cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

io.c (37319B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * This file is part of UBIFS.
      4 *
      5 * Copyright (C) 2006-2008 Nokia Corporation.
      6 * Copyright (C) 2006, 2007 University of Szeged, Hungary
      7 *
      8 * Authors: Artem Bityutskiy (Битюцкий Артём)
      9 *          Adrian Hunter
     10 *          Zoltan Sogor
     11 */
     12
     13/*
     14 * This file implements UBIFS I/O subsystem which provides various I/O-related
     15 * helper functions (reading/writing/checking/validating nodes) and implements
     16 * write-buffering support. Write buffers help to save space which otherwise
     17 * would have been wasted for padding to the nearest minimal I/O unit boundary.
     18 * Instead, data first goes to the write-buffer and is flushed when the
     19 * buffer is full or when it is not used for some time (by timer). This is
     20 * similar to the mechanism is used by JFFS2.
     21 *
     22 * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
     23 * write size (@c->max_write_size). The latter is the maximum amount of bytes
     24 * the underlying flash is able to program at a time, and writing in
     25 * @c->max_write_size units should presumably be faster. Obviously,
     26 * @c->min_io_size <= @c->max_write_size. Write-buffers are of
     27 * @c->max_write_size bytes in size for maximum performance. However, when a
     28 * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
     29 * boundary) which contains data is written, not the whole write-buffer,
     30 * because this is more space-efficient.
     31 *
     32 * This optimization adds few complications to the code. Indeed, on the one
     33 * hand, we want to write in optimal @c->max_write_size bytes chunks, which
     34 * also means aligning writes at the @c->max_write_size bytes offsets. On the
     35 * other hand, we do not want to waste space when synchronizing the write
     36 * buffer, so during synchronization we writes in smaller chunks. And this makes
     37 * the next write offset to be not aligned to @c->max_write_size bytes. So the
     38 * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
     39 * to @c->max_write_size bytes again. We do this by temporarily shrinking
     40 * write-buffer size (@wbuf->size).
     41 *
     42 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
     43 * mutexes defined inside these objects. Since sometimes upper-level code
     44 * has to lock the write-buffer (e.g. journal space reservation code), many
     45 * functions related to write-buffers have "nolock" suffix which means that the
     46 * caller has to lock the write-buffer before calling this function.
     47 *
     48 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
     49 * aligned, UBIFS starts the next node from the aligned address, and the padded
     50 * bytes may contain any rubbish. In other words, UBIFS does not put padding
     51 * bytes in those small gaps. Common headers of nodes store real node lengths,
     52 * not aligned lengths. Indexing nodes also store real lengths in branches.
     53 *
     54 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
     55 * uses padding nodes or padding bytes, if the padding node does not fit.
     56 *
     57 * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
     58 * they are read from the flash media.
     59 */
     60
     61#include <linux/crc32.h>
     62#include <linux/slab.h>
     63#include "ubifs.h"
     64
     65/**
     66 * ubifs_ro_mode - switch UBIFS to read read-only mode.
     67 * @c: UBIFS file-system description object
     68 * @err: error code which is the reason of switching to R/O mode
     69 */
     70void ubifs_ro_mode(struct ubifs_info *c, int err)
     71{
     72	if (!c->ro_error) {
     73		c->ro_error = 1;
     74		c->no_chk_data_crc = 0;
     75		c->vfs_sb->s_flags |= SB_RDONLY;
     76		ubifs_warn(c, "switched to read-only mode, error %d", err);
     77		dump_stack();
     78	}
     79}
     80
     81/*
     82 * Below are simple wrappers over UBI I/O functions which include some
     83 * additional checks and UBIFS debugging stuff. See corresponding UBI function
     84 * for more information.
     85 */
     86
     87int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
     88		   int len, int even_ebadmsg)
     89{
     90	int err;
     91
     92	err = ubi_read(c->ubi, lnum, buf, offs, len);
     93	/*
     94	 * In case of %-EBADMSG print the error message only if the
     95	 * @even_ebadmsg is true.
     96	 */
     97	if (err && (err != -EBADMSG || even_ebadmsg)) {
     98		ubifs_err(c, "reading %d bytes from LEB %d:%d failed, error %d",
     99			  len, lnum, offs, err);
    100		dump_stack();
    101	}
    102	return err;
    103}
    104
    105int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
    106		    int len)
    107{
    108	int err;
    109
    110	ubifs_assert(c, !c->ro_media && !c->ro_mount);
    111	if (c->ro_error)
    112		return -EROFS;
    113	if (!dbg_is_tst_rcvry(c))
    114		err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
    115	else
    116		err = dbg_leb_write(c, lnum, buf, offs, len);
    117	if (err) {
    118		ubifs_err(c, "writing %d bytes to LEB %d:%d failed, error %d",
    119			  len, lnum, offs, err);
    120		ubifs_ro_mode(c, err);
    121		dump_stack();
    122	}
    123	return err;
    124}
    125
    126int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len)
    127{
    128	int err;
    129
    130	ubifs_assert(c, !c->ro_media && !c->ro_mount);
    131	if (c->ro_error)
    132		return -EROFS;
    133	if (!dbg_is_tst_rcvry(c))
    134		err = ubi_leb_change(c->ubi, lnum, buf, len);
    135	else
    136		err = dbg_leb_change(c, lnum, buf, len);
    137	if (err) {
    138		ubifs_err(c, "changing %d bytes in LEB %d failed, error %d",
    139			  len, lnum, err);
    140		ubifs_ro_mode(c, err);
    141		dump_stack();
    142	}
    143	return err;
    144}
    145
    146int ubifs_leb_unmap(struct ubifs_info *c, int lnum)
    147{
    148	int err;
    149
    150	ubifs_assert(c, !c->ro_media && !c->ro_mount);
    151	if (c->ro_error)
    152		return -EROFS;
    153	if (!dbg_is_tst_rcvry(c))
    154		err = ubi_leb_unmap(c->ubi, lnum);
    155	else
    156		err = dbg_leb_unmap(c, lnum);
    157	if (err) {
    158		ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err);
    159		ubifs_ro_mode(c, err);
    160		dump_stack();
    161	}
    162	return err;
    163}
    164
    165int ubifs_leb_map(struct ubifs_info *c, int lnum)
    166{
    167	int err;
    168
    169	ubifs_assert(c, !c->ro_media && !c->ro_mount);
    170	if (c->ro_error)
    171		return -EROFS;
    172	if (!dbg_is_tst_rcvry(c))
    173		err = ubi_leb_map(c->ubi, lnum);
    174	else
    175		err = dbg_leb_map(c, lnum);
    176	if (err) {
    177		ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err);
    178		ubifs_ro_mode(c, err);
    179		dump_stack();
    180	}
    181	return err;
    182}
    183
    184int ubifs_is_mapped(const struct ubifs_info *c, int lnum)
    185{
    186	int err;
    187
    188	err = ubi_is_mapped(c->ubi, lnum);
    189	if (err < 0) {
    190		ubifs_err(c, "ubi_is_mapped failed for LEB %d, error %d",
    191			  lnum, err);
    192		dump_stack();
    193	}
    194	return err;
    195}
    196
    197static void record_magic_error(struct ubifs_stats_info *stats)
    198{
    199	if (stats)
    200		stats->magic_errors++;
    201}
    202
    203static void record_node_error(struct ubifs_stats_info *stats)
    204{
    205	if (stats)
    206		stats->node_errors++;
    207}
    208
    209static void record_crc_error(struct ubifs_stats_info *stats)
    210{
    211	if (stats)
    212		stats->crc_errors++;
    213}
    214
    215/**
    216 * ubifs_check_node - check node.
    217 * @c: UBIFS file-system description object
    218 * @buf: node to check
    219 * @len: node length
    220 * @lnum: logical eraseblock number
    221 * @offs: offset within the logical eraseblock
    222 * @quiet: print no messages
    223 * @must_chk_crc: indicates whether to always check the CRC
    224 *
    225 * This function checks node magic number and CRC checksum. This function also
    226 * validates node length to prevent UBIFS from becoming crazy when an attacker
    227 * feeds it a file-system image with incorrect nodes. For example, too large
    228 * node length in the common header could cause UBIFS to read memory outside of
    229 * allocated buffer when checking the CRC checksum.
    230 *
    231 * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
    232 * true, which is controlled by corresponding UBIFS mount option. However, if
    233 * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
    234 * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
    235 * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
    236 * is checked. This is because during mounting or re-mounting from R/O mode to
    237 * R/W mode we may read journal nodes (when replying the journal or doing the
    238 * recovery) and the journal nodes may potentially be corrupted, so checking is
    239 * required.
    240 *
    241 * This function returns zero in case of success and %-EUCLEAN in case of bad
    242 * CRC or magic.
    243 */
    244int ubifs_check_node(const struct ubifs_info *c, const void *buf, int len,
    245		     int lnum, int offs, int quiet, int must_chk_crc)
    246{
    247	int err = -EINVAL, type, node_len;
    248	uint32_t crc, node_crc, magic;
    249	const struct ubifs_ch *ch = buf;
    250
    251	ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
    252	ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
    253
    254	magic = le32_to_cpu(ch->magic);
    255	if (magic != UBIFS_NODE_MAGIC) {
    256		if (!quiet)
    257			ubifs_err(c, "bad magic %#08x, expected %#08x",
    258				  magic, UBIFS_NODE_MAGIC);
    259		record_magic_error(c->stats);
    260		err = -EUCLEAN;
    261		goto out;
    262	}
    263
    264	type = ch->node_type;
    265	if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
    266		if (!quiet)
    267			ubifs_err(c, "bad node type %d", type);
    268		record_node_error(c->stats);
    269		goto out;
    270	}
    271
    272	node_len = le32_to_cpu(ch->len);
    273	if (node_len + offs > c->leb_size)
    274		goto out_len;
    275
    276	if (c->ranges[type].max_len == 0) {
    277		if (node_len != c->ranges[type].len)
    278			goto out_len;
    279	} else if (node_len < c->ranges[type].min_len ||
    280		   node_len > c->ranges[type].max_len)
    281		goto out_len;
    282
    283	if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
    284	    !c->remounting_rw && c->no_chk_data_crc)
    285		return 0;
    286
    287	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
    288	node_crc = le32_to_cpu(ch->crc);
    289	if (crc != node_crc) {
    290		if (!quiet)
    291			ubifs_err(c, "bad CRC: calculated %#08x, read %#08x",
    292				  crc, node_crc);
    293		record_crc_error(c->stats);
    294		err = -EUCLEAN;
    295		goto out;
    296	}
    297
    298	return 0;
    299
    300out_len:
    301	if (!quiet)
    302		ubifs_err(c, "bad node length %d", node_len);
    303out:
    304	if (!quiet) {
    305		ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
    306		ubifs_dump_node(c, buf, len);
    307		dump_stack();
    308	}
    309	return err;
    310}
    311
    312/**
    313 * ubifs_pad - pad flash space.
    314 * @c: UBIFS file-system description object
    315 * @buf: buffer to put padding to
    316 * @pad: how many bytes to pad
    317 *
    318 * The flash media obliges us to write only in chunks of %c->min_io_size and
    319 * when we have to write less data we add padding node to the write-buffer and
    320 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
    321 * media is being scanned. If the amount of wasted space is not enough to fit a
    322 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
    323 * pattern (%UBIFS_PADDING_BYTE).
    324 *
    325 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
    326 * used.
    327 */
    328void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
    329{
    330	uint32_t crc;
    331
    332	ubifs_assert(c, pad >= 0);
    333
    334	if (pad >= UBIFS_PAD_NODE_SZ) {
    335		struct ubifs_ch *ch = buf;
    336		struct ubifs_pad_node *pad_node = buf;
    337
    338		ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
    339		ch->node_type = UBIFS_PAD_NODE;
    340		ch->group_type = UBIFS_NO_NODE_GROUP;
    341		ch->padding[0] = ch->padding[1] = 0;
    342		ch->sqnum = 0;
    343		ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
    344		pad -= UBIFS_PAD_NODE_SZ;
    345		pad_node->pad_len = cpu_to_le32(pad);
    346		crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
    347		ch->crc = cpu_to_le32(crc);
    348		memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
    349	} else if (pad > 0)
    350		/* Too little space, padding node won't fit */
    351		memset(buf, UBIFS_PADDING_BYTE, pad);
    352}
    353
    354/**
    355 * next_sqnum - get next sequence number.
    356 * @c: UBIFS file-system description object
    357 */
    358static unsigned long long next_sqnum(struct ubifs_info *c)
    359{
    360	unsigned long long sqnum;
    361
    362	spin_lock(&c->cnt_lock);
    363	sqnum = ++c->max_sqnum;
    364	spin_unlock(&c->cnt_lock);
    365
    366	if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
    367		if (sqnum >= SQNUM_WATERMARK) {
    368			ubifs_err(c, "sequence number overflow %llu, end of life",
    369				  sqnum);
    370			ubifs_ro_mode(c, -EINVAL);
    371		}
    372		ubifs_warn(c, "running out of sequence numbers, end of life soon");
    373	}
    374
    375	return sqnum;
    376}
    377
    378void ubifs_init_node(struct ubifs_info *c, void *node, int len, int pad)
    379{
    380	struct ubifs_ch *ch = node;
    381	unsigned long long sqnum = next_sqnum(c);
    382
    383	ubifs_assert(c, len >= UBIFS_CH_SZ);
    384
    385	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
    386	ch->len = cpu_to_le32(len);
    387	ch->group_type = UBIFS_NO_NODE_GROUP;
    388	ch->sqnum = cpu_to_le64(sqnum);
    389	ch->padding[0] = ch->padding[1] = 0;
    390
    391	if (pad) {
    392		len = ALIGN(len, 8);
    393		pad = ALIGN(len, c->min_io_size) - len;
    394		ubifs_pad(c, node + len, pad);
    395	}
    396}
    397
    398void ubifs_crc_node(struct ubifs_info *c, void *node, int len)
    399{
    400	struct ubifs_ch *ch = node;
    401	uint32_t crc;
    402
    403	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
    404	ch->crc = cpu_to_le32(crc);
    405}
    406
    407/**
    408 * ubifs_prepare_node_hmac - prepare node to be written to flash.
    409 * @c: UBIFS file-system description object
    410 * @node: the node to pad
    411 * @len: node length
    412 * @hmac_offs: offset of the HMAC in the node
    413 * @pad: if the buffer has to be padded
    414 *
    415 * This function prepares node at @node to be written to the media - it
    416 * calculates node CRC, fills the common header, and adds proper padding up to
    417 * the next minimum I/O unit if @pad is not zero. if @hmac_offs is positive then
    418 * a HMAC is inserted into the node at the given offset.
    419 *
    420 * This function returns 0 for success or a negative error code otherwise.
    421 */
    422int ubifs_prepare_node_hmac(struct ubifs_info *c, void *node, int len,
    423			    int hmac_offs, int pad)
    424{
    425	int err;
    426
    427	ubifs_init_node(c, node, len, pad);
    428
    429	if (hmac_offs > 0) {
    430		err = ubifs_node_insert_hmac(c, node, len, hmac_offs);
    431		if (err)
    432			return err;
    433	}
    434
    435	ubifs_crc_node(c, node, len);
    436
    437	return 0;
    438}
    439
    440/**
    441 * ubifs_prepare_node - prepare node to be written to flash.
    442 * @c: UBIFS file-system description object
    443 * @node: the node to pad
    444 * @len: node length
    445 * @pad: if the buffer has to be padded
    446 *
    447 * This function prepares node at @node to be written to the media - it
    448 * calculates node CRC, fills the common header, and adds proper padding up to
    449 * the next minimum I/O unit if @pad is not zero.
    450 */
    451void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
    452{
    453	/*
    454	 * Deliberately ignore return value since this function can only fail
    455	 * when a hmac offset is given.
    456	 */
    457	ubifs_prepare_node_hmac(c, node, len, 0, pad);
    458}
    459
    460/**
    461 * ubifs_prep_grp_node - prepare node of a group to be written to flash.
    462 * @c: UBIFS file-system description object
    463 * @node: the node to pad
    464 * @len: node length
    465 * @last: indicates the last node of the group
    466 *
    467 * This function prepares node at @node to be written to the media - it
    468 * calculates node CRC and fills the common header.
    469 */
    470void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
    471{
    472	uint32_t crc;
    473	struct ubifs_ch *ch = node;
    474	unsigned long long sqnum = next_sqnum(c);
    475
    476	ubifs_assert(c, len >= UBIFS_CH_SZ);
    477
    478	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
    479	ch->len = cpu_to_le32(len);
    480	if (last)
    481		ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
    482	else
    483		ch->group_type = UBIFS_IN_NODE_GROUP;
    484	ch->sqnum = cpu_to_le64(sqnum);
    485	ch->padding[0] = ch->padding[1] = 0;
    486	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
    487	ch->crc = cpu_to_le32(crc);
    488}
    489
    490/**
    491 * wbuf_timer_callback - write-buffer timer callback function.
    492 * @timer: timer data (write-buffer descriptor)
    493 *
    494 * This function is called when the write-buffer timer expires.
    495 */
    496static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
    497{
    498	struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
    499
    500	dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
    501	wbuf->need_sync = 1;
    502	wbuf->c->need_wbuf_sync = 1;
    503	ubifs_wake_up_bgt(wbuf->c);
    504	return HRTIMER_NORESTART;
    505}
    506
    507/**
    508 * new_wbuf_timer - start new write-buffer timer.
    509 * @c: UBIFS file-system description object
    510 * @wbuf: write-buffer descriptor
    511 */
    512static void new_wbuf_timer_nolock(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
    513{
    514	ktime_t softlimit = ms_to_ktime(dirty_writeback_interval * 10);
    515	unsigned long long delta = dirty_writeback_interval;
    516
    517	/* centi to milli, milli to nano, then 10% */
    518	delta *= 10ULL * NSEC_PER_MSEC / 10ULL;
    519
    520	ubifs_assert(c, !hrtimer_active(&wbuf->timer));
    521	ubifs_assert(c, delta <= ULONG_MAX);
    522
    523	if (wbuf->no_timer)
    524		return;
    525	dbg_io("set timer for jhead %s, %llu-%llu millisecs",
    526	       dbg_jhead(wbuf->jhead),
    527	       div_u64(ktime_to_ns(softlimit), USEC_PER_SEC),
    528	       div_u64(ktime_to_ns(softlimit) + delta, USEC_PER_SEC));
    529	hrtimer_start_range_ns(&wbuf->timer, softlimit, delta,
    530			       HRTIMER_MODE_REL);
    531}
    532
    533/**
    534 * cancel_wbuf_timer - cancel write-buffer timer.
    535 * @wbuf: write-buffer descriptor
    536 */
    537static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
    538{
    539	if (wbuf->no_timer)
    540		return;
    541	wbuf->need_sync = 0;
    542	hrtimer_cancel(&wbuf->timer);
    543}
    544
    545/**
    546 * ubifs_wbuf_sync_nolock - synchronize write-buffer.
    547 * @wbuf: write-buffer to synchronize
    548 *
    549 * This function synchronizes write-buffer @buf and returns zero in case of
    550 * success or a negative error code in case of failure.
    551 *
    552 * Note, although write-buffers are of @c->max_write_size, this function does
    553 * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
    554 * if the write-buffer is only partially filled with data, only the used part
    555 * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
    556 * This way we waste less space.
    557 */
    558int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
    559{
    560	struct ubifs_info *c = wbuf->c;
    561	int err, dirt, sync_len;
    562
    563	cancel_wbuf_timer_nolock(wbuf);
    564	if (!wbuf->used || wbuf->lnum == -1)
    565		/* Write-buffer is empty or not seeked */
    566		return 0;
    567
    568	dbg_io("LEB %d:%d, %d bytes, jhead %s",
    569	       wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
    570	ubifs_assert(c, !(wbuf->avail & 7));
    571	ubifs_assert(c, wbuf->offs + wbuf->size <= c->leb_size);
    572	ubifs_assert(c, wbuf->size >= c->min_io_size);
    573	ubifs_assert(c, wbuf->size <= c->max_write_size);
    574	ubifs_assert(c, wbuf->size % c->min_io_size == 0);
    575	ubifs_assert(c, !c->ro_media && !c->ro_mount);
    576	if (c->leb_size - wbuf->offs >= c->max_write_size)
    577		ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size));
    578
    579	if (c->ro_error)
    580		return -EROFS;
    581
    582	/*
    583	 * Do not write whole write buffer but write only the minimum necessary
    584	 * amount of min. I/O units.
    585	 */
    586	sync_len = ALIGN(wbuf->used, c->min_io_size);
    587	dirt = sync_len - wbuf->used;
    588	if (dirt)
    589		ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
    590	err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len);
    591	if (err)
    592		return err;
    593
    594	spin_lock(&wbuf->lock);
    595	wbuf->offs += sync_len;
    596	/*
    597	 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
    598	 * But our goal is to optimize writes and make sure we write in
    599	 * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
    600	 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
    601	 * sure that @wbuf->offs + @wbuf->size is aligned to
    602	 * @c->max_write_size. This way we make sure that after next
    603	 * write-buffer flush we are again at the optimal offset (aligned to
    604	 * @c->max_write_size).
    605	 */
    606	if (c->leb_size - wbuf->offs < c->max_write_size)
    607		wbuf->size = c->leb_size - wbuf->offs;
    608	else if (wbuf->offs & (c->max_write_size - 1))
    609		wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
    610	else
    611		wbuf->size = c->max_write_size;
    612	wbuf->avail = wbuf->size;
    613	wbuf->used = 0;
    614	wbuf->next_ino = 0;
    615	spin_unlock(&wbuf->lock);
    616
    617	if (wbuf->sync_callback)
    618		err = wbuf->sync_callback(c, wbuf->lnum,
    619					  c->leb_size - wbuf->offs, dirt);
    620	return err;
    621}
    622
    623/**
    624 * ubifs_wbuf_seek_nolock - seek write-buffer.
    625 * @wbuf: write-buffer
    626 * @lnum: logical eraseblock number to seek to
    627 * @offs: logical eraseblock offset to seek to
    628 *
    629 * This function targets the write-buffer to logical eraseblock @lnum:@offs.
    630 * The write-buffer has to be empty. Returns zero in case of success and a
    631 * negative error code in case of failure.
    632 */
    633int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs)
    634{
    635	const struct ubifs_info *c = wbuf->c;
    636
    637	dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
    638	ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt);
    639	ubifs_assert(c, offs >= 0 && offs <= c->leb_size);
    640	ubifs_assert(c, offs % c->min_io_size == 0 && !(offs & 7));
    641	ubifs_assert(c, lnum != wbuf->lnum);
    642	ubifs_assert(c, wbuf->used == 0);
    643
    644	spin_lock(&wbuf->lock);
    645	wbuf->lnum = lnum;
    646	wbuf->offs = offs;
    647	if (c->leb_size - wbuf->offs < c->max_write_size)
    648		wbuf->size = c->leb_size - wbuf->offs;
    649	else if (wbuf->offs & (c->max_write_size - 1))
    650		wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
    651	else
    652		wbuf->size = c->max_write_size;
    653	wbuf->avail = wbuf->size;
    654	wbuf->used = 0;
    655	spin_unlock(&wbuf->lock);
    656
    657	return 0;
    658}
    659
    660/**
    661 * ubifs_bg_wbufs_sync - synchronize write-buffers.
    662 * @c: UBIFS file-system description object
    663 *
    664 * This function is called by background thread to synchronize write-buffers.
    665 * Returns zero in case of success and a negative error code in case of
    666 * failure.
    667 */
    668int ubifs_bg_wbufs_sync(struct ubifs_info *c)
    669{
    670	int err, i;
    671
    672	ubifs_assert(c, !c->ro_media && !c->ro_mount);
    673	if (!c->need_wbuf_sync)
    674		return 0;
    675	c->need_wbuf_sync = 0;
    676
    677	if (c->ro_error) {
    678		err = -EROFS;
    679		goto out_timers;
    680	}
    681
    682	dbg_io("synchronize");
    683	for (i = 0; i < c->jhead_cnt; i++) {
    684		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
    685
    686		cond_resched();
    687
    688		/*
    689		 * If the mutex is locked then wbuf is being changed, so
    690		 * synchronization is not necessary.
    691		 */
    692		if (mutex_is_locked(&wbuf->io_mutex))
    693			continue;
    694
    695		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
    696		if (!wbuf->need_sync) {
    697			mutex_unlock(&wbuf->io_mutex);
    698			continue;
    699		}
    700
    701		err = ubifs_wbuf_sync_nolock(wbuf);
    702		mutex_unlock(&wbuf->io_mutex);
    703		if (err) {
    704			ubifs_err(c, "cannot sync write-buffer, error %d", err);
    705			ubifs_ro_mode(c, err);
    706			goto out_timers;
    707		}
    708	}
    709
    710	return 0;
    711
    712out_timers:
    713	/* Cancel all timers to prevent repeated errors */
    714	for (i = 0; i < c->jhead_cnt; i++) {
    715		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
    716
    717		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
    718		cancel_wbuf_timer_nolock(wbuf);
    719		mutex_unlock(&wbuf->io_mutex);
    720	}
    721	return err;
    722}
    723
    724/**
    725 * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
    726 * @wbuf: write-buffer
    727 * @buf: node to write
    728 * @len: node length
    729 *
    730 * This function writes data to flash via write-buffer @wbuf. This means that
    731 * the last piece of the node won't reach the flash media immediately if it
    732 * does not take whole max. write unit (@c->max_write_size). Instead, the node
    733 * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
    734 * because more data are appended to the write-buffer).
    735 *
    736 * This function returns zero in case of success and a negative error code in
    737 * case of failure. If the node cannot be written because there is no more
    738 * space in this logical eraseblock, %-ENOSPC is returned.
    739 */
    740int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
    741{
    742	struct ubifs_info *c = wbuf->c;
    743	int err, n, written = 0, aligned_len = ALIGN(len, 8);
    744
    745	dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
    746	       dbg_ntype(((struct ubifs_ch *)buf)->node_type),
    747	       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
    748	ubifs_assert(c, len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
    749	ubifs_assert(c, wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
    750	ubifs_assert(c, !(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
    751	ubifs_assert(c, wbuf->avail > 0 && wbuf->avail <= wbuf->size);
    752	ubifs_assert(c, wbuf->size >= c->min_io_size);
    753	ubifs_assert(c, wbuf->size <= c->max_write_size);
    754	ubifs_assert(c, wbuf->size % c->min_io_size == 0);
    755	ubifs_assert(c, mutex_is_locked(&wbuf->io_mutex));
    756	ubifs_assert(c, !c->ro_media && !c->ro_mount);
    757	ubifs_assert(c, !c->space_fixup);
    758	if (c->leb_size - wbuf->offs >= c->max_write_size)
    759		ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size));
    760
    761	if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
    762		err = -ENOSPC;
    763		goto out;
    764	}
    765
    766	cancel_wbuf_timer_nolock(wbuf);
    767
    768	if (c->ro_error)
    769		return -EROFS;
    770
    771	if (aligned_len <= wbuf->avail) {
    772		/*
    773		 * The node is not very large and fits entirely within
    774		 * write-buffer.
    775		 */
    776		memcpy(wbuf->buf + wbuf->used, buf, len);
    777		if (aligned_len > len) {
    778			ubifs_assert(c, aligned_len - len < 8);
    779			ubifs_pad(c, wbuf->buf + wbuf->used + len, aligned_len - len);
    780		}
    781
    782		if (aligned_len == wbuf->avail) {
    783			dbg_io("flush jhead %s wbuf to LEB %d:%d",
    784			       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
    785			err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf,
    786					      wbuf->offs, wbuf->size);
    787			if (err)
    788				goto out;
    789
    790			spin_lock(&wbuf->lock);
    791			wbuf->offs += wbuf->size;
    792			if (c->leb_size - wbuf->offs >= c->max_write_size)
    793				wbuf->size = c->max_write_size;
    794			else
    795				wbuf->size = c->leb_size - wbuf->offs;
    796			wbuf->avail = wbuf->size;
    797			wbuf->used = 0;
    798			wbuf->next_ino = 0;
    799			spin_unlock(&wbuf->lock);
    800		} else {
    801			spin_lock(&wbuf->lock);
    802			wbuf->avail -= aligned_len;
    803			wbuf->used += aligned_len;
    804			spin_unlock(&wbuf->lock);
    805		}
    806
    807		goto exit;
    808	}
    809
    810	if (wbuf->used) {
    811		/*
    812		 * The node is large enough and does not fit entirely within
    813		 * current available space. We have to fill and flush
    814		 * write-buffer and switch to the next max. write unit.
    815		 */
    816		dbg_io("flush jhead %s wbuf to LEB %d:%d",
    817		       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
    818		memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
    819		err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs,
    820				      wbuf->size);
    821		if (err)
    822			goto out;
    823
    824		wbuf->offs += wbuf->size;
    825		len -= wbuf->avail;
    826		aligned_len -= wbuf->avail;
    827		written += wbuf->avail;
    828	} else if (wbuf->offs & (c->max_write_size - 1)) {
    829		/*
    830		 * The write-buffer offset is not aligned to
    831		 * @c->max_write_size and @wbuf->size is less than
    832		 * @c->max_write_size. Write @wbuf->size bytes to make sure the
    833		 * following writes are done in optimal @c->max_write_size
    834		 * chunks.
    835		 */
    836		dbg_io("write %d bytes to LEB %d:%d",
    837		       wbuf->size, wbuf->lnum, wbuf->offs);
    838		err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs,
    839				      wbuf->size);
    840		if (err)
    841			goto out;
    842
    843		wbuf->offs += wbuf->size;
    844		len -= wbuf->size;
    845		aligned_len -= wbuf->size;
    846		written += wbuf->size;
    847	}
    848
    849	/*
    850	 * The remaining data may take more whole max. write units, so write the
    851	 * remains multiple to max. write unit size directly to the flash media.
    852	 * We align node length to 8-byte boundary because we anyway flash wbuf
    853	 * if the remaining space is less than 8 bytes.
    854	 */
    855	n = aligned_len >> c->max_write_shift;
    856	if (n) {
    857		int m = n - 1;
    858
    859		dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum,
    860		       wbuf->offs);
    861
    862		if (m) {
    863			/* '(n-1)<<c->max_write_shift < len' is always true. */
    864			m <<= c->max_write_shift;
    865			err = ubifs_leb_write(c, wbuf->lnum, buf + written,
    866					      wbuf->offs, m);
    867			if (err)
    868				goto out;
    869			wbuf->offs += m;
    870			aligned_len -= m;
    871			len -= m;
    872			written += m;
    873		}
    874
    875		/*
    876		 * The non-written len of buf may be less than 'n' because
    877		 * parameter 'len' is not 8 bytes aligned, so here we read
    878		 * min(len, n) bytes from buf.
    879		 */
    880		n = 1 << c->max_write_shift;
    881		memcpy(wbuf->buf, buf + written, min(len, n));
    882		if (n > len) {
    883			ubifs_assert(c, n - len < 8);
    884			ubifs_pad(c, wbuf->buf + len, n - len);
    885		}
    886
    887		err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, n);
    888		if (err)
    889			goto out;
    890		wbuf->offs += n;
    891		aligned_len -= n;
    892		len -= min(len, n);
    893		written += n;
    894	}
    895
    896	spin_lock(&wbuf->lock);
    897	if (aligned_len) {
    898		/*
    899		 * And now we have what's left and what does not take whole
    900		 * max. write unit, so write it to the write-buffer and we are
    901		 * done.
    902		 */
    903		memcpy(wbuf->buf, buf + written, len);
    904		if (aligned_len > len) {
    905			ubifs_assert(c, aligned_len - len < 8);
    906			ubifs_pad(c, wbuf->buf + len, aligned_len - len);
    907		}
    908	}
    909
    910	if (c->leb_size - wbuf->offs >= c->max_write_size)
    911		wbuf->size = c->max_write_size;
    912	else
    913		wbuf->size = c->leb_size - wbuf->offs;
    914	wbuf->avail = wbuf->size - aligned_len;
    915	wbuf->used = aligned_len;
    916	wbuf->next_ino = 0;
    917	spin_unlock(&wbuf->lock);
    918
    919exit:
    920	if (wbuf->sync_callback) {
    921		int free = c->leb_size - wbuf->offs - wbuf->used;
    922
    923		err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
    924		if (err)
    925			goto out;
    926	}
    927
    928	if (wbuf->used)
    929		new_wbuf_timer_nolock(c, wbuf);
    930
    931	return 0;
    932
    933out:
    934	ubifs_err(c, "cannot write %d bytes to LEB %d:%d, error %d",
    935		  len, wbuf->lnum, wbuf->offs, err);
    936	ubifs_dump_node(c, buf, written + len);
    937	dump_stack();
    938	ubifs_dump_leb(c, wbuf->lnum);
    939	return err;
    940}
    941
    942/**
    943 * ubifs_write_node_hmac - write node to the media.
    944 * @c: UBIFS file-system description object
    945 * @buf: the node to write
    946 * @len: node length
    947 * @lnum: logical eraseblock number
    948 * @offs: offset within the logical eraseblock
    949 * @hmac_offs: offset of the HMAC within the node
    950 *
    951 * This function automatically fills node magic number, assigns sequence
    952 * number, and calculates node CRC checksum. The length of the @buf buffer has
    953 * to be aligned to the minimal I/O unit size. This function automatically
    954 * appends padding node and padding bytes if needed. Returns zero in case of
    955 * success and a negative error code in case of failure.
    956 */
    957int ubifs_write_node_hmac(struct ubifs_info *c, void *buf, int len, int lnum,
    958			  int offs, int hmac_offs)
    959{
    960	int err, buf_len = ALIGN(len, c->min_io_size);
    961
    962	dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
    963	       lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
    964	       buf_len);
    965	ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
    966	ubifs_assert(c, offs % c->min_io_size == 0 && offs < c->leb_size);
    967	ubifs_assert(c, !c->ro_media && !c->ro_mount);
    968	ubifs_assert(c, !c->space_fixup);
    969
    970	if (c->ro_error)
    971		return -EROFS;
    972
    973	err = ubifs_prepare_node_hmac(c, buf, len, hmac_offs, 1);
    974	if (err)
    975		return err;
    976
    977	err = ubifs_leb_write(c, lnum, buf, offs, buf_len);
    978	if (err)
    979		ubifs_dump_node(c, buf, len);
    980
    981	return err;
    982}
    983
    984/**
    985 * ubifs_write_node - write node to the media.
    986 * @c: UBIFS file-system description object
    987 * @buf: the node to write
    988 * @len: node length
    989 * @lnum: logical eraseblock number
    990 * @offs: offset within the logical eraseblock
    991 *
    992 * This function automatically fills node magic number, assigns sequence
    993 * number, and calculates node CRC checksum. The length of the @buf buffer has
    994 * to be aligned to the minimal I/O unit size. This function automatically
    995 * appends padding node and padding bytes if needed. Returns zero in case of
    996 * success and a negative error code in case of failure.
    997 */
    998int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
    999		     int offs)
   1000{
   1001	return ubifs_write_node_hmac(c, buf, len, lnum, offs, -1);
   1002}
   1003
   1004/**
   1005 * ubifs_read_node_wbuf - read node from the media or write-buffer.
   1006 * @wbuf: wbuf to check for un-written data
   1007 * @buf: buffer to read to
   1008 * @type: node type
   1009 * @len: node length
   1010 * @lnum: logical eraseblock number
   1011 * @offs: offset within the logical eraseblock
   1012 *
   1013 * This function reads a node of known type and length, checks it and stores
   1014 * in @buf. If the node partially or fully sits in the write-buffer, this
   1015 * function takes data from the buffer, otherwise it reads the flash media.
   1016 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
   1017 * error code in case of failure.
   1018 */
   1019int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
   1020			 int lnum, int offs)
   1021{
   1022	const struct ubifs_info *c = wbuf->c;
   1023	int err, rlen, overlap;
   1024	struct ubifs_ch *ch = buf;
   1025
   1026	dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
   1027	       dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
   1028	ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
   1029	ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
   1030	ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT);
   1031
   1032	spin_lock(&wbuf->lock);
   1033	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
   1034	if (!overlap) {
   1035		/* We may safely unlock the write-buffer and read the data */
   1036		spin_unlock(&wbuf->lock);
   1037		return ubifs_read_node(c, buf, type, len, lnum, offs);
   1038	}
   1039
   1040	/* Don't read under wbuf */
   1041	rlen = wbuf->offs - offs;
   1042	if (rlen < 0)
   1043		rlen = 0;
   1044
   1045	/* Copy the rest from the write-buffer */
   1046	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
   1047	spin_unlock(&wbuf->lock);
   1048
   1049	if (rlen > 0) {
   1050		/* Read everything that goes before write-buffer */
   1051		err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
   1052		if (err && err != -EBADMSG)
   1053			return err;
   1054	}
   1055
   1056	if (type != ch->node_type) {
   1057		ubifs_err(c, "bad node type (%d but expected %d)",
   1058			  ch->node_type, type);
   1059		goto out;
   1060	}
   1061
   1062	err = ubifs_check_node(c, buf, len, lnum, offs, 0, 0);
   1063	if (err) {
   1064		ubifs_err(c, "expected node type %d", type);
   1065		return err;
   1066	}
   1067
   1068	rlen = le32_to_cpu(ch->len);
   1069	if (rlen != len) {
   1070		ubifs_err(c, "bad node length %d, expected %d", rlen, len);
   1071		goto out;
   1072	}
   1073
   1074	return 0;
   1075
   1076out:
   1077	ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
   1078	ubifs_dump_node(c, buf, len);
   1079	dump_stack();
   1080	return -EINVAL;
   1081}
   1082
   1083/**
   1084 * ubifs_read_node - read node.
   1085 * @c: UBIFS file-system description object
   1086 * @buf: buffer to read to
   1087 * @type: node type
   1088 * @len: node length (not aligned)
   1089 * @lnum: logical eraseblock number
   1090 * @offs: offset within the logical eraseblock
   1091 *
   1092 * This function reads a node of known type and length, checks it and
   1093 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
   1094 * and a negative error code in case of failure.
   1095 */
   1096int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
   1097		    int lnum, int offs)
   1098{
   1099	int err, l;
   1100	struct ubifs_ch *ch = buf;
   1101
   1102	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
   1103	ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
   1104	ubifs_assert(c, len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
   1105	ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
   1106	ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT);
   1107
   1108	err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
   1109	if (err && err != -EBADMSG)
   1110		return err;
   1111
   1112	if (type != ch->node_type) {
   1113		ubifs_errc(c, "bad node type (%d but expected %d)",
   1114			   ch->node_type, type);
   1115		goto out;
   1116	}
   1117
   1118	err = ubifs_check_node(c, buf, len, lnum, offs, 0, 0);
   1119	if (err) {
   1120		ubifs_errc(c, "expected node type %d", type);
   1121		return err;
   1122	}
   1123
   1124	l = le32_to_cpu(ch->len);
   1125	if (l != len) {
   1126		ubifs_errc(c, "bad node length %d, expected %d", l, len);
   1127		goto out;
   1128	}
   1129
   1130	return 0;
   1131
   1132out:
   1133	ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum,
   1134		   offs, ubi_is_mapped(c->ubi, lnum));
   1135	if (!c->probing) {
   1136		ubifs_dump_node(c, buf, len);
   1137		dump_stack();
   1138	}
   1139	return -EINVAL;
   1140}
   1141
   1142/**
   1143 * ubifs_wbuf_init - initialize write-buffer.
   1144 * @c: UBIFS file-system description object
   1145 * @wbuf: write-buffer to initialize
   1146 *
   1147 * This function initializes write-buffer. Returns zero in case of success
   1148 * %-ENOMEM in case of failure.
   1149 */
   1150int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
   1151{
   1152	size_t size;
   1153
   1154	wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
   1155	if (!wbuf->buf)
   1156		return -ENOMEM;
   1157
   1158	size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
   1159	wbuf->inodes = kmalloc(size, GFP_KERNEL);
   1160	if (!wbuf->inodes) {
   1161		kfree(wbuf->buf);
   1162		wbuf->buf = NULL;
   1163		return -ENOMEM;
   1164	}
   1165
   1166	wbuf->used = 0;
   1167	wbuf->lnum = wbuf->offs = -1;
   1168	/*
   1169	 * If the LEB starts at the max. write size aligned address, then
   1170	 * write-buffer size has to be set to @c->max_write_size. Otherwise,
   1171	 * set it to something smaller so that it ends at the closest max.
   1172	 * write size boundary.
   1173	 */
   1174	size = c->max_write_size - (c->leb_start % c->max_write_size);
   1175	wbuf->avail = wbuf->size = size;
   1176	wbuf->sync_callback = NULL;
   1177	mutex_init(&wbuf->io_mutex);
   1178	spin_lock_init(&wbuf->lock);
   1179	wbuf->c = c;
   1180	wbuf->next_ino = 0;
   1181
   1182	hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
   1183	wbuf->timer.function = wbuf_timer_callback_nolock;
   1184	return 0;
   1185}
   1186
   1187/**
   1188 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
   1189 * @wbuf: the write-buffer where to add
   1190 * @inum: the inode number
   1191 *
   1192 * This function adds an inode number to the inode array of the write-buffer.
   1193 */
   1194void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
   1195{
   1196	if (!wbuf->buf)
   1197		/* NOR flash or something similar */
   1198		return;
   1199
   1200	spin_lock(&wbuf->lock);
   1201	if (wbuf->used)
   1202		wbuf->inodes[wbuf->next_ino++] = inum;
   1203	spin_unlock(&wbuf->lock);
   1204}
   1205
   1206/**
   1207 * wbuf_has_ino - returns if the wbuf contains data from the inode.
   1208 * @wbuf: the write-buffer
   1209 * @inum: the inode number
   1210 *
   1211 * This function returns with %1 if the write-buffer contains some data from the
   1212 * given inode otherwise it returns with %0.
   1213 */
   1214static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
   1215{
   1216	int i, ret = 0;
   1217
   1218	spin_lock(&wbuf->lock);
   1219	for (i = 0; i < wbuf->next_ino; i++)
   1220		if (inum == wbuf->inodes[i]) {
   1221			ret = 1;
   1222			break;
   1223		}
   1224	spin_unlock(&wbuf->lock);
   1225
   1226	return ret;
   1227}
   1228
   1229/**
   1230 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
   1231 * @c: UBIFS file-system description object
   1232 * @inode: inode to synchronize
   1233 *
   1234 * This function synchronizes write-buffers which contain nodes belonging to
   1235 * @inode. Returns zero in case of success and a negative error code in case of
   1236 * failure.
   1237 */
   1238int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
   1239{
   1240	int i, err = 0;
   1241
   1242	for (i = 0; i < c->jhead_cnt; i++) {
   1243		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
   1244
   1245		if (i == GCHD)
   1246			/*
   1247			 * GC head is special, do not look at it. Even if the
   1248			 * head contains something related to this inode, it is
   1249			 * a _copy_ of corresponding on-flash node which sits
   1250			 * somewhere else.
   1251			 */
   1252			continue;
   1253
   1254		if (!wbuf_has_ino(wbuf, inode->i_ino))
   1255			continue;
   1256
   1257		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
   1258		if (wbuf_has_ino(wbuf, inode->i_ino))
   1259			err = ubifs_wbuf_sync_nolock(wbuf);
   1260		mutex_unlock(&wbuf->io_mutex);
   1261
   1262		if (err) {
   1263			ubifs_ro_mode(c, err);
   1264			return err;
   1265		}
   1266	}
   1267	return 0;
   1268}