cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

reiserfs.h (119609B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2/*
      3 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for
      4 * licensing and copyright details
      5 */
      6
      7#include <linux/reiserfs_fs.h>
      8
      9#include <linux/slab.h>
     10#include <linux/interrupt.h>
     11#include <linux/sched.h>
     12#include <linux/bug.h>
     13#include <linux/workqueue.h>
     14#include <asm/unaligned.h>
     15#include <linux/bitops.h>
     16#include <linux/proc_fs.h>
     17#include <linux/buffer_head.h>
     18
     19/* the 32 bit compat definitions with int argument */
     20#define REISERFS_IOC32_UNPACK		_IOW(0xCD, 1, int)
     21#define REISERFS_IOC32_GETVERSION	FS_IOC32_GETVERSION
     22#define REISERFS_IOC32_SETVERSION	FS_IOC32_SETVERSION
     23
     24struct reiserfs_journal_list;
     25
     26/* bitmasks for i_flags field in reiserfs-specific part of inode */
     27typedef enum {
     28	/*
     29	 * this says what format of key do all items (but stat data) of
     30	 * an object have.  If this is set, that format is 3.6 otherwise - 3.5
     31	 */
     32	i_item_key_version_mask = 0x0001,
     33
     34	/*
     35	 * If this is unset, object has 3.5 stat data, otherwise,
     36	 * it has 3.6 stat data with 64bit size, 32bit nlink etc.
     37	 */
     38	i_stat_data_version_mask = 0x0002,
     39
     40	/* file might need tail packing on close */
     41	i_pack_on_close_mask = 0x0004,
     42
     43	/* don't pack tail of file */
     44	i_nopack_mask = 0x0008,
     45
     46	/*
     47	 * If either of these are set, "safe link" was created for this
     48	 * file during truncate or unlink. Safe link is used to avoid
     49	 * leakage of disk space on crash with some files open, but unlinked.
     50	 */
     51	i_link_saved_unlink_mask = 0x0010,
     52	i_link_saved_truncate_mask = 0x0020,
     53
     54	i_has_xattr_dir = 0x0040,
     55	i_data_log = 0x0080,
     56} reiserfs_inode_flags;
     57
     58struct reiserfs_inode_info {
     59	__u32 i_key[4];		/* key is still 4 32 bit integers */
     60
     61	/*
     62	 * transient inode flags that are never stored on disk. Bitmasks
     63	 * for this field are defined above.
     64	 */
     65	__u32 i_flags;
     66
     67	/* offset of first byte stored in direct item. */
     68	__u32 i_first_direct_byte;
     69
     70	/* copy of persistent inode flags read from sd_attrs. */
     71	__u32 i_attrs;
     72
     73	/* first unused block of a sequence of unused blocks */
     74	int i_prealloc_block;
     75	int i_prealloc_count;	/* length of that sequence */
     76
     77	/* per-transaction list of inodes which  have preallocated blocks */
     78	struct list_head i_prealloc_list;
     79
     80	/*
     81	 * new_packing_locality is created; new blocks for the contents
     82	 * of this directory should be displaced
     83	 */
     84	unsigned new_packing_locality:1;
     85
     86	/*
     87	 * we use these for fsync or O_SYNC to decide which transaction
     88	 * needs to be committed in order for this inode to be properly
     89	 * flushed
     90	 */
     91	unsigned int i_trans_id;
     92
     93	struct reiserfs_journal_list *i_jl;
     94	atomic_t openers;
     95	struct mutex tailpack;
     96#ifdef CONFIG_REISERFS_FS_XATTR
     97	struct rw_semaphore i_xattr_sem;
     98#endif
     99#ifdef CONFIG_QUOTA
    100	struct dquot *i_dquot[MAXQUOTAS];
    101#endif
    102
    103	struct inode vfs_inode;
    104};
    105
    106typedef enum {
    107	reiserfs_attrs_cleared = 0x00000001,
    108} reiserfs_super_block_flags;
    109
    110/*
    111 * struct reiserfs_super_block accessors/mutators since this is a disk
    112 * structure, it will always be in little endian format.
    113 */
    114#define sb_block_count(sbp)         (le32_to_cpu((sbp)->s_v1.s_block_count))
    115#define set_sb_block_count(sbp,v)   ((sbp)->s_v1.s_block_count = cpu_to_le32(v))
    116#define sb_free_blocks(sbp)         (le32_to_cpu((sbp)->s_v1.s_free_blocks))
    117#define set_sb_free_blocks(sbp,v)   ((sbp)->s_v1.s_free_blocks = cpu_to_le32(v))
    118#define sb_root_block(sbp)          (le32_to_cpu((sbp)->s_v1.s_root_block))
    119#define set_sb_root_block(sbp,v)    ((sbp)->s_v1.s_root_block = cpu_to_le32(v))
    120
    121#define sb_jp_journal_1st_block(sbp)  \
    122              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_1st_block))
    123#define set_sb_jp_journal_1st_block(sbp,v) \
    124              ((sbp)->s_v1.s_journal.jp_journal_1st_block = cpu_to_le32(v))
    125#define sb_jp_journal_dev(sbp) \
    126              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_dev))
    127#define set_sb_jp_journal_dev(sbp,v) \
    128              ((sbp)->s_v1.s_journal.jp_journal_dev = cpu_to_le32(v))
    129#define sb_jp_journal_size(sbp) \
    130              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_size))
    131#define set_sb_jp_journal_size(sbp,v) \
    132              ((sbp)->s_v1.s_journal.jp_journal_size = cpu_to_le32(v))
    133#define sb_jp_journal_trans_max(sbp) \
    134              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_trans_max))
    135#define set_sb_jp_journal_trans_max(sbp,v) \
    136              ((sbp)->s_v1.s_journal.jp_journal_trans_max = cpu_to_le32(v))
    137#define sb_jp_journal_magic(sbp) \
    138              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_magic))
    139#define set_sb_jp_journal_magic(sbp,v) \
    140              ((sbp)->s_v1.s_journal.jp_journal_magic = cpu_to_le32(v))
    141#define sb_jp_journal_max_batch(sbp) \
    142              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_batch))
    143#define set_sb_jp_journal_max_batch(sbp,v) \
    144              ((sbp)->s_v1.s_journal.jp_journal_max_batch = cpu_to_le32(v))
    145#define sb_jp_jourmal_max_commit_age(sbp) \
    146              (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_commit_age))
    147#define set_sb_jp_journal_max_commit_age(sbp,v) \
    148              ((sbp)->s_v1.s_journal.jp_journal_max_commit_age = cpu_to_le32(v))
    149
    150#define sb_blocksize(sbp)          (le16_to_cpu((sbp)->s_v1.s_blocksize))
    151#define set_sb_blocksize(sbp,v)    ((sbp)->s_v1.s_blocksize = cpu_to_le16(v))
    152#define sb_oid_maxsize(sbp)        (le16_to_cpu((sbp)->s_v1.s_oid_maxsize))
    153#define set_sb_oid_maxsize(sbp,v)  ((sbp)->s_v1.s_oid_maxsize = cpu_to_le16(v))
    154#define sb_oid_cursize(sbp)        (le16_to_cpu((sbp)->s_v1.s_oid_cursize))
    155#define set_sb_oid_cursize(sbp,v)  ((sbp)->s_v1.s_oid_cursize = cpu_to_le16(v))
    156#define sb_umount_state(sbp)       (le16_to_cpu((sbp)->s_v1.s_umount_state))
    157#define set_sb_umount_state(sbp,v) ((sbp)->s_v1.s_umount_state = cpu_to_le16(v))
    158#define sb_fs_state(sbp)           (le16_to_cpu((sbp)->s_v1.s_fs_state))
    159#define set_sb_fs_state(sbp,v)     ((sbp)->s_v1.s_fs_state = cpu_to_le16(v))
    160#define sb_hash_function_code(sbp) \
    161              (le32_to_cpu((sbp)->s_v1.s_hash_function_code))
    162#define set_sb_hash_function_code(sbp,v) \
    163              ((sbp)->s_v1.s_hash_function_code = cpu_to_le32(v))
    164#define sb_tree_height(sbp)        (le16_to_cpu((sbp)->s_v1.s_tree_height))
    165#define set_sb_tree_height(sbp,v)  ((sbp)->s_v1.s_tree_height = cpu_to_le16(v))
    166#define sb_bmap_nr(sbp)            (le16_to_cpu((sbp)->s_v1.s_bmap_nr))
    167#define set_sb_bmap_nr(sbp,v)      ((sbp)->s_v1.s_bmap_nr = cpu_to_le16(v))
    168#define sb_version(sbp)            (le16_to_cpu((sbp)->s_v1.s_version))
    169#define set_sb_version(sbp,v)      ((sbp)->s_v1.s_version = cpu_to_le16(v))
    170
    171#define sb_mnt_count(sbp)	   (le16_to_cpu((sbp)->s_mnt_count))
    172#define set_sb_mnt_count(sbp, v)   ((sbp)->s_mnt_count = cpu_to_le16(v))
    173
    174#define sb_reserved_for_journal(sbp) \
    175              (le16_to_cpu((sbp)->s_v1.s_reserved_for_journal))
    176#define set_sb_reserved_for_journal(sbp,v) \
    177              ((sbp)->s_v1.s_reserved_for_journal = cpu_to_le16(v))
    178
    179/* LOGGING -- */
    180
    181/*
    182 * These all interelate for performance.
    183 *
    184 * If the journal block count is smaller than n transactions, you lose speed.
    185 * I don't know what n is yet, I'm guessing 8-16.
    186 *
    187 * typical transaction size depends on the application, how often fsync is
    188 * called, and how many metadata blocks you dirty in a 30 second period.
    189 * The more small files (<16k) you use, the larger your transactions will
    190 * be.
    191 *
    192 * If your journal fills faster than dirty buffers get flushed to disk, it
    193 * must flush them before allowing the journal to wrap, which slows things
    194 * down.  If you need high speed meta data updates, the journal should be
    195 * big enough to prevent wrapping before dirty meta blocks get to disk.
    196 *
    197 * If the batch max is smaller than the transaction max, you'll waste space
    198 * at the end of the journal because journal_end sets the next transaction
    199 * to start at 0 if the next transaction has any chance of wrapping.
    200 *
    201 * The large the batch max age, the better the speed, and the more meta
    202 * data changes you'll lose after a crash.
    203 */
    204
    205/* don't mess with these for a while */
    206/* we have a node size define somewhere in reiserfs_fs.h. -Hans */
    207#define JOURNAL_BLOCK_SIZE  4096	/* BUG gotta get rid of this */
    208#define JOURNAL_MAX_CNODE   1500	/* max cnodes to allocate. */
    209#define JOURNAL_HASH_SIZE 8192
    210
    211/* number of copies of the bitmaps to have floating.  Must be >= 2 */
    212#define JOURNAL_NUM_BITMAPS 5
    213
    214/*
    215 * One of these for every block in every transaction
    216 * Each one is in two hash tables.  First, a hash of the current transaction,
    217 * and after journal_end, a hash of all the in memory transactions.
    218 * next and prev are used by the current transaction (journal_hash).
    219 * hnext and hprev are used by journal_list_hash.  If a block is in more
    220 * than one transaction, the journal_list_hash links it in multiple times.
    221 * This allows flush_journal_list to remove just the cnode belonging to a
    222 * given transaction.
    223 */
    224struct reiserfs_journal_cnode {
    225	struct buffer_head *bh;	/* real buffer head */
    226	struct super_block *sb;	/* dev of real buffer head */
    227
    228	/* block number of real buffer head, == 0 when buffer on disk */
    229	__u32 blocknr;
    230
    231	unsigned long state;
    232
    233	/* journal list this cnode lives in */
    234	struct reiserfs_journal_list *jlist;
    235
    236	struct reiserfs_journal_cnode *next;	/* next in transaction list */
    237	struct reiserfs_journal_cnode *prev;	/* prev in transaction list */
    238	struct reiserfs_journal_cnode *hprev;	/* prev in hash list */
    239	struct reiserfs_journal_cnode *hnext;	/* next in hash list */
    240};
    241
    242struct reiserfs_bitmap_node {
    243	int id;
    244	char *data;
    245	struct list_head list;
    246};
    247
    248struct reiserfs_list_bitmap {
    249	struct reiserfs_journal_list *journal_list;
    250	struct reiserfs_bitmap_node **bitmaps;
    251};
    252
    253/*
    254 * one of these for each transaction.  The most important part here is the
    255 * j_realblock.  this list of cnodes is used to hash all the blocks in all
    256 * the commits, to mark all the real buffer heads dirty once all the commits
    257 * hit the disk, and to make sure every real block in a transaction is on
    258 * disk before allowing the log area to be overwritten
    259 */
    260struct reiserfs_journal_list {
    261	unsigned long j_start;
    262	unsigned long j_state;
    263	unsigned long j_len;
    264	atomic_t j_nonzerolen;
    265	atomic_t j_commit_left;
    266
    267	/* all commits older than this on disk */
    268	atomic_t j_older_commits_done;
    269
    270	struct mutex j_commit_mutex;
    271	unsigned int j_trans_id;
    272	time64_t j_timestamp; /* write-only but useful for crash dump analysis */
    273	struct reiserfs_list_bitmap *j_list_bitmap;
    274	struct buffer_head *j_commit_bh;	/* commit buffer head */
    275	struct reiserfs_journal_cnode *j_realblock;
    276	struct reiserfs_journal_cnode *j_freedlist;	/* list of buffers that were freed during this trans.  free each of these on flush */
    277	/* time ordered list of all active transactions */
    278	struct list_head j_list;
    279
    280	/*
    281	 * time ordered list of all transactions we haven't tried
    282	 * to flush yet
    283	 */
    284	struct list_head j_working_list;
    285
    286	/* list of tail conversion targets in need of flush before commit */
    287	struct list_head j_tail_bh_list;
    288
    289	/* list of data=ordered buffers in need of flush before commit */
    290	struct list_head j_bh_list;
    291	int j_refcount;
    292};
    293
    294struct reiserfs_journal {
    295	struct buffer_head **j_ap_blocks;	/* journal blocks on disk */
    296	/* newest journal block */
    297	struct reiserfs_journal_cnode *j_last;
    298
    299	/* oldest journal block.  start here for traverse */
    300	struct reiserfs_journal_cnode *j_first;
    301
    302	struct block_device *j_dev_bd;
    303	fmode_t j_dev_mode;
    304
    305	/* first block on s_dev of reserved area journal */
    306	int j_1st_reserved_block;
    307
    308	unsigned long j_state;
    309	unsigned int j_trans_id;
    310	unsigned long j_mount_id;
    311
    312	/* start of current waiting commit (index into j_ap_blocks) */
    313	unsigned long j_start;
    314	unsigned long j_len;	/* length of current waiting commit */
    315
    316	/* number of buffers requested by journal_begin() */
    317	unsigned long j_len_alloc;
    318
    319	atomic_t j_wcount;	/* count of writers for current commit */
    320
    321	/* batch count. allows turning X transactions into 1 */
    322	unsigned long j_bcount;
    323
    324	/* first unflushed transactions offset */
    325	unsigned long j_first_unflushed_offset;
    326
    327	/* last fully flushed journal timestamp */
    328	unsigned j_last_flush_trans_id;
    329
    330	struct buffer_head *j_header_bh;
    331
    332	time64_t j_trans_start_time;	/* time this transaction started */
    333	struct mutex j_mutex;
    334	struct mutex j_flush_mutex;
    335
    336	/* wait for current transaction to finish before starting new one */
    337	wait_queue_head_t j_join_wait;
    338
    339	atomic_t j_jlock;		/* lock for j_join_wait */
    340	int j_list_bitmap_index;	/* number of next list bitmap to use */
    341
    342	/* no more journal begins allowed. MUST sleep on j_join_wait */
    343	int j_must_wait;
    344
    345	/* next journal_end will flush all journal list */
    346	int j_next_full_flush;
    347
    348	/* next journal_end will flush all async commits */
    349	int j_next_async_flush;
    350
    351	int j_cnode_used;	/* number of cnodes on the used list */
    352	int j_cnode_free;	/* number of cnodes on the free list */
    353
    354	/* max number of blocks in a transaction.  */
    355	unsigned int j_trans_max;
    356
    357	/* max number of blocks to batch into a trans */
    358	unsigned int j_max_batch;
    359
    360	/* in seconds, how old can an async commit be */
    361	unsigned int j_max_commit_age;
    362
    363	/* in seconds, how old can a transaction be */
    364	unsigned int j_max_trans_age;
    365
    366	/* the default for the max commit age */
    367	unsigned int j_default_max_commit_age;
    368
    369	struct reiserfs_journal_cnode *j_cnode_free_list;
    370
    371	/* orig pointer returned from vmalloc */
    372	struct reiserfs_journal_cnode *j_cnode_free_orig;
    373
    374	struct reiserfs_journal_list *j_current_jl;
    375	int j_free_bitmap_nodes;
    376	int j_used_bitmap_nodes;
    377
    378	int j_num_lists;	/* total number of active transactions */
    379	int j_num_work_lists;	/* number that need attention from kreiserfsd */
    380
    381	/* debugging to make sure things are flushed in order */
    382	unsigned int j_last_flush_id;
    383
    384	/* debugging to make sure things are committed in order */
    385	unsigned int j_last_commit_id;
    386
    387	struct list_head j_bitmap_nodes;
    388	struct list_head j_dirty_buffers;
    389	spinlock_t j_dirty_buffers_lock;	/* protects j_dirty_buffers */
    390
    391	/* list of all active transactions */
    392	struct list_head j_journal_list;
    393
    394	/* lists that haven't been touched by writeback attempts */
    395	struct list_head j_working_list;
    396
    397	/* hash table for real buffer heads in current trans */
    398	struct reiserfs_journal_cnode *j_hash_table[JOURNAL_HASH_SIZE];
    399
    400	/* hash table for all the real buffer heads in all the transactions */
    401	struct reiserfs_journal_cnode *j_list_hash_table[JOURNAL_HASH_SIZE];
    402
    403	/* array of bitmaps to record the deleted blocks */
    404	struct reiserfs_list_bitmap j_list_bitmap[JOURNAL_NUM_BITMAPS];
    405
    406	/* list of inodes which have preallocated blocks */
    407	struct list_head j_prealloc_list;
    408	int j_persistent_trans;
    409	unsigned long j_max_trans_size;
    410	unsigned long j_max_batch_size;
    411
    412	int j_errno;
    413
    414	/* when flushing ordered buffers, throttle new ordered writers */
    415	struct delayed_work j_work;
    416	struct super_block *j_work_sb;
    417	atomic_t j_async_throttle;
    418};
    419
    420enum journal_state_bits {
    421	J_WRITERS_BLOCKED = 1,	/* set when new writers not allowed */
    422	J_WRITERS_QUEUED,    /* set when log is full due to too many writers */
    423	J_ABORTED,           /* set when log is aborted */
    424};
    425
    426/* ick.  magic string to find desc blocks in the journal */
    427#define JOURNAL_DESC_MAGIC "ReIsErLB"
    428
    429typedef __u32(*hashf_t) (const signed char *, int);
    430
    431struct reiserfs_bitmap_info {
    432	__u32 free_count;
    433};
    434
    435struct proc_dir_entry;
    436
    437#if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
    438typedef unsigned long int stat_cnt_t;
    439typedef struct reiserfs_proc_info_data {
    440	spinlock_t lock;
    441	int exiting;
    442	int max_hash_collisions;
    443
    444	stat_cnt_t breads;
    445	stat_cnt_t bread_miss;
    446	stat_cnt_t search_by_key;
    447	stat_cnt_t search_by_key_fs_changed;
    448	stat_cnt_t search_by_key_restarted;
    449
    450	stat_cnt_t insert_item_restarted;
    451	stat_cnt_t paste_into_item_restarted;
    452	stat_cnt_t cut_from_item_restarted;
    453	stat_cnt_t delete_solid_item_restarted;
    454	stat_cnt_t delete_item_restarted;
    455
    456	stat_cnt_t leaked_oid;
    457	stat_cnt_t leaves_removable;
    458
    459	/*
    460	 * balances per level.
    461	 * Use explicit 5 as MAX_HEIGHT is not visible yet.
    462	 */
    463	stat_cnt_t balance_at[5];	/* XXX */
    464	/* sbk == search_by_key */
    465	stat_cnt_t sbk_read_at[5];	/* XXX */
    466	stat_cnt_t sbk_fs_changed[5];
    467	stat_cnt_t sbk_restarted[5];
    468	stat_cnt_t items_at[5];	/* XXX */
    469	stat_cnt_t free_at[5];	/* XXX */
    470	stat_cnt_t can_node_be_removed[5];	/* XXX */
    471	long int lnum[5];	/* XXX */
    472	long int rnum[5];	/* XXX */
    473	long int lbytes[5];	/* XXX */
    474	long int rbytes[5];	/* XXX */
    475	stat_cnt_t get_neighbors[5];
    476	stat_cnt_t get_neighbors_restart[5];
    477	stat_cnt_t need_l_neighbor[5];
    478	stat_cnt_t need_r_neighbor[5];
    479
    480	stat_cnt_t free_block;
    481	struct __scan_bitmap_stats {
    482		stat_cnt_t call;
    483		stat_cnt_t wait;
    484		stat_cnt_t bmap;
    485		stat_cnt_t retry;
    486		stat_cnt_t in_journal_hint;
    487		stat_cnt_t in_journal_nohint;
    488		stat_cnt_t stolen;
    489	} scan_bitmap;
    490	struct __journal_stats {
    491		stat_cnt_t in_journal;
    492		stat_cnt_t in_journal_bitmap;
    493		stat_cnt_t in_journal_reusable;
    494		stat_cnt_t lock_journal;
    495		stat_cnt_t lock_journal_wait;
    496		stat_cnt_t journal_being;
    497		stat_cnt_t journal_relock_writers;
    498		stat_cnt_t journal_relock_wcount;
    499		stat_cnt_t mark_dirty;
    500		stat_cnt_t mark_dirty_already;
    501		stat_cnt_t mark_dirty_notjournal;
    502		stat_cnt_t restore_prepared;
    503		stat_cnt_t prepare;
    504		stat_cnt_t prepare_retry;
    505	} journal;
    506} reiserfs_proc_info_data_t;
    507#else
    508typedef struct reiserfs_proc_info_data {
    509} reiserfs_proc_info_data_t;
    510#endif
    511
    512/* Number of quota types we support */
    513#define REISERFS_MAXQUOTAS 2
    514
    515/* reiserfs union of in-core super block data */
    516struct reiserfs_sb_info {
    517	/* Buffer containing the super block */
    518	struct buffer_head *s_sbh;
    519
    520	/* Pointer to the on-disk super block in the buffer */
    521	struct reiserfs_super_block *s_rs;
    522	struct reiserfs_bitmap_info *s_ap_bitmap;
    523
    524	/* pointer to journal information */
    525	struct reiserfs_journal *s_journal;
    526
    527	unsigned short s_mount_state;	/* reiserfs state (valid, invalid) */
    528
    529	/* Serialize writers access, replace the old bkl */
    530	struct mutex lock;
    531
    532	/* Owner of the lock (can be recursive) */
    533	struct task_struct *lock_owner;
    534
    535	/* Depth of the lock, start from -1 like the bkl */
    536	int lock_depth;
    537
    538	struct workqueue_struct *commit_wq;
    539
    540	/* Comment? -Hans */
    541	void (*end_io_handler) (struct buffer_head *, int);
    542
    543	/*
    544	 * pointer to function which is used to sort names in directory.
    545	 * Set on mount
    546	 */
    547	hashf_t s_hash_function;
    548
    549	/* reiserfs's mount options are set here */
    550	unsigned long s_mount_opt;
    551
    552	/* This is a structure that describes block allocator options */
    553	struct {
    554		/* Bitfield for enable/disable kind of options */
    555		unsigned long bits;
    556
    557		/*
    558		 * size started from which we consider file
    559		 * to be a large one (in blocks)
    560		 */
    561		unsigned long large_file_size;
    562
    563		int border;	/* percentage of disk, border takes */
    564
    565		/*
    566		 * Minimal file size (in blocks) starting
    567		 * from which we do preallocations
    568		 */
    569		int preallocmin;
    570
    571		/*
    572		 * Number of blocks we try to prealloc when file
    573		 * reaches preallocmin size (in blocks) or prealloc_list
    574		 is empty.
    575		 */
    576		int preallocsize;
    577	} s_alloc_options;
    578
    579	/* Comment? -Hans */
    580	wait_queue_head_t s_wait;
    581	/* increased by one every time the  tree gets re-balanced */
    582	atomic_t s_generation_counter;
    583
    584	/* File system properties. Currently holds on-disk FS format */
    585	unsigned long s_properties;
    586
    587	/* session statistics */
    588	int s_disk_reads;
    589	int s_disk_writes;
    590	int s_fix_nodes;
    591	int s_do_balance;
    592	int s_unneeded_left_neighbor;
    593	int s_good_search_by_key_reada;
    594	int s_bmaps;
    595	int s_bmaps_without_search;
    596	int s_direct2indirect;
    597	int s_indirect2direct;
    598
    599	/*
    600	 * set up when it's ok for reiserfs_read_inode2() to read from
    601	 * disk inode with nlink==0. Currently this is only used during
    602	 * finish_unfinished() processing at mount time
    603	 */
    604	int s_is_unlinked_ok;
    605
    606	reiserfs_proc_info_data_t s_proc_info_data;
    607	struct proc_dir_entry *procdir;
    608
    609	/* amount of blocks reserved for further allocations */
    610	int reserved_blocks;
    611
    612
    613	/* this lock on now only used to protect reserved_blocks variable */
    614	spinlock_t bitmap_lock;
    615	struct dentry *priv_root;	/* root of /.reiserfs_priv */
    616	struct dentry *xattr_root;	/* root of /.reiserfs_priv/xattrs */
    617	int j_errno;
    618
    619	int work_queued;              /* non-zero delayed work is queued */
    620	struct delayed_work old_work; /* old transactions flush delayed work */
    621	spinlock_t old_work_lock;     /* protects old_work and work_queued */
    622
    623#ifdef CONFIG_QUOTA
    624	char *s_qf_names[REISERFS_MAXQUOTAS];
    625	int s_jquota_fmt;
    626#endif
    627	char *s_jdev;		/* Stored jdev for mount option showing */
    628#ifdef CONFIG_REISERFS_CHECK
    629
    630	/*
    631	 * Detects whether more than one copy of tb exists per superblock
    632	 * as a means of checking whether do_balance is executing
    633	 * concurrently against another tree reader/writer on a same
    634	 * mount point.
    635	 */
    636	struct tree_balance *cur_tb;
    637#endif
    638};
    639
    640/* Definitions of reiserfs on-disk properties: */
    641#define REISERFS_3_5 0
    642#define REISERFS_3_6 1
    643#define REISERFS_OLD_FORMAT 2
    644
    645/* Mount options */
    646enum reiserfs_mount_options {
    647	/* large tails will be created in a session */
    648	REISERFS_LARGETAIL,
    649	/*
    650	 * small (for files less than block size) tails will
    651	 * be created in a session
    652	 */
    653	REISERFS_SMALLTAIL,
    654
    655	/* replay journal and return 0. Use by fsck */
    656	REPLAYONLY,
    657
    658	/*
    659	 * -o conv: causes conversion of old format super block to the
    660	 * new format. If not specified - old partition will be dealt
    661	 * with in a manner of 3.5.x
    662	 */
    663	REISERFS_CONVERT,
    664
    665	/*
    666	 * -o hash={tea, rupasov, r5, detect} is meant for properly mounting
    667	 * reiserfs disks from 3.5.19 or earlier.  99% of the time, this
    668	 * option is not required.  If the normal autodection code can't
    669	 * determine which hash to use (because both hashes had the same
    670	 * value for a file) use this option to force a specific hash.
    671	 * It won't allow you to override the existing hash on the FS, so
    672	 * if you have a tea hash disk, and mount with -o hash=rupasov,
    673	 * the mount will fail.
    674	 */
    675	FORCE_TEA_HASH,		/* try to force tea hash on mount */
    676	FORCE_RUPASOV_HASH,	/* try to force rupasov hash on mount */
    677	FORCE_R5_HASH,		/* try to force rupasov hash on mount */
    678	FORCE_HASH_DETECT,	/* try to detect hash function on mount */
    679
    680	REISERFS_DATA_LOG,
    681	REISERFS_DATA_ORDERED,
    682	REISERFS_DATA_WRITEBACK,
    683
    684	/*
    685	 * used for testing experimental features, makes benchmarking new
    686	 * features with and without more convenient, should never be used by
    687	 * users in any code shipped to users (ideally)
    688	 */
    689
    690	REISERFS_NO_BORDER,
    691	REISERFS_NO_UNHASHED_RELOCATION,
    692	REISERFS_HASHED_RELOCATION,
    693	REISERFS_ATTRS,
    694	REISERFS_XATTRS_USER,
    695	REISERFS_POSIXACL,
    696	REISERFS_EXPOSE_PRIVROOT,
    697	REISERFS_BARRIER_NONE,
    698	REISERFS_BARRIER_FLUSH,
    699
    700	/* Actions on error */
    701	REISERFS_ERROR_PANIC,
    702	REISERFS_ERROR_RO,
    703	REISERFS_ERROR_CONTINUE,
    704
    705	REISERFS_USRQUOTA,	/* User quota option specified */
    706	REISERFS_GRPQUOTA,	/* Group quota option specified */
    707
    708	REISERFS_TEST1,
    709	REISERFS_TEST2,
    710	REISERFS_TEST3,
    711	REISERFS_TEST4,
    712	REISERFS_UNSUPPORTED_OPT,
    713};
    714
    715#define reiserfs_r5_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_R5_HASH))
    716#define reiserfs_rupasov_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_RUPASOV_HASH))
    717#define reiserfs_tea_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_TEA_HASH))
    718#define reiserfs_hash_detect(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_HASH_DETECT))
    719#define reiserfs_no_border(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_BORDER))
    720#define reiserfs_no_unhashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_UNHASHED_RELOCATION))
    721#define reiserfs_hashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_HASHED_RELOCATION))
    722#define reiserfs_test4(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_TEST4))
    723
    724#define have_large_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_LARGETAIL))
    725#define have_small_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_SMALLTAIL))
    726#define replay_only(s) (REISERFS_SB(s)->s_mount_opt & (1 << REPLAYONLY))
    727#define reiserfs_attrs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ATTRS))
    728#define old_format_only(s) (REISERFS_SB(s)->s_properties & (1 << REISERFS_3_5))
    729#define convert_reiserfs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_CONVERT))
    730#define reiserfs_data_log(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_LOG))
    731#define reiserfs_data_ordered(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_ORDERED))
    732#define reiserfs_data_writeback(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_WRITEBACK))
    733#define reiserfs_xattrs_user(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_XATTRS_USER))
    734#define reiserfs_posixacl(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_POSIXACL))
    735#define reiserfs_expose_privroot(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_EXPOSE_PRIVROOT))
    736#define reiserfs_xattrs_optional(s) (reiserfs_xattrs_user(s) || reiserfs_posixacl(s))
    737#define reiserfs_barrier_none(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_NONE))
    738#define reiserfs_barrier_flush(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_FLUSH))
    739
    740#define reiserfs_error_panic(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_PANIC))
    741#define reiserfs_error_ro(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_RO))
    742
    743void reiserfs_file_buffer(struct buffer_head *bh, int list);
    744extern struct file_system_type reiserfs_fs_type;
    745int reiserfs_resize(struct super_block *, unsigned long);
    746
    747#define CARRY_ON                0
    748#define SCHEDULE_OCCURRED       1
    749
    750#define SB_BUFFER_WITH_SB(s) (REISERFS_SB(s)->s_sbh)
    751#define SB_JOURNAL(s) (REISERFS_SB(s)->s_journal)
    752#define SB_JOURNAL_1st_RESERVED_BLOCK(s) (SB_JOURNAL(s)->j_1st_reserved_block)
    753#define SB_JOURNAL_LEN_FREE(s) (SB_JOURNAL(s)->j_journal_len_free)
    754#define SB_AP_BITMAP(s) (REISERFS_SB(s)->s_ap_bitmap)
    755
    756#define SB_DISK_JOURNAL_HEAD(s) (SB_JOURNAL(s)->j_header_bh->)
    757
    758#define reiserfs_is_journal_aborted(journal) (unlikely (__reiserfs_is_journal_aborted (journal)))
    759static inline int __reiserfs_is_journal_aborted(struct reiserfs_journal
    760						*journal)
    761{
    762	return test_bit(J_ABORTED, &journal->j_state);
    763}
    764
    765/*
    766 * Locking primitives. The write lock is a per superblock
    767 * special mutex that has properties close to the Big Kernel Lock
    768 * which was used in the previous locking scheme.
    769 */
    770void reiserfs_write_lock(struct super_block *s);
    771void reiserfs_write_unlock(struct super_block *s);
    772int __must_check reiserfs_write_unlock_nested(struct super_block *s);
    773void reiserfs_write_lock_nested(struct super_block *s, int depth);
    774
    775#ifdef CONFIG_REISERFS_CHECK
    776void reiserfs_lock_check_recursive(struct super_block *s);
    777#else
    778static inline void reiserfs_lock_check_recursive(struct super_block *s) { }
    779#endif
    780
    781/*
    782 * Several mutexes depend on the write lock.
    783 * However sometimes we want to relax the write lock while we hold
    784 * these mutexes, according to the release/reacquire on schedule()
    785 * properties of the Bkl that were used.
    786 * Reiserfs performances and locking were based on this scheme.
    787 * Now that the write lock is a mutex and not the bkl anymore, doing so
    788 * may result in a deadlock:
    789 *
    790 * A acquire write_lock
    791 * A acquire j_commit_mutex
    792 * A release write_lock and wait for something
    793 * B acquire write_lock
    794 * B can't acquire j_commit_mutex and sleep
    795 * A can't acquire write lock anymore
    796 * deadlock
    797 *
    798 * What we do here is avoiding such deadlock by playing the same game
    799 * than the Bkl: if we can't acquire a mutex that depends on the write lock,
    800 * we release the write lock, wait a bit and then retry.
    801 *
    802 * The mutexes concerned by this hack are:
    803 * - The commit mutex of a journal list
    804 * - The flush mutex
    805 * - The journal lock
    806 * - The inode mutex
    807 */
    808static inline void reiserfs_mutex_lock_safe(struct mutex *m,
    809					    struct super_block *s)
    810{
    811	int depth;
    812
    813	depth = reiserfs_write_unlock_nested(s);
    814	mutex_lock(m);
    815	reiserfs_write_lock_nested(s, depth);
    816}
    817
    818static inline void
    819reiserfs_mutex_lock_nested_safe(struct mutex *m, unsigned int subclass,
    820				struct super_block *s)
    821{
    822	int depth;
    823
    824	depth = reiserfs_write_unlock_nested(s);
    825	mutex_lock_nested(m, subclass);
    826	reiserfs_write_lock_nested(s, depth);
    827}
    828
    829static inline void
    830reiserfs_down_read_safe(struct rw_semaphore *sem, struct super_block *s)
    831{
    832       int depth;
    833       depth = reiserfs_write_unlock_nested(s);
    834       down_read(sem);
    835       reiserfs_write_lock_nested(s, depth);
    836}
    837
    838/*
    839 * When we schedule, we usually want to also release the write lock,
    840 * according to the previous bkl based locking scheme of reiserfs.
    841 */
    842static inline void reiserfs_cond_resched(struct super_block *s)
    843{
    844	if (need_resched()) {
    845		int depth;
    846
    847		depth = reiserfs_write_unlock_nested(s);
    848		schedule();
    849		reiserfs_write_lock_nested(s, depth);
    850	}
    851}
    852
    853struct fid;
    854
    855/*
    856 * in reading the #defines, it may help to understand that they employ
    857 *  the following abbreviations:
    858 *
    859 *  B = Buffer
    860 *  I = Item header
    861 *  H = Height within the tree (should be changed to LEV)
    862 *  N = Number of the item in the node
    863 *  STAT = stat data
    864 *  DEH = Directory Entry Header
    865 *  EC = Entry Count
    866 *  E = Entry number
    867 *  UL = Unsigned Long
    868 *  BLKH = BLocK Header
    869 *  UNFM = UNForMatted node
    870 *  DC = Disk Child
    871 *  P = Path
    872 *
    873 *  These #defines are named by concatenating these abbreviations,
    874 *  where first comes the arguments, and last comes the return value,
    875 *  of the macro.
    876 */
    877
    878#define USE_INODE_GENERATION_COUNTER
    879
    880#define REISERFS_PREALLOCATE
    881#define DISPLACE_NEW_PACKING_LOCALITIES
    882#define PREALLOCATION_SIZE 9
    883
    884/* n must be power of 2 */
    885#define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
    886
    887/*
    888 * to be ok for alpha and others we have to align structures to 8 byte
    889 * boundary.
    890 * FIXME: do not change 4 by anything else: there is code which relies on that
    891 */
    892#define ROUND_UP(x) _ROUND_UP(x,8LL)
    893
    894/*
    895 * debug levels.  Right now, CONFIG_REISERFS_CHECK means print all debug
    896 * messages.
    897 */
    898#define REISERFS_DEBUG_CODE 5	/* extra messages to help find/debug errors */
    899
    900void __reiserfs_warning(struct super_block *s, const char *id,
    901			 const char *func, const char *fmt, ...);
    902#define reiserfs_warning(s, id, fmt, args...) \
    903	 __reiserfs_warning(s, id, __func__, fmt, ##args)
    904/* assertions handling */
    905
    906/* always check a condition and panic if it's false. */
    907#define __RASSERT(cond, scond, format, args...)			\
    908do {									\
    909	if (!(cond))							\
    910		reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \
    911			       __FILE__ ":%i:%s: " format "\n",		\
    912			       __LINE__, __func__ , ##args);		\
    913} while (0)
    914
    915#define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args)
    916
    917#if defined( CONFIG_REISERFS_CHECK )
    918#define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args)
    919#else
    920#define RFALSE( cond, format, args... ) do {;} while( 0 )
    921#endif
    922
    923#define CONSTF __attribute_const__
    924/*
    925 * Disk Data Structures
    926 */
    927
    928/***************************************************************************
    929 *                             SUPER BLOCK                                 *
    930 ***************************************************************************/
    931
    932/*
    933 * Structure of super block on disk, a version of which in RAM is often
    934 * accessed as REISERFS_SB(s)->s_rs. The version in RAM is part of a larger
    935 * structure containing fields never written to disk.
    936 */
    937#define UNSET_HASH 0	/* Detect hash on disk */
    938#define TEA_HASH  1
    939#define YURA_HASH 2
    940#define R5_HASH   3
    941#define DEFAULT_HASH R5_HASH
    942
    943struct journal_params {
    944	/* where does journal start from on its * device */
    945	__le32 jp_journal_1st_block;
    946
    947	/* journal device st_rdev */
    948	__le32 jp_journal_dev;
    949
    950	/* size of the journal */
    951	__le32 jp_journal_size;
    952
    953	/* max number of blocks in a transaction. */
    954	__le32 jp_journal_trans_max;
    955
    956	/*
    957	 * random value made on fs creation
    958	 * (this was sb_journal_block_count)
    959	 */
    960	__le32 jp_journal_magic;
    961
    962	/* max number of blocks to batch into a trans */
    963	__le32 jp_journal_max_batch;
    964
    965	/* in seconds, how old can an async  commit be */
    966	__le32 jp_journal_max_commit_age;
    967
    968	/* in seconds, how old can a transaction be */
    969	__le32 jp_journal_max_trans_age;
    970};
    971
    972/* this is the super from 3.5.X, where X >= 10 */
    973struct reiserfs_super_block_v1 {
    974	__le32 s_block_count;	/* blocks count         */
    975	__le32 s_free_blocks;	/* free blocks count    */
    976	__le32 s_root_block;	/* root block number    */
    977	struct journal_params s_journal;
    978	__le16 s_blocksize;	/* block size */
    979
    980	/* max size of object id array, see get_objectid() commentary  */
    981	__le16 s_oid_maxsize;
    982	__le16 s_oid_cursize;	/* current size of object id array */
    983
    984	/* this is set to 1 when filesystem was umounted, to 2 - when not */
    985	__le16 s_umount_state;
    986
    987	/*
    988	 * reiserfs magic string indicates that file system is reiserfs:
    989	 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs"
    990	 */
    991	char s_magic[10];
    992
    993	/*
    994	 * it is set to used by fsck to mark which
    995	 * phase of rebuilding is done
    996	 */
    997	__le16 s_fs_state;
    998	/*
    999	 * indicate, what hash function is being use
   1000	 * to sort names in a directory
   1001	 */
   1002	__le32 s_hash_function_code;
   1003	__le16 s_tree_height;	/* height of disk tree */
   1004
   1005	/*
   1006	 * amount of bitmap blocks needed to address
   1007	 * each block of file system
   1008	 */
   1009	__le16 s_bmap_nr;
   1010
   1011	/*
   1012	 * this field is only reliable on filesystem with non-standard journal
   1013	 */
   1014	__le16 s_version;
   1015
   1016	/*
   1017	 * size in blocks of journal area on main device, we need to
   1018	 * keep after making fs with non-standard journal
   1019	 */
   1020	__le16 s_reserved_for_journal;
   1021} __attribute__ ((__packed__));
   1022
   1023#define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
   1024
   1025/* this is the on disk super block */
   1026struct reiserfs_super_block {
   1027	struct reiserfs_super_block_v1 s_v1;
   1028	__le32 s_inode_generation;
   1029
   1030	/* Right now used only by inode-attributes, if enabled */
   1031	__le32 s_flags;
   1032
   1033	unsigned char s_uuid[16];	/* filesystem unique identifier */
   1034	unsigned char s_label[16];	/* filesystem volume label */
   1035	__le16 s_mnt_count;		/* Count of mounts since last fsck */
   1036	__le16 s_max_mnt_count;		/* Maximum mounts before check */
   1037	__le32 s_lastcheck;		/* Timestamp of last fsck */
   1038	__le32 s_check_interval;	/* Interval between checks */
   1039
   1040	/*
   1041	 * zero filled by mkreiserfs and reiserfs_convert_objectid_map_v1()
   1042	 * so any additions must be updated there as well. */
   1043	char s_unused[76];
   1044} __attribute__ ((__packed__));
   1045
   1046#define SB_SIZE (sizeof(struct reiserfs_super_block))
   1047
   1048#define REISERFS_VERSION_1 0
   1049#define REISERFS_VERSION_2 2
   1050
   1051/* on-disk super block fields converted to cpu form */
   1052#define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
   1053#define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
   1054#define SB_BLOCKSIZE(s) \
   1055        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
   1056#define SB_BLOCK_COUNT(s) \
   1057        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
   1058#define SB_FREE_BLOCKS(s) \
   1059        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
   1060#define SB_REISERFS_MAGIC(s) \
   1061        (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
   1062#define SB_ROOT_BLOCK(s) \
   1063        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
   1064#define SB_TREE_HEIGHT(s) \
   1065        le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
   1066#define SB_REISERFS_STATE(s) \
   1067        le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
   1068#define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
   1069#define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
   1070
   1071#define PUT_SB_BLOCK_COUNT(s, val) \
   1072   do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
   1073#define PUT_SB_FREE_BLOCKS(s, val) \
   1074   do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
   1075#define PUT_SB_ROOT_BLOCK(s, val) \
   1076   do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
   1077#define PUT_SB_TREE_HEIGHT(s, val) \
   1078   do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
   1079#define PUT_SB_REISERFS_STATE(s, val) \
   1080   do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
   1081#define PUT_SB_VERSION(s, val) \
   1082   do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
   1083#define PUT_SB_BMAP_NR(s, val) \
   1084   do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
   1085
   1086#define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
   1087#define SB_ONDISK_JOURNAL_SIZE(s) \
   1088         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
   1089#define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
   1090         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
   1091#define SB_ONDISK_JOURNAL_DEVICE(s) \
   1092         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
   1093#define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
   1094         le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
   1095
   1096#define is_block_in_log_or_reserved_area(s, block) \
   1097         block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
   1098         && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) +  \
   1099         ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
   1100         SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
   1101
   1102int is_reiserfs_3_5(struct reiserfs_super_block *rs);
   1103int is_reiserfs_3_6(struct reiserfs_super_block *rs);
   1104int is_reiserfs_jr(struct reiserfs_super_block *rs);
   1105
   1106/*
   1107 * ReiserFS leaves the first 64k unused, so that partition labels have
   1108 * enough space.  If someone wants to write a fancy bootloader that
   1109 * needs more than 64k, let us know, and this will be increased in size.
   1110 * This number must be larger than the largest block size on any
   1111 * platform, or code will break.  -Hans
   1112 */
   1113#define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
   1114#define REISERFS_FIRST_BLOCK unused_define
   1115#define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
   1116
   1117/* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
   1118#define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
   1119
   1120/* reiserfs internal error code (used by search_by_key and fix_nodes)) */
   1121#define CARRY_ON      0
   1122#define REPEAT_SEARCH -1
   1123#define IO_ERROR      -2
   1124#define NO_DISK_SPACE -3
   1125#define NO_BALANCING_NEEDED  (-4)
   1126#define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
   1127#define QUOTA_EXCEEDED -6
   1128
   1129typedef __u32 b_blocknr_t;
   1130typedef __le32 unp_t;
   1131
   1132struct unfm_nodeinfo {
   1133	unp_t unfm_nodenum;
   1134	unsigned short unfm_freespace;
   1135};
   1136
   1137/* there are two formats of keys: 3.5 and 3.6 */
   1138#define KEY_FORMAT_3_5 0
   1139#define KEY_FORMAT_3_6 1
   1140
   1141/* there are two stat datas */
   1142#define STAT_DATA_V1 0
   1143#define STAT_DATA_V2 1
   1144
   1145static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
   1146{
   1147	return container_of(inode, struct reiserfs_inode_info, vfs_inode);
   1148}
   1149
   1150static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
   1151{
   1152	return sb->s_fs_info;
   1153}
   1154
   1155/*
   1156 * Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16
   1157 * which overflows on large file systems.
   1158 */
   1159static inline __u32 reiserfs_bmap_count(struct super_block *sb)
   1160{
   1161	return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1;
   1162}
   1163
   1164static inline int bmap_would_wrap(unsigned bmap_nr)
   1165{
   1166	return bmap_nr > ((1LL << 16) - 1);
   1167}
   1168
   1169extern const struct xattr_handler *reiserfs_xattr_handlers[];
   1170
   1171/*
   1172 * this says about version of key of all items (but stat data) the
   1173 * object consists of
   1174 */
   1175#define get_inode_item_key_version( inode )                                    \
   1176    ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
   1177
   1178#define set_inode_item_key_version( inode, version )                           \
   1179         ({ if((version)==KEY_FORMAT_3_6)                                      \
   1180                REISERFS_I(inode)->i_flags |= i_item_key_version_mask;      \
   1181            else                                                               \
   1182                REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
   1183
   1184#define get_inode_sd_version(inode)                                            \
   1185    ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
   1186
   1187#define set_inode_sd_version(inode, version)                                   \
   1188         ({ if((version)==STAT_DATA_V2)                                        \
   1189                REISERFS_I(inode)->i_flags |= i_stat_data_version_mask;     \
   1190            else                                                               \
   1191                REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
   1192
   1193/*
   1194 * This is an aggressive tail suppression policy, I am hoping it
   1195 * improves our benchmarks. The principle behind it is that percentage
   1196 * space saving is what matters, not absolute space saving.  This is
   1197 * non-intuitive, but it helps to understand it if you consider that the
   1198 * cost to access 4 blocks is not much more than the cost to access 1
   1199 * block, if you have to do a seek and rotate.  A tail risks a
   1200 * non-linear disk access that is significant as a percentage of total
   1201 * time cost for a 4 block file and saves an amount of space that is
   1202 * less significant as a percentage of space, or so goes the hypothesis.
   1203 * -Hans
   1204 */
   1205#define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
   1206(\
   1207  (!(n_tail_size)) || \
   1208  (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
   1209   ( (n_file_size) >= (n_block_size) * 4 ) || \
   1210   ( ( (n_file_size) >= (n_block_size) * 3 ) && \
   1211     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
   1212   ( ( (n_file_size) >= (n_block_size) * 2 ) && \
   1213     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
   1214   ( ( (n_file_size) >= (n_block_size) ) && \
   1215     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
   1216)
   1217
   1218/*
   1219 * Another strategy for tails, this one means only create a tail if all the
   1220 * file would fit into one DIRECT item.
   1221 * Primary intention for this one is to increase performance by decreasing
   1222 * seeking.
   1223*/
   1224#define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
   1225(\
   1226  (!(n_tail_size)) || \
   1227  (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
   1228)
   1229
   1230/*
   1231 * values for s_umount_state field
   1232 */
   1233#define REISERFS_VALID_FS    1
   1234#define REISERFS_ERROR_FS    2
   1235
   1236/*
   1237 * there are 5 item types currently
   1238 */
   1239#define TYPE_STAT_DATA 0
   1240#define TYPE_INDIRECT 1
   1241#define TYPE_DIRECT 2
   1242#define TYPE_DIRENTRY 3
   1243#define TYPE_MAXTYPE 3
   1244#define TYPE_ANY 15		/* FIXME: comment is required */
   1245
   1246/***************************************************************************
   1247 *                       KEY & ITEM HEAD                                   *
   1248 ***************************************************************************/
   1249
   1250/* * directories use this key as well as old files */
   1251struct offset_v1 {
   1252	__le32 k_offset;
   1253	__le32 k_uniqueness;
   1254} __attribute__ ((__packed__));
   1255
   1256struct offset_v2 {
   1257	__le64 v;
   1258} __attribute__ ((__packed__));
   1259
   1260static inline __u16 offset_v2_k_type(const struct offset_v2 *v2)
   1261{
   1262	__u8 type = le64_to_cpu(v2->v) >> 60;
   1263	return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY;
   1264}
   1265
   1266static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type)
   1267{
   1268	v2->v =
   1269	    (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60);
   1270}
   1271
   1272static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2)
   1273{
   1274	return le64_to_cpu(v2->v) & (~0ULL >> 4);
   1275}
   1276
   1277static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset)
   1278{
   1279	offset &= (~0ULL >> 4);
   1280	v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset);
   1281}
   1282
   1283/*
   1284 * Key of an item determines its location in the S+tree, and
   1285 * is composed of 4 components
   1286 */
   1287struct reiserfs_key {
   1288	/* packing locality: by default parent directory object id */
   1289	__le32 k_dir_id;
   1290
   1291	__le32 k_objectid;	/* object identifier */
   1292	union {
   1293		struct offset_v1 k_offset_v1;
   1294		struct offset_v2 k_offset_v2;
   1295	} __attribute__ ((__packed__)) u;
   1296} __attribute__ ((__packed__));
   1297
   1298struct in_core_key {
   1299	/* packing locality: by default parent directory object id */
   1300	__u32 k_dir_id;
   1301	__u32 k_objectid;	/* object identifier */
   1302	__u64 k_offset;
   1303	__u8 k_type;
   1304};
   1305
   1306struct cpu_key {
   1307	struct in_core_key on_disk_key;
   1308	int version;
   1309	/* 3 in all cases but direct2indirect and indirect2direct conversion */
   1310	int key_length;
   1311};
   1312
   1313/*
   1314 * Our function for comparing keys can compare keys of different
   1315 * lengths.  It takes as a parameter the length of the keys it is to
   1316 * compare.  These defines are used in determining what is to be passed
   1317 * to it as that parameter.
   1318 */
   1319#define REISERFS_FULL_KEY_LEN     4
   1320#define REISERFS_SHORT_KEY_LEN    2
   1321
   1322/* The result of the key compare */
   1323#define FIRST_GREATER 1
   1324#define SECOND_GREATER -1
   1325#define KEYS_IDENTICAL 0
   1326#define KEY_FOUND 1
   1327#define KEY_NOT_FOUND 0
   1328
   1329#define KEY_SIZE (sizeof(struct reiserfs_key))
   1330
   1331/* return values for search_by_key and clones */
   1332#define ITEM_FOUND 1
   1333#define ITEM_NOT_FOUND 0
   1334#define ENTRY_FOUND 1
   1335#define ENTRY_NOT_FOUND 0
   1336#define DIRECTORY_NOT_FOUND -1
   1337#define REGULAR_FILE_FOUND -2
   1338#define DIRECTORY_FOUND -3
   1339#define BYTE_FOUND 1
   1340#define BYTE_NOT_FOUND 0
   1341#define FILE_NOT_FOUND -1
   1342
   1343#define POSITION_FOUND 1
   1344#define POSITION_NOT_FOUND 0
   1345
   1346/* return values for reiserfs_find_entry and search_by_entry_key */
   1347#define NAME_FOUND 1
   1348#define NAME_NOT_FOUND 0
   1349#define GOTO_PREVIOUS_ITEM 2
   1350#define NAME_FOUND_INVISIBLE 3
   1351
   1352/*
   1353 * Everything in the filesystem is stored as a set of items.  The
   1354 * item head contains the key of the item, its free space (for
   1355 * indirect items) and specifies the location of the item itself
   1356 * within the block.
   1357 */
   1358
   1359struct item_head {
   1360	/*
   1361	 * Everything in the tree is found by searching for it based on
   1362	 * its key.
   1363	 */
   1364	struct reiserfs_key ih_key;
   1365	union {
   1366		/*
   1367		 * The free space in the last unformatted node of an
   1368		 * indirect item if this is an indirect item.  This
   1369		 * equals 0xFFFF iff this is a direct item or stat data
   1370		 * item. Note that the key, not this field, is used to
   1371		 * determine the item type, and thus which field this
   1372		 * union contains.
   1373		 */
   1374		__le16 ih_free_space_reserved;
   1375
   1376		/*
   1377		 * Iff this is a directory item, this field equals the
   1378		 * number of directory entries in the directory item.
   1379		 */
   1380		__le16 ih_entry_count;
   1381	} __attribute__ ((__packed__)) u;
   1382	__le16 ih_item_len;	/* total size of the item body */
   1383
   1384	/* an offset to the item body within the block */
   1385	__le16 ih_item_location;
   1386
   1387	/*
   1388	 * 0 for all old items, 2 for new ones. Highest bit is set by fsck
   1389	 * temporary, cleaned after all done
   1390	 */
   1391	__le16 ih_version;
   1392} __attribute__ ((__packed__));
   1393/* size of item header     */
   1394#define IH_SIZE (sizeof(struct item_head))
   1395
   1396#define ih_free_space(ih)            le16_to_cpu((ih)->u.ih_free_space_reserved)
   1397#define ih_version(ih)               le16_to_cpu((ih)->ih_version)
   1398#define ih_entry_count(ih)           le16_to_cpu((ih)->u.ih_entry_count)
   1399#define ih_location(ih)              le16_to_cpu((ih)->ih_item_location)
   1400#define ih_item_len(ih)              le16_to_cpu((ih)->ih_item_len)
   1401
   1402#define put_ih_free_space(ih, val)   do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
   1403#define put_ih_version(ih, val)      do { (ih)->ih_version = cpu_to_le16(val); } while (0)
   1404#define put_ih_entry_count(ih, val)  do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
   1405#define put_ih_location(ih, val)     do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
   1406#define put_ih_item_len(ih, val)     do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
   1407
   1408#define unreachable_item(ih) (ih_version(ih) & (1 << 15))
   1409
   1410#define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
   1411#define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
   1412
   1413/*
   1414 * these operate on indirect items, where you've got an array of ints
   1415 * at a possibly unaligned location.  These are a noop on ia32
   1416 *
   1417 * p is the array of __u32, i is the index into the array, v is the value
   1418 * to store there.
   1419 */
   1420#define get_block_num(p, i) get_unaligned_le32((p) + (i))
   1421#define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i))
   1422
   1423/* * in old version uniqueness field shows key type */
   1424#define V1_SD_UNIQUENESS 0
   1425#define V1_INDIRECT_UNIQUENESS 0xfffffffe
   1426#define V1_DIRECT_UNIQUENESS 0xffffffff
   1427#define V1_DIRENTRY_UNIQUENESS 500
   1428#define V1_ANY_UNIQUENESS 555	/* FIXME: comment is required */
   1429
   1430/* here are conversion routines */
   1431static inline int uniqueness2type(__u32 uniqueness) CONSTF;
   1432static inline int uniqueness2type(__u32 uniqueness)
   1433{
   1434	switch ((int)uniqueness) {
   1435	case V1_SD_UNIQUENESS:
   1436		return TYPE_STAT_DATA;
   1437	case V1_INDIRECT_UNIQUENESS:
   1438		return TYPE_INDIRECT;
   1439	case V1_DIRECT_UNIQUENESS:
   1440		return TYPE_DIRECT;
   1441	case V1_DIRENTRY_UNIQUENESS:
   1442		return TYPE_DIRENTRY;
   1443	case V1_ANY_UNIQUENESS:
   1444	default:
   1445		return TYPE_ANY;
   1446	}
   1447}
   1448
   1449static inline __u32 type2uniqueness(int type) CONSTF;
   1450static inline __u32 type2uniqueness(int type)
   1451{
   1452	switch (type) {
   1453	case TYPE_STAT_DATA:
   1454		return V1_SD_UNIQUENESS;
   1455	case TYPE_INDIRECT:
   1456		return V1_INDIRECT_UNIQUENESS;
   1457	case TYPE_DIRECT:
   1458		return V1_DIRECT_UNIQUENESS;
   1459	case TYPE_DIRENTRY:
   1460		return V1_DIRENTRY_UNIQUENESS;
   1461	case TYPE_ANY:
   1462	default:
   1463		return V1_ANY_UNIQUENESS;
   1464	}
   1465}
   1466
   1467/*
   1468 * key is pointer to on disk key which is stored in le, result is cpu,
   1469 * there is no way to get version of object from key, so, provide
   1470 * version to these defines
   1471 */
   1472static inline loff_t le_key_k_offset(int version,
   1473				     const struct reiserfs_key *key)
   1474{
   1475	return (version == KEY_FORMAT_3_5) ?
   1476	    le32_to_cpu(key->u.k_offset_v1.k_offset) :
   1477	    offset_v2_k_offset(&(key->u.k_offset_v2));
   1478}
   1479
   1480static inline loff_t le_ih_k_offset(const struct item_head *ih)
   1481{
   1482	return le_key_k_offset(ih_version(ih), &(ih->ih_key));
   1483}
   1484
   1485static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key)
   1486{
   1487	if (version == KEY_FORMAT_3_5) {
   1488		loff_t val = le32_to_cpu(key->u.k_offset_v1.k_uniqueness);
   1489		return uniqueness2type(val);
   1490	} else
   1491		return offset_v2_k_type(&(key->u.k_offset_v2));
   1492}
   1493
   1494static inline loff_t le_ih_k_type(const struct item_head *ih)
   1495{
   1496	return le_key_k_type(ih_version(ih), &(ih->ih_key));
   1497}
   1498
   1499static inline void set_le_key_k_offset(int version, struct reiserfs_key *key,
   1500				       loff_t offset)
   1501{
   1502	if (version == KEY_FORMAT_3_5)
   1503		key->u.k_offset_v1.k_offset = cpu_to_le32(offset);
   1504	else
   1505		set_offset_v2_k_offset(&key->u.k_offset_v2, offset);
   1506}
   1507
   1508static inline void add_le_key_k_offset(int version, struct reiserfs_key *key,
   1509				       loff_t offset)
   1510{
   1511	set_le_key_k_offset(version, key,
   1512			    le_key_k_offset(version, key) + offset);
   1513}
   1514
   1515static inline void add_le_ih_k_offset(struct item_head *ih, loff_t offset)
   1516{
   1517	add_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
   1518}
   1519
   1520static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset)
   1521{
   1522	set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
   1523}
   1524
   1525static inline void set_le_key_k_type(int version, struct reiserfs_key *key,
   1526				     int type)
   1527{
   1528	if (version == KEY_FORMAT_3_5) {
   1529		type = type2uniqueness(type);
   1530		key->u.k_offset_v1.k_uniqueness = cpu_to_le32(type);
   1531	} else
   1532	       set_offset_v2_k_type(&key->u.k_offset_v2, type);
   1533}
   1534
   1535static inline void set_le_ih_k_type(struct item_head *ih, int type)
   1536{
   1537	set_le_key_k_type(ih_version(ih), &(ih->ih_key), type);
   1538}
   1539
   1540static inline int is_direntry_le_key(int version, struct reiserfs_key *key)
   1541{
   1542	return le_key_k_type(version, key) == TYPE_DIRENTRY;
   1543}
   1544
   1545static inline int is_direct_le_key(int version, struct reiserfs_key *key)
   1546{
   1547	return le_key_k_type(version, key) == TYPE_DIRECT;
   1548}
   1549
   1550static inline int is_indirect_le_key(int version, struct reiserfs_key *key)
   1551{
   1552	return le_key_k_type(version, key) == TYPE_INDIRECT;
   1553}
   1554
   1555static inline int is_statdata_le_key(int version, struct reiserfs_key *key)
   1556{
   1557	return le_key_k_type(version, key) == TYPE_STAT_DATA;
   1558}
   1559
   1560/* item header has version.  */
   1561static inline int is_direntry_le_ih(struct item_head *ih)
   1562{
   1563	return is_direntry_le_key(ih_version(ih), &ih->ih_key);
   1564}
   1565
   1566static inline int is_direct_le_ih(struct item_head *ih)
   1567{
   1568	return is_direct_le_key(ih_version(ih), &ih->ih_key);
   1569}
   1570
   1571static inline int is_indirect_le_ih(struct item_head *ih)
   1572{
   1573	return is_indirect_le_key(ih_version(ih), &ih->ih_key);
   1574}
   1575
   1576static inline int is_statdata_le_ih(struct item_head *ih)
   1577{
   1578	return is_statdata_le_key(ih_version(ih), &ih->ih_key);
   1579}
   1580
   1581/* key is pointer to cpu key, result is cpu */
   1582static inline loff_t cpu_key_k_offset(const struct cpu_key *key)
   1583{
   1584	return key->on_disk_key.k_offset;
   1585}
   1586
   1587static inline loff_t cpu_key_k_type(const struct cpu_key *key)
   1588{
   1589	return key->on_disk_key.k_type;
   1590}
   1591
   1592static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset)
   1593{
   1594	key->on_disk_key.k_offset = offset;
   1595}
   1596
   1597static inline void set_cpu_key_k_type(struct cpu_key *key, int type)
   1598{
   1599	key->on_disk_key.k_type = type;
   1600}
   1601
   1602static inline void cpu_key_k_offset_dec(struct cpu_key *key)
   1603{
   1604	key->on_disk_key.k_offset--;
   1605}
   1606
   1607#define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
   1608#define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
   1609#define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
   1610#define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
   1611
   1612/* are these used ? */
   1613#define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
   1614#define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
   1615#define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
   1616#define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
   1617
   1618#define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \
   1619    (!COMP_SHORT_KEYS(ih, key) && \
   1620	  I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize))
   1621
   1622/* maximal length of item */
   1623#define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
   1624#define MIN_ITEM_LEN 1
   1625
   1626/* object identifier for root dir */
   1627#define REISERFS_ROOT_OBJECTID 2
   1628#define REISERFS_ROOT_PARENT_OBJECTID 1
   1629
   1630extern struct reiserfs_key root_key;
   1631
   1632/*
   1633 * Picture represents a leaf of the S+tree
   1634 *  ______________________________________________________
   1635 * |      |  Array of     |                   |           |
   1636 * |Block |  Object-Item  |      F r e e      |  Objects- |
   1637 * | head |  Headers      |     S p a c e     |   Items   |
   1638 * |______|_______________|___________________|___________|
   1639 */
   1640
   1641/*
   1642 * Header of a disk block.  More precisely, header of a formatted leaf
   1643 * or internal node, and not the header of an unformatted node.
   1644 */
   1645struct block_head {
   1646	__le16 blk_level;	/* Level of a block in the tree. */
   1647	__le16 blk_nr_item;	/* Number of keys/items in a block. */
   1648	__le16 blk_free_space;	/* Block free space in bytes. */
   1649	__le16 blk_reserved;
   1650	/* dump this in v4/planA */
   1651
   1652	/* kept only for compatibility */
   1653	struct reiserfs_key blk_right_delim_key;
   1654};
   1655
   1656#define BLKH_SIZE                     (sizeof(struct block_head))
   1657#define blkh_level(p_blkh)            (le16_to_cpu((p_blkh)->blk_level))
   1658#define blkh_nr_item(p_blkh)          (le16_to_cpu((p_blkh)->blk_nr_item))
   1659#define blkh_free_space(p_blkh)       (le16_to_cpu((p_blkh)->blk_free_space))
   1660#define blkh_reserved(p_blkh)         (le16_to_cpu((p_blkh)->blk_reserved))
   1661#define set_blkh_level(p_blkh,val)    ((p_blkh)->blk_level = cpu_to_le16(val))
   1662#define set_blkh_nr_item(p_blkh,val)  ((p_blkh)->blk_nr_item = cpu_to_le16(val))
   1663#define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
   1664#define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
   1665#define blkh_right_delim_key(p_blkh)  ((p_blkh)->blk_right_delim_key)
   1666#define set_blkh_right_delim_key(p_blkh,val)  ((p_blkh)->blk_right_delim_key = val)
   1667
   1668/* values for blk_level field of the struct block_head */
   1669
   1670/*
   1671 * When node gets removed from the tree its blk_level is set to FREE_LEVEL.
   1672 * It is then  used to see whether the node is still in the tree
   1673 */
   1674#define FREE_LEVEL 0
   1675
   1676#define DISK_LEAF_NODE_LEVEL  1	/* Leaf node level. */
   1677
   1678/*
   1679 * Given the buffer head of a formatted node, resolve to the
   1680 * block head of that node.
   1681 */
   1682#define B_BLK_HEAD(bh)			((struct block_head *)((bh)->b_data))
   1683/* Number of items that are in buffer. */
   1684#define B_NR_ITEMS(bh)			(blkh_nr_item(B_BLK_HEAD(bh)))
   1685#define B_LEVEL(bh)			(blkh_level(B_BLK_HEAD(bh)))
   1686#define B_FREE_SPACE(bh)		(blkh_free_space(B_BLK_HEAD(bh)))
   1687
   1688#define PUT_B_NR_ITEMS(bh, val)		do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0)
   1689#define PUT_B_LEVEL(bh, val)		do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0)
   1690#define PUT_B_FREE_SPACE(bh, val)	do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0)
   1691
   1692/* Get right delimiting key. -- little endian */
   1693#define B_PRIGHT_DELIM_KEY(bh)		(&(blk_right_delim_key(B_BLK_HEAD(bh))))
   1694
   1695/* Does the buffer contain a disk leaf. */
   1696#define B_IS_ITEMS_LEVEL(bh)		(B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL)
   1697
   1698/* Does the buffer contain a disk internal node */
   1699#define B_IS_KEYS_LEVEL(bh)      (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \
   1700					    && B_LEVEL(bh) <= MAX_HEIGHT)
   1701
   1702/***************************************************************************
   1703 *                             STAT DATA                                   *
   1704 ***************************************************************************/
   1705
   1706/*
   1707 * old stat data is 32 bytes long. We are going to distinguish new one by
   1708 * different size
   1709*/
   1710struct stat_data_v1 {
   1711	__le16 sd_mode;		/* file type, permissions */
   1712	__le16 sd_nlink;	/* number of hard links */
   1713	__le16 sd_uid;		/* owner */
   1714	__le16 sd_gid;		/* group */
   1715	__le32 sd_size;		/* file size */
   1716	__le32 sd_atime;	/* time of last access */
   1717	__le32 sd_mtime;	/* time file was last modified  */
   1718
   1719	/*
   1720	 * time inode (stat data) was last changed
   1721	 * (except changes to sd_atime and sd_mtime)
   1722	 */
   1723	__le32 sd_ctime;
   1724	union {
   1725		__le32 sd_rdev;
   1726		__le32 sd_blocks;	/* number of blocks file uses */
   1727	} __attribute__ ((__packed__)) u;
   1728
   1729	/*
   1730	 * first byte of file which is stored in a direct item: except that if
   1731	 * it equals 1 it is a symlink and if it equals ~(__u32)0 there is no
   1732	 * direct item.  The existence of this field really grates on me.
   1733	 * Let's replace it with a macro based on sd_size and our tail
   1734	 * suppression policy.  Someday.  -Hans
   1735	 */
   1736	__le32 sd_first_direct_byte;
   1737} __attribute__ ((__packed__));
   1738
   1739#define SD_V1_SIZE              (sizeof(struct stat_data_v1))
   1740#define stat_data_v1(ih)        (ih_version (ih) == KEY_FORMAT_3_5)
   1741#define sd_v1_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
   1742#define set_sd_v1_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
   1743#define sd_v1_nlink(sdp)        (le16_to_cpu((sdp)->sd_nlink))
   1744#define set_sd_v1_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le16(v))
   1745#define sd_v1_uid(sdp)          (le16_to_cpu((sdp)->sd_uid))
   1746#define set_sd_v1_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le16(v))
   1747#define sd_v1_gid(sdp)          (le16_to_cpu((sdp)->sd_gid))
   1748#define set_sd_v1_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le16(v))
   1749#define sd_v1_size(sdp)         (le32_to_cpu((sdp)->sd_size))
   1750#define set_sd_v1_size(sdp,v)   ((sdp)->sd_size = cpu_to_le32(v))
   1751#define sd_v1_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
   1752#define set_sd_v1_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
   1753#define sd_v1_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
   1754#define set_sd_v1_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
   1755#define sd_v1_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
   1756#define set_sd_v1_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
   1757#define sd_v1_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
   1758#define set_sd_v1_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
   1759#define sd_v1_blocks(sdp)       (le32_to_cpu((sdp)->u.sd_blocks))
   1760#define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
   1761#define sd_v1_first_direct_byte(sdp) \
   1762                                (le32_to_cpu((sdp)->sd_first_direct_byte))
   1763#define set_sd_v1_first_direct_byte(sdp,v) \
   1764                                ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
   1765
   1766/* inode flags stored in sd_attrs (nee sd_reserved) */
   1767
   1768/*
   1769 * we want common flags to have the same values as in ext2,
   1770 * so chattr(1) will work without problems
   1771 */
   1772#define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL
   1773#define REISERFS_APPEND_FL    FS_APPEND_FL
   1774#define REISERFS_SYNC_FL      FS_SYNC_FL
   1775#define REISERFS_NOATIME_FL   FS_NOATIME_FL
   1776#define REISERFS_NODUMP_FL    FS_NODUMP_FL
   1777#define REISERFS_SECRM_FL     FS_SECRM_FL
   1778#define REISERFS_UNRM_FL      FS_UNRM_FL
   1779#define REISERFS_COMPR_FL     FS_COMPR_FL
   1780#define REISERFS_NOTAIL_FL    FS_NOTAIL_FL
   1781
   1782/* persistent flags that file inherits from the parent directory */
   1783#define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL |	\
   1784				REISERFS_SYNC_FL |	\
   1785				REISERFS_NOATIME_FL |	\
   1786				REISERFS_NODUMP_FL |	\
   1787				REISERFS_SECRM_FL |	\
   1788				REISERFS_COMPR_FL |	\
   1789				REISERFS_NOTAIL_FL )
   1790
   1791/*
   1792 * Stat Data on disk (reiserfs version of UFS disk inode minus the
   1793 * address blocks)
   1794 */
   1795struct stat_data {
   1796	__le16 sd_mode;		/* file type, permissions */
   1797	__le16 sd_attrs;	/* persistent inode flags */
   1798	__le32 sd_nlink;	/* number of hard links */
   1799	__le64 sd_size;		/* file size */
   1800	__le32 sd_uid;		/* owner */
   1801	__le32 sd_gid;		/* group */
   1802	__le32 sd_atime;	/* time of last access */
   1803	__le32 sd_mtime;	/* time file was last modified  */
   1804
   1805	/*
   1806	 * time inode (stat data) was last changed
   1807	 * (except changes to sd_atime and sd_mtime)
   1808	 */
   1809	__le32 sd_ctime;
   1810	__le32 sd_blocks;
   1811	union {
   1812		__le32 sd_rdev;
   1813		__le32 sd_generation;
   1814	} __attribute__ ((__packed__)) u;
   1815} __attribute__ ((__packed__));
   1816
   1817/* this is 44 bytes long */
   1818#define SD_SIZE (sizeof(struct stat_data))
   1819#define SD_V2_SIZE              SD_SIZE
   1820#define stat_data_v2(ih)        (ih_version (ih) == KEY_FORMAT_3_6)
   1821#define sd_v2_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
   1822#define set_sd_v2_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
   1823/* sd_reserved */
   1824/* set_sd_reserved */
   1825#define sd_v2_nlink(sdp)        (le32_to_cpu((sdp)->sd_nlink))
   1826#define set_sd_v2_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le32(v))
   1827#define sd_v2_size(sdp)         (le64_to_cpu((sdp)->sd_size))
   1828#define set_sd_v2_size(sdp,v)   ((sdp)->sd_size = cpu_to_le64(v))
   1829#define sd_v2_uid(sdp)          (le32_to_cpu((sdp)->sd_uid))
   1830#define set_sd_v2_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le32(v))
   1831#define sd_v2_gid(sdp)          (le32_to_cpu((sdp)->sd_gid))
   1832#define set_sd_v2_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le32(v))
   1833#define sd_v2_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
   1834#define set_sd_v2_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
   1835#define sd_v2_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
   1836#define set_sd_v2_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
   1837#define sd_v2_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
   1838#define set_sd_v2_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
   1839#define sd_v2_blocks(sdp)       (le32_to_cpu((sdp)->sd_blocks))
   1840#define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
   1841#define sd_v2_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
   1842#define set_sd_v2_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
   1843#define sd_v2_generation(sdp)   (le32_to_cpu((sdp)->u.sd_generation))
   1844#define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
   1845#define sd_v2_attrs(sdp)         (le16_to_cpu((sdp)->sd_attrs))
   1846#define set_sd_v2_attrs(sdp,v)   ((sdp)->sd_attrs = cpu_to_le16(v))
   1847
   1848/***************************************************************************
   1849 *                      DIRECTORY STRUCTURE                                *
   1850 ***************************************************************************/
   1851/*
   1852 * Picture represents the structure of directory items
   1853 * ________________________________________________
   1854 * |  Array of     |   |     |        |       |   |
   1855 * | directory     |N-1| N-2 | ....   |   1st |0th|
   1856 * | entry headers |   |     |        |       |   |
   1857 * |_______________|___|_____|________|_______|___|
   1858 *                  <----   directory entries         ------>
   1859 *
   1860 * First directory item has k_offset component 1. We store "." and ".."
   1861 * in one item, always, we never split "." and ".." into differing
   1862 * items.  This makes, among other things, the code for removing
   1863 * directories simpler.
   1864 */
   1865#define SD_OFFSET  0
   1866#define SD_UNIQUENESS 0
   1867#define DOT_OFFSET 1
   1868#define DOT_DOT_OFFSET 2
   1869#define DIRENTRY_UNIQUENESS 500
   1870
   1871#define FIRST_ITEM_OFFSET 1
   1872
   1873/*
   1874 * Q: How to get key of object pointed to by entry from entry?
   1875 *
   1876 * A: Each directory entry has its header. This header has deh_dir_id
   1877 *    and deh_objectid fields, those are key of object, entry points to
   1878 */
   1879
   1880/*
   1881 * NOT IMPLEMENTED:
   1882 * Directory will someday contain stat data of object
   1883 */
   1884
   1885struct reiserfs_de_head {
   1886	__le32 deh_offset;	/* third component of the directory entry key */
   1887
   1888	/*
   1889	 * objectid of the parent directory of the object, that is referenced
   1890	 * by directory entry
   1891	 */
   1892	__le32 deh_dir_id;
   1893
   1894	/* objectid of the object, that is referenced by directory entry */
   1895	__le32 deh_objectid;
   1896	__le16 deh_location;	/* offset of name in the whole item */
   1897
   1898	/*
   1899	 * whether 1) entry contains stat data (for future), and
   1900	 * 2) whether entry is hidden (unlinked)
   1901	 */
   1902	__le16 deh_state;
   1903} __attribute__ ((__packed__));
   1904#define DEH_SIZE                  sizeof(struct reiserfs_de_head)
   1905#define deh_offset(p_deh)         (le32_to_cpu((p_deh)->deh_offset))
   1906#define deh_dir_id(p_deh)         (le32_to_cpu((p_deh)->deh_dir_id))
   1907#define deh_objectid(p_deh)       (le32_to_cpu((p_deh)->deh_objectid))
   1908#define deh_location(p_deh)       (le16_to_cpu((p_deh)->deh_location))
   1909#define deh_state(p_deh)          (le16_to_cpu((p_deh)->deh_state))
   1910
   1911#define put_deh_offset(p_deh,v)   ((p_deh)->deh_offset = cpu_to_le32((v)))
   1912#define put_deh_dir_id(p_deh,v)   ((p_deh)->deh_dir_id = cpu_to_le32((v)))
   1913#define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
   1914#define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
   1915#define put_deh_state(p_deh,v)    ((p_deh)->deh_state = cpu_to_le16((v)))
   1916
   1917/* empty directory contains two entries "." and ".." and their headers */
   1918#define EMPTY_DIR_SIZE \
   1919(DEH_SIZE * 2 + ROUND_UP (sizeof(".") - 1) + ROUND_UP (sizeof("..") - 1))
   1920
   1921/* old format directories have this size when empty */
   1922#define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
   1923
   1924#define DEH_Statdata 0		/* not used now */
   1925#define DEH_Visible 2
   1926
   1927/* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
   1928#if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
   1929#   define ADDR_UNALIGNED_BITS  (3)
   1930#endif
   1931
   1932/*
   1933 * These are only used to manipulate deh_state.
   1934 * Because of this, we'll use the ext2_ bit routines,
   1935 * since they are little endian
   1936 */
   1937#ifdef ADDR_UNALIGNED_BITS
   1938
   1939#   define aligned_address(addr)           ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
   1940#   define unaligned_offset(addr)          (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
   1941
   1942#   define set_bit_unaligned(nr, addr)	\
   1943	__test_and_set_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
   1944#   define clear_bit_unaligned(nr, addr)	\
   1945	__test_and_clear_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
   1946#   define test_bit_unaligned(nr, addr)	\
   1947	test_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
   1948
   1949#else
   1950
   1951#   define set_bit_unaligned(nr, addr)	__test_and_set_bit_le(nr, addr)
   1952#   define clear_bit_unaligned(nr, addr)	__test_and_clear_bit_le(nr, addr)
   1953#   define test_bit_unaligned(nr, addr)	test_bit_le(nr, addr)
   1954
   1955#endif
   1956
   1957#define mark_de_with_sd(deh)        set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
   1958#define mark_de_without_sd(deh)     clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
   1959#define mark_de_visible(deh)	    set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
   1960#define mark_de_hidden(deh)	    clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
   1961
   1962#define de_with_sd(deh)		    test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
   1963#define de_visible(deh)	    	    test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
   1964#define de_hidden(deh)	    	    !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
   1965
   1966extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid,
   1967				   __le32 par_dirid, __le32 par_objid);
   1968extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid,
   1969				__le32 par_dirid, __le32 par_objid);
   1970
   1971/* two entries per block (at least) */
   1972#define REISERFS_MAX_NAME(block_size) 255
   1973
   1974/*
   1975 * this structure is used for operations on directory entries. It is
   1976 * not a disk structure.
   1977 *
   1978 * When reiserfs_find_entry or search_by_entry_key find directory
   1979 * entry, they return filled reiserfs_dir_entry structure
   1980 */
   1981struct reiserfs_dir_entry {
   1982	struct buffer_head *de_bh;
   1983	int de_item_num;
   1984	struct item_head *de_ih;
   1985	int de_entry_num;
   1986	struct reiserfs_de_head *de_deh;
   1987	int de_entrylen;
   1988	int de_namelen;
   1989	char *de_name;
   1990	unsigned long *de_gen_number_bit_string;
   1991
   1992	__u32 de_dir_id;
   1993	__u32 de_objectid;
   1994
   1995	struct cpu_key de_entry_key;
   1996};
   1997
   1998/*
   1999 * these defines are useful when a particular member of
   2000 * a reiserfs_dir_entry is needed
   2001 */
   2002
   2003/* pointer to file name, stored in entry */
   2004#define B_I_DEH_ENTRY_FILE_NAME(bh, ih, deh) \
   2005				(ih_item_body(bh, ih) + deh_location(deh))
   2006
   2007/* length of name */
   2008#define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
   2009(I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
   2010
   2011/* hash value occupies bits from 7 up to 30 */
   2012#define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
   2013/* generation number occupies 7 bits starting from 0 up to 6 */
   2014#define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
   2015#define MAX_GENERATION_NUMBER  127
   2016
   2017#define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
   2018
   2019/*
   2020 * Picture represents an internal node of the reiserfs tree
   2021 *  ______________________________________________________
   2022 * |      |  Array of     |  Array of         |  Free     |
   2023 * |block |    keys       |  pointers         | space     |
   2024 * | head |      N        |      N+1          |           |
   2025 * |______|_______________|___________________|___________|
   2026 */
   2027
   2028/***************************************************************************
   2029 *                      DISK CHILD                                         *
   2030 ***************************************************************************/
   2031/*
   2032 * Disk child pointer:
   2033 * The pointer from an internal node of the tree to a node that is on disk.
   2034 */
   2035struct disk_child {
   2036	__le32 dc_block_number;	/* Disk child's block number. */
   2037	__le16 dc_size;		/* Disk child's used space.   */
   2038	__le16 dc_reserved;
   2039};
   2040
   2041#define DC_SIZE (sizeof(struct disk_child))
   2042#define dc_block_number(dc_p)	(le32_to_cpu((dc_p)->dc_block_number))
   2043#define dc_size(dc_p)		(le16_to_cpu((dc_p)->dc_size))
   2044#define put_dc_block_number(dc_p, val)   do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
   2045#define put_dc_size(dc_p, val)   do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
   2046
   2047/* Get disk child by buffer header and position in the tree node. */
   2048#define B_N_CHILD(bh, n_pos)  ((struct disk_child *)\
   2049((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos)))
   2050
   2051/* Get disk child number by buffer header and position in the tree node. */
   2052#define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos)))
   2053#define PUT_B_N_CHILD_NUM(bh, n_pos, val) \
   2054				(put_dc_block_number(B_N_CHILD(bh, n_pos), val))
   2055
   2056 /* maximal value of field child_size in structure disk_child */
   2057 /* child size is the combined size of all items and their headers */
   2058#define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
   2059
   2060/* amount of used space in buffer (not including block head) */
   2061#define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
   2062
   2063/* max and min number of keys in internal node */
   2064#define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
   2065#define MIN_NR_KEY(bh)    (MAX_NR_KEY(bh)/2)
   2066
   2067/***************************************************************************
   2068 *                      PATH STRUCTURES AND DEFINES                        *
   2069 ***************************************************************************/
   2070
   2071/*
   2072 * search_by_key fills up the path from the root to the leaf as it descends
   2073 * the tree looking for the key.  It uses reiserfs_bread to try to find
   2074 * buffers in the cache given their block number.  If it does not find
   2075 * them in the cache it reads them from disk.  For each node search_by_key
   2076 * finds using reiserfs_bread it then uses bin_search to look through that
   2077 * node.  bin_search will find the position of the block_number of the next
   2078 * node if it is looking through an internal node.  If it is looking through
   2079 * a leaf node bin_search will find the position of the item which has key
   2080 * either equal to given key, or which is the maximal key less than the
   2081 * given key.
   2082 */
   2083
   2084struct path_element {
   2085	/* Pointer to the buffer at the path in the tree. */
   2086	struct buffer_head *pe_buffer;
   2087	/* Position in the tree node which is placed in the buffer above. */
   2088	int pe_position;
   2089};
   2090
   2091/*
   2092 * maximal height of a tree. don't change this without
   2093 * changing JOURNAL_PER_BALANCE_CNT
   2094 */
   2095#define MAX_HEIGHT 5
   2096
   2097/* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
   2098#define EXTENDED_MAX_HEIGHT         7
   2099
   2100/* Must be equal to at least 2. */
   2101#define FIRST_PATH_ELEMENT_OFFSET   2
   2102
   2103/* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
   2104#define ILLEGAL_PATH_ELEMENT_OFFSET 1
   2105
   2106/* this MUST be MAX_HEIGHT + 1. See about FEB below */
   2107#define MAX_FEB_SIZE 6
   2108
   2109/*
   2110 * We need to keep track of who the ancestors of nodes are.  When we
   2111 * perform a search we record which nodes were visited while
   2112 * descending the tree looking for the node we searched for. This list
   2113 * of nodes is called the path.  This information is used while
   2114 * performing balancing.  Note that this path information may become
   2115 * invalid, and this means we must check it when using it to see if it
   2116 * is still valid. You'll need to read search_by_key and the comments
   2117 * in it, especially about decrement_counters_in_path(), to understand
   2118 * this structure.
   2119 *
   2120 * Paths make the code so much harder to work with and debug.... An
   2121 * enormous number of bugs are due to them, and trying to write or modify
   2122 * code that uses them just makes my head hurt.  They are based on an
   2123 * excessive effort to avoid disturbing the precious VFS code.:-( The
   2124 * gods only know how we are going to SMP the code that uses them.
   2125 * znodes are the way!
   2126 */
   2127
   2128#define PATH_READA	0x1	/* do read ahead */
   2129#define PATH_READA_BACK 0x2	/* read backwards */
   2130
   2131struct treepath {
   2132	int path_length;	/* Length of the array above.   */
   2133	int reada;
   2134	/* Array of the path elements.  */
   2135	struct path_element path_elements[EXTENDED_MAX_HEIGHT];
   2136	int pos_in_item;
   2137};
   2138
   2139#define pos_in_item(path) ((path)->pos_in_item)
   2140
   2141#define INITIALIZE_PATH(var) \
   2142struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
   2143
   2144/* Get path element by path and path position. */
   2145#define PATH_OFFSET_PELEMENT(path, n_offset)  ((path)->path_elements + (n_offset))
   2146
   2147/* Get buffer header at the path by path and path position. */
   2148#define PATH_OFFSET_PBUFFER(path, n_offset)   (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer)
   2149
   2150/* Get position in the element at the path by path and path position. */
   2151#define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position)
   2152
   2153#define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length))
   2154
   2155/*
   2156 * you know, to the person who didn't write this the macro name does not
   2157 * at first suggest what it does.  Maybe POSITION_FROM_PATH_END? Or
   2158 * maybe we should just focus on dumping paths... -Hans
   2159 */
   2160#define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length))
   2161
   2162/*
   2163 * in do_balance leaf has h == 0 in contrast with path structure,
   2164 * where root has level == 0. That is why we need these defines
   2165 */
   2166
   2167/* tb->S[h] */
   2168#define PATH_H_PBUFFER(path, h) \
   2169			PATH_OFFSET_PBUFFER(path, path->path_length - (h))
   2170
   2171/* tb->F[h] or tb->S[0]->b_parent */
   2172#define PATH_H_PPARENT(path, h) PATH_H_PBUFFER(path, (h) + 1)
   2173
   2174#define PATH_H_POSITION(path, h) \
   2175			PATH_OFFSET_POSITION(path, path->path_length - (h))
   2176
   2177/* tb->S[h]->b_item_order */
   2178#define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1)
   2179
   2180#define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h))
   2181
   2182static inline void *reiserfs_node_data(const struct buffer_head *bh)
   2183{
   2184	return bh->b_data + sizeof(struct block_head);
   2185}
   2186
   2187/* get key from internal node */
   2188static inline struct reiserfs_key *internal_key(struct buffer_head *bh,
   2189						int item_num)
   2190{
   2191	struct reiserfs_key *key = reiserfs_node_data(bh);
   2192
   2193	return &key[item_num];
   2194}
   2195
   2196/* get the item header from leaf node */
   2197static inline struct item_head *item_head(const struct buffer_head *bh,
   2198					  int item_num)
   2199{
   2200	struct item_head *ih = reiserfs_node_data(bh);
   2201
   2202	return &ih[item_num];
   2203}
   2204
   2205/* get the key from leaf node */
   2206static inline struct reiserfs_key *leaf_key(const struct buffer_head *bh,
   2207					    int item_num)
   2208{
   2209	return &item_head(bh, item_num)->ih_key;
   2210}
   2211
   2212static inline void *ih_item_body(const struct buffer_head *bh,
   2213				 const struct item_head *ih)
   2214{
   2215	return bh->b_data + ih_location(ih);
   2216}
   2217
   2218/* get item body from leaf node */
   2219static inline void *item_body(const struct buffer_head *bh, int item_num)
   2220{
   2221	return ih_item_body(bh, item_head(bh, item_num));
   2222}
   2223
   2224static inline struct item_head *tp_item_head(const struct treepath *path)
   2225{
   2226	return item_head(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path));
   2227}
   2228
   2229static inline void *tp_item_body(const struct treepath *path)
   2230{
   2231	return item_body(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path));
   2232}
   2233
   2234#define get_last_bh(path) PATH_PLAST_BUFFER(path)
   2235#define get_item_pos(path) PATH_LAST_POSITION(path)
   2236#define item_moved(ih,path) comp_items(ih, path)
   2237#define path_changed(ih,path) comp_items (ih, path)
   2238
   2239/* array of the entry headers */
   2240 /* get item body */
   2241#define B_I_DEH(bh, ih) ((struct reiserfs_de_head *)(ih_item_body(bh, ih)))
   2242
   2243/*
   2244 * length of the directory entry in directory item. This define
   2245 * calculates length of i-th directory entry using directory entry
   2246 * locations from dir entry head. When it calculates length of 0-th
   2247 * directory entry, it uses length of whole item in place of entry
   2248 * location of the non-existent following entry in the calculation.
   2249 * See picture above.
   2250 */
   2251static inline int entry_length(const struct buffer_head *bh,
   2252			       const struct item_head *ih, int pos_in_item)
   2253{
   2254	struct reiserfs_de_head *deh;
   2255
   2256	deh = B_I_DEH(bh, ih) + pos_in_item;
   2257	if (pos_in_item)
   2258		return deh_location(deh - 1) - deh_location(deh);
   2259
   2260	return ih_item_len(ih) - deh_location(deh);
   2261}
   2262
   2263/***************************************************************************
   2264 *                       MISC                                              *
   2265 ***************************************************************************/
   2266
   2267/* Size of pointer to the unformatted node. */
   2268#define UNFM_P_SIZE (sizeof(unp_t))
   2269#define UNFM_P_SHIFT 2
   2270
   2271/* in in-core inode key is stored on le form */
   2272#define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
   2273
   2274#define MAX_UL_INT 0xffffffff
   2275#define MAX_INT    0x7ffffff
   2276#define MAX_US_INT 0xffff
   2277
   2278// reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
   2279static inline loff_t max_reiserfs_offset(struct inode *inode)
   2280{
   2281	if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
   2282		return (loff_t) U32_MAX;
   2283
   2284	return (loff_t) ((~(__u64) 0) >> 4);
   2285}
   2286
   2287#define MAX_KEY_OBJECTID	MAX_UL_INT
   2288
   2289#define MAX_B_NUM  MAX_UL_INT
   2290#define MAX_FC_NUM MAX_US_INT
   2291
   2292/* the purpose is to detect overflow of an unsigned short */
   2293#define REISERFS_LINK_MAX (MAX_US_INT - 1000)
   2294
   2295/*
   2296 * The following defines are used in reiserfs_insert_item
   2297 * and reiserfs_append_item
   2298 */
   2299#define REISERFS_KERNEL_MEM		0	/* kernel memory mode */
   2300#define REISERFS_USER_MEM		1	/* user memory mode */
   2301
   2302#define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
   2303#define get_generation(s) atomic_read (&fs_generation(s))
   2304#define FILESYSTEM_CHANGED_TB(tb)  (get_generation((tb)->tb_sb) != (tb)->fs_gen)
   2305#define __fs_changed(gen,s) (gen != get_generation (s))
   2306#define fs_changed(gen,s)		\
   2307({					\
   2308	reiserfs_cond_resched(s);	\
   2309	__fs_changed(gen, s);		\
   2310})
   2311
   2312/***************************************************************************
   2313 *                  FIXATE NODES                                           *
   2314 ***************************************************************************/
   2315
   2316#define VI_TYPE_LEFT_MERGEABLE 1
   2317#define VI_TYPE_RIGHT_MERGEABLE 2
   2318
   2319/*
   2320 * To make any changes in the tree we always first find node, that
   2321 * contains item to be changed/deleted or place to insert a new
   2322 * item. We call this node S. To do balancing we need to decide what
   2323 * we will shift to left/right neighbor, or to a new node, where new
   2324 * item will be etc. To make this analysis simpler we build virtual
   2325 * node. Virtual node is an array of items, that will replace items of
   2326 * node S. (For instance if we are going to delete an item, virtual
   2327 * node does not contain it). Virtual node keeps information about
   2328 * item sizes and types, mergeability of first and last items, sizes
   2329 * of all entries in directory item. We use this array of items when
   2330 * calculating what we can shift to neighbors and how many nodes we
   2331 * have to have if we do not any shiftings, if we shift to left/right
   2332 * neighbor or to both.
   2333 */
   2334struct virtual_item {
   2335	int vi_index;		/* index in the array of item operations */
   2336	unsigned short vi_type;	/* left/right mergeability */
   2337
   2338	/* length of item that it will have after balancing */
   2339	unsigned short vi_item_len;
   2340
   2341	struct item_head *vi_ih;
   2342	const char *vi_item;	/* body of item (old or new) */
   2343	const void *vi_new_data;	/* 0 always but paste mode */
   2344	void *vi_uarea;		/* item specific area */
   2345};
   2346
   2347struct virtual_node {
   2348	/* this is a pointer to the free space in the buffer */
   2349	char *vn_free_ptr;
   2350
   2351	unsigned short vn_nr_item;	/* number of items in virtual node */
   2352
   2353	/*
   2354	 * size of node , that node would have if it has
   2355	 * unlimited size and no balancing is performed
   2356	 */
   2357	short vn_size;
   2358
   2359	/* mode of balancing (paste, insert, delete, cut) */
   2360	short vn_mode;
   2361
   2362	short vn_affected_item_num;
   2363	short vn_pos_in_item;
   2364
   2365	/* item header of inserted item, 0 for other modes */
   2366	struct item_head *vn_ins_ih;
   2367	const void *vn_data;
   2368
   2369	/* array of items (including a new one, excluding item to be deleted) */
   2370	struct virtual_item *vn_vi;
   2371};
   2372
   2373/* used by directory items when creating virtual nodes */
   2374struct direntry_uarea {
   2375	int flags;
   2376	__u16 entry_count;
   2377	__u16 entry_sizes[1];
   2378} __attribute__ ((__packed__));
   2379
   2380/***************************************************************************
   2381 *                  TREE BALANCE                                           *
   2382 ***************************************************************************/
   2383
   2384/*
   2385 * This temporary structure is used in tree balance algorithms, and
   2386 * constructed as we go to the extent that its various parts are
   2387 * needed.  It contains arrays of nodes that can potentially be
   2388 * involved in the balancing of node S, and parameters that define how
   2389 * each of the nodes must be balanced.  Note that in these algorithms
   2390 * for balancing the worst case is to need to balance the current node
   2391 * S and the left and right neighbors and all of their parents plus
   2392 * create a new node.  We implement S1 balancing for the leaf nodes
   2393 * and S0 balancing for the internal nodes (S1 and S0 are defined in
   2394 * our papers.)
   2395 */
   2396
   2397/* size of the array of buffers to free at end of do_balance */
   2398#define MAX_FREE_BLOCK 7
   2399
   2400/* maximum number of FEB blocknrs on a single level */
   2401#define MAX_AMOUNT_NEEDED 2
   2402
   2403/* someday somebody will prefix every field in this struct with tb_ */
   2404struct tree_balance {
   2405	int tb_mode;
   2406	int need_balance_dirty;
   2407	struct super_block *tb_sb;
   2408	struct reiserfs_transaction_handle *transaction_handle;
   2409	struct treepath *tb_path;
   2410
   2411	/* array of left neighbors of nodes in the path */
   2412	struct buffer_head *L[MAX_HEIGHT];
   2413
   2414	/* array of right neighbors of nodes in the path */
   2415	struct buffer_head *R[MAX_HEIGHT];
   2416
   2417	/* array of fathers of the left neighbors */
   2418	struct buffer_head *FL[MAX_HEIGHT];
   2419
   2420	/* array of fathers of the right neighbors */
   2421	struct buffer_head *FR[MAX_HEIGHT];
   2422	/* array of common parents of center node and its left neighbor */
   2423	struct buffer_head *CFL[MAX_HEIGHT];
   2424
   2425	/* array of common parents of center node and its right neighbor */
   2426	struct buffer_head *CFR[MAX_HEIGHT];
   2427
   2428	/*
   2429	 * array of empty buffers. Number of buffers in array equals
   2430	 * cur_blknum.
   2431	 */
   2432	struct buffer_head *FEB[MAX_FEB_SIZE];
   2433	struct buffer_head *used[MAX_FEB_SIZE];
   2434	struct buffer_head *thrown[MAX_FEB_SIZE];
   2435
   2436	/*
   2437	 * array of number of items which must be shifted to the left in
   2438	 * order to balance the current node; for leaves includes item that
   2439	 * will be partially shifted; for internal nodes, it is the number
   2440	 * of child pointers rather than items. It includes the new item
   2441	 * being created. The code sometimes subtracts one to get the
   2442	 * number of wholly shifted items for other purposes.
   2443	 */
   2444	int lnum[MAX_HEIGHT];
   2445
   2446	/* substitute right for left in comment above */
   2447	int rnum[MAX_HEIGHT];
   2448
   2449	/*
   2450	 * array indexed by height h mapping the key delimiting L[h] and
   2451	 * S[h] to its item number within the node CFL[h]
   2452	 */
   2453	int lkey[MAX_HEIGHT];
   2454
   2455	/* substitute r for l in comment above */
   2456	int rkey[MAX_HEIGHT];
   2457
   2458	/*
   2459	 * the number of bytes by we are trying to add or remove from
   2460	 * S[h]. A negative value means removing.
   2461	 */
   2462	int insert_size[MAX_HEIGHT];
   2463
   2464	/*
   2465	 * number of nodes that will replace node S[h] after balancing
   2466	 * on the level h of the tree.  If 0 then S is being deleted,
   2467	 * if 1 then S is remaining and no new nodes are being created,
   2468	 * if 2 or 3 then 1 or 2 new nodes is being created
   2469	 */
   2470	int blknum[MAX_HEIGHT];
   2471
   2472	/* fields that are used only for balancing leaves of the tree */
   2473
   2474	/* number of empty blocks having been already allocated */
   2475	int cur_blknum;
   2476
   2477	/* number of items that fall into left most node when S[0] splits */
   2478	int s0num;
   2479
   2480	/*
   2481	 * number of bytes which can flow to the left neighbor from the left
   2482	 * most liquid item that cannot be shifted from S[0] entirely
   2483	 * if -1 then nothing will be partially shifted
   2484	 */
   2485	int lbytes;
   2486
   2487	/*
   2488	 * number of bytes which will flow to the right neighbor from the right
   2489	 * most liquid item that cannot be shifted from S[0] entirely
   2490	 * if -1 then nothing will be partially shifted
   2491	 */
   2492	int rbytes;
   2493
   2494
   2495	/*
   2496	 * index into the array of item headers in
   2497	 * S[0] of the affected item
   2498	 */
   2499	int item_pos;
   2500
   2501	/* new nodes allocated to hold what could not fit into S */
   2502	struct buffer_head *S_new[2];
   2503
   2504	/*
   2505	 * number of items that will be placed into nodes in S_new
   2506	 * when S[0] splits
   2507	 */
   2508	int snum[2];
   2509
   2510	/*
   2511	 * number of bytes which flow to nodes in S_new when S[0] splits
   2512	 * note: if S[0] splits into 3 nodes, then items do not need to be cut
   2513	 */
   2514	int sbytes[2];
   2515
   2516	int pos_in_item;
   2517	int zeroes_num;
   2518
   2519	/*
   2520	 * buffers which are to be freed after do_balance finishes
   2521	 * by unfix_nodes
   2522	 */
   2523	struct buffer_head *buf_to_free[MAX_FREE_BLOCK];
   2524
   2525	/*
   2526	 * kmalloced memory. Used to create virtual node and keep
   2527	 * map of dirtied bitmap blocks
   2528	 */
   2529	char *vn_buf;
   2530
   2531	int vn_buf_size;	/* size of the vn_buf */
   2532
   2533	/* VN starts after bitmap of bitmap blocks */
   2534	struct virtual_node *tb_vn;
   2535
   2536	/*
   2537	 * saved value of `reiserfs_generation' counter see
   2538	 * FILESYSTEM_CHANGED() macro in reiserfs_fs.h
   2539	 */
   2540	int fs_gen;
   2541
   2542#ifdef DISPLACE_NEW_PACKING_LOCALITIES
   2543	/*
   2544	 * key pointer, to pass to block allocator or
   2545	 * another low-level subsystem
   2546	 */
   2547	struct in_core_key key;
   2548#endif
   2549};
   2550
   2551/* These are modes of balancing */
   2552
   2553/* When inserting an item. */
   2554#define M_INSERT	'i'
   2555/*
   2556 * When inserting into (directories only) or appending onto an already
   2557 * existent item.
   2558 */
   2559#define M_PASTE		'p'
   2560/* When deleting an item. */
   2561#define M_DELETE	'd'
   2562/* When truncating an item or removing an entry from a (directory) item. */
   2563#define M_CUT		'c'
   2564
   2565/* used when balancing on leaf level skipped (in reiserfsck) */
   2566#define M_INTERNAL	'n'
   2567
   2568/*
   2569 * When further balancing is not needed, then do_balance does not need
   2570 * to be called.
   2571 */
   2572#define M_SKIP_BALANCING		's'
   2573#define M_CONVERT	'v'
   2574
   2575/* modes of leaf_move_items */
   2576#define LEAF_FROM_S_TO_L 0
   2577#define LEAF_FROM_S_TO_R 1
   2578#define LEAF_FROM_R_TO_L 2
   2579#define LEAF_FROM_L_TO_R 3
   2580#define LEAF_FROM_S_TO_SNEW 4
   2581
   2582#define FIRST_TO_LAST 0
   2583#define LAST_TO_FIRST 1
   2584
   2585/*
   2586 * used in do_balance for passing parent of node information that has
   2587 * been gotten from tb struct
   2588 */
   2589struct buffer_info {
   2590	struct tree_balance *tb;
   2591	struct buffer_head *bi_bh;
   2592	struct buffer_head *bi_parent;
   2593	int bi_position;
   2594};
   2595
   2596static inline struct super_block *sb_from_tb(struct tree_balance *tb)
   2597{
   2598	return tb ? tb->tb_sb : NULL;
   2599}
   2600
   2601static inline struct super_block *sb_from_bi(struct buffer_info *bi)
   2602{
   2603	return bi ? sb_from_tb(bi->tb) : NULL;
   2604}
   2605
   2606/*
   2607 * there are 4 types of items: stat data, directory item, indirect, direct.
   2608 * +-------------------+------------+--------------+------------+
   2609 * |                   |  k_offset  | k_uniqueness | mergeable? |
   2610 * +-------------------+------------+--------------+------------+
   2611 * |     stat data     |     0      |      0       |   no       |
   2612 * +-------------------+------------+--------------+------------+
   2613 * | 1st directory item| DOT_OFFSET | DIRENTRY_ .. |   no       |
   2614 * | non 1st directory | hash value | UNIQUENESS   |   yes      |
   2615 * |     item          |            |              |            |
   2616 * +-------------------+------------+--------------+------------+
   2617 * | indirect item     | offset + 1 |TYPE_INDIRECT |    [1]	|
   2618 * +-------------------+------------+--------------+------------+
   2619 * | direct item       | offset + 1 |TYPE_DIRECT   |    [2]     |
   2620 * +-------------------+------------+--------------+------------+
   2621 *
   2622 * [1] if this is not the first indirect item of the object
   2623 * [2] if this is not the first direct item of the object
   2624*/
   2625
   2626struct item_operations {
   2627	int (*bytes_number) (struct item_head * ih, int block_size);
   2628	void (*decrement_key) (struct cpu_key *);
   2629	int (*is_left_mergeable) (struct reiserfs_key * ih,
   2630				  unsigned long bsize);
   2631	void (*print_item) (struct item_head *, char *item);
   2632	void (*check_item) (struct item_head *, char *item);
   2633
   2634	int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
   2635			  int is_affected, int insert_size);
   2636	int (*check_left) (struct virtual_item * vi, int free,
   2637			   int start_skip, int end_skip);
   2638	int (*check_right) (struct virtual_item * vi, int free);
   2639	int (*part_size) (struct virtual_item * vi, int from, int to);
   2640	int (*unit_num) (struct virtual_item * vi);
   2641	void (*print_vi) (struct virtual_item * vi);
   2642};
   2643
   2644extern struct item_operations *item_ops[TYPE_ANY + 1];
   2645
   2646#define op_bytes_number(ih,bsize)                    item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
   2647#define op_is_left_mergeable(key,bsize)              item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
   2648#define op_print_item(ih,item)                       item_ops[le_ih_k_type (ih)]->print_item (ih, item)
   2649#define op_check_item(ih,item)                       item_ops[le_ih_k_type (ih)]->check_item (ih, item)
   2650#define op_create_vi(vn,vi,is_affected,insert_size)  item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
   2651#define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
   2652#define op_check_right(vi,free)                      item_ops[(vi)->vi_index]->check_right (vi, free)
   2653#define op_part_size(vi,from,to)                     item_ops[(vi)->vi_index]->part_size (vi, from, to)
   2654#define op_unit_num(vi)				     item_ops[(vi)->vi_index]->unit_num (vi)
   2655#define op_print_vi(vi)                              item_ops[(vi)->vi_index]->print_vi (vi)
   2656
   2657#define COMP_SHORT_KEYS comp_short_keys
   2658
   2659/* number of blocks pointed to by the indirect item */
   2660#define I_UNFM_NUM(ih)	(ih_item_len(ih) / UNFM_P_SIZE)
   2661
   2662/*
   2663 * the used space within the unformatted node corresponding
   2664 * to pos within the item pointed to by ih
   2665 */
   2666#define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
   2667
   2668/*
   2669 * number of bytes contained by the direct item or the
   2670 * unformatted nodes the indirect item points to
   2671 */
   2672
   2673/* following defines use reiserfs buffer header and item header */
   2674
   2675/* get stat-data */
   2676#define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
   2677
   2678/* this is 3976 for size==4096 */
   2679#define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
   2680
   2681/*
   2682 * indirect items consist of entries which contain blocknrs, pos
   2683 * indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
   2684 * blocknr contained by the entry pos points to
   2685 */
   2686#define B_I_POS_UNFM_POINTER(bh, ih, pos)				\
   2687	le32_to_cpu(*(((unp_t *)ih_item_body(bh, ih)) + (pos)))
   2688#define PUT_B_I_POS_UNFM_POINTER(bh, ih, pos, val)			\
   2689	(*(((unp_t *)ih_item_body(bh, ih)) + (pos)) = cpu_to_le32(val))
   2690
   2691struct reiserfs_iget_args {
   2692	__u32 objectid;
   2693	__u32 dirid;
   2694};
   2695
   2696/***************************************************************************
   2697 *                    FUNCTION DECLARATIONS                                *
   2698 ***************************************************************************/
   2699
   2700#define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
   2701
   2702#define journal_trans_half(blocksize) \
   2703	((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
   2704
   2705/* journal.c see journal.c for all the comments here */
   2706
   2707/* first block written in a commit.  */
   2708struct reiserfs_journal_desc {
   2709	__le32 j_trans_id;	/* id of commit */
   2710
   2711	/* length of commit. len +1 is the commit block */
   2712	__le32 j_len;
   2713
   2714	__le32 j_mount_id;	/* mount id of this trans */
   2715	__le32 j_realblock[1];	/* real locations for each block */
   2716};
   2717
   2718#define get_desc_trans_id(d)   le32_to_cpu((d)->j_trans_id)
   2719#define get_desc_trans_len(d)  le32_to_cpu((d)->j_len)
   2720#define get_desc_mount_id(d)   le32_to_cpu((d)->j_mount_id)
   2721
   2722#define set_desc_trans_id(d,val)       do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
   2723#define set_desc_trans_len(d,val)      do { (d)->j_len = cpu_to_le32 (val); } while (0)
   2724#define set_desc_mount_id(d,val)       do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
   2725
   2726/* last block written in a commit */
   2727struct reiserfs_journal_commit {
   2728	__le32 j_trans_id;	/* must match j_trans_id from the desc block */
   2729	__le32 j_len;		/* ditto */
   2730	__le32 j_realblock[1];	/* real locations for each block */
   2731};
   2732
   2733#define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
   2734#define get_commit_trans_len(c)        le32_to_cpu((c)->j_len)
   2735#define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
   2736
   2737#define set_commit_trans_id(c,val)     do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
   2738#define set_commit_trans_len(c,val)    do { (c)->j_len = cpu_to_le32 (val); } while (0)
   2739
   2740/*
   2741 * this header block gets written whenever a transaction is considered
   2742 * fully flushed, and is more recent than the last fully flushed transaction.
   2743 * fully flushed means all the log blocks and all the real blocks are on
   2744 * disk, and this transaction does not need to be replayed.
   2745 */
   2746struct reiserfs_journal_header {
   2747	/* id of last fully flushed transaction */
   2748	__le32 j_last_flush_trans_id;
   2749
   2750	/* offset in the log of where to start replay after a crash */
   2751	__le32 j_first_unflushed_offset;
   2752
   2753	__le32 j_mount_id;
   2754	/* 12 */ struct journal_params jh_journal;
   2755};
   2756
   2757/* biggest tunable defines are right here */
   2758#define JOURNAL_BLOCK_COUNT 8192	/* number of blocks in the journal */
   2759
   2760/* biggest possible single transaction, don't change for now (8/3/99) */
   2761#define JOURNAL_TRANS_MAX_DEFAULT 1024
   2762#define JOURNAL_TRANS_MIN_DEFAULT 256
   2763
   2764/*
   2765 * max blocks to batch into one transaction,
   2766 * don't make this any bigger than 900
   2767 */
   2768#define JOURNAL_MAX_BATCH_DEFAULT   900
   2769#define JOURNAL_MIN_RATIO 2
   2770#define JOURNAL_MAX_COMMIT_AGE 30
   2771#define JOURNAL_MAX_TRANS_AGE 30
   2772#define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
   2773#define JOURNAL_BLOCKS_PER_OBJECT(sb)  (JOURNAL_PER_BALANCE_CNT * 3 + \
   2774					 2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \
   2775					      REISERFS_QUOTA_TRANS_BLOCKS(sb)))
   2776
   2777#ifdef CONFIG_QUOTA
   2778#define REISERFS_QUOTA_OPTS ((1 << REISERFS_USRQUOTA) | (1 << REISERFS_GRPQUOTA))
   2779/* We need to update data and inode (atime) */
   2780#define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? 2 : 0)
   2781/* 1 balancing, 1 bitmap, 1 data per write + stat data update */
   2782#define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
   2783(DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0)
   2784/* same as with INIT */
   2785#define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
   2786(DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0)
   2787#else
   2788#define REISERFS_QUOTA_TRANS_BLOCKS(s) 0
   2789#define REISERFS_QUOTA_INIT_BLOCKS(s) 0
   2790#define REISERFS_QUOTA_DEL_BLOCKS(s) 0
   2791#endif
   2792
   2793/*
   2794 * both of these can be as low as 1, or as high as you want.  The min is the
   2795 * number of 4k bitmap nodes preallocated on mount. New nodes are allocated
   2796 * as needed, and released when transactions are committed.  On release, if
   2797 * the current number of nodes is > max, the node is freed, otherwise,
   2798 * it is put on a free list for faster use later.
   2799*/
   2800#define REISERFS_MIN_BITMAP_NODES 10
   2801#define REISERFS_MAX_BITMAP_NODES 100
   2802
   2803/* these are based on journal hash size of 8192 */
   2804#define JBH_HASH_SHIFT 13
   2805#define JBH_HASH_MASK 8191
   2806
   2807#define _jhashfn(sb,block)	\
   2808	(((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
   2809	 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
   2810#define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
   2811
   2812/* We need these to make journal.c code more readable */
   2813#define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
   2814#define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
   2815#define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
   2816
   2817enum reiserfs_bh_state_bits {
   2818	BH_JDirty = BH_PrivateStart,	/* buffer is in current transaction */
   2819	BH_JDirty_wait,
   2820	/*
   2821	 * disk block was taken off free list before being in a
   2822	 * finished transaction, or written to disk. Can be reused immed.
   2823	 */
   2824	BH_JNew,
   2825	BH_JPrepared,
   2826	BH_JRestore_dirty,
   2827	BH_JTest,		/* debugging only will go away */
   2828};
   2829
   2830BUFFER_FNS(JDirty, journaled);
   2831TAS_BUFFER_FNS(JDirty, journaled);
   2832BUFFER_FNS(JDirty_wait, journal_dirty);
   2833TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
   2834BUFFER_FNS(JNew, journal_new);
   2835TAS_BUFFER_FNS(JNew, journal_new);
   2836BUFFER_FNS(JPrepared, journal_prepared);
   2837TAS_BUFFER_FNS(JPrepared, journal_prepared);
   2838BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
   2839TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
   2840BUFFER_FNS(JTest, journal_test);
   2841TAS_BUFFER_FNS(JTest, journal_test);
   2842
   2843/* transaction handle which is passed around for all journal calls */
   2844struct reiserfs_transaction_handle {
   2845	/*
   2846	 * super for this FS when journal_begin was called. saves calls to
   2847	 * reiserfs_get_super also used by nested transactions to make
   2848	 * sure they are nesting on the right FS _must_ be first
   2849	 * in the handle
   2850	 */
   2851	struct super_block *t_super;
   2852
   2853	int t_refcount;
   2854	int t_blocks_logged;	/* number of blocks this writer has logged */
   2855	int t_blocks_allocated;	/* number of blocks this writer allocated */
   2856
   2857	/* sanity check, equals the current trans id */
   2858	unsigned int t_trans_id;
   2859
   2860	void *t_handle_save;	/* save existing current->journal_info */
   2861
   2862	/*
   2863	 * if new block allocation occurres, that block
   2864	 * should be displaced from others
   2865	 */
   2866	unsigned displace_new_blocks:1;
   2867
   2868	struct list_head t_list;
   2869};
   2870
   2871/*
   2872 * used to keep track of ordered and tail writes, attached to the buffer
   2873 * head through b_journal_head.
   2874 */
   2875struct reiserfs_jh {
   2876	struct reiserfs_journal_list *jl;
   2877	struct buffer_head *bh;
   2878	struct list_head list;
   2879};
   2880
   2881void reiserfs_free_jh(struct buffer_head *bh);
   2882int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
   2883int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
   2884int journal_mark_dirty(struct reiserfs_transaction_handle *,
   2885		       struct buffer_head *bh);
   2886
   2887static inline int reiserfs_file_data_log(struct inode *inode)
   2888{
   2889	if (reiserfs_data_log(inode->i_sb) ||
   2890	    (REISERFS_I(inode)->i_flags & i_data_log))
   2891		return 1;
   2892	return 0;
   2893}
   2894
   2895static inline int reiserfs_transaction_running(struct super_block *s)
   2896{
   2897	struct reiserfs_transaction_handle *th = current->journal_info;
   2898	if (th && th->t_super == s)
   2899		return 1;
   2900	if (th && th->t_super == NULL)
   2901		BUG();
   2902	return 0;
   2903}
   2904
   2905static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th)
   2906{
   2907	return th->t_blocks_allocated - th->t_blocks_logged;
   2908}
   2909
   2910struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct
   2911								    super_block
   2912								    *,
   2913								    int count);
   2914int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
   2915void reiserfs_vfs_truncate_file(struct inode *inode);
   2916int reiserfs_commit_page(struct inode *inode, struct page *page,
   2917			 unsigned from, unsigned to);
   2918void reiserfs_flush_old_commits(struct super_block *);
   2919int reiserfs_commit_for_inode(struct inode *);
   2920int reiserfs_inode_needs_commit(struct inode *);
   2921void reiserfs_update_inode_transaction(struct inode *);
   2922void reiserfs_wait_on_write_block(struct super_block *s);
   2923void reiserfs_block_writes(struct reiserfs_transaction_handle *th);
   2924void reiserfs_allow_writes(struct super_block *s);
   2925void reiserfs_check_lock_depth(struct super_block *s, char *caller);
   2926int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh,
   2927				 int wait);
   2928void reiserfs_restore_prepared_buffer(struct super_block *,
   2929				      struct buffer_head *bh);
   2930int journal_init(struct super_block *, const char *j_dev_name, int old_format,
   2931		 unsigned int);
   2932int journal_release(struct reiserfs_transaction_handle *, struct super_block *);
   2933int journal_release_error(struct reiserfs_transaction_handle *,
   2934			  struct super_block *);
   2935int journal_end(struct reiserfs_transaction_handle *);
   2936int journal_end_sync(struct reiserfs_transaction_handle *);
   2937int journal_mark_freed(struct reiserfs_transaction_handle *,
   2938		       struct super_block *, b_blocknr_t blocknr);
   2939int journal_transaction_should_end(struct reiserfs_transaction_handle *, int);
   2940int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr,
   2941			 int bit_nr, int searchall, b_blocknr_t *next);
   2942int journal_begin(struct reiserfs_transaction_handle *,
   2943		  struct super_block *sb, unsigned long);
   2944int journal_join_abort(struct reiserfs_transaction_handle *,
   2945		       struct super_block *sb);
   2946void reiserfs_abort_journal(struct super_block *sb, int errno);
   2947void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...);
   2948int reiserfs_allocate_list_bitmaps(struct super_block *s,
   2949				   struct reiserfs_list_bitmap *, unsigned int);
   2950
   2951void reiserfs_schedule_old_flush(struct super_block *s);
   2952void reiserfs_cancel_old_flush(struct super_block *s);
   2953void add_save_link(struct reiserfs_transaction_handle *th,
   2954		   struct inode *inode, int truncate);
   2955int remove_save_link(struct inode *inode, int truncate);
   2956
   2957/* objectid.c */
   2958__u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th);
   2959void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
   2960			       __u32 objectid_to_release);
   2961int reiserfs_convert_objectid_map_v1(struct super_block *);
   2962
   2963/* stree.c */
   2964int B_IS_IN_TREE(const struct buffer_head *);
   2965extern void copy_item_head(struct item_head *to,
   2966			   const struct item_head *from);
   2967
   2968/* first key is in cpu form, second - le */
   2969extern int comp_short_keys(const struct reiserfs_key *le_key,
   2970			   const struct cpu_key *cpu_key);
   2971extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from);
   2972
   2973/* both are in le form */
   2974extern int comp_le_keys(const struct reiserfs_key *,
   2975			const struct reiserfs_key *);
   2976extern int comp_short_le_keys(const struct reiserfs_key *,
   2977			      const struct reiserfs_key *);
   2978
   2979/* * get key version from on disk key - kludge */
   2980static inline int le_key_version(const struct reiserfs_key *key)
   2981{
   2982	int type;
   2983
   2984	type = offset_v2_k_type(&(key->u.k_offset_v2));
   2985	if (type != TYPE_DIRECT && type != TYPE_INDIRECT
   2986	    && type != TYPE_DIRENTRY)
   2987		return KEY_FORMAT_3_5;
   2988
   2989	return KEY_FORMAT_3_6;
   2990
   2991}
   2992
   2993static inline void copy_key(struct reiserfs_key *to,
   2994			    const struct reiserfs_key *from)
   2995{
   2996	memcpy(to, from, KEY_SIZE);
   2997}
   2998
   2999int comp_items(const struct item_head *stored_ih, const struct treepath *path);
   3000const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
   3001				    const struct super_block *sb);
   3002int search_by_key(struct super_block *, const struct cpu_key *,
   3003		  struct treepath *, int);
   3004#define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
   3005int search_for_position_by_key(struct super_block *sb,
   3006			       const struct cpu_key *cpu_key,
   3007			       struct treepath *search_path);
   3008extern void decrement_bcount(struct buffer_head *bh);
   3009void decrement_counters_in_path(struct treepath *search_path);
   3010void pathrelse(struct treepath *search_path);
   3011int reiserfs_check_path(struct treepath *p);
   3012void pathrelse_and_restore(struct super_block *s, struct treepath *search_path);
   3013
   3014int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
   3015			 struct treepath *path,
   3016			 const struct cpu_key *key,
   3017			 struct item_head *ih,
   3018			 struct inode *inode, const char *body);
   3019
   3020int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
   3021			     struct treepath *path,
   3022			     const struct cpu_key *key,
   3023			     struct inode *inode,
   3024			     const char *body, int paste_size);
   3025
   3026int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
   3027			   struct treepath *path,
   3028			   struct cpu_key *key,
   3029			   struct inode *inode,
   3030			   struct page *page, loff_t new_file_size);
   3031
   3032int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
   3033			 struct treepath *path,
   3034			 const struct cpu_key *key,
   3035			 struct inode *inode, struct buffer_head *un_bh);
   3036
   3037void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
   3038				struct inode *inode, struct reiserfs_key *key);
   3039int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
   3040			   struct inode *inode);
   3041int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
   3042			 struct inode *inode, struct page *,
   3043			 int update_timestamps);
   3044
   3045#define i_block_size(inode) ((inode)->i_sb->s_blocksize)
   3046#define file_size(inode) ((inode)->i_size)
   3047#define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
   3048
   3049#define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
   3050!STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
   3051
   3052void padd_item(char *item, int total_length, int length);
   3053
   3054/* inode.c */
   3055/* args for the create parameter of reiserfs_get_block */
   3056#define GET_BLOCK_NO_CREATE 0	 /* don't create new blocks or convert tails */
   3057#define GET_BLOCK_CREATE 1	 /* add anything you need to find block */
   3058#define GET_BLOCK_NO_HOLE 2	 /* return -ENOENT for file holes */
   3059#define GET_BLOCK_READ_DIRECT 4	 /* read the tail if indirect item not found */
   3060#define GET_BLOCK_NO_IMUX     8	 /* i_mutex is not held, don't preallocate */
   3061#define GET_BLOCK_NO_DANGLE   16 /* don't leave any transactions running */
   3062
   3063void reiserfs_read_locked_inode(struct inode *inode,
   3064				struct reiserfs_iget_args *args);
   3065int reiserfs_find_actor(struct inode *inode, void *p);
   3066int reiserfs_init_locked_inode(struct inode *inode, void *p);
   3067void reiserfs_evict_inode(struct inode *inode);
   3068int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc);
   3069int reiserfs_get_block(struct inode *inode, sector_t block,
   3070		       struct buffer_head *bh_result, int create);
   3071struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
   3072				     int fh_len, int fh_type);
   3073struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
   3074				     int fh_len, int fh_type);
   3075int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
   3076		       struct inode *parent);
   3077
   3078int reiserfs_truncate_file(struct inode *, int update_timestamps);
   3079void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset,
   3080		  int type, int key_length);
   3081void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
   3082		       int version,
   3083		       loff_t offset, int type, int length, int entry_count);
   3084struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key);
   3085
   3086struct reiserfs_security_handle;
   3087int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
   3088		       struct inode *dir, umode_t mode,
   3089		       const char *symname, loff_t i_size,
   3090		       struct dentry *dentry, struct inode *inode,
   3091		       struct reiserfs_security_handle *security);
   3092
   3093void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
   3094			     struct inode *inode, loff_t size);
   3095
   3096static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
   3097				      struct inode *inode)
   3098{
   3099	reiserfs_update_sd_size(th, inode, inode->i_size);
   3100}
   3101
   3102void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode);
   3103int reiserfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
   3104		     struct iattr *attr);
   3105
   3106int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len);
   3107
   3108/* namei.c */
   3109void set_de_name_and_namelen(struct reiserfs_dir_entry *de);
   3110int search_by_entry_key(struct super_block *sb, const struct cpu_key *key,
   3111			struct treepath *path, struct reiserfs_dir_entry *de);
   3112struct dentry *reiserfs_get_parent(struct dentry *);
   3113
   3114#ifdef CONFIG_REISERFS_PROC_INFO
   3115int reiserfs_proc_info_init(struct super_block *sb);
   3116int reiserfs_proc_info_done(struct super_block *sb);
   3117int reiserfs_proc_info_global_init(void);
   3118int reiserfs_proc_info_global_done(void);
   3119
   3120#define PROC_EXP( e )   e
   3121
   3122#define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
   3123#define PROC_INFO_MAX( sb, field, value )								\
   3124    __PINFO( sb ).field =												\
   3125        max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
   3126#define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
   3127#define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
   3128#define PROC_INFO_BH_STAT( sb, bh, level )							\
   3129    PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] );						\
   3130    PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) );	\
   3131    PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
   3132#else
   3133static inline int reiserfs_proc_info_init(struct super_block *sb)
   3134{
   3135	return 0;
   3136}
   3137
   3138static inline int reiserfs_proc_info_done(struct super_block *sb)
   3139{
   3140	return 0;
   3141}
   3142
   3143static inline int reiserfs_proc_info_global_init(void)
   3144{
   3145	return 0;
   3146}
   3147
   3148static inline int reiserfs_proc_info_global_done(void)
   3149{
   3150	return 0;
   3151}
   3152
   3153#define PROC_EXP( e )
   3154#define VOID_V ( ( void ) 0 )
   3155#define PROC_INFO_MAX( sb, field, value ) VOID_V
   3156#define PROC_INFO_INC( sb, field ) VOID_V
   3157#define PROC_INFO_ADD( sb, field, val ) VOID_V
   3158#define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V
   3159#endif
   3160
   3161/* dir.c */
   3162extern const struct inode_operations reiserfs_dir_inode_operations;
   3163extern const struct inode_operations reiserfs_symlink_inode_operations;
   3164extern const struct inode_operations reiserfs_special_inode_operations;
   3165extern const struct file_operations reiserfs_dir_operations;
   3166int reiserfs_readdir_inode(struct inode *, struct dir_context *);
   3167
   3168/* tail_conversion.c */
   3169int direct2indirect(struct reiserfs_transaction_handle *, struct inode *,
   3170		    struct treepath *, struct buffer_head *, loff_t);
   3171int indirect2direct(struct reiserfs_transaction_handle *, struct inode *,
   3172		    struct page *, struct treepath *, const struct cpu_key *,
   3173		    loff_t, char *);
   3174void reiserfs_unmap_buffer(struct buffer_head *);
   3175
   3176/* file.c */
   3177extern const struct inode_operations reiserfs_file_inode_operations;
   3178extern const struct file_operations reiserfs_file_operations;
   3179extern const struct address_space_operations reiserfs_address_space_operations;
   3180
   3181/* fix_nodes.c */
   3182
   3183int fix_nodes(int n_op_mode, struct tree_balance *tb,
   3184	      struct item_head *ins_ih, const void *);
   3185void unfix_nodes(struct tree_balance *);
   3186
   3187/* prints.c */
   3188void __reiserfs_panic(struct super_block *s, const char *id,
   3189		      const char *function, const char *fmt, ...)
   3190    __attribute__ ((noreturn));
   3191#define reiserfs_panic(s, id, fmt, args...) \
   3192	__reiserfs_panic(s, id, __func__, fmt, ##args)
   3193void __reiserfs_error(struct super_block *s, const char *id,
   3194		      const char *function, const char *fmt, ...);
   3195#define reiserfs_error(s, id, fmt, args...) \
   3196	 __reiserfs_error(s, id, __func__, fmt, ##args)
   3197void reiserfs_info(struct super_block *s, const char *fmt, ...);
   3198void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...);
   3199void print_indirect_item(struct buffer_head *bh, int item_num);
   3200void store_print_tb(struct tree_balance *tb);
   3201void print_cur_tb(char *mes);
   3202void print_de(struct reiserfs_dir_entry *de);
   3203void print_bi(struct buffer_info *bi, char *mes);
   3204#define PRINT_LEAF_ITEMS 1	/* print all items */
   3205#define PRINT_DIRECTORY_ITEMS 2	/* print directory items */
   3206#define PRINT_DIRECT_ITEMS 4	/* print contents of direct items */
   3207void print_block(struct buffer_head *bh, ...);
   3208void print_bmap(struct super_block *s, int silent);
   3209void print_bmap_block(int i, char *data, int size, int silent);
   3210/*void print_super_block (struct super_block * s, char * mes);*/
   3211void print_objectid_map(struct super_block *s);
   3212void print_block_head(struct buffer_head *bh, char *mes);
   3213void check_leaf(struct buffer_head *bh);
   3214void check_internal(struct buffer_head *bh);
   3215void print_statistics(struct super_block *s);
   3216char *reiserfs_hashname(int code);
   3217
   3218/* lbalance.c */
   3219int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num,
   3220		    int mov_bytes, struct buffer_head *Snew);
   3221int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes);
   3222int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes);
   3223void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first,
   3224		       int del_num, int del_bytes);
   3225void leaf_insert_into_buf(struct buffer_info *bi, int before,
   3226			  struct item_head * const inserted_item_ih,
   3227			  const char * const inserted_item_body,
   3228			  int zeros_number);
   3229void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num,
   3230			  int pos_in_item, int paste_size,
   3231			  const char * const body, int zeros_number);
   3232void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
   3233			  int pos_in_item, int cut_size);
   3234void leaf_paste_entries(struct buffer_info *bi, int item_num, int before,
   3235			int new_entry_count, struct reiserfs_de_head *new_dehs,
   3236			const char *records, int paste_size);
   3237/* ibalance.c */
   3238int balance_internal(struct tree_balance *, int, int, struct item_head *,
   3239		     struct buffer_head **);
   3240
   3241/* do_balance.c */
   3242void do_balance_mark_leaf_dirty(struct tree_balance *tb,
   3243				struct buffer_head *bh, int flag);
   3244#define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
   3245#define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
   3246
   3247void do_balance(struct tree_balance *tb, struct item_head *ih,
   3248		const char *body, int flag);
   3249void reiserfs_invalidate_buffer(struct tree_balance *tb,
   3250				struct buffer_head *bh);
   3251
   3252int get_left_neighbor_position(struct tree_balance *tb, int h);
   3253int get_right_neighbor_position(struct tree_balance *tb, int h);
   3254void replace_key(struct tree_balance *tb, struct buffer_head *, int,
   3255		 struct buffer_head *, int);
   3256void make_empty_node(struct buffer_info *);
   3257struct buffer_head *get_FEB(struct tree_balance *);
   3258
   3259/* bitmap.c */
   3260
   3261/*
   3262 * structure contains hints for block allocator, and it is a container for
   3263 * arguments, such as node, search path, transaction_handle, etc.
   3264 */
   3265struct __reiserfs_blocknr_hint {
   3266	/* inode passed to allocator, if we allocate unf. nodes */
   3267	struct inode *inode;
   3268
   3269	sector_t block;		/* file offset, in blocks */
   3270	struct in_core_key key;
   3271
   3272	/*
   3273	 * search path, used by allocator to deternine search_start by
   3274	 * various ways
   3275	 */
   3276	struct treepath *path;
   3277
   3278	/*
   3279	 * transaction handle is needed to log super blocks
   3280	 * and bitmap blocks changes
   3281	 */
   3282	struct reiserfs_transaction_handle *th;
   3283
   3284	b_blocknr_t beg, end;
   3285
   3286	/*
   3287	 * a field used to transfer search start value (block number)
   3288	 * between different block allocator procedures
   3289	 * (determine_search_start() and others)
   3290	 */
   3291	b_blocknr_t search_start;
   3292
   3293	/*
   3294	 * is set in determine_prealloc_size() function,
   3295	 * used by underlayed function that do actual allocation
   3296	 */
   3297	int prealloc_size;
   3298
   3299	/*
   3300	 * the allocator uses different polices for getting disk
   3301	 * space for formatted/unformatted blocks with/without preallocation
   3302	 */
   3303	unsigned formatted_node:1;
   3304	unsigned preallocate:1;
   3305};
   3306
   3307typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
   3308
   3309int reiserfs_parse_alloc_options(struct super_block *, char *);
   3310void reiserfs_init_alloc_options(struct super_block *s);
   3311
   3312/*
   3313 * given a directory, this will tell you what packing locality
   3314 * to use for a new object underneat it.  The locality is returned
   3315 * in disk byte order (le).
   3316 */
   3317__le32 reiserfs_choose_packing(struct inode *dir);
   3318
   3319void show_alloc_options(struct seq_file *seq, struct super_block *s);
   3320int reiserfs_init_bitmap_cache(struct super_block *sb);
   3321void reiserfs_free_bitmap_cache(struct super_block *sb);
   3322void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info);
   3323struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap);
   3324int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value);
   3325void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *,
   3326			 b_blocknr_t, int for_unformatted);
   3327int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int,
   3328			       int);
   3329static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb,
   3330					     b_blocknr_t * new_blocknrs,
   3331					     int amount_needed)
   3332{
   3333	reiserfs_blocknr_hint_t hint = {
   3334		.th = tb->transaction_handle,
   3335		.path = tb->tb_path,
   3336		.inode = NULL,
   3337		.key = tb->key,
   3338		.block = 0,
   3339		.formatted_node = 1
   3340	};
   3341	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed,
   3342					  0);
   3343}
   3344
   3345static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle
   3346					    *th, struct inode *inode,
   3347					    b_blocknr_t * new_blocknrs,
   3348					    struct treepath *path,
   3349					    sector_t block)
   3350{
   3351	reiserfs_blocknr_hint_t hint = {
   3352		.th = th,
   3353		.path = path,
   3354		.inode = inode,
   3355		.block = block,
   3356		.formatted_node = 0,
   3357		.preallocate = 0
   3358	};
   3359	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
   3360}
   3361
   3362#ifdef REISERFS_PREALLOCATE
   3363static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle
   3364					     *th, struct inode *inode,
   3365					     b_blocknr_t * new_blocknrs,
   3366					     struct treepath *path,
   3367					     sector_t block)
   3368{
   3369	reiserfs_blocknr_hint_t hint = {
   3370		.th = th,
   3371		.path = path,
   3372		.inode = inode,
   3373		.block = block,
   3374		.formatted_node = 0,
   3375		.preallocate = 1
   3376	};
   3377	return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
   3378}
   3379
   3380void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th,
   3381			       struct inode *inode);
   3382void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th);
   3383#endif
   3384
   3385/* hashes.c */
   3386__u32 keyed_hash(const signed char *msg, int len);
   3387__u32 yura_hash(const signed char *msg, int len);
   3388__u32 r5_hash(const signed char *msg, int len);
   3389
   3390#define reiserfs_set_le_bit		__set_bit_le
   3391#define reiserfs_test_and_set_le_bit	__test_and_set_bit_le
   3392#define reiserfs_clear_le_bit		__clear_bit_le
   3393#define reiserfs_test_and_clear_le_bit	__test_and_clear_bit_le
   3394#define reiserfs_test_le_bit		test_bit_le
   3395#define reiserfs_find_next_zero_le_bit	find_next_zero_bit_le
   3396
   3397/*
   3398 * sometimes reiserfs_truncate may require to allocate few new blocks
   3399 * to perform indirect2direct conversion. People probably used to
   3400 * think, that truncate should work without problems on a filesystem
   3401 * without free disk space. They may complain that they can not
   3402 * truncate due to lack of free disk space. This spare space allows us
   3403 * to not worry about it. 500 is probably too much, but it should be
   3404 * absolutely safe
   3405 */
   3406#define SPARE_SPACE 500
   3407
   3408/* prototypes from ioctl.c */
   3409int reiserfs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
   3410int reiserfs_fileattr_set(struct user_namespace *mnt_userns,
   3411			  struct dentry *dentry, struct fileattr *fa);
   3412long reiserfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
   3413long reiserfs_compat_ioctl(struct file *filp,
   3414		   unsigned int cmd, unsigned long arg);
   3415int reiserfs_unpack(struct inode *inode);