cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

stree.c (65819B)


      1/*
      2 *  Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
      3 */
      4
      5/*
      6 *  Written by Anatoly P. Pinchuk pap@namesys.botik.ru
      7 *  Programm System Institute
      8 *  Pereslavl-Zalessky Russia
      9 */
     10
     11#include <linux/time.h>
     12#include <linux/string.h>
     13#include <linux/pagemap.h>
     14#include <linux/bio.h>
     15#include "reiserfs.h"
     16#include <linux/buffer_head.h>
     17#include <linux/quotaops.h>
     18
     19/* Does the buffer contain a disk block which is in the tree. */
     20inline int B_IS_IN_TREE(const struct buffer_head *bh)
     21{
     22
     23	RFALSE(B_LEVEL(bh) > MAX_HEIGHT,
     24	       "PAP-1010: block (%b) has too big level (%z)", bh, bh);
     25
     26	return (B_LEVEL(bh) != FREE_LEVEL);
     27}
     28
     29/* to get item head in le form */
     30inline void copy_item_head(struct item_head *to,
     31			   const struct item_head *from)
     32{
     33	memcpy(to, from, IH_SIZE);
     34}
     35
     36/*
     37 * k1 is pointer to on-disk structure which is stored in little-endian
     38 * form. k2 is pointer to cpu variable. For key of items of the same
     39 * object this returns 0.
     40 * Returns: -1 if key1 < key2
     41 * 0 if key1 == key2
     42 * 1 if key1 > key2
     43 */
     44inline int comp_short_keys(const struct reiserfs_key *le_key,
     45			   const struct cpu_key *cpu_key)
     46{
     47	__u32 n;
     48	n = le32_to_cpu(le_key->k_dir_id);
     49	if (n < cpu_key->on_disk_key.k_dir_id)
     50		return -1;
     51	if (n > cpu_key->on_disk_key.k_dir_id)
     52		return 1;
     53	n = le32_to_cpu(le_key->k_objectid);
     54	if (n < cpu_key->on_disk_key.k_objectid)
     55		return -1;
     56	if (n > cpu_key->on_disk_key.k_objectid)
     57		return 1;
     58	return 0;
     59}
     60
     61/*
     62 * k1 is pointer to on-disk structure which is stored in little-endian
     63 * form. k2 is pointer to cpu variable.
     64 * Compare keys using all 4 key fields.
     65 * Returns: -1 if key1 < key2 0
     66 * if key1 = key2 1 if key1 > key2
     67 */
     68static inline int comp_keys(const struct reiserfs_key *le_key,
     69			    const struct cpu_key *cpu_key)
     70{
     71	int retval;
     72
     73	retval = comp_short_keys(le_key, cpu_key);
     74	if (retval)
     75		return retval;
     76	if (le_key_k_offset(le_key_version(le_key), le_key) <
     77	    cpu_key_k_offset(cpu_key))
     78		return -1;
     79	if (le_key_k_offset(le_key_version(le_key), le_key) >
     80	    cpu_key_k_offset(cpu_key))
     81		return 1;
     82
     83	if (cpu_key->key_length == 3)
     84		return 0;
     85
     86	/* this part is needed only when tail conversion is in progress */
     87	if (le_key_k_type(le_key_version(le_key), le_key) <
     88	    cpu_key_k_type(cpu_key))
     89		return -1;
     90
     91	if (le_key_k_type(le_key_version(le_key), le_key) >
     92	    cpu_key_k_type(cpu_key))
     93		return 1;
     94
     95	return 0;
     96}
     97
     98inline int comp_short_le_keys(const struct reiserfs_key *key1,
     99			      const struct reiserfs_key *key2)
    100{
    101	__u32 *k1_u32, *k2_u32;
    102	int key_length = REISERFS_SHORT_KEY_LEN;
    103
    104	k1_u32 = (__u32 *) key1;
    105	k2_u32 = (__u32 *) key2;
    106	for (; key_length--; ++k1_u32, ++k2_u32) {
    107		if (le32_to_cpu(*k1_u32) < le32_to_cpu(*k2_u32))
    108			return -1;
    109		if (le32_to_cpu(*k1_u32) > le32_to_cpu(*k2_u32))
    110			return 1;
    111	}
    112	return 0;
    113}
    114
    115inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from)
    116{
    117	int version;
    118	to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id);
    119	to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid);
    120
    121	/* find out version of the key */
    122	version = le_key_version(from);
    123	to->version = version;
    124	to->on_disk_key.k_offset = le_key_k_offset(version, from);
    125	to->on_disk_key.k_type = le_key_k_type(version, from);
    126}
    127
    128/*
    129 * this does not say which one is bigger, it only returns 1 if keys
    130 * are not equal, 0 otherwise
    131 */
    132inline int comp_le_keys(const struct reiserfs_key *k1,
    133			const struct reiserfs_key *k2)
    134{
    135	return memcmp(k1, k2, sizeof(struct reiserfs_key));
    136}
    137
    138/**************************************************************************
    139 *  Binary search toolkit function                                        *
    140 *  Search for an item in the array by the item key                       *
    141 *  Returns:    1 if found,  0 if not found;                              *
    142 *        *pos = number of the searched element if found, else the        *
    143 *        number of the first element that is larger than key.            *
    144 **************************************************************************/
    145/*
    146 * For those not familiar with binary search: lbound is the leftmost item
    147 * that it could be, rbound the rightmost item that it could be.  We examine
    148 * the item halfway between lbound and rbound, and that tells us either
    149 * that we can increase lbound, or decrease rbound, or that we have found it,
    150 * or if lbound <= rbound that there are no possible items, and we have not
    151 * found it. With each examination we cut the number of possible items it
    152 * could be by one more than half rounded down, or we find it.
    153 */
    154static inline int bin_search(const void *key,	/* Key to search for. */
    155			     const void *base,	/* First item in the array. */
    156			     int num,	/* Number of items in the array. */
    157			     /*
    158			      * Item size in the array.  searched. Lest the
    159			      * reader be confused, note that this is crafted
    160			      * as a general function, and when it is applied
    161			      * specifically to the array of item headers in a
    162			      * node, width is actually the item header size
    163			      * not the item size.
    164			      */
    165			     int width,
    166			     int *pos /* Number of the searched for element. */
    167    )
    168{
    169	int rbound, lbound, j;
    170
    171	for (j = ((rbound = num - 1) + (lbound = 0)) / 2;
    172	     lbound <= rbound; j = (rbound + lbound) / 2)
    173		switch (comp_keys
    174			((struct reiserfs_key *)((char *)base + j * width),
    175			 (struct cpu_key *)key)) {
    176		case -1:
    177			lbound = j + 1;
    178			continue;
    179		case 1:
    180			rbound = j - 1;
    181			continue;
    182		case 0:
    183			*pos = j;
    184			return ITEM_FOUND;	/* Key found in the array.  */
    185		}
    186
    187	/*
    188	 * bin_search did not find given key, it returns position of key,
    189	 * that is minimal and greater than the given one.
    190	 */
    191	*pos = lbound;
    192	return ITEM_NOT_FOUND;
    193}
    194
    195
    196/* Minimal possible key. It is never in the tree. */
    197const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} };
    198
    199/* Maximal possible key. It is never in the tree. */
    200static const struct reiserfs_key MAX_KEY = {
    201	cpu_to_le32(0xffffffff),
    202	cpu_to_le32(0xffffffff),
    203	{{cpu_to_le32(0xffffffff),
    204	  cpu_to_le32(0xffffffff)},}
    205};
    206
    207/*
    208 * Get delimiting key of the buffer by looking for it in the buffers in the
    209 * path, starting from the bottom of the path, and going upwards.  We must
    210 * check the path's validity at each step.  If the key is not in the path,
    211 * there is no delimiting key in the tree (buffer is first or last buffer
    212 * in tree), and in this case we return a special key, either MIN_KEY or
    213 * MAX_KEY.
    214 */
    215static inline const struct reiserfs_key *get_lkey(const struct treepath *chk_path,
    216						  const struct super_block *sb)
    217{
    218	int position, path_offset = chk_path->path_length;
    219	struct buffer_head *parent;
    220
    221	RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
    222	       "PAP-5010: invalid offset in the path");
    223
    224	/* While not higher in path than first element. */
    225	while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
    226
    227		RFALSE(!buffer_uptodate
    228		       (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
    229		       "PAP-5020: parent is not uptodate");
    230
    231		/* Parent at the path is not in the tree now. */
    232		if (!B_IS_IN_TREE
    233		    (parent =
    234		     PATH_OFFSET_PBUFFER(chk_path, path_offset)))
    235			return &MAX_KEY;
    236		/* Check whether position in the parent is correct. */
    237		if ((position =
    238		     PATH_OFFSET_POSITION(chk_path,
    239					  path_offset)) >
    240		    B_NR_ITEMS(parent))
    241			return &MAX_KEY;
    242		/* Check whether parent at the path really points to the child. */
    243		if (B_N_CHILD_NUM(parent, position) !=
    244		    PATH_OFFSET_PBUFFER(chk_path,
    245					path_offset + 1)->b_blocknr)
    246			return &MAX_KEY;
    247		/*
    248		 * Return delimiting key if position in the parent
    249		 * is not equal to zero.
    250		 */
    251		if (position)
    252			return internal_key(parent, position - 1);
    253	}
    254	/* Return MIN_KEY if we are in the root of the buffer tree. */
    255	if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
    256	    b_blocknr == SB_ROOT_BLOCK(sb))
    257		return &MIN_KEY;
    258	return &MAX_KEY;
    259}
    260
    261/* Get delimiting key of the buffer at the path and its right neighbor. */
    262inline const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
    263					   const struct super_block *sb)
    264{
    265	int position, path_offset = chk_path->path_length;
    266	struct buffer_head *parent;
    267
    268	RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
    269	       "PAP-5030: invalid offset in the path");
    270
    271	while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
    272
    273		RFALSE(!buffer_uptodate
    274		       (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
    275		       "PAP-5040: parent is not uptodate");
    276
    277		/* Parent at the path is not in the tree now. */
    278		if (!B_IS_IN_TREE
    279		    (parent =
    280		     PATH_OFFSET_PBUFFER(chk_path, path_offset)))
    281			return &MIN_KEY;
    282		/* Check whether position in the parent is correct. */
    283		if ((position =
    284		     PATH_OFFSET_POSITION(chk_path,
    285					  path_offset)) >
    286		    B_NR_ITEMS(parent))
    287			return &MIN_KEY;
    288		/*
    289		 * Check whether parent at the path really points
    290		 * to the child.
    291		 */
    292		if (B_N_CHILD_NUM(parent, position) !=
    293		    PATH_OFFSET_PBUFFER(chk_path,
    294					path_offset + 1)->b_blocknr)
    295			return &MIN_KEY;
    296
    297		/*
    298		 * Return delimiting key if position in the parent
    299		 * is not the last one.
    300		 */
    301		if (position != B_NR_ITEMS(parent))
    302			return internal_key(parent, position);
    303	}
    304
    305	/* Return MAX_KEY if we are in the root of the buffer tree. */
    306	if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
    307	    b_blocknr == SB_ROOT_BLOCK(sb))
    308		return &MAX_KEY;
    309	return &MIN_KEY;
    310}
    311
    312/*
    313 * Check whether a key is contained in the tree rooted from a buffer at a path.
    314 * This works by looking at the left and right delimiting keys for the buffer
    315 * in the last path_element in the path.  These delimiting keys are stored
    316 * at least one level above that buffer in the tree. If the buffer is the
    317 * first or last node in the tree order then one of the delimiting keys may
    318 * be absent, and in this case get_lkey and get_rkey return a special key
    319 * which is MIN_KEY or MAX_KEY.
    320 */
    321static inline int key_in_buffer(
    322				/* Path which should be checked. */
    323				struct treepath *chk_path,
    324				/* Key which should be checked. */
    325				const struct cpu_key *key,
    326				struct super_block *sb
    327    )
    328{
    329
    330	RFALSE(!key || chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET
    331	       || chk_path->path_length > MAX_HEIGHT,
    332	       "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)",
    333	       key, chk_path->path_length);
    334	RFALSE(!PATH_PLAST_BUFFER(chk_path)->b_bdev,
    335	       "PAP-5060: device must not be NODEV");
    336
    337	if (comp_keys(get_lkey(chk_path, sb), key) == 1)
    338		/* left delimiting key is bigger, that the key we look for */
    339		return 0;
    340	/*  if ( comp_keys(key, get_rkey(chk_path, sb)) != -1 ) */
    341	if (comp_keys(get_rkey(chk_path, sb), key) != 1)
    342		/* key must be less than right delimitiing key */
    343		return 0;
    344	return 1;
    345}
    346
    347int reiserfs_check_path(struct treepath *p)
    348{
    349	RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET,
    350	       "path not properly relsed");
    351	return 0;
    352}
    353
    354/*
    355 * Drop the reference to each buffer in a path and restore
    356 * dirty bits clean when preparing the buffer for the log.
    357 * This version should only be called from fix_nodes()
    358 */
    359void pathrelse_and_restore(struct super_block *sb,
    360			   struct treepath *search_path)
    361{
    362	int path_offset = search_path->path_length;
    363
    364	RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
    365	       "clm-4000: invalid path offset");
    366
    367	while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) {
    368		struct buffer_head *bh;
    369		bh = PATH_OFFSET_PBUFFER(search_path, path_offset--);
    370		reiserfs_restore_prepared_buffer(sb, bh);
    371		brelse(bh);
    372	}
    373	search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
    374}
    375
    376/* Drop the reference to each buffer in a path */
    377void pathrelse(struct treepath *search_path)
    378{
    379	int path_offset = search_path->path_length;
    380
    381	RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
    382	       "PAP-5090: invalid path offset");
    383
    384	while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET)
    385		brelse(PATH_OFFSET_PBUFFER(search_path, path_offset--));
    386
    387	search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
    388}
    389
    390static int has_valid_deh_location(struct buffer_head *bh, struct item_head *ih)
    391{
    392	struct reiserfs_de_head *deh;
    393	int i;
    394
    395	deh = B_I_DEH(bh, ih);
    396	for (i = 0; i < ih_entry_count(ih); i++) {
    397		if (deh_location(&deh[i]) > ih_item_len(ih)) {
    398			reiserfs_warning(NULL, "reiserfs-5094",
    399					 "directory entry location seems wrong %h",
    400					 &deh[i]);
    401			return 0;
    402		}
    403	}
    404
    405	return 1;
    406}
    407
    408static int is_leaf(char *buf, int blocksize, struct buffer_head *bh)
    409{
    410	struct block_head *blkh;
    411	struct item_head *ih;
    412	int used_space;
    413	int prev_location;
    414	int i;
    415	int nr;
    416
    417	blkh = (struct block_head *)buf;
    418	if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) {
    419		reiserfs_warning(NULL, "reiserfs-5080",
    420				 "this should be caught earlier");
    421		return 0;
    422	}
    423
    424	nr = blkh_nr_item(blkh);
    425	if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) {
    426		/* item number is too big or too small */
    427		reiserfs_warning(NULL, "reiserfs-5081",
    428				 "nr_item seems wrong: %z", bh);
    429		return 0;
    430	}
    431	ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1;
    432	used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih));
    433
    434	/* free space does not match to calculated amount of use space */
    435	if (used_space != blocksize - blkh_free_space(blkh)) {
    436		reiserfs_warning(NULL, "reiserfs-5082",
    437				 "free space seems wrong: %z", bh);
    438		return 0;
    439	}
    440	/*
    441	 * FIXME: it is_leaf will hit performance too much - we may have
    442	 * return 1 here
    443	 */
    444
    445	/* check tables of item heads */
    446	ih = (struct item_head *)(buf + BLKH_SIZE);
    447	prev_location = blocksize;
    448	for (i = 0; i < nr; i++, ih++) {
    449		if (le_ih_k_type(ih) == TYPE_ANY) {
    450			reiserfs_warning(NULL, "reiserfs-5083",
    451					 "wrong item type for item %h",
    452					 ih);
    453			return 0;
    454		}
    455		if (ih_location(ih) >= blocksize
    456		    || ih_location(ih) < IH_SIZE * nr) {
    457			reiserfs_warning(NULL, "reiserfs-5084",
    458					 "item location seems wrong: %h",
    459					 ih);
    460			return 0;
    461		}
    462		if (ih_item_len(ih) < 1
    463		    || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) {
    464			reiserfs_warning(NULL, "reiserfs-5085",
    465					 "item length seems wrong: %h",
    466					 ih);
    467			return 0;
    468		}
    469		if (prev_location - ih_location(ih) != ih_item_len(ih)) {
    470			reiserfs_warning(NULL, "reiserfs-5086",
    471					 "item location seems wrong "
    472					 "(second one): %h", ih);
    473			return 0;
    474		}
    475		if (is_direntry_le_ih(ih)) {
    476			if (ih_item_len(ih) < (ih_entry_count(ih) * IH_SIZE)) {
    477				reiserfs_warning(NULL, "reiserfs-5093",
    478						 "item entry count seems wrong %h",
    479						 ih);
    480				return 0;
    481			}
    482			return has_valid_deh_location(bh, ih);
    483		}
    484		prev_location = ih_location(ih);
    485	}
    486
    487	/* one may imagine many more checks */
    488	return 1;
    489}
    490
    491/* returns 1 if buf looks like an internal node, 0 otherwise */
    492static int is_internal(char *buf, int blocksize, struct buffer_head *bh)
    493{
    494	struct block_head *blkh;
    495	int nr;
    496	int used_space;
    497
    498	blkh = (struct block_head *)buf;
    499	nr = blkh_level(blkh);
    500	if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) {
    501		/* this level is not possible for internal nodes */
    502		reiserfs_warning(NULL, "reiserfs-5087",
    503				 "this should be caught earlier");
    504		return 0;
    505	}
    506
    507	nr = blkh_nr_item(blkh);
    508	/* for internal which is not root we might check min number of keys */
    509	if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) {
    510		reiserfs_warning(NULL, "reiserfs-5088",
    511				 "number of key seems wrong: %z", bh);
    512		return 0;
    513	}
    514
    515	used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1);
    516	if (used_space != blocksize - blkh_free_space(blkh)) {
    517		reiserfs_warning(NULL, "reiserfs-5089",
    518				 "free space seems wrong: %z", bh);
    519		return 0;
    520	}
    521
    522	/* one may imagine many more checks */
    523	return 1;
    524}
    525
    526/*
    527 * make sure that bh contains formatted node of reiserfs tree of
    528 * 'level'-th level
    529 */
    530static int is_tree_node(struct buffer_head *bh, int level)
    531{
    532	if (B_LEVEL(bh) != level) {
    533		reiserfs_warning(NULL, "reiserfs-5090", "node level %d does "
    534				 "not match to the expected one %d",
    535				 B_LEVEL(bh), level);
    536		return 0;
    537	}
    538	if (level == DISK_LEAF_NODE_LEVEL)
    539		return is_leaf(bh->b_data, bh->b_size, bh);
    540
    541	return is_internal(bh->b_data, bh->b_size, bh);
    542}
    543
    544#define SEARCH_BY_KEY_READA 16
    545
    546/*
    547 * The function is NOT SCHEDULE-SAFE!
    548 * It might unlock the write lock if we needed to wait for a block
    549 * to be read. Note that in this case it won't recover the lock to avoid
    550 * high contention resulting from too much lock requests, especially
    551 * the caller (search_by_key) will perform other schedule-unsafe
    552 * operations just after calling this function.
    553 *
    554 * @return depth of lock to be restored after read completes
    555 */
    556static int search_by_key_reada(struct super_block *s,
    557				struct buffer_head **bh,
    558				b_blocknr_t *b, int num)
    559{
    560	int i, j;
    561	int depth = -1;
    562
    563	for (i = 0; i < num; i++) {
    564		bh[i] = sb_getblk(s, b[i]);
    565	}
    566	/*
    567	 * We are going to read some blocks on which we
    568	 * have a reference. It's safe, though we might be
    569	 * reading blocks concurrently changed if we release
    570	 * the lock. But it's still fine because we check later
    571	 * if the tree changed
    572	 */
    573	for (j = 0; j < i; j++) {
    574		/*
    575		 * note, this needs attention if we are getting rid of the BKL
    576		 * you have to make sure the prepared bit isn't set on this
    577		 * buffer
    578		 */
    579		if (!buffer_uptodate(bh[j])) {
    580			if (depth == -1)
    581				depth = reiserfs_write_unlock_nested(s);
    582			ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, bh + j);
    583		}
    584		brelse(bh[j]);
    585	}
    586	return depth;
    587}
    588
    589/*
    590 * This function fills up the path from the root to the leaf as it
    591 * descends the tree looking for the key.  It uses reiserfs_bread to
    592 * try to find buffers in the cache given their block number.  If it
    593 * does not find them in the cache it reads them from disk.  For each
    594 * node search_by_key finds using reiserfs_bread it then uses
    595 * bin_search to look through that node.  bin_search will find the
    596 * position of the block_number of the next node if it is looking
    597 * through an internal node.  If it is looking through a leaf node
    598 * bin_search will find the position of the item which has key either
    599 * equal to given key, or which is the maximal key less than the given
    600 * key.  search_by_key returns a path that must be checked for the
    601 * correctness of the top of the path but need not be checked for the
    602 * correctness of the bottom of the path
    603 */
    604/*
    605 * search_by_key - search for key (and item) in stree
    606 * @sb: superblock
    607 * @key: pointer to key to search for
    608 * @search_path: Allocated and initialized struct treepath; Returned filled
    609 *		 on success.
    610 * @stop_level: How far down the tree to search, Use DISK_LEAF_NODE_LEVEL to
    611 *		stop at leaf level.
    612 *
    613 * The function is NOT SCHEDULE-SAFE!
    614 */
    615int search_by_key(struct super_block *sb, const struct cpu_key *key,
    616		  struct treepath *search_path, int stop_level)
    617{
    618	b_blocknr_t block_number;
    619	int expected_level;
    620	struct buffer_head *bh;
    621	struct path_element *last_element;
    622	int node_level, retval;
    623	int fs_gen;
    624	struct buffer_head *reada_bh[SEARCH_BY_KEY_READA];
    625	b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA];
    626	int reada_count = 0;
    627
    628#ifdef CONFIG_REISERFS_CHECK
    629	int repeat_counter = 0;
    630#endif
    631
    632	PROC_INFO_INC(sb, search_by_key);
    633
    634	/*
    635	 * As we add each node to a path we increase its count.  This means
    636	 * that we must be careful to release all nodes in a path before we
    637	 * either discard the path struct or re-use the path struct, as we
    638	 * do here.
    639	 */
    640
    641	pathrelse(search_path);
    642
    643	/*
    644	 * With each iteration of this loop we search through the items in the
    645	 * current node, and calculate the next current node(next path element)
    646	 * for the next iteration of this loop..
    647	 */
    648	block_number = SB_ROOT_BLOCK(sb);
    649	expected_level = -1;
    650	while (1) {
    651
    652#ifdef CONFIG_REISERFS_CHECK
    653		if (!(++repeat_counter % 50000))
    654			reiserfs_warning(sb, "PAP-5100",
    655					 "%s: there were %d iterations of "
    656					 "while loop looking for key %K",
    657					 current->comm, repeat_counter,
    658					 key);
    659#endif
    660
    661		/* prep path to have another element added to it. */
    662		last_element =
    663		    PATH_OFFSET_PELEMENT(search_path,
    664					 ++search_path->path_length);
    665		fs_gen = get_generation(sb);
    666
    667		/*
    668		 * Read the next tree node, and set the last element
    669		 * in the path to have a pointer to it.
    670		 */
    671		if ((bh = last_element->pe_buffer =
    672		     sb_getblk(sb, block_number))) {
    673
    674			/*
    675			 * We'll need to drop the lock if we encounter any
    676			 * buffers that need to be read. If all of them are
    677			 * already up to date, we don't need to drop the lock.
    678			 */
    679			int depth = -1;
    680
    681			if (!buffer_uptodate(bh) && reada_count > 1)
    682				depth = search_by_key_reada(sb, reada_bh,
    683						    reada_blocks, reada_count);
    684
    685			if (!buffer_uptodate(bh) && depth == -1)
    686				depth = reiserfs_write_unlock_nested(sb);
    687
    688			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
    689			wait_on_buffer(bh);
    690
    691			if (depth != -1)
    692				reiserfs_write_lock_nested(sb, depth);
    693			if (!buffer_uptodate(bh))
    694				goto io_error;
    695		} else {
    696io_error:
    697			search_path->path_length--;
    698			pathrelse(search_path);
    699			return IO_ERROR;
    700		}
    701		reada_count = 0;
    702		if (expected_level == -1)
    703			expected_level = SB_TREE_HEIGHT(sb);
    704		expected_level--;
    705
    706		/*
    707		 * It is possible that schedule occurred. We must check
    708		 * whether the key to search is still in the tree rooted
    709		 * from the current buffer. If not then repeat search
    710		 * from the root.
    711		 */
    712		if (fs_changed(fs_gen, sb) &&
    713		    (!B_IS_IN_TREE(bh) ||
    714		     B_LEVEL(bh) != expected_level ||
    715		     !key_in_buffer(search_path, key, sb))) {
    716			PROC_INFO_INC(sb, search_by_key_fs_changed);
    717			PROC_INFO_INC(sb, search_by_key_restarted);
    718			PROC_INFO_INC(sb,
    719				      sbk_restarted[expected_level - 1]);
    720			pathrelse(search_path);
    721
    722			/*
    723			 * Get the root block number so that we can
    724			 * repeat the search starting from the root.
    725			 */
    726			block_number = SB_ROOT_BLOCK(sb);
    727			expected_level = -1;
    728
    729			/* repeat search from the root */
    730			continue;
    731		}
    732
    733		/*
    734		 * only check that the key is in the buffer if key is not
    735		 * equal to the MAX_KEY. Latter case is only possible in
    736		 * "finish_unfinished()" processing during mount.
    737		 */
    738		RFALSE(comp_keys(&MAX_KEY, key) &&
    739		       !key_in_buffer(search_path, key, sb),
    740		       "PAP-5130: key is not in the buffer");
    741#ifdef CONFIG_REISERFS_CHECK
    742		if (REISERFS_SB(sb)->cur_tb) {
    743			print_cur_tb("5140");
    744			reiserfs_panic(sb, "PAP-5140",
    745				       "schedule occurred in do_balance!");
    746		}
    747#endif
    748
    749		/*
    750		 * make sure, that the node contents look like a node of
    751		 * certain level
    752		 */
    753		if (!is_tree_node(bh, expected_level)) {
    754			reiserfs_error(sb, "vs-5150",
    755				       "invalid format found in block %ld. "
    756				       "Fsck?", bh->b_blocknr);
    757			pathrelse(search_path);
    758			return IO_ERROR;
    759		}
    760
    761		/* ok, we have acquired next formatted node in the tree */
    762		node_level = B_LEVEL(bh);
    763
    764		PROC_INFO_BH_STAT(sb, bh, node_level - 1);
    765
    766		RFALSE(node_level < stop_level,
    767		       "vs-5152: tree level (%d) is less than stop level (%d)",
    768		       node_level, stop_level);
    769
    770		retval = bin_search(key, item_head(bh, 0),
    771				      B_NR_ITEMS(bh),
    772				      (node_level ==
    773				       DISK_LEAF_NODE_LEVEL) ? IH_SIZE :
    774				      KEY_SIZE,
    775				      &last_element->pe_position);
    776		if (node_level == stop_level) {
    777			return retval;
    778		}
    779
    780		/* we are not in the stop level */
    781		/*
    782		 * item has been found, so we choose the pointer which
    783		 * is to the right of the found one
    784		 */
    785		if (retval == ITEM_FOUND)
    786			last_element->pe_position++;
    787
    788		/*
    789		 * if item was not found we choose the position which is to
    790		 * the left of the found item. This requires no code,
    791		 * bin_search did it already.
    792		 */
    793
    794		/*
    795		 * So we have chosen a position in the current node which is
    796		 * an internal node.  Now we calculate child block number by
    797		 * position in the node.
    798		 */
    799		block_number =
    800		    B_N_CHILD_NUM(bh, last_element->pe_position);
    801
    802		/*
    803		 * if we are going to read leaf nodes, try for read
    804		 * ahead as well
    805		 */
    806		if ((search_path->reada & PATH_READA) &&
    807		    node_level == DISK_LEAF_NODE_LEVEL + 1) {
    808			int pos = last_element->pe_position;
    809			int limit = B_NR_ITEMS(bh);
    810			struct reiserfs_key *le_key;
    811
    812			if (search_path->reada & PATH_READA_BACK)
    813				limit = 0;
    814			while (reada_count < SEARCH_BY_KEY_READA) {
    815				if (pos == limit)
    816					break;
    817				reada_blocks[reada_count++] =
    818				    B_N_CHILD_NUM(bh, pos);
    819				if (search_path->reada & PATH_READA_BACK)
    820					pos--;
    821				else
    822					pos++;
    823
    824				/*
    825				 * check to make sure we're in the same object
    826				 */
    827				le_key = internal_key(bh, pos);
    828				if (le32_to_cpu(le_key->k_objectid) !=
    829				    key->on_disk_key.k_objectid) {
    830					break;
    831				}
    832			}
    833		}
    834	}
    835}
    836
    837/*
    838 * Form the path to an item and position in this item which contains
    839 * file byte defined by key. If there is no such item
    840 * corresponding to the key, we point the path to the item with
    841 * maximal key less than key, and *pos_in_item is set to one
    842 * past the last entry/byte in the item.  If searching for entry in a
    843 * directory item, and it is not found, *pos_in_item is set to one
    844 * entry more than the entry with maximal key which is less than the
    845 * sought key.
    846 *
    847 * Note that if there is no entry in this same node which is one more,
    848 * then we point to an imaginary entry.  for direct items, the
    849 * position is in units of bytes, for indirect items the position is
    850 * in units of blocknr entries, for directory items the position is in
    851 * units of directory entries.
    852 */
    853/* The function is NOT SCHEDULE-SAFE! */
    854int search_for_position_by_key(struct super_block *sb,
    855			       /* Key to search (cpu variable) */
    856			       const struct cpu_key *p_cpu_key,
    857			       /* Filled up by this function. */
    858			       struct treepath *search_path)
    859{
    860	struct item_head *p_le_ih;	/* pointer to on-disk structure */
    861	int blk_size;
    862	loff_t item_offset, offset;
    863	struct reiserfs_dir_entry de;
    864	int retval;
    865
    866	/* If searching for directory entry. */
    867	if (is_direntry_cpu_key(p_cpu_key))
    868		return search_by_entry_key(sb, p_cpu_key, search_path,
    869					   &de);
    870
    871	/* If not searching for directory entry. */
    872
    873	/* If item is found. */
    874	retval = search_item(sb, p_cpu_key, search_path);
    875	if (retval == IO_ERROR)
    876		return retval;
    877	if (retval == ITEM_FOUND) {
    878
    879		RFALSE(!ih_item_len
    880		       (item_head
    881			(PATH_PLAST_BUFFER(search_path),
    882			 PATH_LAST_POSITION(search_path))),
    883		       "PAP-5165: item length equals zero");
    884
    885		pos_in_item(search_path) = 0;
    886		return POSITION_FOUND;
    887	}
    888
    889	RFALSE(!PATH_LAST_POSITION(search_path),
    890	       "PAP-5170: position equals zero");
    891
    892	/* Item is not found. Set path to the previous item. */
    893	p_le_ih =
    894	    item_head(PATH_PLAST_BUFFER(search_path),
    895			   --PATH_LAST_POSITION(search_path));
    896	blk_size = sb->s_blocksize;
    897
    898	if (comp_short_keys(&p_le_ih->ih_key, p_cpu_key))
    899		return FILE_NOT_FOUND;
    900
    901	/* FIXME: quite ugly this far */
    902
    903	item_offset = le_ih_k_offset(p_le_ih);
    904	offset = cpu_key_k_offset(p_cpu_key);
    905
    906	/* Needed byte is contained in the item pointed to by the path. */
    907	if (item_offset <= offset &&
    908	    item_offset + op_bytes_number(p_le_ih, blk_size) > offset) {
    909		pos_in_item(search_path) = offset - item_offset;
    910		if (is_indirect_le_ih(p_le_ih)) {
    911			pos_in_item(search_path) /= blk_size;
    912		}
    913		return POSITION_FOUND;
    914	}
    915
    916	/*
    917	 * Needed byte is not contained in the item pointed to by the
    918	 * path. Set pos_in_item out of the item.
    919	 */
    920	if (is_indirect_le_ih(p_le_ih))
    921		pos_in_item(search_path) =
    922		    ih_item_len(p_le_ih) / UNFM_P_SIZE;
    923	else
    924		pos_in_item(search_path) = ih_item_len(p_le_ih);
    925
    926	return POSITION_NOT_FOUND;
    927}
    928
    929/* Compare given item and item pointed to by the path. */
    930int comp_items(const struct item_head *stored_ih, const struct treepath *path)
    931{
    932	struct buffer_head *bh = PATH_PLAST_BUFFER(path);
    933	struct item_head *ih;
    934
    935	/* Last buffer at the path is not in the tree. */
    936	if (!B_IS_IN_TREE(bh))
    937		return 1;
    938
    939	/* Last path position is invalid. */
    940	if (PATH_LAST_POSITION(path) >= B_NR_ITEMS(bh))
    941		return 1;
    942
    943	/* we need only to know, whether it is the same item */
    944	ih = tp_item_head(path);
    945	return memcmp(stored_ih, ih, IH_SIZE);
    946}
    947
    948/* prepare for delete or cut of direct item */
    949static inline int prepare_for_direct_item(struct treepath *path,
    950					  struct item_head *le_ih,
    951					  struct inode *inode,
    952					  loff_t new_file_length, int *cut_size)
    953{
    954	loff_t round_len;
    955
    956	if (new_file_length == max_reiserfs_offset(inode)) {
    957		/* item has to be deleted */
    958		*cut_size = -(IH_SIZE + ih_item_len(le_ih));
    959		return M_DELETE;
    960	}
    961	/* new file gets truncated */
    962	if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) {
    963		round_len = ROUND_UP(new_file_length);
    964		/* this was new_file_length < le_ih ... */
    965		if (round_len < le_ih_k_offset(le_ih)) {
    966			*cut_size = -(IH_SIZE + ih_item_len(le_ih));
    967			return M_DELETE;	/* Delete this item. */
    968		}
    969		/* Calculate first position and size for cutting from item. */
    970		pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1);
    971		*cut_size = -(ih_item_len(le_ih) - pos_in_item(path));
    972
    973		return M_CUT;	/* Cut from this item. */
    974	}
    975
    976	/* old file: items may have any length */
    977
    978	if (new_file_length < le_ih_k_offset(le_ih)) {
    979		*cut_size = -(IH_SIZE + ih_item_len(le_ih));
    980		return M_DELETE;	/* Delete this item. */
    981	}
    982
    983	/* Calculate first position and size for cutting from item. */
    984	*cut_size = -(ih_item_len(le_ih) -
    985		      (pos_in_item(path) =
    986		       new_file_length + 1 - le_ih_k_offset(le_ih)));
    987	return M_CUT;		/* Cut from this item. */
    988}
    989
    990static inline int prepare_for_direntry_item(struct treepath *path,
    991					    struct item_head *le_ih,
    992					    struct inode *inode,
    993					    loff_t new_file_length,
    994					    int *cut_size)
    995{
    996	if (le_ih_k_offset(le_ih) == DOT_OFFSET &&
    997	    new_file_length == max_reiserfs_offset(inode)) {
    998		RFALSE(ih_entry_count(le_ih) != 2,
    999		       "PAP-5220: incorrect empty directory item (%h)", le_ih);
   1000		*cut_size = -(IH_SIZE + ih_item_len(le_ih));
   1001		/* Delete the directory item containing "." and ".." entry. */
   1002		return M_DELETE;
   1003	}
   1004
   1005	if (ih_entry_count(le_ih) == 1) {
   1006		/*
   1007		 * Delete the directory item such as there is one record only
   1008		 * in this item
   1009		 */
   1010		*cut_size = -(IH_SIZE + ih_item_len(le_ih));
   1011		return M_DELETE;
   1012	}
   1013
   1014	/* Cut one record from the directory item. */
   1015	*cut_size =
   1016	    -(DEH_SIZE +
   1017	      entry_length(get_last_bh(path), le_ih, pos_in_item(path)));
   1018	return M_CUT;
   1019}
   1020
   1021#define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1)
   1022
   1023/*
   1024 * If the path points to a directory or direct item, calculate mode
   1025 * and the size cut, for balance.
   1026 * If the path points to an indirect item, remove some number of its
   1027 * unformatted nodes.
   1028 * In case of file truncate calculate whether this item must be
   1029 * deleted/truncated or last unformatted node of this item will be
   1030 * converted to a direct item.
   1031 * This function returns a determination of what balance mode the
   1032 * calling function should employ.
   1033 */
   1034static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th,
   1035				      struct inode *inode,
   1036				      struct treepath *path,
   1037				      const struct cpu_key *item_key,
   1038				      /*
   1039				       * Number of unformatted nodes
   1040				       * which were removed from end
   1041				       * of the file.
   1042				       */
   1043				      int *removed,
   1044				      int *cut_size,
   1045				      /* MAX_KEY_OFFSET in case of delete. */
   1046				      unsigned long long new_file_length
   1047    )
   1048{
   1049	struct super_block *sb = inode->i_sb;
   1050	struct item_head *p_le_ih = tp_item_head(path);
   1051	struct buffer_head *bh = PATH_PLAST_BUFFER(path);
   1052
   1053	BUG_ON(!th->t_trans_id);
   1054
   1055	/* Stat_data item. */
   1056	if (is_statdata_le_ih(p_le_ih)) {
   1057
   1058		RFALSE(new_file_length != max_reiserfs_offset(inode),
   1059		       "PAP-5210: mode must be M_DELETE");
   1060
   1061		*cut_size = -(IH_SIZE + ih_item_len(p_le_ih));
   1062		return M_DELETE;
   1063	}
   1064
   1065	/* Directory item. */
   1066	if (is_direntry_le_ih(p_le_ih))
   1067		return prepare_for_direntry_item(path, p_le_ih, inode,
   1068						 new_file_length,
   1069						 cut_size);
   1070
   1071	/* Direct item. */
   1072	if (is_direct_le_ih(p_le_ih))
   1073		return prepare_for_direct_item(path, p_le_ih, inode,
   1074					       new_file_length, cut_size);
   1075
   1076	/* Case of an indirect item. */
   1077	{
   1078	    int blk_size = sb->s_blocksize;
   1079	    struct item_head s_ih;
   1080	    int need_re_search;
   1081	    int delete = 0;
   1082	    int result = M_CUT;
   1083	    int pos = 0;
   1084
   1085	    if ( new_file_length == max_reiserfs_offset (inode) ) {
   1086		/*
   1087		 * prepare_for_delete_or_cut() is called by
   1088		 * reiserfs_delete_item()
   1089		 */
   1090		new_file_length = 0;
   1091		delete = 1;
   1092	    }
   1093
   1094	    do {
   1095		need_re_search = 0;
   1096		*cut_size = 0;
   1097		bh = PATH_PLAST_BUFFER(path);
   1098		copy_item_head(&s_ih, tp_item_head(path));
   1099		pos = I_UNFM_NUM(&s_ih);
   1100
   1101		while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > new_file_length) {
   1102		    __le32 *unfm;
   1103		    __u32 block;
   1104
   1105		    /*
   1106		     * Each unformatted block deletion may involve
   1107		     * one additional bitmap block into the transaction,
   1108		     * thereby the initial journal space reservation
   1109		     * might not be enough.
   1110		     */
   1111		    if (!delete && (*cut_size) != 0 &&
   1112			reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD)
   1113			break;
   1114
   1115		    unfm = (__le32 *)ih_item_body(bh, &s_ih) + pos - 1;
   1116		    block = get_block_num(unfm, 0);
   1117
   1118		    if (block != 0) {
   1119			reiserfs_prepare_for_journal(sb, bh, 1);
   1120			put_block_num(unfm, 0, 0);
   1121			journal_mark_dirty(th, bh);
   1122			reiserfs_free_block(th, inode, block, 1);
   1123		    }
   1124
   1125		    reiserfs_cond_resched(sb);
   1126
   1127		    if (item_moved (&s_ih, path))  {
   1128			need_re_search = 1;
   1129			break;
   1130		    }
   1131
   1132		    pos --;
   1133		    (*removed)++;
   1134		    (*cut_size) -= UNFM_P_SIZE;
   1135
   1136		    if (pos == 0) {
   1137			(*cut_size) -= IH_SIZE;
   1138			result = M_DELETE;
   1139			break;
   1140		    }
   1141		}
   1142		/*
   1143		 * a trick.  If the buffer has been logged, this will
   1144		 * do nothing.  If we've broken the loop without logging
   1145		 * it, it will restore the buffer
   1146		 */
   1147		reiserfs_restore_prepared_buffer(sb, bh);
   1148	    } while (need_re_search &&
   1149		     search_for_position_by_key(sb, item_key, path) == POSITION_FOUND);
   1150	    pos_in_item(path) = pos * UNFM_P_SIZE;
   1151
   1152	    if (*cut_size == 0) {
   1153		/*
   1154		 * Nothing was cut. maybe convert last unformatted node to the
   1155		 * direct item?
   1156		 */
   1157		result = M_CONVERT;
   1158	    }
   1159	    return result;
   1160	}
   1161}
   1162
   1163/* Calculate number of bytes which will be deleted or cut during balance */
   1164static int calc_deleted_bytes_number(struct tree_balance *tb, char mode)
   1165{
   1166	int del_size;
   1167	struct item_head *p_le_ih = tp_item_head(tb->tb_path);
   1168
   1169	if (is_statdata_le_ih(p_le_ih))
   1170		return 0;
   1171
   1172	del_size =
   1173	    (mode ==
   1174	     M_DELETE) ? ih_item_len(p_le_ih) : -tb->insert_size[0];
   1175	if (is_direntry_le_ih(p_le_ih)) {
   1176		/*
   1177		 * return EMPTY_DIR_SIZE; We delete emty directories only.
   1178		 * we can't use EMPTY_DIR_SIZE, as old format dirs have a
   1179		 * different empty size.  ick. FIXME, is this right?
   1180		 */
   1181		return del_size;
   1182	}
   1183
   1184	if (is_indirect_le_ih(p_le_ih))
   1185		del_size = (del_size / UNFM_P_SIZE) *
   1186				(PATH_PLAST_BUFFER(tb->tb_path)->b_size);
   1187	return del_size;
   1188}
   1189
   1190static void init_tb_struct(struct reiserfs_transaction_handle *th,
   1191			   struct tree_balance *tb,
   1192			   struct super_block *sb,
   1193			   struct treepath *path, int size)
   1194{
   1195
   1196	BUG_ON(!th->t_trans_id);
   1197
   1198	memset(tb, '\0', sizeof(struct tree_balance));
   1199	tb->transaction_handle = th;
   1200	tb->tb_sb = sb;
   1201	tb->tb_path = path;
   1202	PATH_OFFSET_PBUFFER(path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL;
   1203	PATH_OFFSET_POSITION(path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0;
   1204	tb->insert_size[0] = size;
   1205}
   1206
   1207void padd_item(char *item, int total_length, int length)
   1208{
   1209	int i;
   1210
   1211	for (i = total_length; i > length;)
   1212		item[--i] = 0;
   1213}
   1214
   1215#ifdef REISERQUOTA_DEBUG
   1216char key2type(struct reiserfs_key *ih)
   1217{
   1218	if (is_direntry_le_key(2, ih))
   1219		return 'd';
   1220	if (is_direct_le_key(2, ih))
   1221		return 'D';
   1222	if (is_indirect_le_key(2, ih))
   1223		return 'i';
   1224	if (is_statdata_le_key(2, ih))
   1225		return 's';
   1226	return 'u';
   1227}
   1228
   1229char head2type(struct item_head *ih)
   1230{
   1231	if (is_direntry_le_ih(ih))
   1232		return 'd';
   1233	if (is_direct_le_ih(ih))
   1234		return 'D';
   1235	if (is_indirect_le_ih(ih))
   1236		return 'i';
   1237	if (is_statdata_le_ih(ih))
   1238		return 's';
   1239	return 'u';
   1240}
   1241#endif
   1242
   1243/*
   1244 * Delete object item.
   1245 * th       - active transaction handle
   1246 * path     - path to the deleted item
   1247 * item_key - key to search for the deleted item
   1248 * indode   - used for updating i_blocks and quotas
   1249 * un_bh    - NULL or unformatted node pointer
   1250 */
   1251int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
   1252			 struct treepath *path, const struct cpu_key *item_key,
   1253			 struct inode *inode, struct buffer_head *un_bh)
   1254{
   1255	struct super_block *sb = inode->i_sb;
   1256	struct tree_balance s_del_balance;
   1257	struct item_head s_ih;
   1258	struct item_head *q_ih;
   1259	int quota_cut_bytes;
   1260	int ret_value, del_size, removed;
   1261	int depth;
   1262
   1263#ifdef CONFIG_REISERFS_CHECK
   1264	char mode;
   1265	int iter = 0;
   1266#endif
   1267
   1268	BUG_ON(!th->t_trans_id);
   1269
   1270	init_tb_struct(th, &s_del_balance, sb, path,
   1271		       0 /*size is unknown */ );
   1272
   1273	while (1) {
   1274		removed = 0;
   1275
   1276#ifdef CONFIG_REISERFS_CHECK
   1277		iter++;
   1278		mode =
   1279#endif
   1280		    prepare_for_delete_or_cut(th, inode, path,
   1281					      item_key, &removed,
   1282					      &del_size,
   1283					      max_reiserfs_offset(inode));
   1284
   1285		RFALSE(mode != M_DELETE, "PAP-5320: mode must be M_DELETE");
   1286
   1287		copy_item_head(&s_ih, tp_item_head(path));
   1288		s_del_balance.insert_size[0] = del_size;
   1289
   1290		ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL);
   1291		if (ret_value != REPEAT_SEARCH)
   1292			break;
   1293
   1294		PROC_INFO_INC(sb, delete_item_restarted);
   1295
   1296		/* file system changed, repeat search */
   1297		ret_value =
   1298		    search_for_position_by_key(sb, item_key, path);
   1299		if (ret_value == IO_ERROR)
   1300			break;
   1301		if (ret_value == FILE_NOT_FOUND) {
   1302			reiserfs_warning(sb, "vs-5340",
   1303					 "no items of the file %K found",
   1304					 item_key);
   1305			break;
   1306		}
   1307	}			/* while (1) */
   1308
   1309	if (ret_value != CARRY_ON) {
   1310		unfix_nodes(&s_del_balance);
   1311		return 0;
   1312	}
   1313
   1314	/* reiserfs_delete_item returns item length when success */
   1315	ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE);
   1316	q_ih = tp_item_head(path);
   1317	quota_cut_bytes = ih_item_len(q_ih);
   1318
   1319	/*
   1320	 * hack so the quota code doesn't have to guess if the file has a
   1321	 * tail.  On tail insert, we allocate quota for 1 unformatted node.
   1322	 * We test the offset because the tail might have been
   1323	 * split into multiple items, and we only want to decrement for
   1324	 * the unfm node once
   1325	 */
   1326	if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) {
   1327		if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) {
   1328			quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
   1329		} else {
   1330			quota_cut_bytes = 0;
   1331		}
   1332	}
   1333
   1334	if (un_bh) {
   1335		int off;
   1336		char *data;
   1337
   1338		/*
   1339		 * We are in direct2indirect conversion, so move tail contents
   1340		 * to the unformatted node
   1341		 */
   1342		/*
   1343		 * note, we do the copy before preparing the buffer because we
   1344		 * don't care about the contents of the unformatted node yet.
   1345		 * the only thing we really care about is the direct item's
   1346		 * data is in the unformatted node.
   1347		 *
   1348		 * Otherwise, we would have to call
   1349		 * reiserfs_prepare_for_journal on the unformatted node,
   1350		 * which might schedule, meaning we'd have to loop all the
   1351		 * way back up to the start of the while loop.
   1352		 *
   1353		 * The unformatted node must be dirtied later on.  We can't be
   1354		 * sure here if the entire tail has been deleted yet.
   1355		 *
   1356		 * un_bh is from the page cache (all unformatted nodes are
   1357		 * from the page cache) and might be a highmem page.  So, we
   1358		 * can't use un_bh->b_data.
   1359		 * -clm
   1360		 */
   1361
   1362		data = kmap_atomic(un_bh->b_page);
   1363		off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_SIZE - 1));
   1364		memcpy(data + off,
   1365		       ih_item_body(PATH_PLAST_BUFFER(path), &s_ih),
   1366		       ret_value);
   1367		kunmap_atomic(data);
   1368	}
   1369
   1370	/* Perform balancing after all resources have been collected at once. */
   1371	do_balance(&s_del_balance, NULL, NULL, M_DELETE);
   1372
   1373#ifdef REISERQUOTA_DEBUG
   1374	reiserfs_debug(sb, REISERFS_DEBUG_CODE,
   1375		       "reiserquota delete_item(): freeing %u, id=%u type=%c",
   1376		       quota_cut_bytes, inode->i_uid, head2type(&s_ih));
   1377#endif
   1378	depth = reiserfs_write_unlock_nested(inode->i_sb);
   1379	dquot_free_space_nodirty(inode, quota_cut_bytes);
   1380	reiserfs_write_lock_nested(inode->i_sb, depth);
   1381
   1382	/* Return deleted body length */
   1383	return ret_value;
   1384}
   1385
   1386/*
   1387 * Summary Of Mechanisms For Handling Collisions Between Processes:
   1388 *
   1389 *  deletion of the body of the object is performed by iput(), with the
   1390 *  result that if multiple processes are operating on a file, the
   1391 *  deletion of the body of the file is deferred until the last process
   1392 *  that has an open inode performs its iput().
   1393 *
   1394 *  writes and truncates are protected from collisions by use of
   1395 *  semaphores.
   1396 *
   1397 *  creates, linking, and mknod are protected from collisions with other
   1398 *  processes by making the reiserfs_add_entry() the last step in the
   1399 *  creation, and then rolling back all changes if there was a collision.
   1400 *  - Hans
   1401*/
   1402
   1403/* this deletes item which never gets split */
   1404void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
   1405				struct inode *inode, struct reiserfs_key *key)
   1406{
   1407	struct super_block *sb = th->t_super;
   1408	struct tree_balance tb;
   1409	INITIALIZE_PATH(path);
   1410	int item_len = 0;
   1411	int tb_init = 0;
   1412	struct cpu_key cpu_key;
   1413	int retval;
   1414	int quota_cut_bytes = 0;
   1415
   1416	BUG_ON(!th->t_trans_id);
   1417
   1418	le_key2cpu_key(&cpu_key, key);
   1419
   1420	while (1) {
   1421		retval = search_item(th->t_super, &cpu_key, &path);
   1422		if (retval == IO_ERROR) {
   1423			reiserfs_error(th->t_super, "vs-5350",
   1424				       "i/o failure occurred trying "
   1425				       "to delete %K", &cpu_key);
   1426			break;
   1427		}
   1428		if (retval != ITEM_FOUND) {
   1429			pathrelse(&path);
   1430			/*
   1431			 * No need for a warning, if there is just no free
   1432			 * space to insert '..' item into the
   1433			 * newly-created subdir
   1434			 */
   1435			if (!
   1436			    ((unsigned long long)
   1437			     GET_HASH_VALUE(le_key_k_offset
   1438					    (le_key_version(key), key)) == 0
   1439			     && (unsigned long long)
   1440			     GET_GENERATION_NUMBER(le_key_k_offset
   1441						   (le_key_version(key),
   1442						    key)) == 1))
   1443				reiserfs_warning(th->t_super, "vs-5355",
   1444						 "%k not found", key);
   1445			break;
   1446		}
   1447		if (!tb_init) {
   1448			tb_init = 1;
   1449			item_len = ih_item_len(tp_item_head(&path));
   1450			init_tb_struct(th, &tb, th->t_super, &path,
   1451				       -(IH_SIZE + item_len));
   1452		}
   1453		quota_cut_bytes = ih_item_len(tp_item_head(&path));
   1454
   1455		retval = fix_nodes(M_DELETE, &tb, NULL, NULL);
   1456		if (retval == REPEAT_SEARCH) {
   1457			PROC_INFO_INC(th->t_super, delete_solid_item_restarted);
   1458			continue;
   1459		}
   1460
   1461		if (retval == CARRY_ON) {
   1462			do_balance(&tb, NULL, NULL, M_DELETE);
   1463			/*
   1464			 * Should we count quota for item? (we don't
   1465			 * count quotas for save-links)
   1466			 */
   1467			if (inode) {
   1468				int depth;
   1469#ifdef REISERQUOTA_DEBUG
   1470				reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
   1471					       "reiserquota delete_solid_item(): freeing %u id=%u type=%c",
   1472					       quota_cut_bytes, inode->i_uid,
   1473					       key2type(key));
   1474#endif
   1475				depth = reiserfs_write_unlock_nested(sb);
   1476				dquot_free_space_nodirty(inode,
   1477							 quota_cut_bytes);
   1478				reiserfs_write_lock_nested(sb, depth);
   1479			}
   1480			break;
   1481		}
   1482
   1483		/* IO_ERROR, NO_DISK_SPACE, etc */
   1484		reiserfs_warning(th->t_super, "vs-5360",
   1485				 "could not delete %K due to fix_nodes failure",
   1486				 &cpu_key);
   1487		unfix_nodes(&tb);
   1488		break;
   1489	}
   1490
   1491	reiserfs_check_path(&path);
   1492}
   1493
   1494int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
   1495			   struct inode *inode)
   1496{
   1497	int err;
   1498	inode->i_size = 0;
   1499	BUG_ON(!th->t_trans_id);
   1500
   1501	/* for directory this deletes item containing "." and ".." */
   1502	err =
   1503	    reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ );
   1504	if (err)
   1505		return err;
   1506
   1507#if defined( USE_INODE_GENERATION_COUNTER )
   1508	if (!old_format_only(th->t_super)) {
   1509		__le32 *inode_generation;
   1510
   1511		inode_generation =
   1512		    &REISERFS_SB(th->t_super)->s_rs->s_inode_generation;
   1513		le32_add_cpu(inode_generation, 1);
   1514	}
   1515/* USE_INODE_GENERATION_COUNTER */
   1516#endif
   1517	reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
   1518
   1519	return err;
   1520}
   1521
   1522static void unmap_buffers(struct page *page, loff_t pos)
   1523{
   1524	struct buffer_head *bh;
   1525	struct buffer_head *head;
   1526	struct buffer_head *next;
   1527	unsigned long tail_index;
   1528	unsigned long cur_index;
   1529
   1530	if (page) {
   1531		if (page_has_buffers(page)) {
   1532			tail_index = pos & (PAGE_SIZE - 1);
   1533			cur_index = 0;
   1534			head = page_buffers(page);
   1535			bh = head;
   1536			do {
   1537				next = bh->b_this_page;
   1538
   1539				/*
   1540				 * we want to unmap the buffers that contain
   1541				 * the tail, and all the buffers after it
   1542				 * (since the tail must be at the end of the
   1543				 * file).  We don't want to unmap file data
   1544				 * before the tail, since it might be dirty
   1545				 * and waiting to reach disk
   1546				 */
   1547				cur_index += bh->b_size;
   1548				if (cur_index > tail_index) {
   1549					reiserfs_unmap_buffer(bh);
   1550				}
   1551				bh = next;
   1552			} while (bh != head);
   1553		}
   1554	}
   1555}
   1556
   1557static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th,
   1558				    struct inode *inode,
   1559				    struct page *page,
   1560				    struct treepath *path,
   1561				    const struct cpu_key *item_key,
   1562				    loff_t new_file_size, char *mode)
   1563{
   1564	struct super_block *sb = inode->i_sb;
   1565	int block_size = sb->s_blocksize;
   1566	int cut_bytes;
   1567	BUG_ON(!th->t_trans_id);
   1568	BUG_ON(new_file_size != inode->i_size);
   1569
   1570	/*
   1571	 * the page being sent in could be NULL if there was an i/o error
   1572	 * reading in the last block.  The user will hit problems trying to
   1573	 * read the file, but for now we just skip the indirect2direct
   1574	 */
   1575	if (atomic_read(&inode->i_count) > 1 ||
   1576	    !tail_has_to_be_packed(inode) ||
   1577	    !page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) {
   1578		/* leave tail in an unformatted node */
   1579		*mode = M_SKIP_BALANCING;
   1580		cut_bytes =
   1581		    block_size - (new_file_size & (block_size - 1));
   1582		pathrelse(path);
   1583		return cut_bytes;
   1584	}
   1585
   1586	/* Perform the conversion to a direct_item. */
   1587	return indirect2direct(th, inode, page, path, item_key,
   1588			       new_file_size, mode);
   1589}
   1590
   1591/*
   1592 * we did indirect_to_direct conversion. And we have inserted direct
   1593 * item successesfully, but there were no disk space to cut unfm
   1594 * pointer being converted. Therefore we have to delete inserted
   1595 * direct item(s)
   1596 */
   1597static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th,
   1598					 struct inode *inode, struct treepath *path)
   1599{
   1600	struct cpu_key tail_key;
   1601	int tail_len;
   1602	int removed;
   1603	BUG_ON(!th->t_trans_id);
   1604
   1605	make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4);
   1606	tail_key.key_length = 4;
   1607
   1608	tail_len =
   1609	    (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1;
   1610	while (tail_len) {
   1611		/* look for the last byte of the tail */
   1612		if (search_for_position_by_key(inode->i_sb, &tail_key, path) ==
   1613		    POSITION_NOT_FOUND)
   1614			reiserfs_panic(inode->i_sb, "vs-5615",
   1615				       "found invalid item");
   1616		RFALSE(path->pos_in_item !=
   1617		       ih_item_len(tp_item_head(path)) - 1,
   1618		       "vs-5616: appended bytes found");
   1619		PATH_LAST_POSITION(path)--;
   1620
   1621		removed =
   1622		    reiserfs_delete_item(th, path, &tail_key, inode,
   1623					 NULL /*unbh not needed */ );
   1624		RFALSE(removed <= 0
   1625		       || removed > tail_len,
   1626		       "vs-5617: there was tail %d bytes, removed item length %d bytes",
   1627		       tail_len, removed);
   1628		tail_len -= removed;
   1629		set_cpu_key_k_offset(&tail_key,
   1630				     cpu_key_k_offset(&tail_key) - removed);
   1631	}
   1632	reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct "
   1633			 "conversion has been rolled back due to "
   1634			 "lack of disk space");
   1635	mark_inode_dirty(inode);
   1636}
   1637
   1638/* (Truncate or cut entry) or delete object item. Returns < 0 on failure */
   1639int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
   1640			   struct treepath *path,
   1641			   struct cpu_key *item_key,
   1642			   struct inode *inode,
   1643			   struct page *page, loff_t new_file_size)
   1644{
   1645	struct super_block *sb = inode->i_sb;
   1646	/*
   1647	 * Every function which is going to call do_balance must first
   1648	 * create a tree_balance structure.  Then it must fill up this
   1649	 * structure by using the init_tb_struct and fix_nodes functions.
   1650	 * After that we can make tree balancing.
   1651	 */
   1652	struct tree_balance s_cut_balance;
   1653	struct item_head *p_le_ih;
   1654	int cut_size = 0;	/* Amount to be cut. */
   1655	int ret_value = CARRY_ON;
   1656	int removed = 0;	/* Number of the removed unformatted nodes. */
   1657	int is_inode_locked = 0;
   1658	char mode;		/* Mode of the balance. */
   1659	int retval2 = -1;
   1660	int quota_cut_bytes;
   1661	loff_t tail_pos = 0;
   1662	int depth;
   1663
   1664	BUG_ON(!th->t_trans_id);
   1665
   1666	init_tb_struct(th, &s_cut_balance, inode->i_sb, path,
   1667		       cut_size);
   1668
   1669	/*
   1670	 * Repeat this loop until we either cut the item without needing
   1671	 * to balance, or we fix_nodes without schedule occurring
   1672	 */
   1673	while (1) {
   1674		/*
   1675		 * Determine the balance mode, position of the first byte to
   1676		 * be cut, and size to be cut.  In case of the indirect item
   1677		 * free unformatted nodes which are pointed to by the cut
   1678		 * pointers.
   1679		 */
   1680
   1681		mode =
   1682		    prepare_for_delete_or_cut(th, inode, path,
   1683					      item_key, &removed,
   1684					      &cut_size, new_file_size);
   1685		if (mode == M_CONVERT) {
   1686			/*
   1687			 * convert last unformatted node to direct item or
   1688			 * leave tail in the unformatted node
   1689			 */
   1690			RFALSE(ret_value != CARRY_ON,
   1691			       "PAP-5570: can not convert twice");
   1692
   1693			ret_value =
   1694			    maybe_indirect_to_direct(th, inode, page,
   1695						     path, item_key,
   1696						     new_file_size, &mode);
   1697			if (mode == M_SKIP_BALANCING)
   1698				/* tail has been left in the unformatted node */
   1699				return ret_value;
   1700
   1701			is_inode_locked = 1;
   1702
   1703			/*
   1704			 * removing of last unformatted node will
   1705			 * change value we have to return to truncate.
   1706			 * Save it
   1707			 */
   1708			retval2 = ret_value;
   1709
   1710			/*
   1711			 * So, we have performed the first part of the
   1712			 * conversion:
   1713			 * inserting the new direct item.  Now we are
   1714			 * removing the last unformatted node pointer.
   1715			 * Set key to search for it.
   1716			 */
   1717			set_cpu_key_k_type(item_key, TYPE_INDIRECT);
   1718			item_key->key_length = 4;
   1719			new_file_size -=
   1720			    (new_file_size & (sb->s_blocksize - 1));
   1721			tail_pos = new_file_size;
   1722			set_cpu_key_k_offset(item_key, new_file_size + 1);
   1723			if (search_for_position_by_key
   1724			    (sb, item_key,
   1725			     path) == POSITION_NOT_FOUND) {
   1726				print_block(PATH_PLAST_BUFFER(path), 3,
   1727					    PATH_LAST_POSITION(path) - 1,
   1728					    PATH_LAST_POSITION(path) + 1);
   1729				reiserfs_panic(sb, "PAP-5580", "item to "
   1730					       "convert does not exist (%K)",
   1731					       item_key);
   1732			}
   1733			continue;
   1734		}
   1735		if (cut_size == 0) {
   1736			pathrelse(path);
   1737			return 0;
   1738		}
   1739
   1740		s_cut_balance.insert_size[0] = cut_size;
   1741
   1742		ret_value = fix_nodes(mode, &s_cut_balance, NULL, NULL);
   1743		if (ret_value != REPEAT_SEARCH)
   1744			break;
   1745
   1746		PROC_INFO_INC(sb, cut_from_item_restarted);
   1747
   1748		ret_value =
   1749		    search_for_position_by_key(sb, item_key, path);
   1750		if (ret_value == POSITION_FOUND)
   1751			continue;
   1752
   1753		reiserfs_warning(sb, "PAP-5610", "item %K not found",
   1754				 item_key);
   1755		unfix_nodes(&s_cut_balance);
   1756		return (ret_value == IO_ERROR) ? -EIO : -ENOENT;
   1757	}			/* while */
   1758
   1759	/* check fix_nodes results (IO_ERROR or NO_DISK_SPACE) */
   1760	if (ret_value != CARRY_ON) {
   1761		if (is_inode_locked) {
   1762			/*
   1763			 * FIXME: this seems to be not needed: we are always
   1764			 * able to cut item
   1765			 */
   1766			indirect_to_direct_roll_back(th, inode, path);
   1767		}
   1768		if (ret_value == NO_DISK_SPACE)
   1769			reiserfs_warning(sb, "reiserfs-5092",
   1770					 "NO_DISK_SPACE");
   1771		unfix_nodes(&s_cut_balance);
   1772		return -EIO;
   1773	}
   1774
   1775	/* go ahead and perform balancing */
   1776
   1777	RFALSE(mode == M_PASTE || mode == M_INSERT, "invalid mode");
   1778
   1779	/* Calculate number of bytes that need to be cut from the item. */
   1780	quota_cut_bytes =
   1781	    (mode ==
   1782	     M_DELETE) ? ih_item_len(tp_item_head(path)) : -s_cut_balance.
   1783	    insert_size[0];
   1784	if (retval2 == -1)
   1785		ret_value = calc_deleted_bytes_number(&s_cut_balance, mode);
   1786	else
   1787		ret_value = retval2;
   1788
   1789	/*
   1790	 * For direct items, we only change the quota when deleting the last
   1791	 * item.
   1792	 */
   1793	p_le_ih = tp_item_head(s_cut_balance.tb_path);
   1794	if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) {
   1795		if (mode == M_DELETE &&
   1796		    (le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) ==
   1797		    1) {
   1798			/* FIXME: this is to keep 3.5 happy */
   1799			REISERFS_I(inode)->i_first_direct_byte = U32_MAX;
   1800			quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
   1801		} else {
   1802			quota_cut_bytes = 0;
   1803		}
   1804	}
   1805#ifdef CONFIG_REISERFS_CHECK
   1806	if (is_inode_locked) {
   1807		struct item_head *le_ih =
   1808		    tp_item_head(s_cut_balance.tb_path);
   1809		/*
   1810		 * we are going to complete indirect2direct conversion. Make
   1811		 * sure, that we exactly remove last unformatted node pointer
   1812		 * of the item
   1813		 */
   1814		if (!is_indirect_le_ih(le_ih))
   1815			reiserfs_panic(sb, "vs-5652",
   1816				       "item must be indirect %h", le_ih);
   1817
   1818		if (mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE)
   1819			reiserfs_panic(sb, "vs-5653", "completing "
   1820				       "indirect2direct conversion indirect "
   1821				       "item %h being deleted must be of "
   1822				       "4 byte long", le_ih);
   1823
   1824		if (mode == M_CUT
   1825		    && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) {
   1826			reiserfs_panic(sb, "vs-5654", "can not complete "
   1827				       "indirect2direct conversion of %h "
   1828				       "(CUT, insert_size==%d)",
   1829				       le_ih, s_cut_balance.insert_size[0]);
   1830		}
   1831		/*
   1832		 * it would be useful to make sure, that right neighboring
   1833		 * item is direct item of this file
   1834		 */
   1835	}
   1836#endif
   1837
   1838	do_balance(&s_cut_balance, NULL, NULL, mode);
   1839	if (is_inode_locked) {
   1840		/*
   1841		 * we've done an indirect->direct conversion.  when the
   1842		 * data block was freed, it was removed from the list of
   1843		 * blocks that must be flushed before the transaction
   1844		 * commits, make sure to unmap and invalidate it
   1845		 */
   1846		unmap_buffers(page, tail_pos);
   1847		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
   1848	}
   1849#ifdef REISERQUOTA_DEBUG
   1850	reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
   1851		       "reiserquota cut_from_item(): freeing %u id=%u type=%c",
   1852		       quota_cut_bytes, inode->i_uid, '?');
   1853#endif
   1854	depth = reiserfs_write_unlock_nested(sb);
   1855	dquot_free_space_nodirty(inode, quota_cut_bytes);
   1856	reiserfs_write_lock_nested(sb, depth);
   1857	return ret_value;
   1858}
   1859
   1860static void truncate_directory(struct reiserfs_transaction_handle *th,
   1861			       struct inode *inode)
   1862{
   1863	BUG_ON(!th->t_trans_id);
   1864	if (inode->i_nlink)
   1865		reiserfs_error(inode->i_sb, "vs-5655", "link count != 0");
   1866
   1867	set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET);
   1868	set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY);
   1869	reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
   1870	reiserfs_update_sd(th, inode);
   1871	set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET);
   1872	set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA);
   1873}
   1874
   1875/*
   1876 * Truncate file to the new size. Note, this must be called with a
   1877 * transaction already started
   1878 */
   1879int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
   1880			 struct inode *inode,	/* ->i_size contains new size */
   1881			 struct page *page,	/* up to date for last block */
   1882			 /*
   1883			  * when it is called by file_release to convert
   1884			  * the tail - no timestamps should be updated
   1885			  */
   1886			 int update_timestamps
   1887    )
   1888{
   1889	INITIALIZE_PATH(s_search_path);	/* Path to the current object item. */
   1890	struct item_head *p_le_ih;	/* Pointer to an item header. */
   1891
   1892	/* Key to search for a previous file item. */
   1893	struct cpu_key s_item_key;
   1894	loff_t file_size,	/* Old file size. */
   1895	 new_file_size;	/* New file size. */
   1896	int deleted;		/* Number of deleted or truncated bytes. */
   1897	int retval;
   1898	int err = 0;
   1899
   1900	BUG_ON(!th->t_trans_id);
   1901	if (!
   1902	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)
   1903	     || S_ISLNK(inode->i_mode)))
   1904		return 0;
   1905
   1906	/* deletion of directory - no need to update timestamps */
   1907	if (S_ISDIR(inode->i_mode)) {
   1908		truncate_directory(th, inode);
   1909		return 0;
   1910	}
   1911
   1912	/* Get new file size. */
   1913	new_file_size = inode->i_size;
   1914
   1915	/* FIXME: note, that key type is unimportant here */
   1916	make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode),
   1917		     TYPE_DIRECT, 3);
   1918
   1919	retval =
   1920	    search_for_position_by_key(inode->i_sb, &s_item_key,
   1921				       &s_search_path);
   1922	if (retval == IO_ERROR) {
   1923		reiserfs_error(inode->i_sb, "vs-5657",
   1924			       "i/o failure occurred trying to truncate %K",
   1925			       &s_item_key);
   1926		err = -EIO;
   1927		goto out;
   1928	}
   1929	if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) {
   1930		reiserfs_error(inode->i_sb, "PAP-5660",
   1931			       "wrong result %d of search for %K", retval,
   1932			       &s_item_key);
   1933
   1934		err = -EIO;
   1935		goto out;
   1936	}
   1937
   1938	s_search_path.pos_in_item--;
   1939
   1940	/* Get real file size (total length of all file items) */
   1941	p_le_ih = tp_item_head(&s_search_path);
   1942	if (is_statdata_le_ih(p_le_ih))
   1943		file_size = 0;
   1944	else {
   1945		loff_t offset = le_ih_k_offset(p_le_ih);
   1946		int bytes =
   1947		    op_bytes_number(p_le_ih, inode->i_sb->s_blocksize);
   1948
   1949		/*
   1950		 * this may mismatch with real file size: if last direct item
   1951		 * had no padding zeros and last unformatted node had no free
   1952		 * space, this file would have this file size
   1953		 */
   1954		file_size = offset + bytes - 1;
   1955	}
   1956	/*
   1957	 * are we doing a full truncate or delete, if so
   1958	 * kick in the reada code
   1959	 */
   1960	if (new_file_size == 0)
   1961		s_search_path.reada = PATH_READA | PATH_READA_BACK;
   1962
   1963	if (file_size == 0 || file_size < new_file_size) {
   1964		goto update_and_out;
   1965	}
   1966
   1967	/* Update key to search for the last file item. */
   1968	set_cpu_key_k_offset(&s_item_key, file_size);
   1969
   1970	do {
   1971		/* Cut or delete file item. */
   1972		deleted =
   1973		    reiserfs_cut_from_item(th, &s_search_path, &s_item_key,
   1974					   inode, page, new_file_size);
   1975		if (deleted < 0) {
   1976			reiserfs_warning(inode->i_sb, "vs-5665",
   1977					 "reiserfs_cut_from_item failed");
   1978			reiserfs_check_path(&s_search_path);
   1979			return 0;
   1980		}
   1981
   1982		RFALSE(deleted > file_size,
   1983		       "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K",
   1984		       deleted, file_size, &s_item_key);
   1985
   1986		/* Change key to search the last file item. */
   1987		file_size -= deleted;
   1988
   1989		set_cpu_key_k_offset(&s_item_key, file_size);
   1990
   1991		/*
   1992		 * While there are bytes to truncate and previous
   1993		 * file item is presented in the tree.
   1994		 */
   1995
   1996		/*
   1997		 * This loop could take a really long time, and could log
   1998		 * many more blocks than a transaction can hold.  So, we do
   1999		 * a polite journal end here, and if the transaction needs
   2000		 * ending, we make sure the file is consistent before ending
   2001		 * the current trans and starting a new one
   2002		 */
   2003		if (journal_transaction_should_end(th, 0) ||
   2004		    reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) {
   2005			pathrelse(&s_search_path);
   2006
   2007			if (update_timestamps) {
   2008				inode->i_mtime = current_time(inode);
   2009				inode->i_ctime = current_time(inode);
   2010			}
   2011			reiserfs_update_sd(th, inode);
   2012
   2013			err = journal_end(th);
   2014			if (err)
   2015				goto out;
   2016			err = journal_begin(th, inode->i_sb,
   2017					    JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ;
   2018			if (err)
   2019				goto out;
   2020			reiserfs_update_inode_transaction(inode);
   2021		}
   2022	} while (file_size > ROUND_UP(new_file_size) &&
   2023		 search_for_position_by_key(inode->i_sb, &s_item_key,
   2024					    &s_search_path) == POSITION_FOUND);
   2025
   2026	RFALSE(file_size > ROUND_UP(new_file_size),
   2027	       "PAP-5680: truncate did not finish: new_file_size %lld, current %lld, oid %d",
   2028	       new_file_size, file_size, s_item_key.on_disk_key.k_objectid);
   2029
   2030update_and_out:
   2031	if (update_timestamps) {
   2032		/* this is truncate, not file closing */
   2033		inode->i_mtime = current_time(inode);
   2034		inode->i_ctime = current_time(inode);
   2035	}
   2036	reiserfs_update_sd(th, inode);
   2037
   2038out:
   2039	pathrelse(&s_search_path);
   2040	return err;
   2041}
   2042
   2043#ifdef CONFIG_REISERFS_CHECK
   2044/* this makes sure, that we __append__, not overwrite or add holes */
   2045static void check_research_for_paste(struct treepath *path,
   2046				     const struct cpu_key *key)
   2047{
   2048	struct item_head *found_ih = tp_item_head(path);
   2049
   2050	if (is_direct_le_ih(found_ih)) {
   2051		if (le_ih_k_offset(found_ih) +
   2052		    op_bytes_number(found_ih,
   2053				    get_last_bh(path)->b_size) !=
   2054		    cpu_key_k_offset(key)
   2055		    || op_bytes_number(found_ih,
   2056				       get_last_bh(path)->b_size) !=
   2057		    pos_in_item(path))
   2058			reiserfs_panic(NULL, "PAP-5720", "found direct item "
   2059				       "%h or position (%d) does not match "
   2060				       "to key %K", found_ih,
   2061				       pos_in_item(path), key);
   2062	}
   2063	if (is_indirect_le_ih(found_ih)) {
   2064		if (le_ih_k_offset(found_ih) +
   2065		    op_bytes_number(found_ih,
   2066				    get_last_bh(path)->b_size) !=
   2067		    cpu_key_k_offset(key)
   2068		    || I_UNFM_NUM(found_ih) != pos_in_item(path)
   2069		    || get_ih_free_space(found_ih) != 0)
   2070			reiserfs_panic(NULL, "PAP-5730", "found indirect "
   2071				       "item (%h) or position (%d) does not "
   2072				       "match to key (%K)",
   2073				       found_ih, pos_in_item(path), key);
   2074	}
   2075}
   2076#endif				/* config reiserfs check */
   2077
   2078/*
   2079 * Paste bytes to the existing item.
   2080 * Returns bytes number pasted into the item.
   2081 */
   2082int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
   2083			     /* Path to the pasted item. */
   2084			     struct treepath *search_path,
   2085			     /* Key to search for the needed item. */
   2086			     const struct cpu_key *key,
   2087			     /* Inode item belongs to */
   2088			     struct inode *inode,
   2089			     /* Pointer to the bytes to paste. */
   2090			     const char *body,
   2091			     /* Size of pasted bytes. */
   2092			     int pasted_size)
   2093{
   2094	struct super_block *sb = inode->i_sb;
   2095	struct tree_balance s_paste_balance;
   2096	int retval;
   2097	int fs_gen;
   2098	int depth;
   2099
   2100	BUG_ON(!th->t_trans_id);
   2101
   2102	fs_gen = get_generation(inode->i_sb);
   2103
   2104#ifdef REISERQUOTA_DEBUG
   2105	reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
   2106		       "reiserquota paste_into_item(): allocating %u id=%u type=%c",
   2107		       pasted_size, inode->i_uid,
   2108		       key2type(&key->on_disk_key));
   2109#endif
   2110
   2111	depth = reiserfs_write_unlock_nested(sb);
   2112	retval = dquot_alloc_space_nodirty(inode, pasted_size);
   2113	reiserfs_write_lock_nested(sb, depth);
   2114	if (retval) {
   2115		pathrelse(search_path);
   2116		return retval;
   2117	}
   2118	init_tb_struct(th, &s_paste_balance, th->t_super, search_path,
   2119		       pasted_size);
   2120#ifdef DISPLACE_NEW_PACKING_LOCALITIES
   2121	s_paste_balance.key = key->on_disk_key;
   2122#endif
   2123
   2124	/* DQUOT_* can schedule, must check before the fix_nodes */
   2125	if (fs_changed(fs_gen, inode->i_sb)) {
   2126		goto search_again;
   2127	}
   2128
   2129	while ((retval =
   2130		fix_nodes(M_PASTE, &s_paste_balance, NULL,
   2131			  body)) == REPEAT_SEARCH) {
   2132search_again:
   2133		/* file system changed while we were in the fix_nodes */
   2134		PROC_INFO_INC(th->t_super, paste_into_item_restarted);
   2135		retval =
   2136		    search_for_position_by_key(th->t_super, key,
   2137					       search_path);
   2138		if (retval == IO_ERROR) {
   2139			retval = -EIO;
   2140			goto error_out;
   2141		}
   2142		if (retval == POSITION_FOUND) {
   2143			reiserfs_warning(inode->i_sb, "PAP-5710",
   2144					 "entry or pasted byte (%K) exists",
   2145					 key);
   2146			retval = -EEXIST;
   2147			goto error_out;
   2148		}
   2149#ifdef CONFIG_REISERFS_CHECK
   2150		check_research_for_paste(search_path, key);
   2151#endif
   2152	}
   2153
   2154	/*
   2155	 * Perform balancing after all resources are collected by fix_nodes,
   2156	 * and accessing them will not risk triggering schedule.
   2157	 */
   2158	if (retval == CARRY_ON) {
   2159		do_balance(&s_paste_balance, NULL /*ih */ , body, M_PASTE);
   2160		return 0;
   2161	}
   2162	retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
   2163error_out:
   2164	/* this also releases the path */
   2165	unfix_nodes(&s_paste_balance);
   2166#ifdef REISERQUOTA_DEBUG
   2167	reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
   2168		       "reiserquota paste_into_item(): freeing %u id=%u type=%c",
   2169		       pasted_size, inode->i_uid,
   2170		       key2type(&key->on_disk_key));
   2171#endif
   2172	depth = reiserfs_write_unlock_nested(sb);
   2173	dquot_free_space_nodirty(inode, pasted_size);
   2174	reiserfs_write_lock_nested(sb, depth);
   2175	return retval;
   2176}
   2177
   2178/*
   2179 * Insert new item into the buffer at the path.
   2180 * th   - active transaction handle
   2181 * path - path to the inserted item
   2182 * ih   - pointer to the item header to insert
   2183 * body - pointer to the bytes to insert
   2184 */
   2185int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
   2186			 struct treepath *path, const struct cpu_key *key,
   2187			 struct item_head *ih, struct inode *inode,
   2188			 const char *body)
   2189{
   2190	struct tree_balance s_ins_balance;
   2191	int retval;
   2192	int fs_gen = 0;
   2193	int quota_bytes = 0;
   2194
   2195	BUG_ON(!th->t_trans_id);
   2196
   2197	if (inode) {		/* Do we count quotas for item? */
   2198		int depth;
   2199		fs_gen = get_generation(inode->i_sb);
   2200		quota_bytes = ih_item_len(ih);
   2201
   2202		/*
   2203		 * hack so the quota code doesn't have to guess
   2204		 * if the file has a tail, links are always tails,
   2205		 * so there's no guessing needed
   2206		 */
   2207		if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(ih))
   2208			quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE;
   2209#ifdef REISERQUOTA_DEBUG
   2210		reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
   2211			       "reiserquota insert_item(): allocating %u id=%u type=%c",
   2212			       quota_bytes, inode->i_uid, head2type(ih));
   2213#endif
   2214		/*
   2215		 * We can't dirty inode here. It would be immediately
   2216		 * written but appropriate stat item isn't inserted yet...
   2217		 */
   2218		depth = reiserfs_write_unlock_nested(inode->i_sb);
   2219		retval = dquot_alloc_space_nodirty(inode, quota_bytes);
   2220		reiserfs_write_lock_nested(inode->i_sb, depth);
   2221		if (retval) {
   2222			pathrelse(path);
   2223			return retval;
   2224		}
   2225	}
   2226	init_tb_struct(th, &s_ins_balance, th->t_super, path,
   2227		       IH_SIZE + ih_item_len(ih));
   2228#ifdef DISPLACE_NEW_PACKING_LOCALITIES
   2229	s_ins_balance.key = key->on_disk_key;
   2230#endif
   2231	/*
   2232	 * DQUOT_* can schedule, must check to be sure calling
   2233	 * fix_nodes is safe
   2234	 */
   2235	if (inode && fs_changed(fs_gen, inode->i_sb)) {
   2236		goto search_again;
   2237	}
   2238
   2239	while ((retval =
   2240		fix_nodes(M_INSERT, &s_ins_balance, ih,
   2241			  body)) == REPEAT_SEARCH) {
   2242search_again:
   2243		/* file system changed while we were in the fix_nodes */
   2244		PROC_INFO_INC(th->t_super, insert_item_restarted);
   2245		retval = search_item(th->t_super, key, path);
   2246		if (retval == IO_ERROR) {
   2247			retval = -EIO;
   2248			goto error_out;
   2249		}
   2250		if (retval == ITEM_FOUND) {
   2251			reiserfs_warning(th->t_super, "PAP-5760",
   2252					 "key %K already exists in the tree",
   2253					 key);
   2254			retval = -EEXIST;
   2255			goto error_out;
   2256		}
   2257	}
   2258
   2259	/* make balancing after all resources will be collected at a time */
   2260	if (retval == CARRY_ON) {
   2261		do_balance(&s_ins_balance, ih, body, M_INSERT);
   2262		return 0;
   2263	}
   2264
   2265	retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
   2266error_out:
   2267	/* also releases the path */
   2268	unfix_nodes(&s_ins_balance);
   2269#ifdef REISERQUOTA_DEBUG
   2270	if (inode)
   2271		reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
   2272		       "reiserquota insert_item(): freeing %u id=%u type=%c",
   2273		       quota_bytes, inode->i_uid, head2type(ih));
   2274#endif
   2275	if (inode) {
   2276		int depth = reiserfs_write_unlock_nested(inode->i_sb);
   2277		dquot_free_space_nodirty(inode, quota_bytes);
   2278		reiserfs_write_lock_nested(inode->i_sb, depth);
   2279	}
   2280	return retval;
   2281}