cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

cache.c (11217B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Squashfs - a compressed read only filesystem for Linux
      4 *
      5 * Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008
      6 * Phillip Lougher <phillip@squashfs.org.uk>
      7 *
      8 * cache.c
      9 */
     10
     11/*
     12 * Blocks in Squashfs are compressed.  To avoid repeatedly decompressing
     13 * recently accessed data Squashfs uses two small metadata and fragment caches.
     14 *
     15 * This file implements a generic cache implementation used for both caches,
     16 * plus functions layered ontop of the generic cache implementation to
     17 * access the metadata and fragment caches.
     18 *
     19 * To avoid out of memory and fragmentation issues with vmalloc the cache
     20 * uses sequences of kmalloced PAGE_SIZE buffers.
     21 *
     22 * It should be noted that the cache is not used for file datablocks, these
     23 * are decompressed and cached in the page-cache in the normal way.  The
     24 * cache is only used to temporarily cache fragment and metadata blocks
     25 * which have been read as as a result of a metadata (i.e. inode or
     26 * directory) or fragment access.  Because metadata and fragments are packed
     27 * together into blocks (to gain greater compression) the read of a particular
     28 * piece of metadata or fragment will retrieve other metadata/fragments which
     29 * have been packed with it, these because of locality-of-reference may be read
     30 * in the near future. Temporarily caching them ensures they are available for
     31 * near future access without requiring an additional read and decompress.
     32 */
     33
     34#include <linux/fs.h>
     35#include <linux/vfs.h>
     36#include <linux/slab.h>
     37#include <linux/vmalloc.h>
     38#include <linux/sched.h>
     39#include <linux/spinlock.h>
     40#include <linux/wait.h>
     41#include <linux/pagemap.h>
     42
     43#include "squashfs_fs.h"
     44#include "squashfs_fs_sb.h"
     45#include "squashfs.h"
     46#include "page_actor.h"
     47
     48/*
     49 * Look-up block in cache, and increment usage count.  If not in cache, read
     50 * and decompress it from disk.
     51 */
     52struct squashfs_cache_entry *squashfs_cache_get(struct super_block *sb,
     53	struct squashfs_cache *cache, u64 block, int length)
     54{
     55	int i, n;
     56	struct squashfs_cache_entry *entry;
     57
     58	spin_lock(&cache->lock);
     59
     60	while (1) {
     61		for (i = cache->curr_blk, n = 0; n < cache->entries; n++) {
     62			if (cache->entry[i].block == block) {
     63				cache->curr_blk = i;
     64				break;
     65			}
     66			i = (i + 1) % cache->entries;
     67		}
     68
     69		if (n == cache->entries) {
     70			/*
     71			 * Block not in cache, if all cache entries are used
     72			 * go to sleep waiting for one to become available.
     73			 */
     74			if (cache->unused == 0) {
     75				cache->num_waiters++;
     76				spin_unlock(&cache->lock);
     77				wait_event(cache->wait_queue, cache->unused);
     78				spin_lock(&cache->lock);
     79				cache->num_waiters--;
     80				continue;
     81			}
     82
     83			/*
     84			 * At least one unused cache entry.  A simple
     85			 * round-robin strategy is used to choose the entry to
     86			 * be evicted from the cache.
     87			 */
     88			i = cache->next_blk;
     89			for (n = 0; n < cache->entries; n++) {
     90				if (cache->entry[i].refcount == 0)
     91					break;
     92				i = (i + 1) % cache->entries;
     93			}
     94
     95			cache->next_blk = (i + 1) % cache->entries;
     96			entry = &cache->entry[i];
     97
     98			/*
     99			 * Initialise chosen cache entry, and fill it in from
    100			 * disk.
    101			 */
    102			cache->unused--;
    103			entry->block = block;
    104			entry->refcount = 1;
    105			entry->pending = 1;
    106			entry->num_waiters = 0;
    107			entry->error = 0;
    108			spin_unlock(&cache->lock);
    109
    110			entry->length = squashfs_read_data(sb, block, length,
    111				&entry->next_index, entry->actor);
    112
    113			spin_lock(&cache->lock);
    114
    115			if (entry->length < 0)
    116				entry->error = entry->length;
    117
    118			entry->pending = 0;
    119
    120			/*
    121			 * While filling this entry one or more other processes
    122			 * have looked it up in the cache, and have slept
    123			 * waiting for it to become available.
    124			 */
    125			if (entry->num_waiters) {
    126				spin_unlock(&cache->lock);
    127				wake_up_all(&entry->wait_queue);
    128			} else
    129				spin_unlock(&cache->lock);
    130
    131			goto out;
    132		}
    133
    134		/*
    135		 * Block already in cache.  Increment refcount so it doesn't
    136		 * get reused until we're finished with it, if it was
    137		 * previously unused there's one less cache entry available
    138		 * for reuse.
    139		 */
    140		entry = &cache->entry[i];
    141		if (entry->refcount == 0)
    142			cache->unused--;
    143		entry->refcount++;
    144
    145		/*
    146		 * If the entry is currently being filled in by another process
    147		 * go to sleep waiting for it to become available.
    148		 */
    149		if (entry->pending) {
    150			entry->num_waiters++;
    151			spin_unlock(&cache->lock);
    152			wait_event(entry->wait_queue, !entry->pending);
    153		} else
    154			spin_unlock(&cache->lock);
    155
    156		goto out;
    157	}
    158
    159out:
    160	TRACE("Got %s %d, start block %lld, refcount %d, error %d\n",
    161		cache->name, i, entry->block, entry->refcount, entry->error);
    162
    163	if (entry->error)
    164		ERROR("Unable to read %s cache entry [%llx]\n", cache->name,
    165							block);
    166	return entry;
    167}
    168
    169
    170/*
    171 * Release cache entry, once usage count is zero it can be reused.
    172 */
    173void squashfs_cache_put(struct squashfs_cache_entry *entry)
    174{
    175	struct squashfs_cache *cache = entry->cache;
    176
    177	spin_lock(&cache->lock);
    178	entry->refcount--;
    179	if (entry->refcount == 0) {
    180		cache->unused++;
    181		/*
    182		 * If there's any processes waiting for a block to become
    183		 * available, wake one up.
    184		 */
    185		if (cache->num_waiters) {
    186			spin_unlock(&cache->lock);
    187			wake_up(&cache->wait_queue);
    188			return;
    189		}
    190	}
    191	spin_unlock(&cache->lock);
    192}
    193
    194/*
    195 * Delete cache reclaiming all kmalloced buffers.
    196 */
    197void squashfs_cache_delete(struct squashfs_cache *cache)
    198{
    199	int i, j;
    200
    201	if (cache == NULL)
    202		return;
    203
    204	for (i = 0; i < cache->entries; i++) {
    205		if (cache->entry[i].data) {
    206			for (j = 0; j < cache->pages; j++)
    207				kfree(cache->entry[i].data[j]);
    208			kfree(cache->entry[i].data);
    209		}
    210		kfree(cache->entry[i].actor);
    211	}
    212
    213	kfree(cache->entry);
    214	kfree(cache);
    215}
    216
    217
    218/*
    219 * Initialise cache allocating the specified number of entries, each of
    220 * size block_size.  To avoid vmalloc fragmentation issues each entry
    221 * is allocated as a sequence of kmalloced PAGE_SIZE buffers.
    222 */
    223struct squashfs_cache *squashfs_cache_init(char *name, int entries,
    224	int block_size)
    225{
    226	int i, j;
    227	struct squashfs_cache *cache = kzalloc(sizeof(*cache), GFP_KERNEL);
    228
    229	if (cache == NULL) {
    230		ERROR("Failed to allocate %s cache\n", name);
    231		return NULL;
    232	}
    233
    234	cache->entry = kcalloc(entries, sizeof(*(cache->entry)), GFP_KERNEL);
    235	if (cache->entry == NULL) {
    236		ERROR("Failed to allocate %s cache\n", name);
    237		goto cleanup;
    238	}
    239
    240	cache->curr_blk = 0;
    241	cache->next_blk = 0;
    242	cache->unused = entries;
    243	cache->entries = entries;
    244	cache->block_size = block_size;
    245	cache->pages = block_size >> PAGE_SHIFT;
    246	cache->pages = cache->pages ? cache->pages : 1;
    247	cache->name = name;
    248	cache->num_waiters = 0;
    249	spin_lock_init(&cache->lock);
    250	init_waitqueue_head(&cache->wait_queue);
    251
    252	for (i = 0; i < entries; i++) {
    253		struct squashfs_cache_entry *entry = &cache->entry[i];
    254
    255		init_waitqueue_head(&cache->entry[i].wait_queue);
    256		entry->cache = cache;
    257		entry->block = SQUASHFS_INVALID_BLK;
    258		entry->data = kcalloc(cache->pages, sizeof(void *), GFP_KERNEL);
    259		if (entry->data == NULL) {
    260			ERROR("Failed to allocate %s cache entry\n", name);
    261			goto cleanup;
    262		}
    263
    264		for (j = 0; j < cache->pages; j++) {
    265			entry->data[j] = kmalloc(PAGE_SIZE, GFP_KERNEL);
    266			if (entry->data[j] == NULL) {
    267				ERROR("Failed to allocate %s buffer\n", name);
    268				goto cleanup;
    269			}
    270		}
    271
    272		entry->actor = squashfs_page_actor_init(entry->data,
    273						cache->pages, 0);
    274		if (entry->actor == NULL) {
    275			ERROR("Failed to allocate %s cache entry\n", name);
    276			goto cleanup;
    277		}
    278	}
    279
    280	return cache;
    281
    282cleanup:
    283	squashfs_cache_delete(cache);
    284	return NULL;
    285}
    286
    287
    288/*
    289 * Copy up to length bytes from cache entry to buffer starting at offset bytes
    290 * into the cache entry.  If there's not length bytes then copy the number of
    291 * bytes available.  In all cases return the number of bytes copied.
    292 */
    293int squashfs_copy_data(void *buffer, struct squashfs_cache_entry *entry,
    294		int offset, int length)
    295{
    296	int remaining = length;
    297
    298	if (length == 0)
    299		return 0;
    300	else if (buffer == NULL)
    301		return min(length, entry->length - offset);
    302
    303	while (offset < entry->length) {
    304		void *buff = entry->data[offset / PAGE_SIZE]
    305				+ (offset % PAGE_SIZE);
    306		int bytes = min_t(int, entry->length - offset,
    307				PAGE_SIZE - (offset % PAGE_SIZE));
    308
    309		if (bytes >= remaining) {
    310			memcpy(buffer, buff, remaining);
    311			remaining = 0;
    312			break;
    313		}
    314
    315		memcpy(buffer, buff, bytes);
    316		buffer += bytes;
    317		remaining -= bytes;
    318		offset += bytes;
    319	}
    320
    321	return length - remaining;
    322}
    323
    324
    325/*
    326 * Read length bytes from metadata position <block, offset> (block is the
    327 * start of the compressed block on disk, and offset is the offset into
    328 * the block once decompressed).  Data is packed into consecutive blocks,
    329 * and length bytes may require reading more than one block.
    330 */
    331int squashfs_read_metadata(struct super_block *sb, void *buffer,
    332		u64 *block, int *offset, int length)
    333{
    334	struct squashfs_sb_info *msblk = sb->s_fs_info;
    335	int bytes, res = length;
    336	struct squashfs_cache_entry *entry;
    337
    338	TRACE("Entered squashfs_read_metadata [%llx:%x]\n", *block, *offset);
    339
    340	if (unlikely(length < 0))
    341		return -EIO;
    342
    343	while (length) {
    344		entry = squashfs_cache_get(sb, msblk->block_cache, *block, 0);
    345		if (entry->error) {
    346			res = entry->error;
    347			goto error;
    348		} else if (*offset >= entry->length) {
    349			res = -EIO;
    350			goto error;
    351		}
    352
    353		bytes = squashfs_copy_data(buffer, entry, *offset, length);
    354		if (buffer)
    355			buffer += bytes;
    356		length -= bytes;
    357		*offset += bytes;
    358
    359		if (*offset == entry->length) {
    360			*block = entry->next_index;
    361			*offset = 0;
    362		}
    363
    364		squashfs_cache_put(entry);
    365	}
    366
    367	return res;
    368
    369error:
    370	squashfs_cache_put(entry);
    371	return res;
    372}
    373
    374
    375/*
    376 * Look-up in the fragmment cache the fragment located at <start_block> in the
    377 * filesystem.  If necessary read and decompress it from disk.
    378 */
    379struct squashfs_cache_entry *squashfs_get_fragment(struct super_block *sb,
    380				u64 start_block, int length)
    381{
    382	struct squashfs_sb_info *msblk = sb->s_fs_info;
    383
    384	return squashfs_cache_get(sb, msblk->fragment_cache, start_block,
    385		length);
    386}
    387
    388
    389/*
    390 * Read and decompress the datablock located at <start_block> in the
    391 * filesystem.  The cache is used here to avoid duplicating locking and
    392 * read/decompress code.
    393 */
    394struct squashfs_cache_entry *squashfs_get_datablock(struct super_block *sb,
    395				u64 start_block, int length)
    396{
    397	struct squashfs_sb_info *msblk = sb->s_fs_info;
    398
    399	return squashfs_cache_get(sb, msblk->read_page, start_block, length);
    400}
    401
    402
    403/*
    404 * Read a filesystem table (uncompressed sequence of bytes) from disk
    405 */
    406void *squashfs_read_table(struct super_block *sb, u64 block, int length)
    407{
    408	int pages = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
    409	int i, res;
    410	void *table, *buffer, **data;
    411	struct squashfs_page_actor *actor;
    412
    413	table = buffer = kmalloc(length, GFP_KERNEL);
    414	if (table == NULL)
    415		return ERR_PTR(-ENOMEM);
    416
    417	data = kcalloc(pages, sizeof(void *), GFP_KERNEL);
    418	if (data == NULL) {
    419		res = -ENOMEM;
    420		goto failed;
    421	}
    422
    423	actor = squashfs_page_actor_init(data, pages, length);
    424	if (actor == NULL) {
    425		res = -ENOMEM;
    426		goto failed2;
    427	}
    428
    429	for (i = 0; i < pages; i++, buffer += PAGE_SIZE)
    430		data[i] = buffer;
    431
    432	res = squashfs_read_data(sb, block, length |
    433		SQUASHFS_COMPRESSED_BIT_BLOCK, NULL, actor);
    434
    435	kfree(data);
    436	kfree(actor);
    437
    438	if (res < 0)
    439		goto failed;
    440
    441	return table;
    442
    443failed2:
    444	kfree(data);
    445failed:
    446	kfree(table);
    447	return ERR_PTR(res);
    448}