blocknr_t * allocated_block_nr,
    643				  struct treepath *path, int flags)
    644{
    645	BUG_ON(!th->t_trans_id);
    646
    647#ifdef REISERFS_PREALLOCATE
    648	if (!(flags & GET_BLOCK_NO_IMUX)) {
    649		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
    650						  path, block);
    651	}
    652#endif
    653	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
    654					 block);
    655}
    656
    657int reiserfs_get_block(struct inode *inode, sector_t block,
    658		       struct buffer_head *bh_result, int create)
    659{
    660	int repeat, retval = 0;
    661	/* b_blocknr_t is (unsigned) 32 bit int*/
    662	b_blocknr_t allocated_block_nr = 0;
    663	INITIALIZE_PATH(path);
    664	int pos_in_item;
    665	struct cpu_key key;
    666	struct buffer_head *bh, *unbh = NULL;
    667	struct item_head *ih, tmp_ih;
    668	__le32 *item;
    669	int done;
    670	int fs_gen;
    671	struct reiserfs_transaction_handle *th = NULL;
    672	/*
    673	 * space reserved in transaction batch:
    674	 * . 3 balancings in direct->indirect conversion
    675	 * . 1 block involved into reiserfs_update_sd()
    676	 * XXX in practically impossible worst case direct2indirect()
    677	 * can incur (much) more than 3 balancings.
    678	 * quota update for user, group
    679	 */
    680	int jbegin_count =
    681	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
    682	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
    683	int version;
    684	int dangle = 1;
    685	loff_t new_offset =
    686	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
    687
    688	reiserfs_write_lock(inode->i_sb);
    689	version = get_inode_item_key_version(inode);
    690
    691	if (!file_capable(inode, block)) {
    692		reiserfs_write_unlock(inode->i_sb);
    693		return -EFBIG;
    694	}
    695
    696	/*
    697	 * if !create, we aren't changing the FS, so we don't need to
    698	 * log anything, so we don't need to start a transaction
    699	 */
    700	if (!(create & GET_BLOCK_CREATE)) {
    701		int ret;
    702		/* find number of block-th logical block of the file */
    703		ret = _get_block_create_0(inode, block, bh_result,
    704					  create | GET_BLOCK_READ_DIRECT);
    705		reiserfs_write_unlock(inode->i_sb);
    706		return ret;
    707	}
    708
    709	/*
    710	 * if we're already in a transaction, make sure to close
    711	 * any new transactions we start in this func
    712	 */
    713	if ((create & GET_BLOCK_NO_DANGLE) ||
    714	    reiserfs_transaction_running(inode->i_sb))
    715		dangle = 0;
    716
    717	/*
    718	 * If file is of such a size, that it might have a tail and
    719	 * tails are enabled  we should mark it as possibly needing
    720	 * tail packing on close
    721	 */
    722	if ((have_large_tails(inode->i_sb)
    723	     && inode->i_size < i_block_size(inode) * 4)
    724	    || (have_small_tails(inode->i_sb)
    725		&& inode->i_size < i_block_size(inode)))
    726		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
    727
    728	/* set the key of the first byte in the 'block'-th block of file */
    729	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
    730	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
    731start_trans:
    732		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
    733		if (!th) {
    734			retval = -ENOMEM;
    735			goto failure;
    736		}
    737		reiserfs_update_inode_transaction(inode);
    738	}
    739research:
    740
    741	retval = search_for_position_by_key(inode->i_sb, &key, &path);
    742	if (retval == IO_ERROR) {
    743		retval = -EIO;
    744		goto failure;
    745	}
    746
    747	bh = get_last_bh(&path);
    748	ih = tp_item_head(&path);
    749	item = tp_item_body(&path);
    750	pos_in_item = path.pos_in_item;
    751
    752	fs_gen = get_generation(inode->i_sb);
    753	copy_item_head(&tmp_ih, ih);
    754
    755	if (allocation_needed
    756	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
    757		/* we have to allocate block for the unformatted node */
    758		if (!th) {
    759			pathrelse(&path);
    760			goto start_trans;
    761		}
    762
    763		repeat =
    764		    _allocate_block(th, block, inode, &allocated_block_nr,
    765				    &path, create);
    766
    767		/*
    768		 * restart the transaction to give the journal a chance to free
    769		 * some blocks.  releases the path, so we have to go back to
    770		 * research if we succeed on the second try
    771		 */
    772		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
    773			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
    774			retval = restart_transaction(th, inode, &path);
    775			if (retval)
    776				goto failure;
    777			repeat =
    778			    _allocate_block(th, block, inode,
    779					    &allocated_block_nr, NULL, create);
    780
    781			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
    782				goto research;
    783			}
    784			if (repeat == QUOTA_EXCEEDED)
    785				retval = -EDQUOT;
    786			else
    787				retval = -ENOSPC;
    788			goto failure;
    789		}
    790
    791		if (fs_changed(fs_gen, inode->i_sb)
    792		    && item_moved(&tmp_ih, &path)) {
    793			goto research;
    794		}
    795	}
    796
    797	if (indirect_item_found(retval, ih)) {
    798		b_blocknr_t unfm_ptr;
    799		/*
    800		 * 'block'-th block is in the file already (there is
    801		 * corresponding cell in some indirect item). But it may be
    802		 * zero unformatted node pointer (hole)
    803		 */
    804		unfm_ptr = get_block_num(item, pos_in_item);
    805		if (unfm_ptr == 0) {
    806			/* use allocated block to plug the hole */
    807			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
    808			if (fs_changed(fs_gen, inode->i_sb)
    809			    && item_moved(&tmp_ih, &path)) {
    810				reiserfs_restore_prepared_buffer(inode->i_sb,
    811								 bh);
    812				goto research;
    813			}
    814			set_buffer_new(bh_result);
    815			if (buffer_dirty(bh_result)
    816			    && reiserfs_data_ordered(inode->i_sb))
    817				reiserfs_add_ordered_list(inode, bh_result);
    818			put_block_num(item, pos_in_item, allocated_block_nr);
    819			unfm_ptr = allocated_block_nr;
    820			journal_mark_dirty(th, bh);
    821			reiserfs_update_sd(th, inode);
    822		}
    823		set_block_dev_mapped(bh_result, unfm_ptr, inode);
    824		pathrelse(&path);
    825		retval = 0;
    826		if (!dangle && th)
    827			retval = reiserfs_end_persistent_transaction(th);
    828
    829		reiserfs_write_unlock(inode->i_sb);
    830
    831		/*
    832		 * the item was found, so new blocks were not added to the file
    833		 * there is no need to make sure the inode is updated with this
    834		 * transaction
    835		 */
    836		return retval;
    837	}
    838
    839	if (!th) {
    840		pathrelse(&path);
    841		goto start_trans;
    842	}
    843
    844	/*
    845	 * desired position is not found or is in the direct item. We have
    846	 * to append file with holes up to 'block'-th block converting
    847	 * direct items to indirect one if necessary
    848	 */
    849	done = 0;
    850	do {
    851		if (is_statdata_le_ih(ih)) {
    852			__le32 unp = 0;
    853			struct cpu_key tmp_key;
    854
    855			/* indirect item has to be inserted */
    856			make_le_item_head(&tmp_ih, &key, version, 1,
    857					  TYPE_INDIRECT, UNFM_P_SIZE,
    858					  0 /* free_space */ );
    859
    860			/*
    861			 * we are going to add 'block'-th block to the file.
    862			 * Use allocated block for that
    863			 */
    864			if (cpu_key_k_offset(&key) == 1) {
    865				unp = cpu_to_le32(allocated_block_nr);
    866				set_block_dev_mapped(bh_result,
    867						     allocated_block_nr, inode);
    868				set_buffer_new(bh_result);
    869				done = 1;
    870			}
    871			tmp_key = key;	/* ;) */
    872			set_cpu_key_k_offset(&tmp_key, 1);
    873			PATH_LAST_POSITION(&path)++;
    874
    875			retval =
    876			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
    877						 inode, (char *)&unp);
    878			if (retval) {
    879				reiserfs_free_block(th, inode,
    880						    allocated_block_nr, 1);
    881				/*
    882				 * retval == -ENOSPC, -EDQUOT or -EIO
    883				 * or -EEXIST
    884				 */
    885				goto failure;
    886			}
    887		} else if (is_direct_le_ih(ih)) {
    888			/* direct item has to be converted */
    889			loff_t tail_offset;
    890
    891			tail_offset =
    892			    ((le_ih_k_offset(ih) -
    893			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
    894
    895			/*
    896			 * direct item we just found fits into block we have
    897			 * to map. Convert it into unformatted node: use
    898			 * bh_result for the conversion
    899			 */
    900			if (tail_offset == cpu_key_k_offset(&key)) {
    901				set_block_dev_mapped(bh_result,
    902						     allocated_block_nr, inode);
    903				unbh = bh_result;
    904				done = 1;
    905			} else {
    906				/*
    907				 * we have to pad file tail stored in direct
    908				 * item(s) up to block size and convert it
    909				 * to unformatted node. FIXME: this should
    910				 * also get into page cache
    911				 */
    912
    913				pathrelse(&path);
    914				/*
    915				 * ugly, but we can only end the transaction if
    916				 * we aren't nested
    917				 */
    918				BUG_ON(!th->t_refcount);
    919				if (th->t_refcount == 1) {
    920					retval =
    921					    reiserfs_end_persistent_transaction
    922					    (th);
    923					th = NULL;
    924					if (retval)
    925						goto failure;
    926				}
    927
    928				retval =
    929				    convert_tail_for_hole(inode, bh_result,
    930							  tail_offset);
    931				if (retval) {
    932					if (retval != -ENOSPC)
    933						reiserfs_error(inode->i_sb,
    934							"clm-6004",
    935							"convert tail failed "
    936							"inode %lu, error %d",
    937							inode->i_ino,
    938							retval);
    939					if (allocated_block_nr) {
    940						/*
    941						 * the bitmap, the super,
    942						 * and the stat data == 3
    943						 */
    944						if (!th)
    945							th = reiserfs_persistent_transaction(inode->i_sb, 3);
    946						if (th)
    947							reiserfs_free_block(th,
    948									    inode,
    949									    allocated_block_nr,
    950									    1);
    951					}
    952					goto failure;
    953				}
    954				goto research;
    955			}
    956			retval =
    957			    direct2indirect(th, inode, &path, unbh,
    958					    tail_offset);
    959			if (retval) {
    960				reiserfs_unmap_buffer(unbh);
    961				reiserfs_free_block(th, inode,
    962						    allocated_block_nr, 1);
    963				goto failure;
    964			}
    965			/*
    966			 * it is important the set_buffer_uptodate is done
    967			 * after the direct2indirect.  The buffer might
    968			 * contain valid data newer than the data on disk
    969			 * (read by read_folio, changed, and then sent here by
    970			 * writepage).  direct2indirect needs to know if unbh
    971			 * was already up to date, so it can decide if the
    972			 * data in unbh needs to be replaced with data from
    973			 * the disk
    974			 */
    975			set_buffer_uptodate(unbh);
    976
    977			/*
    978			 * unbh->b_page == NULL in case of DIRECT_IO request,
    979			 * this means buffer will disappear shortly, so it
    980			 * should not be added to
    981			 */
    982			if (unbh->b_page) {
    983				/*
    984				 * we've converted the tail, so we must
    985				 * flush unbh before the transaction commits
    986				 */
    987				reiserfs_add_tail_list(inode, unbh);
    988
    989				/*
    990				 * mark it dirty now to prevent commit_write
    991				 * from adding this buffer to the inode's
    992				 * dirty buffer list
    993				 */
    994				/*
    995				 * AKPM: changed __mark_buffer_dirty to
    996				 * mark_buffer_dirty().  It's still atomic,
    997				 * but it sets the page dirty too, which makes
    998				 * it eligible for writeback at any time by the
    999				 * VM (which was also the case with
   1000				 * __mark_buffer_dirty())
   1001				 */
   1002				mark_buffer_dirty(unbh);
   1003			}
   1004		} else {
   1005			/*
   1006			 * append indirect item with holes if needed, when
   1007			 * appending pointer to 'block'-th block use block,
   1008			 * which is already allocated
   1009			 */
   1010			struct cpu_key tmp_key;
   1011			/*
   1012			 * We use this in case we need to allocate
   1013			 * only one block which is a fastpath
   1014			 */
   1015			unp_t unf_single = 0;
   1016			unp_t *un;
   1017			__u64 max_to_insert =
   1018			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
   1019			    UNFM_P_SIZE;
   1020			__u64 blocks_needed;
   1021
   1022			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
   1023			       "vs-804: invalid position for append");
   1024			/*
   1025			 * indirect item has to be appended,
   1026			 * set up key of that position
   1027			 * (key type is unimportant)
   1028			 */
   1029			make_cpu_key(&tmp_key, inode,
   1030				     le_key_k_offset(version,
   1031						     &ih->ih_key) +
   1032				     op_bytes_number(ih,
   1033						     inode->i_sb->s_blocksize),
   1034				     TYPE_INDIRECT, 3);
   1035
   1036			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
   1037			       "green-805: invalid offset");
   1038			blocks_needed =
   1039			    1 +
   1040			    ((cpu_key_k_offset(&key) -
   1041			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
   1042			     s_blocksize_bits);
   1043
   1044			if (blocks_needed == 1) {
   1045				un = &unf_single;
   1046			} else {
   1047				un = kcalloc(min(blocks_needed, max_to_insert),
   1048					     UNFM_P_SIZE, GFP_NOFS);
   1049				if (!un) {
   1050					un = &unf_single;
   1051					blocks_needed = 1;
   1052					max_to_insert = 0;
   1053				}
   1054			}
   1055			if (blocks_needed <= max_to_insert) {
   1056				/*
   1057				 * we are going to add target block to
   1058				 * the file. Use allocated block for that
   1059				 */
   1060				un[blocks_needed - 1] =
   1061				    cpu_to_le32(allocated_block_nr);
   1062				set_block_dev_mapped(bh_result,
   1063						     allocated_block_nr, inode);
   1064				set_buffer_new(bh_result);
   1065				done = 1;
   1066			} else {
   1067				/* paste hole to the indirect item */
   1068				/*
   1069				 * If kcalloc failed, max_to_insert becomes
   1070				 * zero and it means we only have space for
   1071				 * one block
   1072				 */
   1073				blocks_needed =
   1074				    max_to_insert ? max_to_insert : 1;
   1075			}
   1076			retval =
   1077			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
   1078						     (char *)un,
   1079						     UNFM_P_SIZE *
   1080						     blocks_needed);
   1081
   1082			if (blocks_needed != 1)
   1083				kfree(un);
   1084
   1085			if (retval) {
   1086				reiserfs_free_block(th, inode,
   1087						    allocated_block_nr, 1);
   1088				goto failure;
   1089			}
   1090			if (!done) {
   1091				/*
   1092				 * We need to mark new file size in case
   1093				 * this function will be interrupted/aborted
   1094				 * later on. And we may do this only for
   1095				 * holes.
   1096				 */
   1097				inode->i_size +=
   1098				    inode->i_sb->s_blocksize * blocks_needed;
   1099			}
   1100		}
   1101
   1102		if (done == 1)
   1103			break;
   1104
   1105		/*
   1106		 * this loop could log more blocks than we had originally
   1107		 * asked for.  So, we have to allow the transaction to end
   1108		 * if it is too big or too full.  Update the inode so things
   1109		 * are consistent if we crash before the function returns
   1110		 * release the path so that anybody waiting on the path before
   1111		 * ending their transaction will be able to continue.
   1112		 */
   1113		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
   1114			retval = restart_transaction(th, inode, &path);
   1115			if (retval)
   1116				goto failure;
   1117		}
   1118		/*
   1119		 * inserting indirect pointers for a hole can take a
   1120		 * long time.  reschedule if needed and also release the write
   1121		 * lock for others.
   1122		 */
   1123		reiserfs_cond_resched(inode->i_sb);
   1124
   1125		retval = search_for_position_by_key(inode->i_sb, &key, &path);
   1126		if (retval == IO_ERROR) {
   1127			retval = -EIO;
   1128			goto failure;
   1129		}
   1130		if (retval == POSITION_FOUND) {
   1131			reiserfs_warning(inode->i_sb, "vs-825",
   1132					 "%K should not be found", &key);
   1133			retval = -EEXIST;
   1134			if (allocated_block_nr)
   1135				reiserfs_free_block(th, inode,
   1136						    allocated_block_nr, 1);
   1137			pathrelse(&path);
   1138			goto failure;
   1139		}
   1140		bh = get_last_bh(&path);
   1141		ih = tp_item_head(&path);
   1142		item = tp_item_body(&path);
   1143		pos_in_item = path.pos_in_item;
   1144	} while (1);
   1145
   1146	retval = 0;
   1147
   1148failure:
   1149	if (th && (!dangle || (retval && !th->t_trans_id))) {
   1150		int err;
   1151		if (th->t_trans_id)
   1152			reiserfs_update_sd(th, inode);
   1153		err = reiserfs_end_persistent_transaction(th);
   1154		if (err)
   1155			retval = err;
   1156	}
   1157
   1158	reiserfs_write_unlock(inode->i_sb);
   1159	reiserfs_check_path(&path);
   1160	return retval;
   1161}
   1162
   1163static void reiserfs_readahead(struct readahead_control *rac)
   1164{
   1165	mpage_readahead(rac, reiserfs_get_block);
   1166}
   1167
   1168/*
   1169 * Compute real number of used bytes by file
   1170 * Following three functions can go away when we'll have enough space in
   1171 * stat item
   1172 */
   1173static int real_space_diff(struct inode *inode, int sd_size)
   1174{
   1175	int bytes;
   1176	loff_t blocksize = inode->i_sb->s_blocksize;
   1177
   1178	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
   1179		return sd_size;
   1180
   1181	/*
   1182	 * End of file is also in full block with indirect reference, so round
   1183	 * up to the next block.
   1184	 *
   1185	 * there is just no way to know if the tail is actually packed
   1186	 * on the file, so we have to assume it isn't.  When we pack the
   1187	 * tail, we add 4 bytes to pretend there really is an unformatted
   1188	 * node pointer
   1189	 */
   1190	bytes =
   1191	    ((inode->i_size +
   1192	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
   1193	    sd_size;
   1194	return bytes;
   1195}
   1196
   1197static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
   1198					int sd_size)
   1199{
   1200	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
   1201		return inode->i_size +
   1202		    (loff_t) (real_space_diff(inode, sd_size));
   1203	}
   1204	return ((loff_t) real_space_diff(inode, sd_size)) +
   1205	    (((loff_t) blocks) << 9);
   1206}
   1207
   1208/* Compute number of blocks used by file in ReiserFS counting */
   1209static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
   1210{
   1211	loff_t bytes = inode_get_bytes(inode);
   1212	loff_t real_space = real_space_diff(inode, sd_size);
   1213
   1214	/* keeps fsck and non-quota versions of reiserfs happy */
   1215	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
   1216		bytes += (loff_t) 511;
   1217	}
   1218
   1219	/*
   1220	 * files from before the quota patch might i_blocks such that
   1221	 * bytes < real_space.  Deal with that here to prevent it from
   1222	 * going negative.
   1223	 */
   1224	if (bytes < real_space)
   1225		return 0;
   1226	return (bytes - real_space) >> 9;
   1227}
   1228
   1229/*
   1230 * BAD: new directories have stat data of new type and all other items
   1231 * of old type. Version stored in the inode says about body items, so
   1232 * in update_stat_data we can not rely on inode, but have to check
   1233 * item version directly
   1234 */
   1235
   1236/* called by read_locked_inode */
   1237static void init_inode(struct inode *inode, struct treepath *path)
   1238{
   1239	struct buffer_head *bh;
   1240	struct item_head *ih;
   1241	__u32 rdev;
   1242
   1243	bh = PATH_PLAST_BUFFER(path);
   1244	ih = tp_item_head(path);
   1245
   1246	copy_key(INODE_PKEY(inode), &ih->ih_key);
   1247
   1248	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
   1249	REISERFS_I(inode)->i_flags = 0;
   1250	REISERFS_I(inode)->i_prealloc_block = 0;
   1251	REISERFS_I(inode)->i_prealloc_count = 0;
   1252	REISERFS_I(inode)->i_trans_id = 0;
   1253	REISERFS_I(inode)->i_jl = NULL;
   1254	reiserfs_init_xattr_rwsem(inode);
   1255
   1256	if (stat_data_v1(ih)) {
   1257		struct stat_data_v1 *sd =
   1258		    (struct stat_data_v1 *)ih_item_body(bh, ih);
   1259		unsigned long blocks;
   1260
   1261		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
   1262		set_inode_sd_version(inode, STAT_DATA_V1);
   1263		inode->i_mode = sd_v1_mode(sd);
   1264		set_nlink(inode, sd_v1_nlink(sd));
   1265		i_uid_write(inode, sd_v1_uid(sd));
   1266		i_gid_write(inode, sd_v1_gid(sd));
   1267		inode->i_size = sd_v1_size(sd);
   1268		inode->i_atime.tv_sec = sd_v1_atime(sd);
   1269		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
   1270		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
   1271		inode->i_atime.tv_nsec = 0;
   1272		inode->i_ctime.tv_nsec = 0;
   1273		inode->i_mtime.tv_nsec = 0;
   1274
   1275		inode->i_blocks = sd_v1_blocks(sd);
   1276		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
   1277		blocks = (inode->i_size + 511) >> 9;
   1278		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
   1279
   1280		/*
   1281		 * there was a bug in <=3.5.23 when i_blocks could take
   1282		 * negative values. Starting from 3.5.17 this value could
   1283		 * even be stored in stat data. For such files we set
   1284		 * i_blocks based on file size. Just 2 notes: this can be
   1285		 * wrong for sparse files. On-disk value will be only
   1286		 * updated if file's inode will ever change
   1287		 */
   1288		if (inode->i_blocks > blocks) {
   1289			inode->i_blocks = blocks;
   1290		}
   1291
   1292		rdev = sd_v1_rdev(sd);
   1293		REISERFS_I(inode)->i_first_direct_byte =
   1294		    sd_v1_first_direct_byte(sd);
   1295
   1296		/*
   1297		 * an early bug in the quota code can give us an odd
   1298		 * number for the block count.  This is incorrect, fix it here.
   1299		 */
   1300		if (inode->i_blocks & 1) {
   1301			inode->i_blocks++;
   1302		}
   1303		inode_set_bytes(inode,
   1304				to_real_used_space(inode, inode->i_blocks,
   1305						   SD_V1_SIZE));
   1306		/*
   1307		 * nopack is initially zero for v1 objects. For v2 objects,
   1308		 * nopack is initialised from sd_attrs
   1309		 */
   1310		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
   1311	} else {
   1312		/*
   1313		 * new stat data found, but object may have old items
   1314		 * (directories and symlinks)
   1315		 */
   1316		struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih);
   1317
   1318		inode->i_mode = sd_v2_mode(sd);
   1319		set_nlink(inode, sd_v2_nlink(sd));
   1320		i_uid_write(inode, sd_v2_uid(sd));
   1321		inode->i_size = sd_v2_size(sd);
   1322		i_gid_write(inode, sd_v2_gid(sd));
   1323		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
   1324		inode->i_atime.tv_sec = sd_v2_atime(sd);
   1325		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
   1326		inode->i_ctime.tv_nsec = 0;
   1327		inode->i_mtime.tv_nsec = 0;
   1328		inode->i_atime.tv_nsec = 0;
   1329		inode->i_blocks = sd_v2_blocks(sd);
   1330		rdev = sd_v2_rdev(sd);
   1331		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
   1332			inode->i_generation =
   1333			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
   1334		else
   1335			inode->i_generation = sd_v2_generation(sd);
   1336
   1337		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
   1338			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
   1339		else
   1340			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
   1341		REISERFS_I(inode)->i_first_direct_byte = 0;
   1342		set_inode_sd_version(inode, STAT_DATA_V2);
   1343		inode_set_bytes(inode,
   1344				to_real_used_space(inode, inode->i_blocks,
   1345						   SD_V2_SIZE));
   1346		/*
   1347		 * read persistent inode attributes from sd and initialise
   1348		 * generic inode flags from them
   1349		 */
   1350		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
   1351		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
   1352	}
   1353
   1354	pathrelse(path);
   1355	if (S_ISREG(inode->i_mode)) {
   1356		inode->i_op = &reiserfs_file_inode_operations;
   1357		inode->i_fop = &reiserfs_file_operations;
   1358		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
   1359	} else if (S_ISDIR(inode->i_mode)) {
   1360		inode->i_op = &reiserfs_dir_inode_operations;
   1361		inode->i_fop = &reiserfs_dir_operations;
   1362	} else if (S_ISLNK(inode->i_mode)) {
   1363		inode->i_op = &reiserfs_symlink_inode_operations;
   1364		inode_nohighmem(inode);
   1365		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
   1366	} else {
   1367		inode->i_blocks = 0;
   1368		inode->i_op = &reiserfs_special_inode_operations;
   1369		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
   1370	}
   1371}
   1372
   1373/* update new stat data with inode fields */
   1374static void inode2sd(void *sd, struct inode *inode, loff_t size)
   1375{
   1376	struct stat_data *sd_v2 = (struct stat_data *)sd;
   1377
   1378	set_sd_v2_mode(sd_v2, inode->i_mode);
   1379	set_sd_v2_nlink(sd_v2, inode->i_nlink);
   1380	set_sd_v2_uid(sd_v2, i_uid_read(inode));
   1381	set_sd_v2_size(sd_v2, size);
   1382	set_sd_v2_gid(sd_v2, i_gid_read(inode));
   1383	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
   1384	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
   1385	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
   1386	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
   1387	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
   1388		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
   1389	else
   1390		set_sd_v2_generation(sd_v2, inode->i_generation);
   1391	set_sd_v2_attrs(sd_v2, REISERFS_I(inode)->i_attrs);
   1392}
   1393
   1394/* used to copy inode's fields to old stat data */
   1395static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
   1396{
   1397	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
   1398
   1399	set_sd_v1_mode(sd_v1, inode->i_mode);
   1400	set_sd_v1_uid(sd_v1, i_uid_read(inode));
   1401	set_sd_v1_gid(sd_v1, i_gid_read(inode));
   1402	set_sd_v1_nlink(sd_v1, inode->i_nlink);
   1403	set_sd_v1_size(sd_v1, size);
   1404	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
   1405	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
   1406	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
   1407
   1408	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
   1409		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
   1410	else
   1411		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
   1412
   1413	/* Sigh. i_first_direct_byte is back */
   1414	set_sd_v1_first_direct_byte(sd_v1,
   1415				    REISERFS_I(inode)->i_first_direct_byte);
   1416}
   1417
   1418/*
   1419 * NOTE, you must prepare the buffer head before sending it here,
   1420 * and then log it after the call
   1421 */
   1422static void update_stat_data(struct treepath *path, struct inode *inode,
   1423			     loff_t size)
   1424{
   1425	struct buffer_head *bh;
   1426	struct item_head *ih;
   1427
   1428	bh = PATH_PLAST_BUFFER(path);
   1429	ih = tp_item_head(path);
   1430
   1431	if (!is_statdata_le_ih(ih))
   1432		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
   1433			       INODE_PKEY(inode), ih);
   1434
   1435	/* path points to old stat data */
   1436	if (stat_data_v1(ih)) {
   1437		inode2sd_v1(ih_item_body(bh, ih), inode, size);
   1438	} else {
   1439		inode2sd(ih_item_body(bh, ih), inode, size);
   1440	}
   1441
   1442	return;
   1443}
   1444
   1445void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
   1446			     struct inode *inode, loff_t size)
   1447{
   1448	struct cpu_key key;
   1449	INITIALIZE_PATH(path);
   1450	struct buffer_head *bh;
   1451	int fs_gen;
   1452	struct item_head *ih, tmp_ih;
   1453	int retval;
   1454
   1455	BUG_ON(!th->t_trans_id);
   1456
   1457	/* key type is unimportant */
   1458	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);
   1459
   1460	for (;;) {
   1461		int pos;
   1462		/* look for the object's stat data */
   1463		retval = search_item(inode->i_sb, &key, &path);
   1464		if (retval == IO_ERROR) {
   1465			reiserfs_error(inode->i_sb, "vs-13050",
   1466				       "i/o failure occurred trying to "
   1467				       "update %K stat data", &key);
   1468			return;
   1469		}
   1470		if (retval == ITEM_NOT_FOUND) {
   1471			pos = PATH_LAST_POSITION(&path);
   1472			pathrelse(&path);
   1473			if (inode->i_nlink == 0) {
   1474				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
   1475				return;
   1476			}
   1477			reiserfs_warning(inode->i_sb, "vs-13060",
   1478					 "stat data of object %k (nlink == %d) "
   1479					 "not found (pos %d)",
   1480					 INODE_PKEY(inode), inode->i_nlink,
   1481					 pos);
   1482			reiserfs_check_path(&path);
   1483			return;
   1484		}
   1485
   1486		/*
   1487		 * sigh, prepare_for_journal might schedule.  When it
   1488		 * schedules the FS might change.  We have to detect that,
   1489		 * and loop back to the search if the stat data item has moved
   1490		 */
   1491		bh = get_last_bh(&path);
   1492		ih = tp_item_head(&path);
   1493		copy_item_head(&tmp_ih, ih);
   1494		fs_gen = get_generation(inode->i_sb);
   1495		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
   1496
   1497		/* Stat_data item has been moved after scheduling. */
   1498		if (fs_changed(fs_gen, inode->i_sb)
   1499		    && item_moved(&tmp_ih, &path)) {
   1500			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
   1501			continue;
   1502		}
   1503		break;
   1504	}
   1505	update_stat_data(&path, inode, size);
   1506	journal_mark_dirty(th, bh);
   1507	pathrelse(&path);
   1508	return;
   1509}
   1510
   1511/*
   1512 * reiserfs_read_locked_inode is called to read the inode off disk, and it
   1513 * does a make_bad_inode when things go wrong.  But, we need to make sure
   1514 * and clear the key in the private portion of the inode, otherwise a
   1515 * corresponding iput might try to delete whatever object the inode last
   1516 * represented.
   1517 */
   1518static void reiserfs_make_bad_inode(struct inode *inode)
   1519{
   1520	memset(INODE_PKEY(inode), 0, KEY_SIZE);
   1521	make_bad_inode(inode);
   1522}
   1523
   1524/*
   1525 * initially this function was derived from minix or ext2's analog and
   1526 * evolved as the prototype did
   1527 */
   1528int reiserfs_init_locked_inode(struct inode *inode, void *p)
   1529{
   1530	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
   1531	inode->i_ino = args->objectid;
   1532	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
   1533	return 0;
   1534}
   1535
   1536/*
   1537 * looks for stat data in the tree, and fills up the fields of in-core
   1538 * inode stat data fields
   1539 */
   1540void reiserfs_read_locked_inode(struct inode *inode,
   1541				struct reiserfs_iget_args *args)
   1542{
   1543	INITIALIZE_PATH(path_to_sd);
   1544	struct cpu_key key;
   1545	unsigned long dirino;
   1546	int retval;
   1547
   1548	dirino = args->dirid;
   1549
   1550	/*
   1551	 * set version 1, version 2 could be used too, because stat data
   1552	 * key is the same in both versions
   1553	 */
   1554	_make_cpu_key(&key, KEY_FORMAT_3_5, dirino, inode->i_ino, 0, 0, 3);
   1555
   1556	/* look for the object's stat data */
   1557	retval = search_item(inode->i_sb, &key, &path_to_sd);
   1558	if (retval == IO_ERROR) {
   1559		reiserfs_error(inode->i_sb, "vs-13070",
   1560			       "i/o failure occurred trying to find "
   1561			       "stat data of %K", &key);
   1562		reiserfs_make_bad_inode(inode);
   1563		return;
   1564	}
   1565
   1566	/* a stale NFS handle can trigger this without it being an error */
   1567	if (retval != ITEM_FOUND) {
   1568		pathrelse(&path_to_sd);
   1569		reiserfs_make_bad_inode(inode);
   1570		clear_nlink(inode);
   1571		return;
   1572	}
   1573
   1574	init_inode(inode, &path_to_sd);
   1575
   1576	/*
   1577	 * It is possible that knfsd is trying to access inode of a file
   1578	 * that is being removed from the disk by some other thread. As we
   1579	 * update sd on unlink all that is required is to check for nlink
   1580	 * here. This bug was first found by Sizif when debugging
   1581	 * SquidNG/Butterfly, forgotten, and found again after Philippe
   1582	 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
   1583
   1584	 * More logical fix would require changes in fs/inode.c:iput() to
   1585	 * remove inode from hash-table _after_ fs cleaned disk stuff up and
   1586	 * in iget() to return NULL if I_FREEING inode is found in
   1587	 * hash-table.
   1588	 */
   1589
   1590	/*
   1591	 * Currently there is one place where it's ok to meet inode with
   1592	 * nlink==0: processing of open-unlinked and half-truncated files
   1593	 * during mount (fs/reiserfs/super.c:finish_unfinished()).
   1594	 */
   1595	if ((inode->i_nlink == 0) &&
   1596	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
   1597		reiserfs_warning(inode->i_sb, "vs-13075",
   1598				 "dead inode read from disk %K. "
   1599				 "This is likely to be race with knfsd. Ignore",
   1600				 &key);
   1601		reiserfs_make_bad_inode(inode);
   1602	}
   1603
   1604	/* init inode should be relsing */
   1605	reiserfs_check_path(&path_to_sd);
   1606
   1607	/*
   1608	 * Stat data v1 doesn't support ACLs.
   1609	 */
   1610	if (get_inode_sd_version(inode) == STAT_DATA_V1)
   1611		cache_no_acl(inode);
   1612}
   1613
   1614/*
   1615 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
   1616 *
   1617 * @inode:    inode from hash table to check
   1618 * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
   1619 *
   1620 * This function is called by iget5_locked() to distinguish reiserfs inodes
   1621 * having the same inode numbers. Such inodes can only exist due to some
   1622 * error condition. One of them should be bad. Inodes with identical
   1623 * inode numbers (objectids) are distinguished by parent directory ids.
   1624 *
   1625 */
   1626int reiserfs_find_actor(struct inode *inode, void *opaque)
   1627{
   1628	struct reiserfs_iget_args *args;
   1629
   1630	args = opaque;
   1631	/* args is already in CPU order */
   1632	return (inode->i_ino == args->objectid) &&
   1633	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
   1634}
   1635
   1636struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
   1637{
   1638	struct inode *inode;
   1639	struct reiserfs_iget_args args;
   1640	int depth;
   1641
   1642	args.objectid = key->on_disk_key.k_objectid;
   1643	args.dirid = key->on_disk_key.k_dir_id;
   1644	depth = reiserfs_write_unlock_nested(s);
   1645	inode = iget5_locked(s, key->on_disk_key.k_objectid,
   1646			     reiserfs_find_actor, reiserfs_init_locked_inode,
   1647			     (void *)(&args));
   1648	reiserfs_write_lock_nested(s, depth);
   1649	if (!inode)
   1650		return ERR_PTR(-ENOMEM);
   1651
   1652	if (inode->i_state & I_NEW) {
   1653		reiserfs_read_locked_inode(inode, &args);
   1654		unlock_new_inode(inode);
   1655	}
   1656
   1657	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
   1658		/* either due to i/o error or a stale NFS handle */
   1659		iput(inode);
   1660		inode = NULL;
   1661	}
   1662	return inode;
   1663}
   1664
   1665static struct dentry *reiserfs_get_dentry(struct super_block *sb,
   1666	u32 objectid, u32 dir_id, u32 generation)
   1667
   1668{
   1669	struct cpu_key key;
   1670	struct inode *inode;
   1671
   1672	key.on_disk_key.k_objectid = objectid;
   1673	key.on_disk_key.k_dir_id = dir_id;
   1674	reiserfs_write_lock(sb);
   1675	inode = reiserfs_iget(sb, &key);
   1676	if (inode && !IS_ERR(inode) && generation != 0 &&
   1677	    generation != inode->i_generation) {
   1678		iput(inode);
   1679		inode = NULL;
   1680	}
   1681	reiserfs_write_unlock(sb);
   1682
   1683	return d_obtain_alias(inode);
   1684}
   1685
   1686struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
   1687		int fh_len, int fh_type)
   1688{
   1689	/*
   1690	 * fhtype happens to reflect the number of u32s encoded.
   1691	 * due to a bug in earlier code, fhtype might indicate there
   1692	 * are more u32s then actually fitted.
   1693	 * so if fhtype seems to be more than len, reduce fhtype.
   1694	 * Valid types are:
   1695	 *   2 - objectid + dir_id - legacy support
   1696	 *   3 - objectid + dir_id + generation
   1697	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
   1698	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
   1699	 *   6 - as above plus generation of directory
   1700	 * 6 does not fit in NFSv2 handles
   1701	 */
   1702	if (fh_type > fh_len) {
   1703		if (fh_type != 6 || fh_len != 5)
   1704			reiserfs_warning(sb, "reiserfs-13077",
   1705				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
   1706				fh_type, fh_len);
   1707		fh_type = fh_len;
   1708	}
   1709	if (fh_len < 2)
   1710		return NULL;
   1711
   1712	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
   1713		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
   1714}
   1715
   1716struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
   1717		int fh_len, int fh_type)
   1718{
   1719	if (fh_type > fh_len)
   1720		fh_type = fh_len;
   1721	if (fh_type < 4)
   1722		return NULL;
   1723
   1724	return reiserfs_get_dentry(sb,
   1725		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
   1726		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
   1727		(fh_type == 6) ? fid->raw[5] : 0);
   1728}
   1729
   1730int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
   1731		       struct inode *parent)
   1732{
   1733	int maxlen = *lenp;
   1734
   1735	if (parent && (maxlen < 5)) {
   1736		*lenp = 5;
   1737		return FILEID_INVALID;
   1738	} else if (maxlen < 3) {
   1739		*lenp = 3;
   1740		return FILEID_INVALID;
   1741	}
   1742
   1743	data[0] = inode->i_ino;
   1744	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
   1745	data[2] = inode->i_generation;
   1746	*lenp = 3;
   1747	if (parent) {
   1748		data[3] = parent->i_ino;
   1749		data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
   1750		*lenp = 5;
   1751		if (maxlen >= 6) {
   1752			data[5] = parent->i_generation;
   1753			*lenp = 6;
   1754		}
   1755	}
   1756	return *lenp;
   1757}
   1758
   1759/*
   1760 * looks for stat data, then copies fields to it, marks the buffer
   1761 * containing stat data as dirty
   1762 */
   1763/*
   1764 * reiserfs inodes are never really dirty, since the dirty inode call
   1765 * always logs them.  This call allows the VFS inode marking routines
   1766 * to properly mark inodes for datasync and such, but only actually
   1767 * does something when called for a synchronous update.
   1768 */
   1769int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
   1770{
   1771	struct reiserfs_transaction_handle th;
   1772	int jbegin_count = 1;
   1773
   1774	if (sb_rdonly(inode->i_sb))
   1775		return -EROFS;
   1776	/*
   1777	 * memory pressure can sometimes initiate write_inode calls with
   1778	 * sync == 1,
   1779	 * these cases are just when the system needs ram, not when the
   1780	 * inode needs to reach disk for safety, and they can safely be
   1781	 * ignored because the altered inode has already been logged.
   1782	 */
   1783	if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
   1784		reiserfs_write_lock(inode->i_sb);
   1785		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
   1786			reiserfs_update_sd(&th, inode);
   1787			journal_end_sync(&th);
   1788		}
   1789		reiserfs_write_unlock(inode->i_sb);
   1790	}
   1791	return 0;
   1792}
   1793
   1794/*
   1795 * stat data of new object is inserted already, this inserts the item
   1796 * containing "." and ".." entries
   1797 */
   1798static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
   1799				  struct inode *inode,
   1800				  struct item_head *ih, struct treepath *path,
   1801				  struct inode *dir)
   1802{
   1803	struct super_block *sb = th->t_super;
   1804	char empty_dir[EMPTY_DIR_SIZE];
   1805	char *body = empty_dir;
   1806	struct cpu_key key;
   1807	int retval;
   1808
   1809	BUG_ON(!th->t_trans_id);
   1810
   1811	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
   1812		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
   1813		      TYPE_DIRENTRY, 3 /*key length */ );
   1814
   1815	/*
   1816	 * compose item head for new item. Directories consist of items of
   1817	 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
   1818	 * is done by reiserfs_new_inode
   1819	 */
   1820	if (old_format_only(sb)) {
   1821		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
   1822				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
   1823
   1824		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
   1825				       ih->ih_key.k_objectid,
   1826				       INODE_PKEY(dir)->k_dir_id,
   1827				       INODE_PKEY(dir)->k_objectid);
   1828	} else {
   1829		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
   1830				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
   1831
   1832		make_empty_dir_item(body, ih->ih_key.k_dir_id,
   1833				    ih->ih_key.k_objectid,
   1834				    INODE_PKEY(dir)->k_dir_id,
   1835				    INODE_PKEY(dir)->k_objectid);
   1836	}
   1837
   1838	/* look for place in the tree for new item */
   1839	retval = search_item(sb, &key, path);
   1840	if (retval == IO_ERROR) {
   1841		reiserfs_error(sb, "vs-13080",
   1842			       "i/o failure occurred creating new directory");
   1843		return -EIO;
   1844	}
   1845	if (retval == ITEM_FOUND) {
   1846		pathrelse(path);
   1847		reiserfs_warning(sb, "vs-13070",
   1848				 "object with this key exists (%k)",
   1849				 &(ih->ih_key));
   1850		return -EEXIST;
   1851	}
   1852
   1853	/* insert item, that is empty directory item */
   1854	return reiserfs_insert_item(th, path, &key, ih, inode, body);
   1855}
   1856
   1857/*
   1858 * stat data of object has been inserted, this inserts the item
   1859 * containing the body of symlink
   1860 */
   1861static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th,
   1862				struct inode *inode,
   1863				struct item_head *ih,
   1864				struct treepath *path, const char *symname,
   1865				int item_len)
   1866{
   1867	struct super_block *sb = th->t_super;
   1868	struct cpu_key key;
   1869	int retval;
   1870
   1871	BUG_ON(!th->t_trans_id);
   1872
   1873	_make_cpu_key(&key, KEY_FORMAT_3_5,
   1874		      le32_to_cpu(ih->ih_key.k_dir_id),
   1875		      le32_to_cpu(ih->ih_key.k_objectid),
   1876		      1, TYPE_DIRECT, 3 /*key length */ );
   1877
   1878	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
   1879			  0 /*free_space */ );
   1880
   1881	/* look for place in the tree for new item */
   1882	retval = search_item(sb, &key, path);
   1883	if (retval == IO_ERROR) {
   1884		reiserfs_error(sb, "vs-13080",
   1885			       "i/o failure occurred creating new symlink");
   1886		return -EIO;
   1887	}
   1888	if (retval == ITEM_FOUND) {
   1889		pathrelse(path);
   1890		reiserfs_warning(sb, "vs-13080",
   1891				 "object with this key exists (%k)",
   1892				 &(ih->ih_key));
   1893		return -EEXIST;
   1894	}
   1895
   1896	/* insert item, that is body of symlink */
   1897	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
   1898}
   1899
   1900/*
   1901 * inserts the stat data into the tree, and then calls
   1902 * reiserfs_new_directory (to insert ".", ".." item if new object is
   1903 * directory) or reiserfs_new_symlink (to insert symlink body if new
   1904 * object is symlink) or nothing (if new object is regular file)
   1905
   1906 * NOTE! uid and gid must already be set in the inode.  If we return
   1907 * non-zero due to an error, we have to drop the quota previously allocated
   1908 * for the fresh inode.  This can only be done outside a transaction, so
   1909 * if we return non-zero, we also end the transaction.
   1910 *
   1911 * @th: active transaction handle
   1912 * @dir: parent directory for new inode
   1913 * @mode: mode of new inode
   1914 * @symname: symlink contents if inode is symlink
   1915 * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for
   1916 *         symlinks
   1917 * @inode: inode to be filled
   1918 * @security: optional security context to associate with this inode
   1919 */
   1920int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
   1921		       struct inode *dir, umode_t mode, const char *symname,
   1922		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
   1923		          strlen (symname) for symlinks) */
   1924		       loff_t i_size, struct dentry *dentry,
   1925		       struct inode *inode,
   1926		       struct reiserfs_security_handle *security)
   1927{
   1928	struct super_block *sb = dir->i_sb;
   1929	struct reiserfs_iget_args args;
   1930	INITIALIZE_PATH(path_to_key);
   1931	struct cpu_key key;
   1932	struct item_head ih;
   1933	struct stat_data sd;
   1934	int retval;
   1935	int err;
   1936	int depth;
   1937
   1938	BUG_ON(!th->t_trans_id);
   1939
   1940	depth = reiserfs_write_unlock_nested(sb);
   1941	err = dquot_alloc_inode(inode);
   1942	reiserfs_write_lock_nested(sb, depth);
   1943	if (err)
   1944		goto out_end_trans;
   1945	if (!dir->i_nlink) {
   1946		err = -EPERM;
   1947		goto out_bad_inode;
   1948	}
   1949
   1950	/* item head of new item */
   1951	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
   1952	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
   1953	if (!ih.ih_key.k_objectid) {
   1954		err = -ENOMEM;
   1955		goto out_bad_inode;
   1956	}
   1957	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
   1958	if (old_format_only(sb))
   1959		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
   1960				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
   1961	else
   1962		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
   1963				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
   1964	memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE);
   1965	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
   1966
   1967	depth = reiserfs_write_unlock_nested(inode->i_sb);
   1968	err = insert_inode_locked4(inode, args.objectid,
   1969			     reiserfs_find_actor, &args);
   1970	reiserfs_write_lock_nested(inode->i_sb, depth);
   1971	if (err) {
   1972		err = -EINVAL;
   1973		goto out_bad_inode;
   1974	}
   1975
   1976	if (old_format_only(sb))
   1977		/*
   1978		 * not a perfect generation count, as object ids can be reused,
   1979		 * but this is as good as reiserfs can do right now.
   1980		 * note that the private part of inode isn't filled in yet,
   1981		 * we have to use the directory.
   1982		 */
   1983		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
   1984	else
   1985#if defined( USE_INODE_GENERATION_COUNTER )
   1986		inode->i_generation =
   1987		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
   1988#else
   1989		inode->i_generation = ++event;
   1990#endif
   1991
   1992	/* fill stat data */
   1993	set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
   1994
   1995	/* uid and gid must already be set by the caller for quota init */
   1996
   1997	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
   1998	inode->i_size = i_size;
   1999	inode->i_blocks = 0;
   2000	inode->i_bytes = 0;
   2001	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
   2002	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
   2003
   2004	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
   2005	REISERFS_I(inode)->i_flags = 0;
   2006	REISERFS_I(inode)->i_prealloc_block = 0;
   2007	REISERFS_I(inode)->i_prealloc_count = 0;
   2008	REISERFS_I(inode)->i_trans_id = 0;
   2009	REISERFS_I(inode)->i_jl = NULL;
   2010	REISERFS_I(inode)->i_attrs =
   2011	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
   2012	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
   2013	reiserfs_init_xattr_rwsem(inode);
   2014
   2015	/* key to search for correct place for new stat data */
   2016	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
   2017		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
   2018		      TYPE_STAT_DATA, 3 /*key length */ );
   2019
   2020	/* find proper place for inserting of stat data */
   2021	retval = search_item(sb, &key, &path_to_key);
   2022	if (retval == IO_ERROR) {
   2023		err = -EIO;
   2024		goto out_bad_inode;
   2025	}
   2026	if (retval == ITEM_FOUND) {
   2027		pathrelse(&path_to_key);
   2028		err = -EEXIST;
   2029		goto out_bad_inode;
   2030	}
   2031	if (old_format_only(sb)) {
   2032		/* i_uid or i_gid is too big to be stored in stat data v3.5 */
   2033		if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
   2034			pathrelse(&path_to_key);
   2035			err = -EINVAL;
   2036			goto out_bad_inode;
   2037		}
   2038		inode2sd_v1(&sd, inode, inode->i_size);
   2039	} else {
   2040		inode2sd(&sd, inode, inode->i_size);
   2041	}
   2042	/*
   2043	 * store in in-core inode the key of stat data and version all
   2044	 * object items will have (directory items will have old offset
   2045	 * format, other new objects will consist of new items)
   2046	 */
   2047	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
   2048		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
   2049	else
   2050		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
   2051	if (old_format_only(sb))
   2052		set_inode_sd_version(inode, STAT_DATA_V1);
   2053	else
   2054		set_inode_sd_version(inode, STAT_DATA_V2);
   2055
   2056	/* insert the stat data into the tree */
   2057#ifdef DISPLACE_NEW_PACKING_LOCALITIES
   2058	if (REISERFS_I(dir)->new_packing_locality)
   2059		th->displace_new_blocks = 1;
   2060#endif
   2061	retval =
   2062	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
   2063				 (char *)(&sd));
   2064	if (retval) {
   2065		err = retval;
   2066		reiserfs_check_path(&path_to_key);
   2067		goto out_bad_inode;
   2068	}
   2069#ifdef DISPLACE_NEW_PACKING_LOCALITIES
   2070	if (!th->displace_new_blocks)
   2071		REISERFS_I(dir)->new_packing_locality = 0;
   2072#endif
   2073	if (S_ISDIR(mode)) {
   2074		/* insert item with "." and ".." */
   2075		retval =
   2076		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
   2077	}
   2078
   2079	if (S_ISLNK(mode)) {
   2080		/* insert body of symlink */
   2081		if (!old_format_only(sb))
   2082			i_size = ROUND_UP(i_size);
   2083		retval =
   2084		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
   2085					 i_size);
   2086	}
   2087	if (retval) {
   2088		err = retval;
   2089		reiserfs_check_path(&path_to_key);
   2090		journal_end(th);
   2091		goto out_inserted_sd;
   2092	}
   2093
   2094	/*
   2095	 * Mark it private if we're creating the privroot
   2096	 * or something under it.
   2097	 */
   2098	if (IS_PRIVATE(dir) || dentry == REISERFS_SB(sb)->priv_root) {
   2099		inode->i_flags |= S_PRIVATE;
   2100		inode->i_opflags &= ~IOP_XATTR;
   2101	}
   2102
   2103	if (reiserfs_posixacl(inode->i_sb)) {
   2104		reiserfs_write_unlock(inode->i_sb);
   2105		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
   2106		reiserfs_write_lock(inode->i_sb);
   2107		if (retval) {
   2108			err = retval;
   2109			reiserfs_check_path(&path_to_key);
   2110			journal_end(th);
   2111			goto out_inserted_sd;
   2112		}
   2113	} else if (inode->i_sb->s_flags & SB_POSIXACL) {
   2114		reiserfs_warning(inode->i_sb, "jdm-13090",
   2115				 "ACLs aren't enabled in the fs, "
   2116				 "but vfs thinks they are!");
   2117	}
   2118
   2119	if (security->name) {
   2120		reiserfs_write_unlock(inode->i_sb);
   2121		retval = reiserfs_security_write(th, inode, security);
   2122		reiserfs_write_lock(inode->i_sb);
   2123		if (retval) {
   2124			err = retval;
   2125			reiserfs_check_path(&path_to_key);
   2126			retval = journal_end(th);
   2127			if (retval)
   2128				err = retval;
   2129			goto out_inserted_sd;
   2130		}
   2131	}
   2132
   2133	reiserfs_update_sd(th, inode);
   2134	reiserfs_check_path(&path_to_key);
   2135
   2136	return 0;
   2137
   2138out_bad_inode:
   2139	/* Invalidate the object, nothing was inserted yet */
   2140	INODE_PKEY(inode)->k_objectid = 0;
   2141
   2142	/* Quota change must be inside a transaction for journaling */
   2143	depth = reiserfs_write_unlock_nested(inode->i_sb);
   2144	dquot_free_inode(inode);
   2145	reiserfs_write_lock_nested(inode->i_sb, depth);
   2146
   2147out_end_trans:
   2148	journal_end(th);
   2149	/*
   2150	 * Drop can be outside and it needs more credits so it's better
   2151	 * to have it outside
   2152	 */
   2153	depth = reiserfs_write_unlock_nested(inode->i_sb);
   2154	dquot_drop(inode);
   2155	reiserfs_write_lock_nested(inode->i_sb, depth);
   2156	inode->i_flags |= S_NOQUOTA;
   2157	make_bad_inode(inode);
   2158
   2159out_inserted_sd:
   2160	clear_nlink(inode);
   2161	th->t_trans_id = 0;	/* so the caller can't use this handle later */
   2162	if (inode->i_state & I_NEW)
   2163		unlock_new_inode(inode);
   2164	iput(inode);
   2165	return err;
   2166}
   2167
   2168/*
   2169 * finds the tail page in the page cache,
   2170 * reads the last block in.
   2171 *
   2172 * On success, page_result is set to a locked, pinned page, and bh_result
   2173 * is set to an up to date buffer for the last block in the file.  returns 0.
   2174 *
   2175 * tail conversion is not done, so bh_result might not be valid for writing
   2176 * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
   2177 * trying to write the block.
   2178 *
   2179 * on failure, nonzero is returned, page_result and bh_result are untouched.
   2180 */
   2181static int grab_tail_page(struct inode *inode,
   2182			  struct page **page_result,
   2183			  struct buffer_head **bh_result)
   2184{
   2185
   2186	/*
   2187	 * we want the page with the last byte in the file,
   2188	 * not the page that will hold the next byte for appending
   2189	 */
   2190	unsigned long index = (inode->i_size - 1) >> PAGE_SHIFT;
   2191	unsigned long pos = 0;
   2192	unsigned long start = 0;
   2193	unsigned long blocksize = inode->i_sb->s_blocksize;
   2194	unsigned long offset = (inode->i_size) & (PAGE_SIZE - 1);
   2195	struct buffer_head *bh;
   2196	struct buffer_head *head;
   2197	struct page *page;
   2198	int error;
   2199
   2200	/*
   2201	 * we know that we are only called with inode->i_size > 0.
   2202	 * we also know that a file tail can never be as big as a block
   2203	 * If i_size % blocksize == 0, our file is currently block aligned
   2204	 * and it won't need converting or zeroing after a truncate.
   2205	 */
   2206	if ((offset & (blocksize - 1)) == 0) {
   2207		return -ENOENT;
   2208	}
   2209	page = grab_cache_page(inode->i_mapping, index);
   2210	error = -ENOMEM;
   2211	if (!page) {
   2212		goto out;
   2213	}
   2214	/* start within the page of the last block in the file */
   2215	start = (offset / blocksize) * blocksize;
   2216
   2217	error = __block_write_begin(page, start, offset - start,
   2218				    reiserfs_get_block_create_0);
   2219	if (error)
   2220		goto unlock;
   2221
   2222	head = page_buffers(page);
   2223	bh = head;
   2224	do {
   2225		if (pos >= start) {
   2226			break;
   2227		}
   2228		bh = bh->b_this_page;
   2229		pos += blocksize;
   2230	} while (bh != head);
   2231
   2232	if (!buffer_uptodate(bh)) {
   2233		/*
   2234		 * note, this should never happen, prepare_write should be
   2235		 * taking care of this for us.  If the buffer isn't up to
   2236		 * date, I've screwed up the code to find the buffer, or the
   2237		 * code to call prepare_write
   2238		 */
   2239		reiserfs_error(inode->i_sb, "clm-6000",
   2240			       "error reading block %lu", bh->b_blocknr);
   2241		error = -EIO;
   2242		goto unlock;
   2243	}
   2244	*bh_result = bh;
   2245	*page_result = page;
   2246
   2247out:
   2248	return error;
   2249
   2250unlock:
   2251	unlock_page(page);
   2252	put_page(page);
   2253	return error;
   2254}
   2255
   2256/*
   2257 * vfs version of truncate file.  Must NOT be called with
   2258 * a transaction already started.
   2259 *
   2260 * some code taken from block_truncate_page
   2261 */
   2262int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
   2263{
   2264	struct reiserfs_transaction_handle th;
   2265	/* we want the offset for the first byte after the end of the file */
   2266	unsigned long offset = inode->i_size & (PAGE_SIZE - 1);
   2267	unsigned blocksize = inode->i_sb->s_blocksize;
   2268	unsigned length;
   2269	struct page *page = NULL;
   2270	int error;
   2271	struct buffer_head *bh = NULL;
   2272	int err2;
   2273
   2274	reiserfs_write_lock(inode->i_sb);
   2275
   2276	if (inode->i_size > 0) {
   2277		error = grab_tail_page(inode, &page, &bh);
   2278		if (error) {
   2279			/*
   2280			 * -ENOENT means we truncated past the end of the
   2281			 * file, and get_block_create_0 could not find a
   2282			 * block to read in, which is ok.
   2283			 */
   2284			if (error != -ENOENT)
   2285				reiserfs_error(inode->i_sb, "clm-6001",
   2286					       "grab_tail_page failed %d",
   2287					       error);
   2288			page = NULL;
   2289			bh = NULL;
   2290		}
   2291	}
   2292
   2293	/*
   2294	 * so, if page != NULL, we have a buffer head for the offset at
   2295	 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
   2296	 * then we have an unformatted node.  Otherwise, we have a direct item,
   2297	 * and no zeroing is required on disk.  We zero after the truncate,
   2298	 * because the truncate might pack the item anyway
   2299	 * (it will unmap bh if it packs).
   2300	 *
   2301	 * it is enough to reserve space in transaction for 2 balancings:
   2302	 * one for "save" link adding and another for the first
   2303	 * cut_from_item. 1 is for update_sd
   2304	 */
   2305	error = journal_begin(&th, inode->i_sb,
   2306			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
   2307	if (error)
   2308		goto out;
   2309	reiserfs_update_inode_transaction(inode);
   2310	if (update_timestamps)
   2311		/*
   2312		 * we are doing real truncate: if the system crashes
   2313		 * before the last transaction of truncating gets committed
   2314		 * - on reboot the file either appears truncated properly
   2315		 * or not truncated at all
   2316		 */
   2317		add_save_link(&th, inode, 1);
   2318	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
   2319	error = journal_end(&th);
   2320	if (error)
   2321		goto out;
   2322
   2323	/* check reiserfs_do_truncate after ending the transaction */
   2324	if (err2) {
   2325		error = err2;
   2326  		goto out;
   2327	}
   2328	
   2329	if (update_timestamps) {
   2330		error = remove_save_link(inode, 1 /* truncate */);
   2331		if (error)
   2332			goto out;
   2333	}
   2334
   2335	if (page) {
   2336		length = offset & (blocksize - 1);
   2337		/* if we are not on a block boundary */
   2338		if (length) {
   2339			length = blocksize - length;
   2340			zero_user(page, offset, length);
   2341			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
   2342				mark_buffer_dirty(bh);
   2343			}
   2344		}
   2345		unlock_page(page);
   2346		put_page(page);
   2347	}
   2348
   2349	reiserfs_write_unlock(inode->i_sb);
   2350
   2351	return 0;
   2352out:
   2353	if (page) {
   2354		unlock_page(page);
   2355		put_page(page);
   2356	}
   2357
   2358	reiserfs_write_unlock(inode->i_sb);
   2359
   2360	return error;
   2361}
   2362
   2363static int map_block_for_writepage(struct inode *inode,
   2364				   struct buffer_head *bh_result,
   2365				   unsigned long block)
   2366{
   2367	struct reiserfs_transaction_handle th;
   2368	int fs_gen;
   2369	struct item_head tmp_ih;
   2370	struct item_head *ih;
   2371	struct buffer_head *bh;
   2372	__le32 *item;
   2373	struct cpu_key key;
   2374	INITIALIZE_PATH(path);
   2375	int pos_in_item;
   2376	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
   2377	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
   2378	int retval;
   2379	int use_get_block = 0;
   2380	int bytes_copied = 0;
   2381	int copy_size;
   2382	int trans_running = 0;
   2383
   2384	/*
   2385	 * catch places below that try to log something without
   2386	 * starting a trans
   2387	 */
   2388	th.t_trans_id = 0;
   2389
   2390	if (!buffer_uptodate(bh_result)) {
   2391		return -EIO;
   2392	}
   2393
   2394	kmap(bh_result->b_page);
   2395start_over:
   2396	reiserfs_write_lock(inode->i_sb);
   2397	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
   2398
   2399research:
   2400	retval = search_for_position_by_key(inode->i_sb, &key, &path);
   2401	if (retval != POSITION_FOUND) {
   2402		use_get_block = 1;
   2403		goto out;
   2404	}
   2405
   2406	bh = get_last_bh(&path);
   2407	ih = tp_item_head(&path);
   2408	item = tp_item_body(&path);
   2409	pos_in_item = path.pos_in_item;
   2410
   2411	/* we've found an unformatted node */
   2412	if (indirect_item_found(retval, ih)) {
   2413		if (bytes_copied > 0) {
   2414			reiserfs_warning(inode->i_sb, "clm-6002",
   2415					 "bytes_copied %d", bytes_copied);
   2416		}
   2417		if (!get_block_num(item, pos_in_item)) {
   2418			/* crap, we are writing to a hole */
   2419			use_get_block = 1;
   2420			goto out;
   2421		}
   2422		set_block_dev_mapped(bh_result,
   2423				     get_block_num(item, pos_in_item), inode);
   2424	} else if (is_direct_le_ih(ih)) {
   2425		char *p;
   2426		p = page_address(bh_result->b_page);
   2427		p += (byte_offset - 1) & (PAGE_SIZE - 1);
   2428		copy_size = ih_item_len(ih) - pos_in_item;
   2429
   2430		fs_gen = get_generation(inode->i_sb);
   2431		copy_item_head(&tmp_ih, ih);
   2432
   2433		if (!trans_running) {
   2434			/* vs-3050 is gone, no need to drop the path */
   2435			retval = journal_begin(&th, inode->i_sb, jbegin_count);
   2436			if (retval)
   2437				goto out;
   2438			reiserfs_update_inode_transaction(inode);
   2439			trans_running = 1;
   2440			if (fs_changed(fs_gen, inode->i_sb)
   2441			    && item_moved(&tmp_ih, &path)) {
   2442				reiserfs_restore_prepared_buffer(inode->i_sb,
   2443								 bh);
   2444				goto research;
   2445			}
   2446		}
   2447
   2448		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
   2449
   2450		if (fs_changed(fs_gen, inode->i_sb)
   2451		    && item_moved(&tmp_ih, &path)) {
   2452			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
   2453			goto research;
   2454		}
   2455
   2456		memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied,
   2457		       copy_size);
   2458
   2459		journal_mark_dirty(&th, bh);
   2460		bytes_copied += copy_size;
   2461		set_block_dev_mapped(bh_result, 0, inode);
   2462
   2463		/* are there still bytes left? */
   2464		if (bytes_copied < bh_result->b_size &&
   2465		    (byte_offset + bytes_copied) < inode->i_size) {
   2466			set_cpu_key_k_offset(&key,
   2467					     cpu_key_k_offset(&key) +
   2468					     copy_size);
   2469			goto research;
   2470		}
   2471	} else {
   2472		reiserfs_warning(inode->i_sb, "clm-6003",
   2473				 "bad item inode %lu", inode->i_ino);
   2474		retval = -EIO;
   2475		goto out;
   2476	}
   2477	retval = 0;
   2478
   2479out:
   2480	pathrelse(&path);
   2481	if (trans_running) {
   2482		int err = journal_end(&th);
   2483		if (err)
   2484			retval = err;
   2485		trans_running = 0;
   2486	}
   2487	reiserfs_write_unlock(inode->i_sb);
   2488
   2489	/* this is where we fill in holes in the file. */
   2490	if (use_get_block) {
   2491		retval = reiserfs_get_block(inode, block, bh_result,
   2492					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
   2493					    | GET_BLOCK_NO_DANGLE);
   2494		if (!retval) {
   2495			if (!buffer_mapped(bh_result)
   2496			    || bh_result->b_blocknr == 0) {
   2497				/* get_block failed to find a mapped unformatted node. */
   2498				use_get_block = 0;
   2499				goto start_over;
   2500			}
   2501		}
   2502	}
   2503	kunmap(bh_result->b_page);
   2504
   2505	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
   2506		/*
   2507		 * we've copied data from the page into the direct item, so the
   2508		 * buffer in the page is now clean, mark it to reflect that.
   2509		 */
   2510		lock_buffer(bh_result);
   2511		clear_buffer_dirty(bh_result);
   2512		unlock_buffer(bh_result);
   2513	}
   2514	return retval;
   2515}
   2516
   2517/*
   2518 * mason@suse.com: updated in 2.5.54 to follow the same general io
   2519 * start/recovery path as __block_write_full_page, along with special
   2520 * code to handle reiserfs tails.
   2521 */
   2522static int reiserfs_write_full_page(struct page *page,
   2523				    struct writeback_control *wbc)
   2524{
   2525	struct inode *inode = page->mapping->host;
   2526	unsigned long end_index = inode->i_size >> PAGE_SHIFT;
   2527	int error = 0;
   2528	unsigned long block;
   2529	sector_t last_block;
   2530	struct buffer_head *head, *bh;
   2531	int partial = 0;
   2532	int nr = 0;
   2533	int checked = PageChecked(page);
   2534	struct reiserfs_transaction_handle th;
   2535	struct super_block *s = inode->i_sb;
   2536	int bh_per_page = PAGE_SIZE / s->s_blocksize;
   2537	th.t_trans_id = 0;
   2538
   2539	/* no logging allowed when nonblocking or from PF_MEMALLOC */
   2540	if (checked && (current->flags & PF_MEMALLOC)) {
   2541		redirty_page_for_writepage(wbc, page);
   2542		unlock_page(page);
   2543		return 0;
   2544	}
   2545
   2546	/*
   2547	 * The page dirty bit is cleared before writepage is called, which
   2548	 * means we have to tell create_empty_buffers to make dirty buffers
   2549	 * The page really should be up to date at this point, so tossing
   2550	 * in the BH_Uptodate is just a sanity check.
   2551	 */
   2552	if (!page_has_buffers(page)) {
   2553		create_empty_buffers(page, s->s_blocksize,
   2554				     (1 << BH_Dirty) | (1 << BH_Uptodate));
   2555	}
   2556	head = page_buffers(page);
   2557
   2558	/*
   2559	 * last page in the file, zero out any contents past the
   2560	 * last byte in the file
   2561	 */
   2562	if (page->index >= end_index) {
   2563		unsigned last_offset;
   2564
   2565		last_offset = inode->i_size & (PAGE_SIZE - 1);
   2566		/* no file contents in this page */
   2567		if (page->index >= end_index + 1 || !last_offset) {
   2568			unlock_page(page);
   2569			return 0;
   2570		}
   2571		zero_user_segment(page, last_offset, PAGE_SIZE);
   2572	}
   2573	bh = head;
   2574	block = page->index << (PAGE_SHIFT - s->s_blocksize_bits);
   2575	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
   2576	/* first map all the buffers, logging any direct items we find */
   2577	do {
   2578		if (block > last_block) {
   2579			/*
   2580			 * This can happen when the block size is less than
   2581			 * the page size.  The corresponding bytes in the page
   2582			 * were zero filled above
   2583			 */
   2584			clear_buffer_dirty(bh);
   2585			set_buffer_uptodate(bh);
   2586		} else if ((checked || buffer_dirty(bh)) &&
   2587			   (!buffer_mapped(bh) || bh->b_blocknr == 0)) {
   2588			/*
   2589			 * not mapped yet, or it points to a direct item, search
   2590			 * the btree for the mapping info, and log any direct
   2591			 * items found
   2592			 */
   2593			if ((error = map_block_for_writepage(inode, bh, block))) {
   2594				goto fail;
   2595			}
   2596		}
   2597		bh = bh->b_this_page;
   2598		block++;
   2599	} while (bh != head);
   2600
   2601	/*
   2602	 * we start the transaction after map_block_for_writepage,
   2603	 * because it can create holes in the file (an unbounded operation).
   2604	 * starting it here, we can make a reliable estimate for how many
   2605	 * blocks we're going to log
   2606	 */
   2607	if (checked) {
   2608		ClearPageChecked(page);
   2609		reiserfs_write_lock(s);
   2610		error = journal_begin(&th, s, bh_per_page + 1);
   2611		if (error) {
   2612			reiserfs_write_unlock(s);
   2613			goto fail;
   2614		}
   2615		reiserfs_update_inode_transaction(inode);
   2616	}
   2617	/* now go through and lock any dirty buffers on the page */
   2618	do {
   2619		get_bh(bh);
   2620		if (!buffer_mapped(bh))
   2621			continue;
   2622		if (buffer_mapped(bh) && bh->b_blocknr == 0)
   2623			continue;
   2624
   2625		if (checked) {
   2626			reiserfs_prepare_for_journal(s, bh, 1);
   2627			journal_mark_dirty(&th, bh);
   2628			continue;
   2629		}
   2630		/*
   2631		 * from this point on, we know the buffer is mapped to a
   2632		 * real block and not a direct item
   2633		 */
   2634		if (wbc->sync_mode != WB_SYNC_NONE) {
   2635			lock_buffer(bh);
   2636		} else {
   2637			if (!trylock_buffer(bh)) {
   2638				redirty_page_for_writepage(wbc, page);
   2639				continue;
   2640			}
   2641		}
   2642		if (test_clear_buffer_dirty(bh)) {
   2643			mark_buffer_async_write(bh);
   2644		} else {
   2645			unlock_buffer(bh);
   2646		}
   2647	} while ((bh = bh->b_this_page) != head);
   2648
   2649	if (checked) {
   2650		error = journal_end(&th);
   2651		reiserfs_write_unlock(s);
   2652		if (error)
   2653			goto fail;
   2654	}
   2655	BUG_ON(PageWriteback(page));
   2656	set_page_writeback(page);
   2657	unlock_page(page);
   2658
   2659	/*
   2660	 * since any buffer might be the only dirty buffer on the page,
   2661	 * the first submit_bh can bring the page out of writeback.
   2662	 * be careful with the buffers.
   2663	 */
   2664	do {
   2665		struct buffer_head *next = bh->b_this_page;
   2666		if (buffer_async_write(bh)) {
   2667			submit_bh(REQ_OP_WRITE, 0, bh);
   2668			nr++;
   2669		}
   2670		put_bh(bh);
   2671		bh = next;
   2672	} while (bh != head);
   2673
   2674	error = 0;
   2675done:
   2676	if (nr == 0) {
   2677		/*
   2678		 * if this page only had a direct item, it is very possible for
   2679		 * no io to be required without there being an error.  Or,
   2680		 * someone else could have locked them and sent them down the
   2681		 * pipe without locking the page
   2682		 */
   2683		bh = head;
   2684		do {
   2685			if (!buffer_uptodate(bh)) {
   2686				partial = 1;
   2687				break;
   2688			}
   2689			bh = bh->b_this_page;
   2690		} while (bh != head);
   2691		if (!partial)
   2692			SetPageUptodate(page);
   2693		end_page_writeback(page);
   2694	}
   2695	return error;
   2696
   2697fail:
   2698	/*
   2699	 * catches various errors, we need to make sure any valid dirty blocks
   2700	 * get to the media.  The page is currently locked and not marked for
   2701	 * writeback
   2702	 */
   2703	ClearPageUptodate(page);
   2704	bh = head;
   2705	do {
   2706		get_bh(bh);
   2707		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
   2708			lock_buffer(bh);
   2709			mark_buffer_async_write(bh);
   2710		} else {
   2711			/*
   2712			 * clear any dirty bits that might have come from
   2713			 * getting attached to a dirty page
   2714			 */
   2715			clear_buffer_dirty(bh);
   2716		}
   2717		bh = bh->b_this_page;
   2718	} while (bh != head);
   2719	SetPageError(page);
   2720	BUG_ON(PageWriteback(page));
   2721	set_page_writeback(page);
   2722	unlock_page(page);
   2723	do {
   2724		struct buffer_head *next = bh->b_this_page;
   2725		if (buffer_async_write(bh)) {
   2726			clear_buffer_dirty(bh);
   2727			submit_bh(REQ_OP_WRITE, 0, bh);
   2728			nr++;
   2729		}
   2730		put_bh(bh);
   2731		bh = next;
   2732	} while (bh != head);
   2733	goto done;
   2734}
   2735
   2736static int reiserfs_read_folio(struct file *f, struct folio *folio)
   2737{
   2738	return block_read_full_folio(folio, reiserfs_get_block);
   2739}
   2740
   2741static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
   2742{
   2743	struct inode *inode = page->mapping->host;
   2744	reiserfs_wait_on_write_block(inode->i_sb);
   2745	return reiserfs_write_full_page(page, wbc);
   2746}
   2747
   2748static void reiserfs_truncate_failed_write(struct inode *inode)
   2749{
   2750	truncate_inode_pages(inode->i_mapping, inode->i_size);
   2751	reiserfs_truncate_file(inode, 0);
   2752}
   2753
   2754static int reiserfs_write_begin(struct file *file,
   2755				struct address_space *mapping,
   2756				loff_t pos, unsigned len,
   2757				struct page **pagep, void **fsdata)
   2758{
   2759	struct inode *inode;
   2760	struct page *page;
   2761	pgoff_t index;
   2762	int ret;
   2763	int old_ref = 0;
   2764
   2765 	inode = mapping->host;
   2766	index = pos >> PAGE_SHIFT;
   2767	page = grab_cache_page_write_begin(mapping, index);
   2768	if (!page)
   2769		return -ENOMEM;
   2770	*pagep = page;
   2771
   2772	reiserfs_wait_on_write_block(inode->i_sb);
   2773	fix_tail_page_for_writing(page);
   2774	if (reiserfs_transaction_running(inode->i_sb)) {
   2775		struct reiserfs_transaction_handle *th;
   2776		th = (struct reiserfs_transaction_handle *)current->
   2777		    journal_info;
   2778		BUG_ON(!th->t_refcount);
   2779		BUG_ON(!th->t_trans_id);
   2780		old_ref = th->t_refcount;
   2781		th->t_refcount++;
   2782	}
   2783	ret = __block_write_begin(page, pos, len, reiserfs_get_block);
   2784	if (ret && reiserfs_transaction_running(inode->i_sb)) {
   2785		struct reiserfs_transaction_handle *th = current->journal_info;
   2786		/*
   2787		 * this gets a little ugly.  If reiserfs_get_block returned an
   2788		 * error and left a transacstion running, we've got to close
   2789		 * it, and we've got to free handle if it was a persistent
   2790		 * transaction.
   2791		 *
   2792		 * But, if we had nested into an existing transaction, we need
   2793		 * to just drop the ref count on the handle.
   2794		 *
   2795		 * If old_ref == 0, the transaction is from reiserfs_get_block,
   2796		 * and it was a persistent trans.  Otherwise, it was nested
   2797		 * above.
   2798		 */
   2799		if (th->t_refcount > old_ref) {
   2800			if (old_ref)
   2801				th->t_refcount--;
   2802			else {
   2803				int err;
   2804				reiserfs_write_lock(inode->i_sb);
   2805				err = reiserfs_end_persistent_transaction(th);
   2806				reiserfs_write_unlock(inode->i_sb);
   2807				if (err)
   2808					ret = err;
   2809			}
   2810		}
   2811	}
   2812	if (ret) {
   2813		unlock_page(page);
   2814		put_page(page);
   2815		/* Truncate allocated blocks */
   2816		reiserfs_truncate_failed_write(inode);
   2817	}
   2818	return ret;
   2819}
   2820
   2821int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
   2822{
   2823	struct inode *inode = page->mapping->host;
   2824	int ret;
   2825	int old_ref = 0;
   2826	int depth;
   2827
   2828	depth = reiserfs_write_unlock_nested(inode->i_sb);
   2829	reiserfs_wait_on_write_block(inode->i_sb);
   2830	reiserfs_write_lock_nested(inode->i_sb, depth);
   2831
   2832	fix_tail_page_for_writing(page);
   2833	if (reiserfs_transaction_running(inode->i_sb)) {
   2834		struct reiserfs_transaction_handle *th;
   2835		th = (struct reiserfs_transaction_handle *)current->
   2836		    journal_info;
   2837		BUG_ON(!th->t_refcount);
   2838		BUG_ON(!th->t_trans_id);
   2839		old_ref = th->t_refcount;
   2840		th->t_refcount++;
   2841	}
   2842
   2843	ret = __block_write_begin(page, from, len, reiserfs_get_block);
   2844	if (ret && reiserfs_transaction_running(inode->i_sb)) {
   2845		struct reiserfs_transaction_handle *th = current->journal_info;
   2846		/*
   2847		 * this gets a little ugly.  If reiserfs_get_block returned an
   2848		 * error and left a transacstion running, we've got to close
   2849		 * it, and we've got to free handle if it was a persistent
   2850		 * transaction.
   2851		 *
   2852		 * But, if we had nested into an existing transaction, we need
   2853		 * to just drop the ref count on the handle.
   2854		 *
   2855		 * If old_ref == 0, the transaction is from reiserfs_get_block,
   2856		 * and it was a persistent trans.  Otherwise, it was nested
   2857		 * above.
   2858		 */
   2859		if (th->t_refcount > old_ref) {
   2860			if (old_ref)
   2861				th->t_refcount--;
   2862			else {
   2863				int err;
   2864				reiserfs_write_lock(inode->i_sb);
   2865				err = reiserfs_end_persistent_transaction(th);
   2866				reiserfs_write_unlock(inode->i_sb);
   2867				if (err)
   2868					ret = err;
   2869			}
   2870		}
   2871	}
   2872	return ret;
   2873
   2874}
   2875
   2876static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
   2877{
   2878	return generic_block_bmap(as, block, reiserfs_bmap);
   2879}
   2880
   2881static int reiserfs_write_end(struct file *file, struct address_space *mapping,
   2882			      loff_t pos, unsigned len, unsigned copied,
   2883			      struct page *page, void *fsdata)
   2884{
   2885	struct inode *inode = page->mapping->host;
   2886	int ret = 0;
   2887	int update_sd = 0;
   2888	struct reiserfs_transaction_handle *th;
   2889	unsigned start;
   2890	bool locked = false;
   2891
   2892	reiserfs_wait_on_write_block(inode->i_sb);
   2893	if (reiserfs_transaction_running(inode->i_sb))
   2894		th = current->journal_info;
   2895	else
   2896		th = NULL;
   2897
   2898	start = pos & (PAGE_SIZE - 1);
   2899	if (unlikely(copied < len)) {
   2900		if (!PageUptodate(page))
   2901			copied = 0;
   2902
   2903		page_zero_new_buffers(page, start + copied, start + len);
   2904	}
   2905	flush_dcache_page(page);
   2906
   2907	reiserfs_commit_page(inode, page, start, start + copied);
   2908
   2909	/*
   2910	 * generic_commit_write does this for us, but does not update the
   2911	 * transaction tracking stuff when the size changes.  So, we have
   2912	 * to do the i_size updates here.
   2913	 */
   2914	if (pos + copied > inode->i_size) {
   2915		struct reiserfs_transaction_handle myth;
   2916		reiserfs_write_lock(inode->i_sb);
   2917		locked = true;
   2918		/*
   2919		 * If the file have grown beyond the border where it
   2920		 * can have a tail, unmark it as needing a tail
   2921		 * packing
   2922		 */
   2923		if ((have_large_tails(inode->i_sb)
   2924		     && inode->i_size > i_block_size(inode) * 4)
   2925		    || (have_small_tails(inode->i_sb)
   2926			&& inode->i_size > i_block_size(inode)))
   2927			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
   2928
   2929		ret = journal_begin(&myth, inode->i_sb, 1);
   2930		if (ret)
   2931			goto journal_error;
   2932
   2933		reiserfs_update_inode_transaction(inode);
   2934		inode->i_size = pos + copied;
   2935		/*
   2936		 * this will just nest into our transaction.  It's important
   2937		 * to use mark_inode_dirty so the inode gets pushed around on
   2938		 * the dirty lists, and so that O_SYNC works as expected
   2939		 */
   2940		mark_inode_dirty(inode);
   2941		reiserfs_update_sd(&myth, inode);
   2942		update_sd = 1;
   2943		ret = journal_end(&myth);
   2944		if (ret)
   2945			goto journal_error;
   2946	}
   2947	if (th) {
   2948		if (!locked) {
   2949			reiserfs_write_lock(inode->i_sb);
   2950			locked = true;
   2951		}
   2952		if (!update_sd)
   2953			mark_inode_dirty(inode);
   2954		ret = reiserfs_end_persistent_transaction(th);
   2955		if (ret)
   2956			goto out;
   2957	}
   2958
   2959out:
   2960	if (locked)
   2961		reiserfs_write_unlock(inode->i_sb);
   2962	unlock_page(page);
   2963	put_page(page);
   2964
   2965	if (pos + len > inode->i_size)
   2966		reiserfs_truncate_failed_write(inode);
   2967
   2968	return ret == 0 ? copied : ret;
   2969
   2970journal_error:
   2971	reiserfs_write_unlock(inode->i_sb);
   2972	locked = false;
   2973	if (th) {
   2974		if (!update_sd)
   2975			reiserfs_update_sd(th, inode);
   2976		ret = reiserfs_end_persistent_transaction(th);
   2977	}
   2978	goto out;
   2979}
   2980
   2981int reiserfs_commit_write(struct file *f, struct page *page,
   2982			  unsigned from, unsigned to)
   2983{
   2984	struct inode *inode = page->mapping->host;
   2985	loff_t pos = ((loff_t) page->index << PAGE_SHIFT) + to;
   2986	int ret = 0;
   2987	int update_sd = 0;
   2988	struct reiserfs_transaction_handle *th = NULL;
   2989	int depth;
   2990
   2991	depth = reiserfs_write_unlock_nested(inode->i_sb);
   2992	reiserfs_wait_on_write_block(inode->i_sb);
   2993	reiserfs_write_lock_nested(inode->i_sb, depth);
   2994
   2995	if (reiserfs_transaction_running(inode->i_sb)) {
   2996		th = current->journal_info;
   2997	}
   2998	reiserfs_commit_page(inode, page, from, to);
   2999
   3000	/*
   3001	 * generic_commit_write does this for us, but does not update the
   3002	 * transaction tracking stuff when the size changes.  So, we have
   3003	 * to do the i_size updates here.
   3004	 */
   3005	if (pos > inode->i_size) {
   3006		struct reiserfs_transaction_handle myth;
   3007		/*
   3008		 * If the file have grown beyond the border where it
   3009		 * can have a tail, unmark it as needing a tail
   3010		 * packing
   3011		 */
   3012		if ((have_large_tails(inode->i_sb)
   3013		     && inode->i_size > i_block_size(inode) * 4)
   3014		    || (have_small_tails(inode->i_sb)
   3015			&& inode->i_size > i_block_size(inode)))
   3016			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
   3017
   3018		ret = journal_begin(&myth, inode->i_sb, 1);
   3019		if (ret)
   3020			goto journal_error;
   3021
   3022		reiserfs_update_inode_transaction(inode);
   3023		inode->i_size = pos;
   3024		/*
   3025		 * this will just nest into our transaction.  It's important
   3026		 * to use mark_inode_dirty so the inode gets pushed around
   3027		 * on the dirty lists, and so that O_SYNC works as expected
   3028		 */
   3029		mark_inode_dirty(inode);
   3030		reiserfs_update_sd(&myth, inode);
   3031		update_sd = 1;
   3032		ret = journal_end(&myth);
   3033		if (ret)
   3034			goto journal_error;
   3035	}
   3036	if (th) {
   3037		if (!update_sd)
   3038			mark_inode_dirty(inode);
   3039		ret = reiserfs_end_persistent_transaction(th);
   3040		if (ret)
   3041			goto out;
   3042	}
   3043
   3044out:
   3045	return ret;
   3046
   3047journal_error:
   3048	if (th) {
   3049		if (!update_sd)
   3050			reiserfs_update_sd(th, inode);
   3051		ret = reiserfs_end_persistent_transaction(th);
   3052	}
   3053
   3054	return ret;
   3055}
   3056
   3057void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
   3058{
   3059	if (reiserfs_attrs(inode->i_sb)) {
   3060		if (sd_attrs & REISERFS_SYNC_FL)
   3061			inode->i_flags |= S_SYNC;
   3062		else
   3063			inode->i_flags &= ~S_SYNC;
   3064		if (sd_attrs & REISERFS_IMMUTABLE_FL)
   3065			inode->i_flags |= S_IMMUTABLE;
   3066		else
   3067			inode->i_flags &= ~S_IMMUTABLE;
   3068		if (sd_attrs & REISERFS_APPEND_FL)
   3069			inode->i_flags |= S_APPEND;
   3070		else
   3071			inode->i_flags &= ~S_APPEND;
   3072		if (sd_attrs & REISERFS_NOATIME_FL)
   3073			inode->i_flags |= S_NOATIME;
   3074		else
   3075			inode->i_flags &= ~S_NOATIME;
   3076		if (sd_attrs & REISERFS_NOTAIL_FL)
   3077			REISERFS_I(inode)->i_flags |= i_nopack_mask;
   3078		else
   3079			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
   3080	}
   3081}
   3082
   3083/*
   3084 * decide if this buffer needs to stay around for data logging or ordered
   3085 * write purposes
   3086 */
   3087static int invalidate_folio_can_drop(struct inode *inode, struct buffer_head *bh)
   3088{
   3089	int ret = 1;
   3090	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
   3091
   3092	lock_buffer(bh);
   3093	spin_lock(&j->j_dirty_buffers_lock);
   3094	if (!buffer_mapped(bh)) {
   3095		goto free_jh;
   3096	}
   3097	/*
   3098	 * the page is locked, and the only places that log a data buffer
   3099	 * also lock the page.
   3100	 */
   3101	if (reiserfs_file_data_log(inode)) {
   3102		/*
   3103		 * very conservative, leave the buffer pinned if
   3104		 * anyone might need it.
   3105		 */
   3106		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
   3107			ret = 0;
   3108		}
   3109	} else  if (buffer_dirty(bh)) {
   3110		struct reiserfs_journal_list *jl;
   3111		struct reiserfs_jh *jh = bh->b_private;
   3112
   3113		/*
   3114		 * why is this safe?
   3115		 * reiserfs_setattr updates i_size in the on disk
   3116		 * stat data before allowing vmtruncate to be called.
   3117		 *
   3118		 * If buffer was put onto the ordered list for this
   3119		 * transaction, we know for sure either this transaction
   3120		 * or an older one already has updated i_size on disk,
   3121		 * and this ordered data won't be referenced in the file
   3122		 * if we crash.
   3123		 *
   3124		 * if the buffer was put onto the ordered list for an older
   3125		 * transaction, we need to leave it around
   3126		 */
   3127		if (jh && (jl = jh->jl)
   3128		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
   3129			ret = 0;
   3130	}
   3131free_jh:
   3132	if (ret && bh->b_private) {
   3133		reiserfs_free_jh(bh);
   3134	}
   3135	spin_unlock(&j->j_dirty_buffers_lock);
   3136	unlock_buffer(bh);
   3137	return ret;
   3138}
   3139
   3140/* clm -- taken from fs/buffer.c:block_invalidate_folio */
   3141static void reiserfs_invalidate_folio(struct folio *folio, size_t offset,
   3142				    size_t length)
   3143{
   3144	struct buffer_head *head, *bh, *next;
   3145	struct inode *inode = folio->mapping->host;
   3146	unsigned int curr_off = 0;
   3147	unsigned int stop = offset + length;
   3148	int partial_page = (offset || length < folio_size(folio));
   3149	int ret = 1;
   3150
   3151	BUG_ON(!folio_test_locked(folio));
   3152
   3153	if (!partial_page)
   3154		folio_clear_checked(folio);
   3155
   3156	head = folio_buffers(folio);
   3157	if (!head)
   3158		goto out;
   3159
   3160	bh = head;
   3161	do {
   3162		unsigned int next_off = curr_off + bh->b_size;
   3163		next = bh->b_this_page;
   3164
   3165		if (next_off > stop)
   3166			goto out;
   3167
   3168		/*
   3169		 * is this block fully invalidated?
   3170		 */
   3171		if (offset <= curr_off) {
   3172			if (invalidate_folio_can_drop(inode, bh))
   3173				reiserfs_unmap_buffer(bh);
   3174			else
   3175				ret = 0;
   3176		}
   3177		curr_off = next_off;
   3178		bh = next;
   3179	} while (bh != head);
   3180
   3181	/*
   3182	 * We release buffers only if the entire page is being invalidated.
   3183	 * The get_block cached value has been unconditionally invalidated,
   3184	 * so real IO is not possible anymore.
   3185	 */
   3186	if (!partial_page && ret) {
   3187		ret = filemap_release_folio(folio, 0);
   3188		/* maybe should BUG_ON(!ret); - neilb */
   3189	}
   3190out:
   3191	return;
   3192}
   3193
   3194static bool reiserfs_dirty_folio(struct address_space *mapping,
   3195		struct folio *folio)
   3196{
   3197	if (reiserfs_file_data_log(mapping->host)) {
   3198		folio_set_checked(folio);
   3199		return filemap_dirty_folio(mapping, folio);
   3200	}
   3201	return block_dirty_folio(mapping, folio);
   3202}
   3203
   3204/*
   3205 * Returns true if the folio's buffers were dropped.  The folio is locked.
   3206 *
   3207 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
   3208 * in the buffers at folio_buffers(folio).
   3209 *
   3210 * even in -o notail mode, we can't be sure an old mount without -o notail
   3211 * didn't create files with tails.
   3212 */
   3213static bool reiserfs_release_folio(struct folio *folio, gfp_t unused_gfp_flags)
   3214{
   3215	struct inode *inode = folio->mapping->host;
   3216	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
   3217	struct buffer_head *head;
   3218	struct buffer_head *bh;
   3219	bool ret = true;
   3220
   3221	WARN_ON(folio_test_checked(folio));
   3222	spin_lock(&j->j_dirty_buffers_lock);
   3223	head = folio_buffers(folio);
   3224	bh = head;
   3225	do {
   3226		if (bh->b_private) {
   3227			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
   3228				reiserfs_free_jh(bh);
   3229			} else {
   3230				ret = false;
   3231				break;
   3232			}
   3233		}
   3234		bh = bh->b_this_page;
   3235	} while (bh != head);
   3236	if (ret)
   3237		ret = try_to_free_buffers(folio);
   3238	spin_unlock(&j->j_dirty_buffers_lock);
   3239	return ret;
   3240}
   3241
   3242/*
   3243 * We thank Mingming Cao for helping us understand in great detail what
   3244 * to do in this section of the code.
   3245 */
   3246static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
   3247{
   3248	struct file *file = iocb->ki_filp;
   3249	struct inode *inode = file->f_mapping->host;
   3250	size_t count = iov_iter_count(iter);
   3251	ssize_t ret;
   3252
   3253	ret = blockdev_direct_IO(iocb, inode, iter,
   3254				 reiserfs_get_blocks_direct_io);
   3255
   3256	/*
   3257	 * In case of error extending write may have instantiated a few
   3258	 * blocks outside i_size. Trim these off again.
   3259	 */
   3260	if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
   3261		loff_t isize = i_size_read(inode);
   3262		loff_t end = iocb->ki_pos + count;
   3263
   3264		if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
   3265			truncate_setsize(inode, isize);
   3266			reiserfs_vfs_truncate_file(inode);
   3267		}
   3268	}
   3269
   3270	return ret;
   3271}
   3272
   3273int reiserfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
   3274		     struct iattr *attr)
   3275{
   3276	struct inode *inode = d_inode(dentry);
   3277	unsigned int ia_valid;
   3278	int error;
   3279
   3280	error = setattr_prepare(&init_user_ns, dentry, attr);
   3281	if (error)
   3282		return error;
   3283
   3284	/* must be turned off for recursive notify_change calls */
   3285	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
   3286
   3287	if (is_quota_modification(inode, attr)) {
   3288		error = dquot_initialize(inode);
   3289		if (error)
   3290			return error;
   3291	}
   3292	reiserfs_write_lock(inode->i_sb);
   3293	if (attr->ia_valid & ATTR_SIZE) {
   3294		/*
   3295		 * version 2 items will be caught by the s_maxbytes check
   3296		 * done for us in vmtruncate
   3297		 */
   3298		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
   3299		    attr->ia_size > MAX_NON_LFS) {
   3300			reiserfs_write_unlock(inode->i_sb);
   3301			error = -EFBIG;
   3302			goto out;
   3303		}
   3304
   3305		inode_dio_wait(inode);
   3306
   3307		/* fill in hole pointers in the expanding truncate case. */
   3308		if (attr->ia_size > inode->i_size) {
   3309			loff_t pos = attr->ia_size;
   3310
   3311			if ((pos & (inode->i_sb->s_blocksize - 1)) == 0)
   3312				pos++;
   3313			error = generic_cont_expand_simple(inode, pos);
   3314			if (REISERFS_I(inode)->i_prealloc_count > 0) {
   3315				int err;
   3316				struct reiserfs_transaction_handle th;
   3317				/* we're changing at most 2 bitmaps, inode + super */
   3318				err = journal_begin(&th, inode->i_sb, 4);
   3319				if (!err) {
   3320					reiserfs_discard_prealloc(&th, inode);
   3321					err = journal_end(&th);
   3322				}
   3323				if (err)
   3324					error = err;
   3325			}
   3326			if (error) {
   3327				reiserfs_write_unlock(inode->i_sb);
   3328				goto out;
   3329			}
   3330			/*
   3331			 * file size is changed, ctime and mtime are
   3332			 * to be updated
   3333			 */
   3334			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
   3335		}
   3336	}
   3337	reiserfs_write_unlock(inode->i_sb);
   3338
   3339	if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
   3340	     ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
   3341	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
   3342		/* stat data of format v3.5 has 16 bit uid and gid */
   3343		error = -EINVAL;
   3344		goto out;
   3345	}
   3346
   3347	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
   3348	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
   3349		struct reiserfs_transaction_handle th;
   3350		int jbegin_count =
   3351		    2 *
   3352		    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
   3353		     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
   3354		    2;
   3355
   3356		error = reiserfs_chown_xattrs(inode, attr);
   3357
   3358		if (error)
   3359			return error;
   3360
   3361		/*
   3362		 * (user+group)*(old+new) structure - we count quota
   3363		 * info and , inode write (sb, inode)
   3364		 */
   3365		reiserfs_write_lock(inode->i_sb);
   3366		error = journal_begin(&th, inode->i_sb, jbegin_count);
   3367		reiserfs_write_unlock(inode->i_sb);
   3368		if (error)
   3369			goto out;
   3370		error = dquot_transfer(inode, attr);
   3371		reiserfs_write_lock(inode->i_sb);
   3372		if (error) {
   3373			journal_end(&th);
   3374			reiserfs_write_unlock(inode->i_sb);
   3375			goto out;
   3376		}
   3377
   3378		/*
   3379		 * Update corresponding info in inode so that everything
   3380		 * is in one transaction
   3381		 */
   3382		if (attr->ia_valid & ATTR_UID)
   3383			inode->i_uid = attr->ia_uid;
   3384		if (attr->ia_valid & ATTR_GID)
   3385			inode->i_gid = attr->ia_gid;
   3386		mark_inode_dirty(inode);
   3387		error = journal_end(&th);
   3388		reiserfs_write_unlock(inode->i_sb);
   3389		if (error)
   3390			goto out;
   3391	}
   3392
   3393	if ((attr->ia_valid & ATTR_SIZE) &&
   3394	    attr->ia_size != i_size_read(inode)) {
   3395		error = inode_newsize_ok(inode, attr->ia_size);
   3396		if (!error) {
   3397			/*
   3398			 * Could race against reiserfs_file_release
   3399			 * if called from NFS, so take tailpack mutex.
   3400			 */
   3401			mutex_lock(&REISERFS_I(inode)->tailpack);
   3402			truncate_setsize(inode, attr->ia_size);
   3403			reiserfs_truncate_file(inode, 1);
   3404			mutex_unlock(&REISERFS_I(inode)->tailpack);
   3405		}
   3406	}
   3407
   3408	if (!error) {
   3409		setattr_copy(&init_user_ns, inode, attr);
   3410		mark_inode_dirty(inode);
   3411	}
   3412
   3413	if (!error && reiserfs_posixacl(inode->i_sb)) {
   3414		if (attr->ia_valid & ATTR_MODE)
   3415			error = reiserfs_acl_chmod(inode);
   3416	}
   3417
   3418out:
   3419	return error;
   3420}
   3421
   3422const struct address_space_operations reiserfs_address_space_operations = {
   3423	.writepage = reiserfs_writepage,
   3424	.read_folio = reiserfs_read_folio,
   3425	.readahead = reiserfs_readahead,
   3426	.release_folio = reiserfs_release_folio,
   3427	.invalidate_folio = reiserfs_invalidate_folio,
   3428	.write_begin = reiserfs_write_begin,
   3429	.write_end = reiserfs_write_end,
   3430	.bmap = reiserfs_aop_bmap,
   3431	.direct_IO = reiserfs_direct_IO,
   3432	.dirty_folio = reiserfs_dirty_folio,
   3433};