cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

find.c (30098B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * This file is part of UBIFS.
      4 *
      5 * Copyright (C) 2006-2008 Nokia Corporation.
      6 *
      7 * Authors: Artem Bityutskiy (Битюцкий Артём)
      8 *          Adrian Hunter
      9 */
     10
     11/*
     12 * This file contains functions for finding LEBs for various purposes e.g.
     13 * garbage collection. In general, lprops category heaps and lists are used
     14 * for fast access, falling back on scanning the LPT as a last resort.
     15 */
     16
     17#include <linux/sort.h>
     18#include "ubifs.h"
     19
     20/**
     21 * struct scan_data - data provided to scan callback functions
     22 * @min_space: minimum number of bytes for which to scan
     23 * @pick_free: whether it is OK to scan for empty LEBs
     24 * @lnum: LEB number found is returned here
     25 * @exclude_index: whether to exclude index LEBs
     26 */
     27struct scan_data {
     28	int min_space;
     29	int pick_free;
     30	int lnum;
     31	int exclude_index;
     32};
     33
     34/**
     35 * valuable - determine whether LEB properties are valuable.
     36 * @c: the UBIFS file-system description object
     37 * @lprops: LEB properties
     38 *
     39 * This function return %1 if the LEB properties should be added to the LEB
     40 * properties tree in memory. Otherwise %0 is returned.
     41 */
     42static int valuable(struct ubifs_info *c, const struct ubifs_lprops *lprops)
     43{
     44	int n, cat = lprops->flags & LPROPS_CAT_MASK;
     45	struct ubifs_lpt_heap *heap;
     46
     47	switch (cat) {
     48	case LPROPS_DIRTY:
     49	case LPROPS_DIRTY_IDX:
     50	case LPROPS_FREE:
     51		heap = &c->lpt_heap[cat - 1];
     52		if (heap->cnt < heap->max_cnt)
     53			return 1;
     54		if (lprops->free + lprops->dirty >= c->dark_wm)
     55			return 1;
     56		return 0;
     57	case LPROPS_EMPTY:
     58		n = c->lst.empty_lebs + c->freeable_cnt -
     59		    c->lst.taken_empty_lebs;
     60		if (n < c->lsave_cnt)
     61			return 1;
     62		return 0;
     63	case LPROPS_FREEABLE:
     64		return 1;
     65	case LPROPS_FRDI_IDX:
     66		return 1;
     67	}
     68	return 0;
     69}
     70
     71/**
     72 * scan_for_dirty_cb - dirty space scan callback.
     73 * @c: the UBIFS file-system description object
     74 * @lprops: LEB properties to scan
     75 * @in_tree: whether the LEB properties are in main memory
     76 * @data: information passed to and from the caller of the scan
     77 *
     78 * This function returns a code that indicates whether the scan should continue
     79 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
     80 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
     81 * (%LPT_SCAN_STOP).
     82 */
     83static int scan_for_dirty_cb(struct ubifs_info *c,
     84			     const struct ubifs_lprops *lprops, int in_tree,
     85			     struct scan_data *data)
     86{
     87	int ret = LPT_SCAN_CONTINUE;
     88
     89	/* Exclude LEBs that are currently in use */
     90	if (lprops->flags & LPROPS_TAKEN)
     91		return LPT_SCAN_CONTINUE;
     92	/* Determine whether to add these LEB properties to the tree */
     93	if (!in_tree && valuable(c, lprops))
     94		ret |= LPT_SCAN_ADD;
     95	/* Exclude LEBs with too little space */
     96	if (lprops->free + lprops->dirty < data->min_space)
     97		return ret;
     98	/* If specified, exclude index LEBs */
     99	if (data->exclude_index && lprops->flags & LPROPS_INDEX)
    100		return ret;
    101	/* If specified, exclude empty or freeable LEBs */
    102	if (lprops->free + lprops->dirty == c->leb_size) {
    103		if (!data->pick_free)
    104			return ret;
    105	/* Exclude LEBs with too little dirty space (unless it is empty) */
    106	} else if (lprops->dirty < c->dead_wm)
    107		return ret;
    108	/* Finally we found space */
    109	data->lnum = lprops->lnum;
    110	return LPT_SCAN_ADD | LPT_SCAN_STOP;
    111}
    112
    113/**
    114 * scan_for_dirty - find a data LEB with free space.
    115 * @c: the UBIFS file-system description object
    116 * @min_space: minimum amount free plus dirty space the returned LEB has to
    117 *             have
    118 * @pick_free: if it is OK to return a free or freeable LEB
    119 * @exclude_index: whether to exclude index LEBs
    120 *
    121 * This function returns a pointer to the LEB properties found or a negative
    122 * error code.
    123 */
    124static const struct ubifs_lprops *scan_for_dirty(struct ubifs_info *c,
    125						 int min_space, int pick_free,
    126						 int exclude_index)
    127{
    128	const struct ubifs_lprops *lprops;
    129	struct ubifs_lpt_heap *heap;
    130	struct scan_data data;
    131	int err, i;
    132
    133	/* There may be an LEB with enough dirty space on the free heap */
    134	heap = &c->lpt_heap[LPROPS_FREE - 1];
    135	for (i = 0; i < heap->cnt; i++) {
    136		lprops = heap->arr[i];
    137		if (lprops->free + lprops->dirty < min_space)
    138			continue;
    139		if (lprops->dirty < c->dead_wm)
    140			continue;
    141		return lprops;
    142	}
    143	/*
    144	 * A LEB may have fallen off of the bottom of the dirty heap, and ended
    145	 * up as uncategorized even though it has enough dirty space for us now,
    146	 * so check the uncategorized list. N.B. neither empty nor freeable LEBs
    147	 * can end up as uncategorized because they are kept on lists not
    148	 * finite-sized heaps.
    149	 */
    150	list_for_each_entry(lprops, &c->uncat_list, list) {
    151		if (lprops->flags & LPROPS_TAKEN)
    152			continue;
    153		if (lprops->free + lprops->dirty < min_space)
    154			continue;
    155		if (exclude_index && (lprops->flags & LPROPS_INDEX))
    156			continue;
    157		if (lprops->dirty < c->dead_wm)
    158			continue;
    159		return lprops;
    160	}
    161	/* We have looked everywhere in main memory, now scan the flash */
    162	if (c->pnodes_have >= c->pnode_cnt)
    163		/* All pnodes are in memory, so skip scan */
    164		return ERR_PTR(-ENOSPC);
    165	data.min_space = min_space;
    166	data.pick_free = pick_free;
    167	data.lnum = -1;
    168	data.exclude_index = exclude_index;
    169	err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum,
    170				    (ubifs_lpt_scan_callback)scan_for_dirty_cb,
    171				    &data);
    172	if (err)
    173		return ERR_PTR(err);
    174	ubifs_assert(c, data.lnum >= c->main_first && data.lnum < c->leb_cnt);
    175	c->lscan_lnum = data.lnum;
    176	lprops = ubifs_lpt_lookup_dirty(c, data.lnum);
    177	if (IS_ERR(lprops))
    178		return lprops;
    179	ubifs_assert(c, lprops->lnum == data.lnum);
    180	ubifs_assert(c, lprops->free + lprops->dirty >= min_space);
    181	ubifs_assert(c, lprops->dirty >= c->dead_wm ||
    182		     (pick_free &&
    183		      lprops->free + lprops->dirty == c->leb_size));
    184	ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN));
    185	ubifs_assert(c, !exclude_index || !(lprops->flags & LPROPS_INDEX));
    186	return lprops;
    187}
    188
    189/**
    190 * ubifs_find_dirty_leb - find a dirty LEB for the Garbage Collector.
    191 * @c: the UBIFS file-system description object
    192 * @ret_lp: LEB properties are returned here on exit
    193 * @min_space: minimum amount free plus dirty space the returned LEB has to
    194 *             have
    195 * @pick_free: controls whether it is OK to pick empty or index LEBs
    196 *
    197 * This function tries to find a dirty logical eraseblock which has at least
    198 * @min_space free and dirty space. It prefers to take an LEB from the dirty or
    199 * dirty index heap, and it falls-back to LPT scanning if the heaps are empty
    200 * or do not have an LEB which satisfies the @min_space criteria.
    201 *
    202 * Note, LEBs which have less than dead watermark of free + dirty space are
    203 * never picked by this function.
    204 *
    205 * The additional @pick_free argument controls if this function has to return a
    206 * free or freeable LEB if one is present. For example, GC must to set it to %1,
    207 * when called from the journal space reservation function, because the
    208 * appearance of free space may coincide with the loss of enough dirty space
    209 * for GC to succeed anyway.
    210 *
    211 * In contrast, if the Garbage Collector is called from budgeting, it should
    212 * just make free space, not return LEBs which are already free or freeable.
    213 *
    214 * In addition @pick_free is set to %2 by the recovery process in order to
    215 * recover gc_lnum in which case an index LEB must not be returned.
    216 *
    217 * This function returns zero and the LEB properties of found dirty LEB in case
    218 * of success, %-ENOSPC if no dirty LEB was found and a negative error code in
    219 * case of other failures. The returned LEB is marked as "taken".
    220 */
    221int ubifs_find_dirty_leb(struct ubifs_info *c, struct ubifs_lprops *ret_lp,
    222			 int min_space, int pick_free)
    223{
    224	int err = 0, sum, exclude_index = pick_free == 2 ? 1 : 0;
    225	const struct ubifs_lprops *lp = NULL, *idx_lp = NULL;
    226	struct ubifs_lpt_heap *heap, *idx_heap;
    227
    228	ubifs_get_lprops(c);
    229
    230	if (pick_free) {
    231		int lebs, rsvd_idx_lebs = 0;
    232
    233		spin_lock(&c->space_lock);
    234		lebs = c->lst.empty_lebs + c->idx_gc_cnt;
    235		lebs += c->freeable_cnt - c->lst.taken_empty_lebs;
    236
    237		/*
    238		 * Note, the index may consume more LEBs than have been reserved
    239		 * for it. It is OK because it might be consolidated by GC.
    240		 * But if the index takes fewer LEBs than it is reserved for it,
    241		 * this function must avoid picking those reserved LEBs.
    242		 */
    243		if (c->bi.min_idx_lebs >= c->lst.idx_lebs) {
    244			rsvd_idx_lebs = c->bi.min_idx_lebs -  c->lst.idx_lebs;
    245			exclude_index = 1;
    246		}
    247		spin_unlock(&c->space_lock);
    248
    249		/* Check if there are enough free LEBs for the index */
    250		if (rsvd_idx_lebs < lebs) {
    251			/* OK, try to find an empty LEB */
    252			lp = ubifs_fast_find_empty(c);
    253			if (lp)
    254				goto found;
    255
    256			/* Or a freeable LEB */
    257			lp = ubifs_fast_find_freeable(c);
    258			if (lp)
    259				goto found;
    260		} else
    261			/*
    262			 * We cannot pick free/freeable LEBs in the below code.
    263			 */
    264			pick_free = 0;
    265	} else {
    266		spin_lock(&c->space_lock);
    267		exclude_index = (c->bi.min_idx_lebs >= c->lst.idx_lebs);
    268		spin_unlock(&c->space_lock);
    269	}
    270
    271	/* Look on the dirty and dirty index heaps */
    272	heap = &c->lpt_heap[LPROPS_DIRTY - 1];
    273	idx_heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
    274
    275	if (idx_heap->cnt && !exclude_index) {
    276		idx_lp = idx_heap->arr[0];
    277		sum = idx_lp->free + idx_lp->dirty;
    278		/*
    279		 * Since we reserve thrice as much space for the index than it
    280		 * actually takes, it does not make sense to pick indexing LEBs
    281		 * with less than, say, half LEB of dirty space. May be half is
    282		 * not the optimal boundary - this should be tested and
    283		 * checked. This boundary should determine how much we use
    284		 * in-the-gaps to consolidate the index comparing to how much
    285		 * we use garbage collector to consolidate it. The "half"
    286		 * criteria just feels to be fine.
    287		 */
    288		if (sum < min_space || sum < c->half_leb_size)
    289			idx_lp = NULL;
    290	}
    291
    292	if (heap->cnt) {
    293		lp = heap->arr[0];
    294		if (lp->dirty + lp->free < min_space)
    295			lp = NULL;
    296	}
    297
    298	/* Pick the LEB with most space */
    299	if (idx_lp && lp) {
    300		if (idx_lp->free + idx_lp->dirty >= lp->free + lp->dirty)
    301			lp = idx_lp;
    302	} else if (idx_lp && !lp)
    303		lp = idx_lp;
    304
    305	if (lp) {
    306		ubifs_assert(c, lp->free + lp->dirty >= c->dead_wm);
    307		goto found;
    308	}
    309
    310	/* Did not find a dirty LEB on the dirty heaps, have to scan */
    311	dbg_find("scanning LPT for a dirty LEB");
    312	lp = scan_for_dirty(c, min_space, pick_free, exclude_index);
    313	if (IS_ERR(lp)) {
    314		err = PTR_ERR(lp);
    315		goto out;
    316	}
    317	ubifs_assert(c, lp->dirty >= c->dead_wm ||
    318		     (pick_free && lp->free + lp->dirty == c->leb_size));
    319
    320found:
    321	dbg_find("found LEB %d, free %d, dirty %d, flags %#x",
    322		 lp->lnum, lp->free, lp->dirty, lp->flags);
    323
    324	lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
    325			     lp->flags | LPROPS_TAKEN, 0);
    326	if (IS_ERR(lp)) {
    327		err = PTR_ERR(lp);
    328		goto out;
    329	}
    330
    331	memcpy(ret_lp, lp, sizeof(struct ubifs_lprops));
    332
    333out:
    334	ubifs_release_lprops(c);
    335	return err;
    336}
    337
    338/**
    339 * scan_for_free_cb - free space scan callback.
    340 * @c: the UBIFS file-system description object
    341 * @lprops: LEB properties to scan
    342 * @in_tree: whether the LEB properties are in main memory
    343 * @data: information passed to and from the caller of the scan
    344 *
    345 * This function returns a code that indicates whether the scan should continue
    346 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
    347 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
    348 * (%LPT_SCAN_STOP).
    349 */
    350static int scan_for_free_cb(struct ubifs_info *c,
    351			    const struct ubifs_lprops *lprops, int in_tree,
    352			    struct scan_data *data)
    353{
    354	int ret = LPT_SCAN_CONTINUE;
    355
    356	/* Exclude LEBs that are currently in use */
    357	if (lprops->flags & LPROPS_TAKEN)
    358		return LPT_SCAN_CONTINUE;
    359	/* Determine whether to add these LEB properties to the tree */
    360	if (!in_tree && valuable(c, lprops))
    361		ret |= LPT_SCAN_ADD;
    362	/* Exclude index LEBs */
    363	if (lprops->flags & LPROPS_INDEX)
    364		return ret;
    365	/* Exclude LEBs with too little space */
    366	if (lprops->free < data->min_space)
    367		return ret;
    368	/* If specified, exclude empty LEBs */
    369	if (!data->pick_free && lprops->free == c->leb_size)
    370		return ret;
    371	/*
    372	 * LEBs that have only free and dirty space must not be allocated
    373	 * because they may have been unmapped already or they may have data
    374	 * that is obsolete only because of nodes that are still sitting in a
    375	 * wbuf.
    376	 */
    377	if (lprops->free + lprops->dirty == c->leb_size && lprops->dirty > 0)
    378		return ret;
    379	/* Finally we found space */
    380	data->lnum = lprops->lnum;
    381	return LPT_SCAN_ADD | LPT_SCAN_STOP;
    382}
    383
    384/**
    385 * do_find_free_space - find a data LEB with free space.
    386 * @c: the UBIFS file-system description object
    387 * @min_space: minimum amount of free space required
    388 * @pick_free: whether it is OK to scan for empty LEBs
    389 * @squeeze: whether to try to find space in a non-empty LEB first
    390 *
    391 * This function returns a pointer to the LEB properties found or a negative
    392 * error code.
    393 */
    394static
    395const struct ubifs_lprops *do_find_free_space(struct ubifs_info *c,
    396					      int min_space, int pick_free,
    397					      int squeeze)
    398{
    399	const struct ubifs_lprops *lprops;
    400	struct ubifs_lpt_heap *heap;
    401	struct scan_data data;
    402	int err, i;
    403
    404	if (squeeze) {
    405		lprops = ubifs_fast_find_free(c);
    406		if (lprops && lprops->free >= min_space)
    407			return lprops;
    408	}
    409	if (pick_free) {
    410		lprops = ubifs_fast_find_empty(c);
    411		if (lprops)
    412			return lprops;
    413	}
    414	if (!squeeze) {
    415		lprops = ubifs_fast_find_free(c);
    416		if (lprops && lprops->free >= min_space)
    417			return lprops;
    418	}
    419	/* There may be an LEB with enough free space on the dirty heap */
    420	heap = &c->lpt_heap[LPROPS_DIRTY - 1];
    421	for (i = 0; i < heap->cnt; i++) {
    422		lprops = heap->arr[i];
    423		if (lprops->free >= min_space)
    424			return lprops;
    425	}
    426	/*
    427	 * A LEB may have fallen off of the bottom of the free heap, and ended
    428	 * up as uncategorized even though it has enough free space for us now,
    429	 * so check the uncategorized list. N.B. neither empty nor freeable LEBs
    430	 * can end up as uncategorized because they are kept on lists not
    431	 * finite-sized heaps.
    432	 */
    433	list_for_each_entry(lprops, &c->uncat_list, list) {
    434		if (lprops->flags & LPROPS_TAKEN)
    435			continue;
    436		if (lprops->flags & LPROPS_INDEX)
    437			continue;
    438		if (lprops->free >= min_space)
    439			return lprops;
    440	}
    441	/* We have looked everywhere in main memory, now scan the flash */
    442	if (c->pnodes_have >= c->pnode_cnt)
    443		/* All pnodes are in memory, so skip scan */
    444		return ERR_PTR(-ENOSPC);
    445	data.min_space = min_space;
    446	data.pick_free = pick_free;
    447	data.lnum = -1;
    448	err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum,
    449				    (ubifs_lpt_scan_callback)scan_for_free_cb,
    450				    &data);
    451	if (err)
    452		return ERR_PTR(err);
    453	ubifs_assert(c, data.lnum >= c->main_first && data.lnum < c->leb_cnt);
    454	c->lscan_lnum = data.lnum;
    455	lprops = ubifs_lpt_lookup_dirty(c, data.lnum);
    456	if (IS_ERR(lprops))
    457		return lprops;
    458	ubifs_assert(c, lprops->lnum == data.lnum);
    459	ubifs_assert(c, lprops->free >= min_space);
    460	ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN));
    461	ubifs_assert(c, !(lprops->flags & LPROPS_INDEX));
    462	return lprops;
    463}
    464
    465/**
    466 * ubifs_find_free_space - find a data LEB with free space.
    467 * @c: the UBIFS file-system description object
    468 * @min_space: minimum amount of required free space
    469 * @offs: contains offset of where free space starts on exit
    470 * @squeeze: whether to try to find space in a non-empty LEB first
    471 *
    472 * This function looks for an LEB with at least @min_space bytes of free space.
    473 * It tries to find an empty LEB if possible. If no empty LEBs are available,
    474 * this function searches for a non-empty data LEB. The returned LEB is marked
    475 * as "taken".
    476 *
    477 * This function returns found LEB number in case of success, %-ENOSPC if it
    478 * failed to find a LEB with @min_space bytes of free space and other a negative
    479 * error codes in case of failure.
    480 */
    481int ubifs_find_free_space(struct ubifs_info *c, int min_space, int *offs,
    482			  int squeeze)
    483{
    484	const struct ubifs_lprops *lprops;
    485	int lebs, rsvd_idx_lebs, pick_free = 0, err, lnum, flags;
    486
    487	dbg_find("min_space %d", min_space);
    488	ubifs_get_lprops(c);
    489
    490	/* Check if there are enough empty LEBs for commit */
    491	spin_lock(&c->space_lock);
    492	if (c->bi.min_idx_lebs > c->lst.idx_lebs)
    493		rsvd_idx_lebs = c->bi.min_idx_lebs -  c->lst.idx_lebs;
    494	else
    495		rsvd_idx_lebs = 0;
    496	lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
    497	       c->lst.taken_empty_lebs;
    498	if (rsvd_idx_lebs < lebs)
    499		/*
    500		 * OK to allocate an empty LEB, but we still don't want to go
    501		 * looking for one if there aren't any.
    502		 */
    503		if (c->lst.empty_lebs - c->lst.taken_empty_lebs > 0) {
    504			pick_free = 1;
    505			/*
    506			 * Because we release the space lock, we must account
    507			 * for this allocation here. After the LEB properties
    508			 * flags have been updated, we subtract one. Note, the
    509			 * result of this is that lprops also decreases
    510			 * @taken_empty_lebs in 'ubifs_change_lp()', so it is
    511			 * off by one for a short period of time which may
    512			 * introduce a small disturbance to budgeting
    513			 * calculations, but this is harmless because at the
    514			 * worst case this would make the budgeting subsystem
    515			 * be more pessimistic than needed.
    516			 *
    517			 * Fundamentally, this is about serialization of the
    518			 * budgeting and lprops subsystems. We could make the
    519			 * @space_lock a mutex and avoid dropping it before
    520			 * calling 'ubifs_change_lp()', but mutex is more
    521			 * heavy-weight, and we want budgeting to be as fast as
    522			 * possible.
    523			 */
    524			c->lst.taken_empty_lebs += 1;
    525		}
    526	spin_unlock(&c->space_lock);
    527
    528	lprops = do_find_free_space(c, min_space, pick_free, squeeze);
    529	if (IS_ERR(lprops)) {
    530		err = PTR_ERR(lprops);
    531		goto out;
    532	}
    533
    534	lnum = lprops->lnum;
    535	flags = lprops->flags | LPROPS_TAKEN;
    536
    537	lprops = ubifs_change_lp(c, lprops, LPROPS_NC, LPROPS_NC, flags, 0);
    538	if (IS_ERR(lprops)) {
    539		err = PTR_ERR(lprops);
    540		goto out;
    541	}
    542
    543	if (pick_free) {
    544		spin_lock(&c->space_lock);
    545		c->lst.taken_empty_lebs -= 1;
    546		spin_unlock(&c->space_lock);
    547	}
    548
    549	*offs = c->leb_size - lprops->free;
    550	ubifs_release_lprops(c);
    551
    552	if (*offs == 0) {
    553		/*
    554		 * Ensure that empty LEBs have been unmapped. They may not have
    555		 * been, for example, because of an unclean unmount.  Also
    556		 * LEBs that were freeable LEBs (free + dirty == leb_size) will
    557		 * not have been unmapped.
    558		 */
    559		err = ubifs_leb_unmap(c, lnum);
    560		if (err)
    561			return err;
    562	}
    563
    564	dbg_find("found LEB %d, free %d", lnum, c->leb_size - *offs);
    565	ubifs_assert(c, *offs <= c->leb_size - min_space);
    566	return lnum;
    567
    568out:
    569	if (pick_free) {
    570		spin_lock(&c->space_lock);
    571		c->lst.taken_empty_lebs -= 1;
    572		spin_unlock(&c->space_lock);
    573	}
    574	ubifs_release_lprops(c);
    575	return err;
    576}
    577
    578/**
    579 * scan_for_idx_cb - callback used by the scan for a free LEB for the index.
    580 * @c: the UBIFS file-system description object
    581 * @lprops: LEB properties to scan
    582 * @in_tree: whether the LEB properties are in main memory
    583 * @data: information passed to and from the caller of the scan
    584 *
    585 * This function returns a code that indicates whether the scan should continue
    586 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
    587 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
    588 * (%LPT_SCAN_STOP).
    589 */
    590static int scan_for_idx_cb(struct ubifs_info *c,
    591			   const struct ubifs_lprops *lprops, int in_tree,
    592			   struct scan_data *data)
    593{
    594	int ret = LPT_SCAN_CONTINUE;
    595
    596	/* Exclude LEBs that are currently in use */
    597	if (lprops->flags & LPROPS_TAKEN)
    598		return LPT_SCAN_CONTINUE;
    599	/* Determine whether to add these LEB properties to the tree */
    600	if (!in_tree && valuable(c, lprops))
    601		ret |= LPT_SCAN_ADD;
    602	/* Exclude index LEBS */
    603	if (lprops->flags & LPROPS_INDEX)
    604		return ret;
    605	/* Exclude LEBs that cannot be made empty */
    606	if (lprops->free + lprops->dirty != c->leb_size)
    607		return ret;
    608	/*
    609	 * We are allocating for the index so it is safe to allocate LEBs with
    610	 * only free and dirty space, because write buffers are sync'd at commit
    611	 * start.
    612	 */
    613	data->lnum = lprops->lnum;
    614	return LPT_SCAN_ADD | LPT_SCAN_STOP;
    615}
    616
    617/**
    618 * scan_for_leb_for_idx - scan for a free LEB for the index.
    619 * @c: the UBIFS file-system description object
    620 */
    621static const struct ubifs_lprops *scan_for_leb_for_idx(struct ubifs_info *c)
    622{
    623	const struct ubifs_lprops *lprops;
    624	struct scan_data data;
    625	int err;
    626
    627	data.lnum = -1;
    628	err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum,
    629				    (ubifs_lpt_scan_callback)scan_for_idx_cb,
    630				    &data);
    631	if (err)
    632		return ERR_PTR(err);
    633	ubifs_assert(c, data.lnum >= c->main_first && data.lnum < c->leb_cnt);
    634	c->lscan_lnum = data.lnum;
    635	lprops = ubifs_lpt_lookup_dirty(c, data.lnum);
    636	if (IS_ERR(lprops))
    637		return lprops;
    638	ubifs_assert(c, lprops->lnum == data.lnum);
    639	ubifs_assert(c, lprops->free + lprops->dirty == c->leb_size);
    640	ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN));
    641	ubifs_assert(c, !(lprops->flags & LPROPS_INDEX));
    642	return lprops;
    643}
    644
    645/**
    646 * ubifs_find_free_leb_for_idx - find a free LEB for the index.
    647 * @c: the UBIFS file-system description object
    648 *
    649 * This function looks for a free LEB and returns that LEB number. The returned
    650 * LEB is marked as "taken", "index".
    651 *
    652 * Only empty LEBs are allocated. This is for two reasons. First, the commit
    653 * calculates the number of LEBs to allocate based on the assumption that they
    654 * will be empty. Secondly, free space at the end of an index LEB is not
    655 * guaranteed to be empty because it may have been used by the in-the-gaps
    656 * method prior to an unclean unmount.
    657 *
    658 * If no LEB is found %-ENOSPC is returned. For other failures another negative
    659 * error code is returned.
    660 */
    661int ubifs_find_free_leb_for_idx(struct ubifs_info *c)
    662{
    663	const struct ubifs_lprops *lprops;
    664	int lnum = -1, err, flags;
    665
    666	ubifs_get_lprops(c);
    667
    668	lprops = ubifs_fast_find_empty(c);
    669	if (!lprops) {
    670		lprops = ubifs_fast_find_freeable(c);
    671		if (!lprops) {
    672			/*
    673			 * The first condition means the following: go scan the
    674			 * LPT if there are uncategorized lprops, which means
    675			 * there may be freeable LEBs there (UBIFS does not
    676			 * store the information about freeable LEBs in the
    677			 * master node).
    678			 */
    679			if (c->in_a_category_cnt != c->main_lebs ||
    680			    c->lst.empty_lebs - c->lst.taken_empty_lebs > 0) {
    681				ubifs_assert(c, c->freeable_cnt == 0);
    682				lprops = scan_for_leb_for_idx(c);
    683				if (IS_ERR(lprops)) {
    684					err = PTR_ERR(lprops);
    685					goto out;
    686				}
    687			}
    688		}
    689	}
    690
    691	if (!lprops) {
    692		err = -ENOSPC;
    693		goto out;
    694	}
    695
    696	lnum = lprops->lnum;
    697
    698	dbg_find("found LEB %d, free %d, dirty %d, flags %#x",
    699		 lnum, lprops->free, lprops->dirty, lprops->flags);
    700
    701	flags = lprops->flags | LPROPS_TAKEN | LPROPS_INDEX;
    702	lprops = ubifs_change_lp(c, lprops, c->leb_size, 0, flags, 0);
    703	if (IS_ERR(lprops)) {
    704		err = PTR_ERR(lprops);
    705		goto out;
    706	}
    707
    708	ubifs_release_lprops(c);
    709
    710	/*
    711	 * Ensure that empty LEBs have been unmapped. They may not have been,
    712	 * for example, because of an unclean unmount. Also LEBs that were
    713	 * freeable LEBs (free + dirty == leb_size) will not have been unmapped.
    714	 */
    715	err = ubifs_leb_unmap(c, lnum);
    716	if (err) {
    717		ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
    718				    LPROPS_TAKEN | LPROPS_INDEX, 0);
    719		return err;
    720	}
    721
    722	return lnum;
    723
    724out:
    725	ubifs_release_lprops(c);
    726	return err;
    727}
    728
    729static int cmp_dirty_idx(const struct ubifs_lprops **a,
    730			 const struct ubifs_lprops **b)
    731{
    732	const struct ubifs_lprops *lpa = *a;
    733	const struct ubifs_lprops *lpb = *b;
    734
    735	return lpa->dirty + lpa->free - lpb->dirty - lpb->free;
    736}
    737
    738/**
    739 * ubifs_save_dirty_idx_lnums - save an array of the most dirty index LEB nos.
    740 * @c: the UBIFS file-system description object
    741 *
    742 * This function is called each commit to create an array of LEB numbers of
    743 * dirty index LEBs sorted in order of dirty and free space.  This is used by
    744 * the in-the-gaps method of TNC commit.
    745 */
    746int ubifs_save_dirty_idx_lnums(struct ubifs_info *c)
    747{
    748	int i;
    749
    750	ubifs_get_lprops(c);
    751	/* Copy the LPROPS_DIRTY_IDX heap */
    752	c->dirty_idx.cnt = c->lpt_heap[LPROPS_DIRTY_IDX - 1].cnt;
    753	memcpy(c->dirty_idx.arr, c->lpt_heap[LPROPS_DIRTY_IDX - 1].arr,
    754	       sizeof(void *) * c->dirty_idx.cnt);
    755	/* Sort it so that the dirtiest is now at the end */
    756	sort(c->dirty_idx.arr, c->dirty_idx.cnt, sizeof(void *),
    757	     (int (*)(const void *, const void *))cmp_dirty_idx, NULL);
    758	dbg_find("found %d dirty index LEBs", c->dirty_idx.cnt);
    759	if (c->dirty_idx.cnt)
    760		dbg_find("dirtiest index LEB is %d with dirty %d and free %d",
    761			 c->dirty_idx.arr[c->dirty_idx.cnt - 1]->lnum,
    762			 c->dirty_idx.arr[c->dirty_idx.cnt - 1]->dirty,
    763			 c->dirty_idx.arr[c->dirty_idx.cnt - 1]->free);
    764	/* Replace the lprops pointers with LEB numbers */
    765	for (i = 0; i < c->dirty_idx.cnt; i++)
    766		c->dirty_idx.arr[i] = (void *)(size_t)c->dirty_idx.arr[i]->lnum;
    767	ubifs_release_lprops(c);
    768	return 0;
    769}
    770
    771/**
    772 * scan_dirty_idx_cb - callback used by the scan for a dirty index LEB.
    773 * @c: the UBIFS file-system description object
    774 * @lprops: LEB properties to scan
    775 * @in_tree: whether the LEB properties are in main memory
    776 * @data: information passed to and from the caller of the scan
    777 *
    778 * This function returns a code that indicates whether the scan should continue
    779 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
    780 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
    781 * (%LPT_SCAN_STOP).
    782 */
    783static int scan_dirty_idx_cb(struct ubifs_info *c,
    784			   const struct ubifs_lprops *lprops, int in_tree,
    785			   struct scan_data *data)
    786{
    787	int ret = LPT_SCAN_CONTINUE;
    788
    789	/* Exclude LEBs that are currently in use */
    790	if (lprops->flags & LPROPS_TAKEN)
    791		return LPT_SCAN_CONTINUE;
    792	/* Determine whether to add these LEB properties to the tree */
    793	if (!in_tree && valuable(c, lprops))
    794		ret |= LPT_SCAN_ADD;
    795	/* Exclude non-index LEBs */
    796	if (!(lprops->flags & LPROPS_INDEX))
    797		return ret;
    798	/* Exclude LEBs with too little space */
    799	if (lprops->free + lprops->dirty < c->min_idx_node_sz)
    800		return ret;
    801	/* Finally we found space */
    802	data->lnum = lprops->lnum;
    803	return LPT_SCAN_ADD | LPT_SCAN_STOP;
    804}
    805
    806/**
    807 * find_dirty_idx_leb - find a dirty index LEB.
    808 * @c: the UBIFS file-system description object
    809 *
    810 * This function returns LEB number upon success and a negative error code upon
    811 * failure.  In particular, -ENOSPC is returned if a dirty index LEB is not
    812 * found.
    813 *
    814 * Note that this function scans the entire LPT but it is called very rarely.
    815 */
    816static int find_dirty_idx_leb(struct ubifs_info *c)
    817{
    818	const struct ubifs_lprops *lprops;
    819	struct ubifs_lpt_heap *heap;
    820	struct scan_data data;
    821	int err, i, ret;
    822
    823	/* Check all structures in memory first */
    824	data.lnum = -1;
    825	heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
    826	for (i = 0; i < heap->cnt; i++) {
    827		lprops = heap->arr[i];
    828		ret = scan_dirty_idx_cb(c, lprops, 1, &data);
    829		if (ret & LPT_SCAN_STOP)
    830			goto found;
    831	}
    832	list_for_each_entry(lprops, &c->frdi_idx_list, list) {
    833		ret = scan_dirty_idx_cb(c, lprops, 1, &data);
    834		if (ret & LPT_SCAN_STOP)
    835			goto found;
    836	}
    837	list_for_each_entry(lprops, &c->uncat_list, list) {
    838		ret = scan_dirty_idx_cb(c, lprops, 1, &data);
    839		if (ret & LPT_SCAN_STOP)
    840			goto found;
    841	}
    842	if (c->pnodes_have >= c->pnode_cnt)
    843		/* All pnodes are in memory, so skip scan */
    844		return -ENOSPC;
    845	err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum,
    846				    (ubifs_lpt_scan_callback)scan_dirty_idx_cb,
    847				    &data);
    848	if (err)
    849		return err;
    850found:
    851	ubifs_assert(c, data.lnum >= c->main_first && data.lnum < c->leb_cnt);
    852	c->lscan_lnum = data.lnum;
    853	lprops = ubifs_lpt_lookup_dirty(c, data.lnum);
    854	if (IS_ERR(lprops))
    855		return PTR_ERR(lprops);
    856	ubifs_assert(c, lprops->lnum == data.lnum);
    857	ubifs_assert(c, lprops->free + lprops->dirty >= c->min_idx_node_sz);
    858	ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN));
    859	ubifs_assert(c, (lprops->flags & LPROPS_INDEX));
    860
    861	dbg_find("found dirty LEB %d, free %d, dirty %d, flags %#x",
    862		 lprops->lnum, lprops->free, lprops->dirty, lprops->flags);
    863
    864	lprops = ubifs_change_lp(c, lprops, LPROPS_NC, LPROPS_NC,
    865				 lprops->flags | LPROPS_TAKEN, 0);
    866	if (IS_ERR(lprops))
    867		return PTR_ERR(lprops);
    868
    869	return lprops->lnum;
    870}
    871
    872/**
    873 * get_idx_gc_leb - try to get a LEB number from trivial GC.
    874 * @c: the UBIFS file-system description object
    875 */
    876static int get_idx_gc_leb(struct ubifs_info *c)
    877{
    878	const struct ubifs_lprops *lp;
    879	int err, lnum;
    880
    881	err = ubifs_get_idx_gc_leb(c);
    882	if (err < 0)
    883		return err;
    884	lnum = err;
    885	/*
    886	 * The LEB was due to be unmapped after the commit but
    887	 * it is needed now for this commit.
    888	 */
    889	lp = ubifs_lpt_lookup_dirty(c, lnum);
    890	if (IS_ERR(lp))
    891		return PTR_ERR(lp);
    892	lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
    893			     lp->flags | LPROPS_INDEX, -1);
    894	if (IS_ERR(lp))
    895		return PTR_ERR(lp);
    896	dbg_find("LEB %d, dirty %d and free %d flags %#x",
    897		 lp->lnum, lp->dirty, lp->free, lp->flags);
    898	return lnum;
    899}
    900
    901/**
    902 * find_dirtiest_idx_leb - find dirtiest index LEB from dirtiest array.
    903 * @c: the UBIFS file-system description object
    904 */
    905static int find_dirtiest_idx_leb(struct ubifs_info *c)
    906{
    907	const struct ubifs_lprops *lp;
    908	int lnum;
    909
    910	while (1) {
    911		if (!c->dirty_idx.cnt)
    912			return -ENOSPC;
    913		/* The lprops pointers were replaced by LEB numbers */
    914		lnum = (size_t)c->dirty_idx.arr[--c->dirty_idx.cnt];
    915		lp = ubifs_lpt_lookup(c, lnum);
    916		if (IS_ERR(lp))
    917			return PTR_ERR(lp);
    918		if ((lp->flags & LPROPS_TAKEN) || !(lp->flags & LPROPS_INDEX))
    919			continue;
    920		lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
    921				     lp->flags | LPROPS_TAKEN, 0);
    922		if (IS_ERR(lp))
    923			return PTR_ERR(lp);
    924		break;
    925	}
    926	dbg_find("LEB %d, dirty %d and free %d flags %#x", lp->lnum, lp->dirty,
    927		 lp->free, lp->flags);
    928	ubifs_assert(c, lp->flags & LPROPS_TAKEN);
    929	ubifs_assert(c, lp->flags & LPROPS_INDEX);
    930	return lnum;
    931}
    932
    933/**
    934 * ubifs_find_dirty_idx_leb - try to find dirtiest index LEB as at last commit.
    935 * @c: the UBIFS file-system description object
    936 *
    937 * This function attempts to find an untaken index LEB with the most free and
    938 * dirty space that can be used without overwriting index nodes that were in the
    939 * last index committed.
    940 */
    941int ubifs_find_dirty_idx_leb(struct ubifs_info *c)
    942{
    943	int err;
    944
    945	ubifs_get_lprops(c);
    946
    947	/*
    948	 * We made an array of the dirtiest index LEB numbers as at the start of
    949	 * last commit.  Try that array first.
    950	 */
    951	err = find_dirtiest_idx_leb(c);
    952
    953	/* Next try scanning the entire LPT */
    954	if (err == -ENOSPC)
    955		err = find_dirty_idx_leb(c);
    956
    957	/* Finally take any index LEBs awaiting trivial GC */
    958	if (err == -ENOSPC)
    959		err = get_idx_gc_leb(c);
    960
    961	ubifs_release_lprops(c);
    962	return err;
    963}