cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

budget.c (23794B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * This file is part of UBIFS.
      4 *
      5 * Copyright (C) 2006-2008 Nokia Corporation.
      6 *
      7 * Authors: Adrian Hunter
      8 *          Artem Bityutskiy (Битюцкий Артём)
      9 */
     10
     11/*
     12 * This file implements the budgeting sub-system which is responsible for UBIFS
     13 * space management.
     14 *
     15 * Factors such as compression, wasted space at the ends of LEBs, space in other
     16 * journal heads, the effect of updates on the index, and so on, make it
     17 * impossible to accurately predict the amount of space needed. Consequently
     18 * approximations are used.
     19 */
     20
     21#include "ubifs.h"
     22#include <linux/writeback.h>
     23#include <linux/math64.h>
     24
     25/*
     26 * When pessimistic budget calculations say that there is no enough space,
     27 * UBIFS starts writing back dirty inodes and pages, doing garbage collection,
     28 * or committing. The below constant defines maximum number of times UBIFS
     29 * repeats the operations.
     30 */
     31#define MAX_MKSPC_RETRIES 3
     32
     33/*
     34 * The below constant defines amount of dirty pages which should be written
     35 * back at when trying to shrink the liability.
     36 */
     37#define NR_TO_WRITE 16
     38
     39/**
     40 * shrink_liability - write-back some dirty pages/inodes.
     41 * @c: UBIFS file-system description object
     42 * @nr_to_write: how many dirty pages to write-back
     43 *
     44 * This function shrinks UBIFS liability by means of writing back some amount
     45 * of dirty inodes and their pages.
     46 *
     47 * Note, this function synchronizes even VFS inodes which are locked
     48 * (@i_mutex) by the caller of the budgeting function, because write-back does
     49 * not touch @i_mutex.
     50 */
     51static void shrink_liability(struct ubifs_info *c, int nr_to_write)
     52{
     53	down_read(&c->vfs_sb->s_umount);
     54	writeback_inodes_sb_nr(c->vfs_sb, nr_to_write, WB_REASON_FS_FREE_SPACE);
     55	up_read(&c->vfs_sb->s_umount);
     56}
     57
     58/**
     59 * run_gc - run garbage collector.
     60 * @c: UBIFS file-system description object
     61 *
     62 * This function runs garbage collector to make some more free space. Returns
     63 * zero if a free LEB has been produced, %-EAGAIN if commit is required, and a
     64 * negative error code in case of failure.
     65 */
     66static int run_gc(struct ubifs_info *c)
     67{
     68	int lnum;
     69
     70	/* Make some free space by garbage-collecting dirty space */
     71	down_read(&c->commit_sem);
     72	lnum = ubifs_garbage_collect(c, 1);
     73	up_read(&c->commit_sem);
     74	if (lnum < 0)
     75		return lnum;
     76
     77	/* GC freed one LEB, return it to lprops */
     78	dbg_budg("GC freed LEB %d", lnum);
     79	return ubifs_return_leb(c, lnum);
     80}
     81
     82/**
     83 * get_liability - calculate current liability.
     84 * @c: UBIFS file-system description object
     85 *
     86 * This function calculates and returns current UBIFS liability, i.e. the
     87 * amount of bytes UBIFS has "promised" to write to the media.
     88 */
     89static long long get_liability(struct ubifs_info *c)
     90{
     91	long long liab;
     92
     93	spin_lock(&c->space_lock);
     94	liab = c->bi.idx_growth + c->bi.data_growth + c->bi.dd_growth;
     95	spin_unlock(&c->space_lock);
     96	return liab;
     97}
     98
     99/**
    100 * make_free_space - make more free space on the file-system.
    101 * @c: UBIFS file-system description object
    102 *
    103 * This function is called when an operation cannot be budgeted because there
    104 * is supposedly no free space. But in most cases there is some free space:
    105 *   o budgeting is pessimistic, so it always budgets more than it is actually
    106 *     needed, so shrinking the liability is one way to make free space - the
    107 *     cached data will take less space then it was budgeted for;
    108 *   o GC may turn some dark space into free space (budgeting treats dark space
    109 *     as not available);
    110 *   o commit may free some LEB, i.e., turn freeable LEBs into free LEBs.
    111 *
    112 * So this function tries to do the above. Returns %-EAGAIN if some free space
    113 * was presumably made and the caller has to re-try budgeting the operation.
    114 * Returns %-ENOSPC if it couldn't do more free space, and other negative error
    115 * codes on failures.
    116 */
    117static int make_free_space(struct ubifs_info *c)
    118{
    119	int err, retries = 0;
    120	long long liab1, liab2;
    121
    122	do {
    123		liab1 = get_liability(c);
    124		/*
    125		 * We probably have some dirty pages or inodes (liability), try
    126		 * to write them back.
    127		 */
    128		dbg_budg("liability %lld, run write-back", liab1);
    129		shrink_liability(c, NR_TO_WRITE);
    130
    131		liab2 = get_liability(c);
    132		if (liab2 < liab1)
    133			return -EAGAIN;
    134
    135		dbg_budg("new liability %lld (not shrunk)", liab2);
    136
    137		/* Liability did not shrink again, try GC */
    138		dbg_budg("Run GC");
    139		err = run_gc(c);
    140		if (!err)
    141			return -EAGAIN;
    142
    143		if (err != -EAGAIN && err != -ENOSPC)
    144			/* Some real error happened */
    145			return err;
    146
    147		dbg_budg("Run commit (retries %d)", retries);
    148		err = ubifs_run_commit(c);
    149		if (err)
    150			return err;
    151	} while (retries++ < MAX_MKSPC_RETRIES);
    152
    153	return -ENOSPC;
    154}
    155
    156/**
    157 * ubifs_calc_min_idx_lebs - calculate amount of LEBs for the index.
    158 * @c: UBIFS file-system description object
    159 *
    160 * This function calculates and returns the number of LEBs which should be kept
    161 * for index usage.
    162 */
    163int ubifs_calc_min_idx_lebs(struct ubifs_info *c)
    164{
    165	int idx_lebs;
    166	long long idx_size;
    167
    168	idx_size = c->bi.old_idx_sz + c->bi.idx_growth + c->bi.uncommitted_idx;
    169	/* And make sure we have thrice the index size of space reserved */
    170	idx_size += idx_size << 1;
    171	/*
    172	 * We do not maintain 'old_idx_size' as 'old_idx_lebs'/'old_idx_bytes'
    173	 * pair, nor similarly the two variables for the new index size, so we
    174	 * have to do this costly 64-bit division on fast-path.
    175	 */
    176	idx_lebs = div_u64(idx_size + c->idx_leb_size - 1, c->idx_leb_size);
    177	/*
    178	 * The index head is not available for the in-the-gaps method, so add an
    179	 * extra LEB to compensate.
    180	 */
    181	idx_lebs += 1;
    182	if (idx_lebs < MIN_INDEX_LEBS)
    183		idx_lebs = MIN_INDEX_LEBS;
    184	return idx_lebs;
    185}
    186
    187/**
    188 * ubifs_calc_available - calculate available FS space.
    189 * @c: UBIFS file-system description object
    190 * @min_idx_lebs: minimum number of LEBs reserved for the index
    191 *
    192 * This function calculates and returns amount of FS space available for use.
    193 */
    194long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs)
    195{
    196	int subtract_lebs;
    197	long long available;
    198
    199	available = c->main_bytes - c->lst.total_used;
    200
    201	/*
    202	 * Now 'available' contains theoretically available flash space
    203	 * assuming there is no index, so we have to subtract the space which
    204	 * is reserved for the index.
    205	 */
    206	subtract_lebs = min_idx_lebs;
    207
    208	/* Take into account that GC reserves one LEB for its own needs */
    209	subtract_lebs += 1;
    210
    211	/*
    212	 * The GC journal head LEB is not really accessible. And since
    213	 * different write types go to different heads, we may count only on
    214	 * one head's space.
    215	 */
    216	subtract_lebs += c->jhead_cnt - 1;
    217
    218	/* We also reserve one LEB for deletions, which bypass budgeting */
    219	subtract_lebs += 1;
    220
    221	available -= (long long)subtract_lebs * c->leb_size;
    222
    223	/* Subtract the dead space which is not available for use */
    224	available -= c->lst.total_dead;
    225
    226	/*
    227	 * Subtract dark space, which might or might not be usable - it depends
    228	 * on the data which we have on the media and which will be written. If
    229	 * this is a lot of uncompressed or not-compressible data, the dark
    230	 * space cannot be used.
    231	 */
    232	available -= c->lst.total_dark;
    233
    234	/*
    235	 * However, there is more dark space. The index may be bigger than
    236	 * @min_idx_lebs. Those extra LEBs are assumed to be available, but
    237	 * their dark space is not included in total_dark, so it is subtracted
    238	 * here.
    239	 */
    240	if (c->lst.idx_lebs > min_idx_lebs) {
    241		subtract_lebs = c->lst.idx_lebs - min_idx_lebs;
    242		available -= subtract_lebs * c->dark_wm;
    243	}
    244
    245	/* The calculations are rough and may end up with a negative number */
    246	return available > 0 ? available : 0;
    247}
    248
    249/**
    250 * can_use_rp - check whether the user is allowed to use reserved pool.
    251 * @c: UBIFS file-system description object
    252 *
    253 * UBIFS has so-called "reserved pool" which is flash space reserved
    254 * for the superuser and for uses whose UID/GID is recorded in UBIFS superblock.
    255 * This function checks whether current user is allowed to use reserved pool.
    256 * Returns %1  current user is allowed to use reserved pool and %0 otherwise.
    257 */
    258static int can_use_rp(struct ubifs_info *c)
    259{
    260	if (uid_eq(current_fsuid(), c->rp_uid) || capable(CAP_SYS_RESOURCE) ||
    261	    (!gid_eq(c->rp_gid, GLOBAL_ROOT_GID) && in_group_p(c->rp_gid)))
    262		return 1;
    263	return 0;
    264}
    265
    266/**
    267 * do_budget_space - reserve flash space for index and data growth.
    268 * @c: UBIFS file-system description object
    269 *
    270 * This function makes sure UBIFS has enough free LEBs for index growth and
    271 * data.
    272 *
    273 * When budgeting index space, UBIFS reserves thrice as many LEBs as the index
    274 * would take if it was consolidated and written to the flash. This guarantees
    275 * that the "in-the-gaps" commit method always succeeds and UBIFS will always
    276 * be able to commit dirty index. So this function basically adds amount of
    277 * budgeted index space to the size of the current index, multiplies this by 3,
    278 * and makes sure this does not exceed the amount of free LEBs.
    279 *
    280 * Notes about @c->bi.min_idx_lebs and @c->lst.idx_lebs variables:
    281 * o @c->lst.idx_lebs is the number of LEBs the index currently uses. It might
    282 *    be large, because UBIFS does not do any index consolidation as long as
    283 *    there is free space. IOW, the index may take a lot of LEBs, but the LEBs
    284 *    will contain a lot of dirt.
    285 * o @c->bi.min_idx_lebs is the number of LEBS the index presumably takes. IOW,
    286 *    the index may be consolidated to take up to @c->bi.min_idx_lebs LEBs.
    287 *
    288 * This function returns zero in case of success, and %-ENOSPC in case of
    289 * failure.
    290 */
    291static int do_budget_space(struct ubifs_info *c)
    292{
    293	long long outstanding, available;
    294	int lebs, rsvd_idx_lebs, min_idx_lebs;
    295
    296	/* First budget index space */
    297	min_idx_lebs = ubifs_calc_min_idx_lebs(c);
    298
    299	/* Now 'min_idx_lebs' contains number of LEBs to reserve */
    300	if (min_idx_lebs > c->lst.idx_lebs)
    301		rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs;
    302	else
    303		rsvd_idx_lebs = 0;
    304
    305	/*
    306	 * The number of LEBs that are available to be used by the index is:
    307	 *
    308	 *    @c->lst.empty_lebs + @c->freeable_cnt + @c->idx_gc_cnt -
    309	 *    @c->lst.taken_empty_lebs
    310	 *
    311	 * @c->lst.empty_lebs are available because they are empty.
    312	 * @c->freeable_cnt are available because they contain only free and
    313	 * dirty space, @c->idx_gc_cnt are available because they are index
    314	 * LEBs that have been garbage collected and are awaiting the commit
    315	 * before they can be used. And the in-the-gaps method will grab these
    316	 * if it needs them. @c->lst.taken_empty_lebs are empty LEBs that have
    317	 * already been allocated for some purpose.
    318	 *
    319	 * Note, @c->idx_gc_cnt is included to both @c->lst.empty_lebs (because
    320	 * these LEBs are empty) and to @c->lst.taken_empty_lebs (because they
    321	 * are taken until after the commit).
    322	 *
    323	 * Note, @c->lst.taken_empty_lebs may temporarily be higher by one
    324	 * because of the way we serialize LEB allocations and budgeting. See a
    325	 * comment in 'ubifs_find_free_space()'.
    326	 */
    327	lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
    328	       c->lst.taken_empty_lebs;
    329	if (unlikely(rsvd_idx_lebs > lebs)) {
    330		dbg_budg("out of indexing space: min_idx_lebs %d (old %d), rsvd_idx_lebs %d",
    331			 min_idx_lebs, c->bi.min_idx_lebs, rsvd_idx_lebs);
    332		return -ENOSPC;
    333	}
    334
    335	available = ubifs_calc_available(c, min_idx_lebs);
    336	outstanding = c->bi.data_growth + c->bi.dd_growth;
    337
    338	if (unlikely(available < outstanding)) {
    339		dbg_budg("out of data space: available %lld, outstanding %lld",
    340			 available, outstanding);
    341		return -ENOSPC;
    342	}
    343
    344	if (available - outstanding <= c->rp_size && !can_use_rp(c))
    345		return -ENOSPC;
    346
    347	c->bi.min_idx_lebs = min_idx_lebs;
    348	return 0;
    349}
    350
    351/**
    352 * calc_idx_growth - calculate approximate index growth from budgeting request.
    353 * @c: UBIFS file-system description object
    354 * @req: budgeting request
    355 *
    356 * For now we assume each new node adds one znode. But this is rather poor
    357 * approximation, though.
    358 */
    359static int calc_idx_growth(const struct ubifs_info *c,
    360			   const struct ubifs_budget_req *req)
    361{
    362	int znodes;
    363
    364	znodes = req->new_ino + (req->new_page << UBIFS_BLOCKS_PER_PAGE_SHIFT) +
    365		 req->new_dent;
    366	return znodes * c->max_idx_node_sz;
    367}
    368
    369/**
    370 * calc_data_growth - calculate approximate amount of new data from budgeting
    371 * request.
    372 * @c: UBIFS file-system description object
    373 * @req: budgeting request
    374 */
    375static int calc_data_growth(const struct ubifs_info *c,
    376			    const struct ubifs_budget_req *req)
    377{
    378	int data_growth;
    379
    380	data_growth = req->new_ino  ? c->bi.inode_budget : 0;
    381	if (req->new_page)
    382		data_growth += c->bi.page_budget;
    383	if (req->new_dent)
    384		data_growth += c->bi.dent_budget;
    385	data_growth += req->new_ino_d;
    386	return data_growth;
    387}
    388
    389/**
    390 * calc_dd_growth - calculate approximate amount of data which makes other data
    391 * dirty from budgeting request.
    392 * @c: UBIFS file-system description object
    393 * @req: budgeting request
    394 */
    395static int calc_dd_growth(const struct ubifs_info *c,
    396			  const struct ubifs_budget_req *req)
    397{
    398	int dd_growth;
    399
    400	dd_growth = req->dirtied_page ? c->bi.page_budget : 0;
    401
    402	if (req->dirtied_ino)
    403		dd_growth += c->bi.inode_budget << (req->dirtied_ino - 1);
    404	if (req->mod_dent)
    405		dd_growth += c->bi.dent_budget;
    406	dd_growth += req->dirtied_ino_d;
    407	return dd_growth;
    408}
    409
    410/**
    411 * ubifs_budget_space - ensure there is enough space to complete an operation.
    412 * @c: UBIFS file-system description object
    413 * @req: budget request
    414 *
    415 * This function allocates budget for an operation. It uses pessimistic
    416 * approximation of how much flash space the operation needs. The goal of this
    417 * function is to make sure UBIFS always has flash space to flush all dirty
    418 * pages, dirty inodes, and dirty znodes (liability). This function may force
    419 * commit, garbage-collection or write-back. Returns zero in case of success,
    420 * %-ENOSPC if there is no free space and other negative error codes in case of
    421 * failures.
    422 */
    423int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req)
    424{
    425	int err, idx_growth, data_growth, dd_growth, retried = 0;
    426
    427	ubifs_assert(c, req->new_page <= 1);
    428	ubifs_assert(c, req->dirtied_page <= 1);
    429	ubifs_assert(c, req->new_dent <= 1);
    430	ubifs_assert(c, req->mod_dent <= 1);
    431	ubifs_assert(c, req->new_ino <= 1);
    432	ubifs_assert(c, req->new_ino_d <= UBIFS_MAX_INO_DATA);
    433	ubifs_assert(c, req->dirtied_ino <= 4);
    434	ubifs_assert(c, req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
    435	ubifs_assert(c, !(req->new_ino_d & 7));
    436	ubifs_assert(c, !(req->dirtied_ino_d & 7));
    437
    438	data_growth = calc_data_growth(c, req);
    439	dd_growth = calc_dd_growth(c, req);
    440	if (!data_growth && !dd_growth)
    441		return 0;
    442	idx_growth = calc_idx_growth(c, req);
    443
    444again:
    445	spin_lock(&c->space_lock);
    446	ubifs_assert(c, c->bi.idx_growth >= 0);
    447	ubifs_assert(c, c->bi.data_growth >= 0);
    448	ubifs_assert(c, c->bi.dd_growth >= 0);
    449
    450	if (unlikely(c->bi.nospace) && (c->bi.nospace_rp || !can_use_rp(c))) {
    451		dbg_budg("no space");
    452		spin_unlock(&c->space_lock);
    453		return -ENOSPC;
    454	}
    455
    456	c->bi.idx_growth += idx_growth;
    457	c->bi.data_growth += data_growth;
    458	c->bi.dd_growth += dd_growth;
    459
    460	err = do_budget_space(c);
    461	if (likely(!err)) {
    462		req->idx_growth = idx_growth;
    463		req->data_growth = data_growth;
    464		req->dd_growth = dd_growth;
    465		spin_unlock(&c->space_lock);
    466		return 0;
    467	}
    468
    469	/* Restore the old values */
    470	c->bi.idx_growth -= idx_growth;
    471	c->bi.data_growth -= data_growth;
    472	c->bi.dd_growth -= dd_growth;
    473	spin_unlock(&c->space_lock);
    474
    475	if (req->fast) {
    476		dbg_budg("no space for fast budgeting");
    477		return err;
    478	}
    479
    480	err = make_free_space(c);
    481	cond_resched();
    482	if (err == -EAGAIN) {
    483		dbg_budg("try again");
    484		goto again;
    485	} else if (err == -ENOSPC) {
    486		if (!retried) {
    487			retried = 1;
    488			dbg_budg("-ENOSPC, but anyway try once again");
    489			goto again;
    490		}
    491		dbg_budg("FS is full, -ENOSPC");
    492		c->bi.nospace = 1;
    493		if (can_use_rp(c) || c->rp_size == 0)
    494			c->bi.nospace_rp = 1;
    495		smp_wmb();
    496	} else
    497		ubifs_err(c, "cannot budget space, error %d", err);
    498	return err;
    499}
    500
    501/**
    502 * ubifs_release_budget - release budgeted free space.
    503 * @c: UBIFS file-system description object
    504 * @req: budget request
    505 *
    506 * This function releases the space budgeted by 'ubifs_budget_space()'. Note,
    507 * since the index changes (which were budgeted for in @req->idx_growth) will
    508 * only be written to the media on commit, this function moves the index budget
    509 * from @c->bi.idx_growth to @c->bi.uncommitted_idx. The latter will be zeroed
    510 * by the commit operation.
    511 */
    512void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req)
    513{
    514	ubifs_assert(c, req->new_page <= 1);
    515	ubifs_assert(c, req->dirtied_page <= 1);
    516	ubifs_assert(c, req->new_dent <= 1);
    517	ubifs_assert(c, req->mod_dent <= 1);
    518	ubifs_assert(c, req->new_ino <= 1);
    519	ubifs_assert(c, req->new_ino_d <= UBIFS_MAX_INO_DATA);
    520	ubifs_assert(c, req->dirtied_ino <= 4);
    521	ubifs_assert(c, req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
    522	ubifs_assert(c, !(req->new_ino_d & 7));
    523	ubifs_assert(c, !(req->dirtied_ino_d & 7));
    524	if (!req->recalculate) {
    525		ubifs_assert(c, req->idx_growth >= 0);
    526		ubifs_assert(c, req->data_growth >= 0);
    527		ubifs_assert(c, req->dd_growth >= 0);
    528	}
    529
    530	if (req->recalculate) {
    531		req->data_growth = calc_data_growth(c, req);
    532		req->dd_growth = calc_dd_growth(c, req);
    533		req->idx_growth = calc_idx_growth(c, req);
    534	}
    535
    536	if (!req->data_growth && !req->dd_growth)
    537		return;
    538
    539	c->bi.nospace = c->bi.nospace_rp = 0;
    540	smp_wmb();
    541
    542	spin_lock(&c->space_lock);
    543	c->bi.idx_growth -= req->idx_growth;
    544	c->bi.uncommitted_idx += req->idx_growth;
    545	c->bi.data_growth -= req->data_growth;
    546	c->bi.dd_growth -= req->dd_growth;
    547	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
    548
    549	ubifs_assert(c, c->bi.idx_growth >= 0);
    550	ubifs_assert(c, c->bi.data_growth >= 0);
    551	ubifs_assert(c, c->bi.dd_growth >= 0);
    552	ubifs_assert(c, c->bi.min_idx_lebs < c->main_lebs);
    553	ubifs_assert(c, !(c->bi.idx_growth & 7));
    554	ubifs_assert(c, !(c->bi.data_growth & 7));
    555	ubifs_assert(c, !(c->bi.dd_growth & 7));
    556	spin_unlock(&c->space_lock);
    557}
    558
    559/**
    560 * ubifs_convert_page_budget - convert budget of a new page.
    561 * @c: UBIFS file-system description object
    562 *
    563 * This function converts budget which was allocated for a new page of data to
    564 * the budget of changing an existing page of data. The latter is smaller than
    565 * the former, so this function only does simple re-calculation and does not
    566 * involve any write-back.
    567 */
    568void ubifs_convert_page_budget(struct ubifs_info *c)
    569{
    570	spin_lock(&c->space_lock);
    571	/* Release the index growth reservation */
    572	c->bi.idx_growth -= c->max_idx_node_sz << UBIFS_BLOCKS_PER_PAGE_SHIFT;
    573	/* Release the data growth reservation */
    574	c->bi.data_growth -= c->bi.page_budget;
    575	/* Increase the dirty data growth reservation instead */
    576	c->bi.dd_growth += c->bi.page_budget;
    577	/* And re-calculate the indexing space reservation */
    578	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
    579	spin_unlock(&c->space_lock);
    580}
    581
    582/**
    583 * ubifs_release_dirty_inode_budget - release dirty inode budget.
    584 * @c: UBIFS file-system description object
    585 * @ui: UBIFS inode to release the budget for
    586 *
    587 * This function releases budget corresponding to a dirty inode. It is usually
    588 * called when after the inode has been written to the media and marked as
    589 * clean. It also causes the "no space" flags to be cleared.
    590 */
    591void ubifs_release_dirty_inode_budget(struct ubifs_info *c,
    592				      struct ubifs_inode *ui)
    593{
    594	struct ubifs_budget_req req;
    595
    596	memset(&req, 0, sizeof(struct ubifs_budget_req));
    597	/* The "no space" flags will be cleared because dd_growth is > 0 */
    598	req.dd_growth = c->bi.inode_budget + ALIGN(ui->data_len, 8);
    599	ubifs_release_budget(c, &req);
    600}
    601
    602/**
    603 * ubifs_reported_space - calculate reported free space.
    604 * @c: the UBIFS file-system description object
    605 * @free: amount of free space
    606 *
    607 * This function calculates amount of free space which will be reported to
    608 * user-space. User-space application tend to expect that if the file-system
    609 * (e.g., via the 'statfs()' call) reports that it has N bytes available, they
    610 * are able to write a file of size N. UBIFS attaches node headers to each data
    611 * node and it has to write indexing nodes as well. This introduces additional
    612 * overhead, and UBIFS has to report slightly less free space to meet the above
    613 * expectations.
    614 *
    615 * This function assumes free space is made up of uncompressed data nodes and
    616 * full index nodes (one per data node, tripled because we always allow enough
    617 * space to write the index thrice).
    618 *
    619 * Note, the calculation is pessimistic, which means that most of the time
    620 * UBIFS reports less space than it actually has.
    621 */
    622long long ubifs_reported_space(const struct ubifs_info *c, long long free)
    623{
    624	int divisor, factor, f;
    625
    626	/*
    627	 * Reported space size is @free * X, where X is UBIFS block size
    628	 * divided by UBIFS block size + all overhead one data block
    629	 * introduces. The overhead is the node header + indexing overhead.
    630	 *
    631	 * Indexing overhead calculations are based on the following formula:
    632	 * I = N/(f - 1) + 1, where I - number of indexing nodes, N - number
    633	 * of data nodes, f - fanout. Because effective UBIFS fanout is twice
    634	 * as less than maximum fanout, we assume that each data node
    635	 * introduces 3 * @c->max_idx_node_sz / (@c->fanout/2 - 1) bytes.
    636	 * Note, the multiplier 3 is because UBIFS reserves thrice as more space
    637	 * for the index.
    638	 */
    639	f = c->fanout > 3 ? c->fanout >> 1 : 2;
    640	factor = UBIFS_BLOCK_SIZE;
    641	divisor = UBIFS_MAX_DATA_NODE_SZ;
    642	divisor += (c->max_idx_node_sz * 3) / (f - 1);
    643	free *= factor;
    644	return div_u64(free, divisor);
    645}
    646
    647/**
    648 * ubifs_get_free_space_nolock - return amount of free space.
    649 * @c: UBIFS file-system description object
    650 *
    651 * This function calculates amount of free space to report to user-space.
    652 *
    653 * Because UBIFS may introduce substantial overhead (the index, node headers,
    654 * alignment, wastage at the end of LEBs, etc), it cannot report real amount of
    655 * free flash space it has (well, because not all dirty space is reclaimable,
    656 * UBIFS does not actually know the real amount). If UBIFS did so, it would
    657 * bread user expectations about what free space is. Users seem to accustomed
    658 * to assume that if the file-system reports N bytes of free space, they would
    659 * be able to fit a file of N bytes to the FS. This almost works for
    660 * traditional file-systems, because they have way less overhead than UBIFS.
    661 * So, to keep users happy, UBIFS tries to take the overhead into account.
    662 */
    663long long ubifs_get_free_space_nolock(struct ubifs_info *c)
    664{
    665	int rsvd_idx_lebs, lebs;
    666	long long available, outstanding, free;
    667
    668	ubifs_assert(c, c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
    669	outstanding = c->bi.data_growth + c->bi.dd_growth;
    670	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
    671
    672	/*
    673	 * When reporting free space to user-space, UBIFS guarantees that it is
    674	 * possible to write a file of free space size. This means that for
    675	 * empty LEBs we may use more precise calculations than
    676	 * 'ubifs_calc_available()' is using. Namely, we know that in empty
    677	 * LEBs we would waste only @c->leb_overhead bytes, not @c->dark_wm.
    678	 * Thus, amend the available space.
    679	 *
    680	 * Note, the calculations below are similar to what we have in
    681	 * 'do_budget_space()', so refer there for comments.
    682	 */
    683	if (c->bi.min_idx_lebs > c->lst.idx_lebs)
    684		rsvd_idx_lebs = c->bi.min_idx_lebs - c->lst.idx_lebs;
    685	else
    686		rsvd_idx_lebs = 0;
    687	lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
    688	       c->lst.taken_empty_lebs;
    689	lebs -= rsvd_idx_lebs;
    690	available += lebs * (c->dark_wm - c->leb_overhead);
    691
    692	if (available > outstanding)
    693		free = ubifs_reported_space(c, available - outstanding);
    694	else
    695		free = 0;
    696	return free;
    697}
    698
    699/**
    700 * ubifs_get_free_space - return amount of free space.
    701 * @c: UBIFS file-system description object
    702 *
    703 * This function calculates and returns amount of free space to report to
    704 * user-space.
    705 */
    706long long ubifs_get_free_space(struct ubifs_info *c)
    707{
    708	long long free;
    709
    710	spin_lock(&c->space_lock);
    711	free = ubifs_get_free_space_nolock(c);
    712	spin_unlock(&c->space_lock);
    713
    714	return free;
    715}