cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

objectid.c (6929B)


      1/*
      2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
      3 */
      4
      5#include <linux/string.h>
      6#include <linux/time.h>
      7#include <linux/uuid.h>
      8#include "reiserfs.h"
      9
     10/* find where objectid map starts */
     11#define objectid_map(s,rs) (old_format_only (s) ? \
     12                         (__le32 *)((struct reiserfs_super_block_v1 *)(rs) + 1) :\
     13			 (__le32 *)((rs) + 1))
     14
     15#ifdef CONFIG_REISERFS_CHECK
     16
     17static void check_objectid_map(struct super_block *s, __le32 * map)
     18{
     19	if (le32_to_cpu(map[0]) != 1)
     20		reiserfs_panic(s, "vs-15010", "map corrupted: %lx",
     21			       (long unsigned int)le32_to_cpu(map[0]));
     22
     23	/* FIXME: add something else here */
     24}
     25
     26#else
     27static void check_objectid_map(struct super_block *s, __le32 * map)
     28{;
     29}
     30#endif
     31
     32/*
     33 * When we allocate objectids we allocate the first unused objectid.
     34 * Each sequence of objectids in use (the odd sequences) is followed
     35 * by a sequence of objectids not in use (the even sequences).  We
     36 * only need to record the last objectid in each of these sequences
     37 * (both the odd and even sequences) in order to fully define the
     38 * boundaries of the sequences.  A consequence of allocating the first
     39 * objectid not in use is that under most conditions this scheme is
     40 * extremely compact.  The exception is immediately after a sequence
     41 * of operations which deletes a large number of objects of
     42 * non-sequential objectids, and even then it will become compact
     43 * again as soon as more objects are created.  Note that many
     44 * interesting optimizations of layout could result from complicating
     45 * objectid assignment, but we have deferred making them for now.
     46 */
     47
     48/* get unique object identifier */
     49__u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th)
     50{
     51	struct super_block *s = th->t_super;
     52	struct reiserfs_super_block *rs = SB_DISK_SUPER_BLOCK(s);
     53	__le32 *map = objectid_map(s, rs);
     54	__u32 unused_objectid;
     55
     56	BUG_ON(!th->t_trans_id);
     57
     58	check_objectid_map(s, map);
     59
     60	reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1);
     61	/* comment needed -Hans */
     62	unused_objectid = le32_to_cpu(map[1]);
     63	if (unused_objectid == U32_MAX) {
     64		reiserfs_warning(s, "reiserfs-15100", "no more object ids");
     65		reiserfs_restore_prepared_buffer(s, SB_BUFFER_WITH_SB(s));
     66		return 0;
     67	}
     68
     69	/*
     70	 * This incrementation allocates the first unused objectid. That
     71	 * is to say, the first entry on the objectid map is the first
     72	 * unused objectid, and by incrementing it we use it.  See below
     73	 * where we check to see if we eliminated a sequence of unused
     74	 * objectids....
     75	 */
     76	map[1] = cpu_to_le32(unused_objectid + 1);
     77
     78	/*
     79	 * Now we check to see if we eliminated the last remaining member of
     80	 * the first even sequence (and can eliminate the sequence by
     81	 * eliminating its last objectid from oids), and can collapse the
     82	 * first two odd sequences into one sequence.  If so, then the net
     83	 * result is to eliminate a pair of objectids from oids.  We do this
     84	 * by shifting the entire map to the left.
     85	 */
     86	if (sb_oid_cursize(rs) > 2 && map[1] == map[2]) {
     87		memmove(map + 1, map + 3,
     88			(sb_oid_cursize(rs) - 3) * sizeof(__u32));
     89		set_sb_oid_cursize(rs, sb_oid_cursize(rs) - 2);
     90	}
     91
     92	journal_mark_dirty(th, SB_BUFFER_WITH_SB(s));
     93	return unused_objectid;
     94}
     95
     96/* makes object identifier unused */
     97void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
     98			       __u32 objectid_to_release)
     99{
    100	struct super_block *s = th->t_super;
    101	struct reiserfs_super_block *rs = SB_DISK_SUPER_BLOCK(s);
    102	__le32 *map = objectid_map(s, rs);
    103	int i = 0;
    104
    105	BUG_ON(!th->t_trans_id);
    106	/*return; */
    107	check_objectid_map(s, map);
    108
    109	reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1);
    110	journal_mark_dirty(th, SB_BUFFER_WITH_SB(s));
    111
    112	/*
    113	 * start at the beginning of the objectid map (i = 0) and go to
    114	 * the end of it (i = disk_sb->s_oid_cursize).  Linear search is
    115	 * what we use, though it is possible that binary search would be
    116	 * more efficient after performing lots of deletions (which is
    117	 * when oids is large.)  We only check even i's.
    118	 */
    119	while (i < sb_oid_cursize(rs)) {
    120		if (objectid_to_release == le32_to_cpu(map[i])) {
    121			/* This incrementation unallocates the objectid. */
    122			le32_add_cpu(&map[i], 1);
    123
    124			/*
    125			 * Did we unallocate the last member of an
    126			 * odd sequence, and can shrink oids?
    127			 */
    128			if (map[i] == map[i + 1]) {
    129				/* shrink objectid map */
    130				memmove(map + i, map + i + 2,
    131					(sb_oid_cursize(rs) - i -
    132					 2) * sizeof(__u32));
    133				set_sb_oid_cursize(rs, sb_oid_cursize(rs) - 2);
    134
    135				RFALSE(sb_oid_cursize(rs) < 2 ||
    136				       sb_oid_cursize(rs) > sb_oid_maxsize(rs),
    137				       "vs-15005: objectid map corrupted cur_size == %d (max == %d)",
    138				       sb_oid_cursize(rs), sb_oid_maxsize(rs));
    139			}
    140			return;
    141		}
    142
    143		if (objectid_to_release > le32_to_cpu(map[i]) &&
    144		    objectid_to_release < le32_to_cpu(map[i + 1])) {
    145			/* size of objectid map is not changed */
    146			if (objectid_to_release + 1 == le32_to_cpu(map[i + 1])) {
    147				le32_add_cpu(&map[i + 1], -1);
    148				return;
    149			}
    150
    151			/*
    152			 * JDM comparing two little-endian values for
    153			 * equality -- safe
    154			 */
    155			/*
    156			 * objectid map must be expanded, but
    157			 * there is no space
    158			 */
    159			if (sb_oid_cursize(rs) == sb_oid_maxsize(rs)) {
    160				PROC_INFO_INC(s, leaked_oid);
    161				return;
    162			}
    163
    164			/* expand the objectid map */
    165			memmove(map + i + 3, map + i + 1,
    166				(sb_oid_cursize(rs) - i - 1) * sizeof(__u32));
    167			map[i + 1] = cpu_to_le32(objectid_to_release);
    168			map[i + 2] = cpu_to_le32(objectid_to_release + 1);
    169			set_sb_oid_cursize(rs, sb_oid_cursize(rs) + 2);
    170			return;
    171		}
    172		i += 2;
    173	}
    174
    175	reiserfs_error(s, "vs-15011", "tried to free free object id (%lu)",
    176		       (long unsigned)objectid_to_release);
    177}
    178
    179int reiserfs_convert_objectid_map_v1(struct super_block *s)
    180{
    181	struct reiserfs_super_block *disk_sb = SB_DISK_SUPER_BLOCK(s);
    182	int cur_size = sb_oid_cursize(disk_sb);
    183	int new_size = (s->s_blocksize - SB_SIZE) / sizeof(__u32) / 2 * 2;
    184	int old_max = sb_oid_maxsize(disk_sb);
    185	struct reiserfs_super_block_v1 *disk_sb_v1;
    186	__le32 *objectid_map;
    187	int i;
    188
    189	disk_sb_v1 =
    190	    (struct reiserfs_super_block_v1 *)(SB_BUFFER_WITH_SB(s)->b_data);
    191	objectid_map = (__le32 *) (disk_sb_v1 + 1);
    192
    193	if (cur_size > new_size) {
    194		/*
    195		 * mark everyone used that was listed as free at
    196		 * the end of the objectid map
    197		 */
    198		objectid_map[new_size - 1] = objectid_map[cur_size - 1];
    199		set_sb_oid_cursize(disk_sb, new_size);
    200	}
    201	/* move the smaller objectid map past the end of the new super */
    202	for (i = new_size - 1; i >= 0; i--) {
    203		objectid_map[i + (old_max - new_size)] = objectid_map[i];
    204	}
    205
    206	/* set the max size so we don't overflow later */
    207	set_sb_oid_maxsize(disk_sb, new_size);
    208
    209	/* Zero out label and generate random UUID */
    210	memset(disk_sb->s_label, 0, sizeof(disk_sb->s_label));
    211	generate_random_uuid(disk_sb->s_uuid);
    212
    213	/* finally, zero out the unused chunk of the new super */
    214	memset(disk_sb->s_unused, 0, sizeof(disk_sb->s_unused));
    215	return 0;
    216}