cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

commit.c (20370B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * This file is part of UBIFS.
      4 *
      5 * Copyright (C) 2006-2008 Nokia Corporation.
      6 *
      7 * Authors: Adrian Hunter
      8 *          Artem Bityutskiy (Битюцкий Артём)
      9 */
     10
     11/*
     12 * This file implements functions that manage the running of the commit process.
     13 * Each affected module has its own functions to accomplish their part in the
     14 * commit and those functions are called here.
     15 *
     16 * The commit is the process whereby all updates to the index and LEB properties
     17 * are written out together and the journal becomes empty. This keeps the
     18 * file system consistent - at all times the state can be recreated by reading
     19 * the index and LEB properties and then replaying the journal.
     20 *
     21 * The commit is split into two parts named "commit start" and "commit end".
     22 * During commit start, the commit process has exclusive access to the journal
     23 * by holding the commit semaphore down for writing. As few I/O operations as
     24 * possible are performed during commit start, instead the nodes that are to be
     25 * written are merely identified. During commit end, the commit semaphore is no
     26 * longer held and the journal is again in operation, allowing users to continue
     27 * to use the file system while the bulk of the commit I/O is performed. The
     28 * purpose of this two-step approach is to prevent the commit from causing any
     29 * latency blips. Note that in any case, the commit does not prevent lookups
     30 * (as permitted by the TNC mutex), or access to VFS data structures e.g. page
     31 * cache.
     32 */
     33
     34#include <linux/freezer.h>
     35#include <linux/kthread.h>
     36#include <linux/slab.h>
     37#include "ubifs.h"
     38
     39/*
     40 * nothing_to_commit - check if there is nothing to commit.
     41 * @c: UBIFS file-system description object
     42 *
     43 * This is a helper function which checks if there is anything to commit. It is
     44 * used as an optimization to avoid starting the commit if it is not really
     45 * necessary. Indeed, the commit operation always assumes flash I/O (e.g.,
     46 * writing the commit start node to the log), and it is better to avoid doing
     47 * this unnecessarily. E.g., 'ubifs_sync_fs()' runs the commit, but if there is
     48 * nothing to commit, it is more optimal to avoid any flash I/O.
     49 *
     50 * This function has to be called with @c->commit_sem locked for writing -
     51 * this function does not take LPT/TNC locks because the @c->commit_sem
     52 * guarantees that we have exclusive access to the TNC and LPT data structures.
     53 *
     54 * This function returns %1 if there is nothing to commit and %0 otherwise.
     55 */
     56static int nothing_to_commit(struct ubifs_info *c)
     57{
     58	/*
     59	 * During mounting or remounting from R/O mode to R/W mode we may
     60	 * commit for various recovery-related reasons.
     61	 */
     62	if (c->mounting || c->remounting_rw)
     63		return 0;
     64
     65	/*
     66	 * If the root TNC node is dirty, we definitely have something to
     67	 * commit.
     68	 */
     69	if (c->zroot.znode && ubifs_zn_dirty(c->zroot.znode))
     70		return 0;
     71
     72	/*
     73	 * Even though the TNC is clean, the LPT tree may have dirty nodes. For
     74	 * example, this may happen if the budgeting subsystem invoked GC to
     75	 * make some free space, and the GC found an LEB with only dirty and
     76	 * free space. In this case GC would just change the lprops of this
     77	 * LEB (by turning all space into free space) and unmap it.
     78	 */
     79	if (c->nroot && test_bit(DIRTY_CNODE, &c->nroot->flags))
     80		return 0;
     81
     82	ubifs_assert(c, atomic_long_read(&c->dirty_zn_cnt) == 0);
     83	ubifs_assert(c, c->dirty_pn_cnt == 0);
     84	ubifs_assert(c, c->dirty_nn_cnt == 0);
     85
     86	return 1;
     87}
     88
     89/**
     90 * do_commit - commit the journal.
     91 * @c: UBIFS file-system description object
     92 *
     93 * This function implements UBIFS commit. It has to be called with commit lock
     94 * locked. Returns zero in case of success and a negative error code in case of
     95 * failure.
     96 */
     97static int do_commit(struct ubifs_info *c)
     98{
     99	int err, new_ltail_lnum, old_ltail_lnum, i;
    100	struct ubifs_zbranch zroot;
    101	struct ubifs_lp_stats lst;
    102
    103	dbg_cmt("start");
    104	ubifs_assert(c, !c->ro_media && !c->ro_mount);
    105
    106	if (c->ro_error) {
    107		err = -EROFS;
    108		goto out_up;
    109	}
    110
    111	if (nothing_to_commit(c)) {
    112		up_write(&c->commit_sem);
    113		err = 0;
    114		goto out_cancel;
    115	}
    116
    117	/* Sync all write buffers (necessary for recovery) */
    118	for (i = 0; i < c->jhead_cnt; i++) {
    119		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
    120		if (err)
    121			goto out_up;
    122	}
    123
    124	c->cmt_no += 1;
    125	err = ubifs_gc_start_commit(c);
    126	if (err)
    127		goto out_up;
    128	err = dbg_check_lprops(c);
    129	if (err)
    130		goto out_up;
    131	err = ubifs_log_start_commit(c, &new_ltail_lnum);
    132	if (err)
    133		goto out_up;
    134	err = ubifs_tnc_start_commit(c, &zroot);
    135	if (err)
    136		goto out_up;
    137	err = ubifs_lpt_start_commit(c);
    138	if (err)
    139		goto out_up;
    140	err = ubifs_orphan_start_commit(c);
    141	if (err)
    142		goto out_up;
    143
    144	ubifs_get_lp_stats(c, &lst);
    145
    146	up_write(&c->commit_sem);
    147
    148	err = ubifs_tnc_end_commit(c);
    149	if (err)
    150		goto out;
    151	err = ubifs_lpt_end_commit(c);
    152	if (err)
    153		goto out;
    154	err = ubifs_orphan_end_commit(c);
    155	if (err)
    156		goto out;
    157	err = dbg_check_old_index(c, &zroot);
    158	if (err)
    159		goto out;
    160
    161	c->mst_node->cmt_no      = cpu_to_le64(c->cmt_no);
    162	c->mst_node->log_lnum    = cpu_to_le32(new_ltail_lnum);
    163	c->mst_node->root_lnum   = cpu_to_le32(zroot.lnum);
    164	c->mst_node->root_offs   = cpu_to_le32(zroot.offs);
    165	c->mst_node->root_len    = cpu_to_le32(zroot.len);
    166	c->mst_node->ihead_lnum  = cpu_to_le32(c->ihead_lnum);
    167	c->mst_node->ihead_offs  = cpu_to_le32(c->ihead_offs);
    168	c->mst_node->index_size  = cpu_to_le64(c->bi.old_idx_sz);
    169	c->mst_node->lpt_lnum    = cpu_to_le32(c->lpt_lnum);
    170	c->mst_node->lpt_offs    = cpu_to_le32(c->lpt_offs);
    171	c->mst_node->nhead_lnum  = cpu_to_le32(c->nhead_lnum);
    172	c->mst_node->nhead_offs  = cpu_to_le32(c->nhead_offs);
    173	c->mst_node->ltab_lnum   = cpu_to_le32(c->ltab_lnum);
    174	c->mst_node->ltab_offs   = cpu_to_le32(c->ltab_offs);
    175	c->mst_node->lsave_lnum  = cpu_to_le32(c->lsave_lnum);
    176	c->mst_node->lsave_offs  = cpu_to_le32(c->lsave_offs);
    177	c->mst_node->lscan_lnum  = cpu_to_le32(c->lscan_lnum);
    178	c->mst_node->empty_lebs  = cpu_to_le32(lst.empty_lebs);
    179	c->mst_node->idx_lebs    = cpu_to_le32(lst.idx_lebs);
    180	c->mst_node->total_free  = cpu_to_le64(lst.total_free);
    181	c->mst_node->total_dirty = cpu_to_le64(lst.total_dirty);
    182	c->mst_node->total_used  = cpu_to_le64(lst.total_used);
    183	c->mst_node->total_dead  = cpu_to_le64(lst.total_dead);
    184	c->mst_node->total_dark  = cpu_to_le64(lst.total_dark);
    185	if (c->no_orphs)
    186		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
    187	else
    188		c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_NO_ORPHS);
    189
    190	old_ltail_lnum = c->ltail_lnum;
    191	err = ubifs_log_end_commit(c, new_ltail_lnum);
    192	if (err)
    193		goto out;
    194
    195	err = ubifs_log_post_commit(c, old_ltail_lnum);
    196	if (err)
    197		goto out;
    198	err = ubifs_gc_end_commit(c);
    199	if (err)
    200		goto out;
    201	err = ubifs_lpt_post_commit(c);
    202	if (err)
    203		goto out;
    204
    205out_cancel:
    206	spin_lock(&c->cs_lock);
    207	c->cmt_state = COMMIT_RESTING;
    208	wake_up(&c->cmt_wq);
    209	dbg_cmt("commit end");
    210	spin_unlock(&c->cs_lock);
    211	return 0;
    212
    213out_up:
    214	up_write(&c->commit_sem);
    215out:
    216	ubifs_err(c, "commit failed, error %d", err);
    217	spin_lock(&c->cs_lock);
    218	c->cmt_state = COMMIT_BROKEN;
    219	wake_up(&c->cmt_wq);
    220	spin_unlock(&c->cs_lock);
    221	ubifs_ro_mode(c, err);
    222	return err;
    223}
    224
    225/**
    226 * run_bg_commit - run background commit if it is needed.
    227 * @c: UBIFS file-system description object
    228 *
    229 * This function runs background commit if it is needed. Returns zero in case
    230 * of success and a negative error code in case of failure.
    231 */
    232static int run_bg_commit(struct ubifs_info *c)
    233{
    234	spin_lock(&c->cs_lock);
    235	/*
    236	 * Run background commit only if background commit was requested or if
    237	 * commit is required.
    238	 */
    239	if (c->cmt_state != COMMIT_BACKGROUND &&
    240	    c->cmt_state != COMMIT_REQUIRED)
    241		goto out;
    242	spin_unlock(&c->cs_lock);
    243
    244	down_write(&c->commit_sem);
    245	spin_lock(&c->cs_lock);
    246	if (c->cmt_state == COMMIT_REQUIRED)
    247		c->cmt_state = COMMIT_RUNNING_REQUIRED;
    248	else if (c->cmt_state == COMMIT_BACKGROUND)
    249		c->cmt_state = COMMIT_RUNNING_BACKGROUND;
    250	else
    251		goto out_cmt_unlock;
    252	spin_unlock(&c->cs_lock);
    253
    254	return do_commit(c);
    255
    256out_cmt_unlock:
    257	up_write(&c->commit_sem);
    258out:
    259	spin_unlock(&c->cs_lock);
    260	return 0;
    261}
    262
    263/**
    264 * ubifs_bg_thread - UBIFS background thread function.
    265 * @info: points to the file-system description object
    266 *
    267 * This function implements various file-system background activities:
    268 * o when a write-buffer timer expires it synchronizes the appropriate
    269 *   write-buffer;
    270 * o when the journal is about to be full, it starts in-advance commit.
    271 *
    272 * Note, other stuff like background garbage collection may be added here in
    273 * future.
    274 */
    275int ubifs_bg_thread(void *info)
    276{
    277	int err;
    278	struct ubifs_info *c = info;
    279
    280	ubifs_msg(c, "background thread \"%s\" started, PID %d",
    281		  c->bgt_name, current->pid);
    282	set_freezable();
    283
    284	while (1) {
    285		if (kthread_should_stop())
    286			break;
    287
    288		if (try_to_freeze())
    289			continue;
    290
    291		set_current_state(TASK_INTERRUPTIBLE);
    292		/* Check if there is something to do */
    293		if (!c->need_bgt) {
    294			/*
    295			 * Nothing prevents us from going sleep now and
    296			 * be never woken up and block the task which
    297			 * could wait in 'kthread_stop()' forever.
    298			 */
    299			if (kthread_should_stop())
    300				break;
    301			schedule();
    302			continue;
    303		} else
    304			__set_current_state(TASK_RUNNING);
    305
    306		c->need_bgt = 0;
    307		err = ubifs_bg_wbufs_sync(c);
    308		if (err)
    309			ubifs_ro_mode(c, err);
    310
    311		run_bg_commit(c);
    312		cond_resched();
    313	}
    314
    315	ubifs_msg(c, "background thread \"%s\" stops", c->bgt_name);
    316	return 0;
    317}
    318
    319/**
    320 * ubifs_commit_required - set commit state to "required".
    321 * @c: UBIFS file-system description object
    322 *
    323 * This function is called if a commit is required but cannot be done from the
    324 * calling function, so it is just flagged instead.
    325 */
    326void ubifs_commit_required(struct ubifs_info *c)
    327{
    328	spin_lock(&c->cs_lock);
    329	switch (c->cmt_state) {
    330	case COMMIT_RESTING:
    331	case COMMIT_BACKGROUND:
    332		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
    333			dbg_cstate(COMMIT_REQUIRED));
    334		c->cmt_state = COMMIT_REQUIRED;
    335		break;
    336	case COMMIT_RUNNING_BACKGROUND:
    337		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
    338			dbg_cstate(COMMIT_RUNNING_REQUIRED));
    339		c->cmt_state = COMMIT_RUNNING_REQUIRED;
    340		break;
    341	case COMMIT_REQUIRED:
    342	case COMMIT_RUNNING_REQUIRED:
    343	case COMMIT_BROKEN:
    344		break;
    345	}
    346	spin_unlock(&c->cs_lock);
    347}
    348
    349/**
    350 * ubifs_request_bg_commit - notify the background thread to do a commit.
    351 * @c: UBIFS file-system description object
    352 *
    353 * This function is called if the journal is full enough to make a commit
    354 * worthwhile, so background thread is kicked to start it.
    355 */
    356void ubifs_request_bg_commit(struct ubifs_info *c)
    357{
    358	spin_lock(&c->cs_lock);
    359	if (c->cmt_state == COMMIT_RESTING) {
    360		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
    361			dbg_cstate(COMMIT_BACKGROUND));
    362		c->cmt_state = COMMIT_BACKGROUND;
    363		spin_unlock(&c->cs_lock);
    364		ubifs_wake_up_bgt(c);
    365	} else
    366		spin_unlock(&c->cs_lock);
    367}
    368
    369/**
    370 * wait_for_commit - wait for commit.
    371 * @c: UBIFS file-system description object
    372 *
    373 * This function sleeps until the commit operation is no longer running.
    374 */
    375static int wait_for_commit(struct ubifs_info *c)
    376{
    377	dbg_cmt("pid %d goes sleep", current->pid);
    378
    379	/*
    380	 * The following sleeps if the condition is false, and will be woken
    381	 * when the commit ends. It is possible, although very unlikely, that we
    382	 * will wake up and see the subsequent commit running, rather than the
    383	 * one we were waiting for, and go back to sleep.  However, we will be
    384	 * woken again, so there is no danger of sleeping forever.
    385	 */
    386	wait_event(c->cmt_wq, c->cmt_state != COMMIT_RUNNING_BACKGROUND &&
    387			      c->cmt_state != COMMIT_RUNNING_REQUIRED);
    388	dbg_cmt("commit finished, pid %d woke up", current->pid);
    389	return 0;
    390}
    391
    392/**
    393 * ubifs_run_commit - run or wait for commit.
    394 * @c: UBIFS file-system description object
    395 *
    396 * This function runs commit and returns zero in case of success and a negative
    397 * error code in case of failure.
    398 */
    399int ubifs_run_commit(struct ubifs_info *c)
    400{
    401	int err = 0;
    402
    403	spin_lock(&c->cs_lock);
    404	if (c->cmt_state == COMMIT_BROKEN) {
    405		err = -EROFS;
    406		goto out;
    407	}
    408
    409	if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
    410		/*
    411		 * We set the commit state to 'running required' to indicate
    412		 * that we want it to complete as quickly as possible.
    413		 */
    414		c->cmt_state = COMMIT_RUNNING_REQUIRED;
    415
    416	if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
    417		spin_unlock(&c->cs_lock);
    418		return wait_for_commit(c);
    419	}
    420	spin_unlock(&c->cs_lock);
    421
    422	/* Ok, the commit is indeed needed */
    423
    424	down_write(&c->commit_sem);
    425	spin_lock(&c->cs_lock);
    426	/*
    427	 * Since we unlocked 'c->cs_lock', the state may have changed, so
    428	 * re-check it.
    429	 */
    430	if (c->cmt_state == COMMIT_BROKEN) {
    431		err = -EROFS;
    432		goto out_cmt_unlock;
    433	}
    434
    435	if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
    436		c->cmt_state = COMMIT_RUNNING_REQUIRED;
    437
    438	if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
    439		up_write(&c->commit_sem);
    440		spin_unlock(&c->cs_lock);
    441		return wait_for_commit(c);
    442	}
    443	c->cmt_state = COMMIT_RUNNING_REQUIRED;
    444	spin_unlock(&c->cs_lock);
    445
    446	err = do_commit(c);
    447	return err;
    448
    449out_cmt_unlock:
    450	up_write(&c->commit_sem);
    451out:
    452	spin_unlock(&c->cs_lock);
    453	return err;
    454}
    455
    456/**
    457 * ubifs_gc_should_commit - determine if it is time for GC to run commit.
    458 * @c: UBIFS file-system description object
    459 *
    460 * This function is called by garbage collection to determine if commit should
    461 * be run. If commit state is @COMMIT_BACKGROUND, which means that the journal
    462 * is full enough to start commit, this function returns true. It is not
    463 * absolutely necessary to commit yet, but it feels like this should be better
    464 * then to keep doing GC. This function returns %1 if GC has to initiate commit
    465 * and %0 if not.
    466 */
    467int ubifs_gc_should_commit(struct ubifs_info *c)
    468{
    469	int ret = 0;
    470
    471	spin_lock(&c->cs_lock);
    472	if (c->cmt_state == COMMIT_BACKGROUND) {
    473		dbg_cmt("commit required now");
    474		c->cmt_state = COMMIT_REQUIRED;
    475	} else
    476		dbg_cmt("commit not requested");
    477	if (c->cmt_state == COMMIT_REQUIRED)
    478		ret = 1;
    479	spin_unlock(&c->cs_lock);
    480	return ret;
    481}
    482
    483/*
    484 * Everything below is related to debugging.
    485 */
    486
    487/**
    488 * struct idx_node - hold index nodes during index tree traversal.
    489 * @list: list
    490 * @iip: index in parent (slot number of this indexing node in the parent
    491 *       indexing node)
    492 * @upper_key: all keys in this indexing node have to be less or equivalent to
    493 *             this key
    494 * @idx: index node (8-byte aligned because all node structures must be 8-byte
    495 *       aligned)
    496 */
    497struct idx_node {
    498	struct list_head list;
    499	int iip;
    500	union ubifs_key upper_key;
    501	struct ubifs_idx_node idx __aligned(8);
    502};
    503
    504/**
    505 * dbg_old_index_check_init - get information for the next old index check.
    506 * @c: UBIFS file-system description object
    507 * @zroot: root of the index
    508 *
    509 * This function records information about the index that will be needed for the
    510 * next old index check i.e. 'dbg_check_old_index()'.
    511 *
    512 * This function returns %0 on success and a negative error code on failure.
    513 */
    514int dbg_old_index_check_init(struct ubifs_info *c, struct ubifs_zbranch *zroot)
    515{
    516	struct ubifs_idx_node *idx;
    517	int lnum, offs, len, err = 0;
    518	struct ubifs_debug_info *d = c->dbg;
    519
    520	d->old_zroot = *zroot;
    521	lnum = d->old_zroot.lnum;
    522	offs = d->old_zroot.offs;
    523	len = d->old_zroot.len;
    524
    525	idx = kmalloc(c->max_idx_node_sz, GFP_NOFS);
    526	if (!idx)
    527		return -ENOMEM;
    528
    529	err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
    530	if (err)
    531		goto out;
    532
    533	d->old_zroot_level = le16_to_cpu(idx->level);
    534	d->old_zroot_sqnum = le64_to_cpu(idx->ch.sqnum);
    535out:
    536	kfree(idx);
    537	return err;
    538}
    539
    540/**
    541 * dbg_check_old_index - check the old copy of the index.
    542 * @c: UBIFS file-system description object
    543 * @zroot: root of the new index
    544 *
    545 * In order to be able to recover from an unclean unmount, a complete copy of
    546 * the index must exist on flash. This is the "old" index. The commit process
    547 * must write the "new" index to flash without overwriting or destroying any
    548 * part of the old index. This function is run at commit end in order to check
    549 * that the old index does indeed exist completely intact.
    550 *
    551 * This function returns %0 on success and a negative error code on failure.
    552 */
    553int dbg_check_old_index(struct ubifs_info *c, struct ubifs_zbranch *zroot)
    554{
    555	int lnum, offs, len, err = 0, last_level, child_cnt;
    556	int first = 1, iip;
    557	struct ubifs_debug_info *d = c->dbg;
    558	union ubifs_key lower_key, upper_key, l_key, u_key;
    559	unsigned long long last_sqnum;
    560	struct ubifs_idx_node *idx;
    561	struct list_head list;
    562	struct idx_node *i;
    563	size_t sz;
    564
    565	if (!dbg_is_chk_index(c))
    566		return 0;
    567
    568	INIT_LIST_HEAD(&list);
    569
    570	sz = sizeof(struct idx_node) + ubifs_idx_node_sz(c, c->fanout) -
    571	     UBIFS_IDX_NODE_SZ;
    572
    573	/* Start at the old zroot */
    574	lnum = d->old_zroot.lnum;
    575	offs = d->old_zroot.offs;
    576	len = d->old_zroot.len;
    577	iip = 0;
    578
    579	/*
    580	 * Traverse the index tree preorder depth-first i.e. do a node and then
    581	 * its subtrees from left to right.
    582	 */
    583	while (1) {
    584		struct ubifs_branch *br;
    585
    586		/* Get the next index node */
    587		i = kmalloc(sz, GFP_NOFS);
    588		if (!i) {
    589			err = -ENOMEM;
    590			goto out_free;
    591		}
    592		i->iip = iip;
    593		/* Keep the index nodes on our path in a linked list */
    594		list_add_tail(&i->list, &list);
    595		/* Read the index node */
    596		idx = &i->idx;
    597		err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
    598		if (err)
    599			goto out_free;
    600		/* Validate index node */
    601		child_cnt = le16_to_cpu(idx->child_cnt);
    602		if (child_cnt < 1 || child_cnt > c->fanout) {
    603			err = 1;
    604			goto out_dump;
    605		}
    606		if (first) {
    607			first = 0;
    608			/* Check root level and sqnum */
    609			if (le16_to_cpu(idx->level) != d->old_zroot_level) {
    610				err = 2;
    611				goto out_dump;
    612			}
    613			if (le64_to_cpu(idx->ch.sqnum) != d->old_zroot_sqnum) {
    614				err = 3;
    615				goto out_dump;
    616			}
    617			/* Set last values as though root had a parent */
    618			last_level = le16_to_cpu(idx->level) + 1;
    619			last_sqnum = le64_to_cpu(idx->ch.sqnum) + 1;
    620			key_read(c, ubifs_idx_key(c, idx), &lower_key);
    621			highest_ino_key(c, &upper_key, INUM_WATERMARK);
    622		}
    623		key_copy(c, &upper_key, &i->upper_key);
    624		if (le16_to_cpu(idx->level) != last_level - 1) {
    625			err = 3;
    626			goto out_dump;
    627		}
    628		/*
    629		 * The index is always written bottom up hence a child's sqnum
    630		 * is always less than the parents.
    631		 */
    632		if (le64_to_cpu(idx->ch.sqnum) >= last_sqnum) {
    633			err = 4;
    634			goto out_dump;
    635		}
    636		/* Check key range */
    637		key_read(c, ubifs_idx_key(c, idx), &l_key);
    638		br = ubifs_idx_branch(c, idx, child_cnt - 1);
    639		key_read(c, &br->key, &u_key);
    640		if (keys_cmp(c, &lower_key, &l_key) > 0) {
    641			err = 5;
    642			goto out_dump;
    643		}
    644		if (keys_cmp(c, &upper_key, &u_key) < 0) {
    645			err = 6;
    646			goto out_dump;
    647		}
    648		if (keys_cmp(c, &upper_key, &u_key) == 0)
    649			if (!is_hash_key(c, &u_key)) {
    650				err = 7;
    651				goto out_dump;
    652			}
    653		/* Go to next index node */
    654		if (le16_to_cpu(idx->level) == 0) {
    655			/* At the bottom, so go up until can go right */
    656			while (1) {
    657				/* Drop the bottom of the list */
    658				list_del(&i->list);
    659				kfree(i);
    660				/* No more list means we are done */
    661				if (list_empty(&list))
    662					goto out;
    663				/* Look at the new bottom */
    664				i = list_entry(list.prev, struct idx_node,
    665					       list);
    666				idx = &i->idx;
    667				/* Can we go right */
    668				if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
    669					iip = iip + 1;
    670					break;
    671				} else
    672					/* Nope, so go up again */
    673					iip = i->iip;
    674			}
    675		} else
    676			/* Go down left */
    677			iip = 0;
    678		/*
    679		 * We have the parent in 'idx' and now we set up for reading the
    680		 * child pointed to by slot 'iip'.
    681		 */
    682		last_level = le16_to_cpu(idx->level);
    683		last_sqnum = le64_to_cpu(idx->ch.sqnum);
    684		br = ubifs_idx_branch(c, idx, iip);
    685		lnum = le32_to_cpu(br->lnum);
    686		offs = le32_to_cpu(br->offs);
    687		len = le32_to_cpu(br->len);
    688		key_read(c, &br->key, &lower_key);
    689		if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
    690			br = ubifs_idx_branch(c, idx, iip + 1);
    691			key_read(c, &br->key, &upper_key);
    692		} else
    693			key_copy(c, &i->upper_key, &upper_key);
    694	}
    695out:
    696	err = dbg_old_index_check_init(c, zroot);
    697	if (err)
    698		goto out_free;
    699
    700	return 0;
    701
    702out_dump:
    703	ubifs_err(c, "dumping index node (iip=%d)", i->iip);
    704	ubifs_dump_node(c, idx, ubifs_idx_node_sz(c, c->fanout));
    705	list_del(&i->list);
    706	kfree(i);
    707	if (!list_empty(&list)) {
    708		i = list_entry(list.prev, struct idx_node, list);
    709		ubifs_err(c, "dumping parent index node");
    710		ubifs_dump_node(c, &i->idx, ubifs_idx_node_sz(c, c->fanout));
    711	}
    712out_free:
    713	while (!list_empty(&list)) {
    714		i = list_entry(list.next, struct idx_node, list);
    715		list_del(&i->list);
    716		kfree(i);
    717	}
    718	ubifs_err(c, "failed, error %d", err);
    719	if (err > 0)
    720		err = -EINVAL;
    721	return err;
    722}