cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

journal.c (54331B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * This file is part of UBIFS.
      4 *
      5 * Copyright (C) 2006-2008 Nokia Corporation.
      6 *
      7 * Authors: Artem Bityutskiy (Битюцкий Артём)
      8 *          Adrian Hunter
      9 */
     10
     11/*
     12 * This file implements UBIFS journal.
     13 *
     14 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
     15 * length and position, while a bud logical eraseblock is any LEB in the main
     16 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
     17 * contains only references to buds and some other stuff like commit
     18 * start node. The idea is that when we commit the journal, we do
     19 * not copy the data, the buds just become indexed. Since after the commit the
     20 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
     21 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
     22 * become leafs in the future.
     23 *
     24 * The journal is multi-headed because we want to write data to the journal as
     25 * optimally as possible. It is nice to have nodes belonging to the same inode
     26 * in one LEB, so we may write data owned by different inodes to different
     27 * journal heads, although at present only one data head is used.
     28 *
     29 * For recovery reasons, the base head contains all inode nodes, all directory
     30 * entry nodes and all truncate nodes. This means that the other heads contain
     31 * only data nodes.
     32 *
     33 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
     34 * time of commit, the bud is retained to continue to be used in the journal,
     35 * even though the "front" of the LEB is now indexed. In that case, the log
     36 * reference contains the offset where the bud starts for the purposes of the
     37 * journal.
     38 *
     39 * The journal size has to be limited, because the larger is the journal, the
     40 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
     41 * takes (indexing in the TNC).
     42 *
     43 * All the journal write operations like 'ubifs_jnl_update()' here, which write
     44 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
     45 * unclean reboots. Should the unclean reboot happen, the recovery code drops
     46 * all the nodes.
     47 */
     48
     49#include "ubifs.h"
     50
     51/**
     52 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
     53 * @ino: the inode to zero out
     54 */
     55static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
     56{
     57	memset(ino->padding1, 0, 4);
     58	memset(ino->padding2, 0, 26);
     59}
     60
     61/**
     62 * zero_dent_node_unused - zero out unused fields of an on-flash directory
     63 *                         entry node.
     64 * @dent: the directory entry to zero out
     65 */
     66static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
     67{
     68	dent->padding1 = 0;
     69}
     70
     71/**
     72 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
     73 *                         node.
     74 * @trun: the truncation node to zero out
     75 */
     76static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
     77{
     78	memset(trun->padding, 0, 12);
     79}
     80
     81static void ubifs_add_auth_dirt(struct ubifs_info *c, int lnum)
     82{
     83	if (ubifs_authenticated(c))
     84		ubifs_add_dirt(c, lnum, ubifs_auth_node_sz(c));
     85}
     86
     87/**
     88 * reserve_space - reserve space in the journal.
     89 * @c: UBIFS file-system description object
     90 * @jhead: journal head number
     91 * @len: node length
     92 *
     93 * This function reserves space in journal head @head. If the reservation
     94 * succeeded, the journal head stays locked and later has to be unlocked using
     95 * 'release_head()'. Returns zero in case of success, %-EAGAIN if commit has to
     96 * be done, and other negative error codes in case of other failures.
     97 */
     98static int reserve_space(struct ubifs_info *c, int jhead, int len)
     99{
    100	int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
    101	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
    102
    103	/*
    104	 * Typically, the base head has smaller nodes written to it, so it is
    105	 * better to try to allocate space at the ends of eraseblocks. This is
    106	 * what the squeeze parameter does.
    107	 */
    108	ubifs_assert(c, !c->ro_media && !c->ro_mount);
    109	squeeze = (jhead == BASEHD);
    110again:
    111	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
    112
    113	if (c->ro_error) {
    114		err = -EROFS;
    115		goto out_unlock;
    116	}
    117
    118	avail = c->leb_size - wbuf->offs - wbuf->used;
    119	if (wbuf->lnum != -1 && avail >= len)
    120		return 0;
    121
    122	/*
    123	 * Write buffer wasn't seek'ed or there is no enough space - look for an
    124	 * LEB with some empty space.
    125	 */
    126	lnum = ubifs_find_free_space(c, len, &offs, squeeze);
    127	if (lnum >= 0)
    128		goto out;
    129
    130	err = lnum;
    131	if (err != -ENOSPC)
    132		goto out_unlock;
    133
    134	/*
    135	 * No free space, we have to run garbage collector to make
    136	 * some. But the write-buffer mutex has to be unlocked because
    137	 * GC also takes it.
    138	 */
    139	dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
    140	mutex_unlock(&wbuf->io_mutex);
    141
    142	lnum = ubifs_garbage_collect(c, 0);
    143	if (lnum < 0) {
    144		err = lnum;
    145		if (err != -ENOSPC)
    146			return err;
    147
    148		/*
    149		 * GC could not make a free LEB. But someone else may
    150		 * have allocated new bud for this journal head,
    151		 * because we dropped @wbuf->io_mutex, so try once
    152		 * again.
    153		 */
    154		dbg_jnl("GC couldn't make a free LEB for jhead %s",
    155			dbg_jhead(jhead));
    156		if (retries++ < 2) {
    157			dbg_jnl("retry (%d)", retries);
    158			goto again;
    159		}
    160
    161		dbg_jnl("return -ENOSPC");
    162		return err;
    163	}
    164
    165	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
    166	dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
    167	avail = c->leb_size - wbuf->offs - wbuf->used;
    168
    169	if (wbuf->lnum != -1 && avail >= len) {
    170		/*
    171		 * Someone else has switched the journal head and we have
    172		 * enough space now. This happens when more than one process is
    173		 * trying to write to the same journal head at the same time.
    174		 */
    175		dbg_jnl("return LEB %d back, already have LEB %d:%d",
    176			lnum, wbuf->lnum, wbuf->offs + wbuf->used);
    177		err = ubifs_return_leb(c, lnum);
    178		if (err)
    179			goto out_unlock;
    180		return 0;
    181	}
    182
    183	offs = 0;
    184
    185out:
    186	/*
    187	 * Make sure we synchronize the write-buffer before we add the new bud
    188	 * to the log. Otherwise we may have a power cut after the log
    189	 * reference node for the last bud (@lnum) is written but before the
    190	 * write-buffer data are written to the next-to-last bud
    191	 * (@wbuf->lnum). And the effect would be that the recovery would see
    192	 * that there is corruption in the next-to-last bud.
    193	 */
    194	err = ubifs_wbuf_sync_nolock(wbuf);
    195	if (err)
    196		goto out_return;
    197	err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
    198	if (err)
    199		goto out_return;
    200	err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs);
    201	if (err)
    202		goto out_unlock;
    203
    204	return 0;
    205
    206out_unlock:
    207	mutex_unlock(&wbuf->io_mutex);
    208	return err;
    209
    210out_return:
    211	/* An error occurred and the LEB has to be returned to lprops */
    212	ubifs_assert(c, err < 0);
    213	err1 = ubifs_return_leb(c, lnum);
    214	if (err1 && err == -EAGAIN)
    215		/*
    216		 * Return original error code only if it is not %-EAGAIN,
    217		 * which is not really an error. Otherwise, return the error
    218		 * code of 'ubifs_return_leb()'.
    219		 */
    220		err = err1;
    221	mutex_unlock(&wbuf->io_mutex);
    222	return err;
    223}
    224
    225static int ubifs_hash_nodes(struct ubifs_info *c, void *node,
    226			     int len, struct shash_desc *hash)
    227{
    228	int auth_node_size = ubifs_auth_node_sz(c);
    229	int err;
    230
    231	while (1) {
    232		const struct ubifs_ch *ch = node;
    233		int nodelen = le32_to_cpu(ch->len);
    234
    235		ubifs_assert(c, len >= auth_node_size);
    236
    237		if (len == auth_node_size)
    238			break;
    239
    240		ubifs_assert(c, len > nodelen);
    241		ubifs_assert(c, ch->magic == cpu_to_le32(UBIFS_NODE_MAGIC));
    242
    243		err = ubifs_shash_update(c, hash, (void *)node, nodelen);
    244		if (err)
    245			return err;
    246
    247		node += ALIGN(nodelen, 8);
    248		len -= ALIGN(nodelen, 8);
    249	}
    250
    251	return ubifs_prepare_auth_node(c, node, hash);
    252}
    253
    254/**
    255 * write_head - write data to a journal head.
    256 * @c: UBIFS file-system description object
    257 * @jhead: journal head
    258 * @buf: buffer to write
    259 * @len: length to write
    260 * @lnum: LEB number written is returned here
    261 * @offs: offset written is returned here
    262 * @sync: non-zero if the write-buffer has to by synchronized
    263 *
    264 * This function writes data to the reserved space of journal head @jhead.
    265 * Returns zero in case of success and a negative error code in case of
    266 * failure.
    267 */
    268static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
    269		      int *lnum, int *offs, int sync)
    270{
    271	int err;
    272	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
    273
    274	ubifs_assert(c, jhead != GCHD);
    275
    276	*lnum = c->jheads[jhead].wbuf.lnum;
    277	*offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
    278	dbg_jnl("jhead %s, LEB %d:%d, len %d",
    279		dbg_jhead(jhead), *lnum, *offs, len);
    280
    281	if (ubifs_authenticated(c)) {
    282		err = ubifs_hash_nodes(c, buf, len, c->jheads[jhead].log_hash);
    283		if (err)
    284			return err;
    285	}
    286
    287	err = ubifs_wbuf_write_nolock(wbuf, buf, len);
    288	if (err)
    289		return err;
    290	if (sync)
    291		err = ubifs_wbuf_sync_nolock(wbuf);
    292	return err;
    293}
    294
    295/**
    296 * make_reservation - reserve journal space.
    297 * @c: UBIFS file-system description object
    298 * @jhead: journal head
    299 * @len: how many bytes to reserve
    300 *
    301 * This function makes space reservation in journal head @jhead. The function
    302 * takes the commit lock and locks the journal head, and the caller has to
    303 * unlock the head and finish the reservation with 'finish_reservation()'.
    304 * Returns zero in case of success and a negative error code in case of
    305 * failure.
    306 *
    307 * Note, the journal head may be unlocked as soon as the data is written, while
    308 * the commit lock has to be released after the data has been added to the
    309 * TNC.
    310 */
    311static int make_reservation(struct ubifs_info *c, int jhead, int len)
    312{
    313	int err, cmt_retries = 0, nospc_retries = 0;
    314
    315again:
    316	down_read(&c->commit_sem);
    317	err = reserve_space(c, jhead, len);
    318	if (!err)
    319		/* c->commit_sem will get released via finish_reservation(). */
    320		return 0;
    321	up_read(&c->commit_sem);
    322
    323	if (err == -ENOSPC) {
    324		/*
    325		 * GC could not make any progress. We should try to commit
    326		 * once because it could make some dirty space and GC would
    327		 * make progress, so make the error -EAGAIN so that the below
    328		 * will commit and re-try.
    329		 */
    330		if (nospc_retries++ < 2) {
    331			dbg_jnl("no space, retry");
    332			err = -EAGAIN;
    333		}
    334
    335		/*
    336		 * This means that the budgeting is incorrect. We always have
    337		 * to be able to write to the media, because all operations are
    338		 * budgeted. Deletions are not budgeted, though, but we reserve
    339		 * an extra LEB for them.
    340		 */
    341	}
    342
    343	if (err != -EAGAIN)
    344		goto out;
    345
    346	/*
    347	 * -EAGAIN means that the journal is full or too large, or the above
    348	 * code wants to do one commit. Do this and re-try.
    349	 */
    350	if (cmt_retries > 128) {
    351		/*
    352		 * This should not happen unless the journal size limitations
    353		 * are too tough.
    354		 */
    355		ubifs_err(c, "stuck in space allocation");
    356		err = -ENOSPC;
    357		goto out;
    358	} else if (cmt_retries > 32)
    359		ubifs_warn(c, "too many space allocation re-tries (%d)",
    360			   cmt_retries);
    361
    362	dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
    363		cmt_retries);
    364	cmt_retries += 1;
    365
    366	err = ubifs_run_commit(c);
    367	if (err)
    368		return err;
    369	goto again;
    370
    371out:
    372	ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d",
    373		  len, jhead, err);
    374	if (err == -ENOSPC) {
    375		/* This are some budgeting problems, print useful information */
    376		down_write(&c->commit_sem);
    377		dump_stack();
    378		ubifs_dump_budg(c, &c->bi);
    379		ubifs_dump_lprops(c);
    380		cmt_retries = dbg_check_lprops(c);
    381		up_write(&c->commit_sem);
    382	}
    383	return err;
    384}
    385
    386/**
    387 * release_head - release a journal head.
    388 * @c: UBIFS file-system description object
    389 * @jhead: journal head
    390 *
    391 * This function releases journal head @jhead which was locked by
    392 * the 'make_reservation()' function. It has to be called after each successful
    393 * 'make_reservation()' invocation.
    394 */
    395static inline void release_head(struct ubifs_info *c, int jhead)
    396{
    397	mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
    398}
    399
    400/**
    401 * finish_reservation - finish a reservation.
    402 * @c: UBIFS file-system description object
    403 *
    404 * This function finishes journal space reservation. It must be called after
    405 * 'make_reservation()'.
    406 */
    407static void finish_reservation(struct ubifs_info *c)
    408{
    409	up_read(&c->commit_sem);
    410}
    411
    412/**
    413 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
    414 * @mode: inode mode
    415 */
    416static int get_dent_type(int mode)
    417{
    418	switch (mode & S_IFMT) {
    419	case S_IFREG:
    420		return UBIFS_ITYPE_REG;
    421	case S_IFDIR:
    422		return UBIFS_ITYPE_DIR;
    423	case S_IFLNK:
    424		return UBIFS_ITYPE_LNK;
    425	case S_IFBLK:
    426		return UBIFS_ITYPE_BLK;
    427	case S_IFCHR:
    428		return UBIFS_ITYPE_CHR;
    429	case S_IFIFO:
    430		return UBIFS_ITYPE_FIFO;
    431	case S_IFSOCK:
    432		return UBIFS_ITYPE_SOCK;
    433	default:
    434		BUG();
    435	}
    436	return 0;
    437}
    438
    439/**
    440 * pack_inode - pack an inode node.
    441 * @c: UBIFS file-system description object
    442 * @ino: buffer in which to pack inode node
    443 * @inode: inode to pack
    444 * @last: indicates the last node of the group
    445 */
    446static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
    447		       const struct inode *inode, int last)
    448{
    449	int data_len = 0, last_reference = !inode->i_nlink;
    450	struct ubifs_inode *ui = ubifs_inode(inode);
    451
    452	ino->ch.node_type = UBIFS_INO_NODE;
    453	ino_key_init_flash(c, &ino->key, inode->i_ino);
    454	ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
    455	ino->atime_sec  = cpu_to_le64(inode->i_atime.tv_sec);
    456	ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
    457	ino->ctime_sec  = cpu_to_le64(inode->i_ctime.tv_sec);
    458	ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
    459	ino->mtime_sec  = cpu_to_le64(inode->i_mtime.tv_sec);
    460	ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
    461	ino->uid   = cpu_to_le32(i_uid_read(inode));
    462	ino->gid   = cpu_to_le32(i_gid_read(inode));
    463	ino->mode  = cpu_to_le32(inode->i_mode);
    464	ino->flags = cpu_to_le32(ui->flags);
    465	ino->size  = cpu_to_le64(ui->ui_size);
    466	ino->nlink = cpu_to_le32(inode->i_nlink);
    467	ino->compr_type  = cpu_to_le16(ui->compr_type);
    468	ino->data_len    = cpu_to_le32(ui->data_len);
    469	ino->xattr_cnt   = cpu_to_le32(ui->xattr_cnt);
    470	ino->xattr_size  = cpu_to_le32(ui->xattr_size);
    471	ino->xattr_names = cpu_to_le32(ui->xattr_names);
    472	zero_ino_node_unused(ino);
    473
    474	/*
    475	 * Drop the attached data if this is a deletion inode, the data is not
    476	 * needed anymore.
    477	 */
    478	if (!last_reference) {
    479		memcpy(ino->data, ui->data, ui->data_len);
    480		data_len = ui->data_len;
    481	}
    482
    483	ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
    484}
    485
    486/**
    487 * mark_inode_clean - mark UBIFS inode as clean.
    488 * @c: UBIFS file-system description object
    489 * @ui: UBIFS inode to mark as clean
    490 *
    491 * This helper function marks UBIFS inode @ui as clean by cleaning the
    492 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
    493 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
    494 * just do nothing.
    495 */
    496static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
    497{
    498	if (ui->dirty)
    499		ubifs_release_dirty_inode_budget(c, ui);
    500	ui->dirty = 0;
    501}
    502
    503static void set_dent_cookie(struct ubifs_info *c, struct ubifs_dent_node *dent)
    504{
    505	if (c->double_hash)
    506		dent->cookie = (__force __le32) prandom_u32();
    507	else
    508		dent->cookie = 0;
    509}
    510
    511/**
    512 * ubifs_jnl_update - update inode.
    513 * @c: UBIFS file-system description object
    514 * @dir: parent inode or host inode in case of extended attributes
    515 * @nm: directory entry name
    516 * @inode: inode to update
    517 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
    518 * @xent: non-zero if the directory entry is an extended attribute entry
    519 *
    520 * This function updates an inode by writing a directory entry (or extended
    521 * attribute entry), the inode itself, and the parent directory inode (or the
    522 * host inode) to the journal.
    523 *
    524 * The function writes the host inode @dir last, which is important in case of
    525 * extended attributes. Indeed, then we guarantee that if the host inode gets
    526 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
    527 * the extended attribute inode gets flushed too. And this is exactly what the
    528 * user expects - synchronizing the host inode synchronizes its extended
    529 * attributes. Similarly, this guarantees that if @dir is synchronized, its
    530 * directory entry corresponding to @nm gets synchronized too.
    531 *
    532 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
    533 * function synchronizes the write-buffer.
    534 *
    535 * This function marks the @dir and @inode inodes as clean and returns zero on
    536 * success. In case of failure, a negative error code is returned.
    537 */
    538int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
    539		     const struct fscrypt_name *nm, const struct inode *inode,
    540		     int deletion, int xent)
    541{
    542	int err, dlen, ilen, len, lnum, ino_offs, dent_offs, orphan_added = 0;
    543	int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
    544	int last_reference = !!(deletion && inode->i_nlink == 0);
    545	struct ubifs_inode *ui = ubifs_inode(inode);
    546	struct ubifs_inode *host_ui = ubifs_inode(dir);
    547	struct ubifs_dent_node *dent;
    548	struct ubifs_ino_node *ino;
    549	union ubifs_key dent_key, ino_key;
    550	u8 hash_dent[UBIFS_HASH_ARR_SZ];
    551	u8 hash_ino[UBIFS_HASH_ARR_SZ];
    552	u8 hash_ino_host[UBIFS_HASH_ARR_SZ];
    553
    554	ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
    555
    556	dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
    557	ilen = UBIFS_INO_NODE_SZ;
    558
    559	/*
    560	 * If the last reference to the inode is being deleted, then there is
    561	 * no need to attach and write inode data, it is being deleted anyway.
    562	 * And if the inode is being deleted, no need to synchronize
    563	 * write-buffer even if the inode is synchronous.
    564	 */
    565	if (!last_reference) {
    566		ilen += ui->data_len;
    567		sync |= IS_SYNC(inode);
    568	}
    569
    570	aligned_dlen = ALIGN(dlen, 8);
    571	aligned_ilen = ALIGN(ilen, 8);
    572
    573	len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
    574	/* Make sure to also account for extended attributes */
    575	if (ubifs_authenticated(c))
    576		len += ALIGN(host_ui->data_len, 8) + ubifs_auth_node_sz(c);
    577	else
    578		len += host_ui->data_len;
    579
    580	dent = kzalloc(len, GFP_NOFS);
    581	if (!dent)
    582		return -ENOMEM;
    583
    584	/* Make reservation before allocating sequence numbers */
    585	err = make_reservation(c, BASEHD, len);
    586	if (err)
    587		goto out_free;
    588
    589	if (!xent) {
    590		dent->ch.node_type = UBIFS_DENT_NODE;
    591		if (fname_name(nm) == NULL)
    592			dent_key_init_hash(c, &dent_key, dir->i_ino, nm->hash);
    593		else
    594			dent_key_init(c, &dent_key, dir->i_ino, nm);
    595	} else {
    596		dent->ch.node_type = UBIFS_XENT_NODE;
    597		xent_key_init(c, &dent_key, dir->i_ino, nm);
    598	}
    599
    600	key_write(c, &dent_key, dent->key);
    601	dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
    602	dent->type = get_dent_type(inode->i_mode);
    603	dent->nlen = cpu_to_le16(fname_len(nm));
    604	memcpy(dent->name, fname_name(nm), fname_len(nm));
    605	dent->name[fname_len(nm)] = '\0';
    606	set_dent_cookie(c, dent);
    607
    608	zero_dent_node_unused(dent);
    609	ubifs_prep_grp_node(c, dent, dlen, 0);
    610	err = ubifs_node_calc_hash(c, dent, hash_dent);
    611	if (err)
    612		goto out_release;
    613
    614	ino = (void *)dent + aligned_dlen;
    615	pack_inode(c, ino, inode, 0);
    616	err = ubifs_node_calc_hash(c, ino, hash_ino);
    617	if (err)
    618		goto out_release;
    619
    620	ino = (void *)ino + aligned_ilen;
    621	pack_inode(c, ino, dir, 1);
    622	err = ubifs_node_calc_hash(c, ino, hash_ino_host);
    623	if (err)
    624		goto out_release;
    625
    626	if (last_reference) {
    627		err = ubifs_add_orphan(c, inode->i_ino);
    628		if (err) {
    629			release_head(c, BASEHD);
    630			goto out_finish;
    631		}
    632		ui->del_cmtno = c->cmt_no;
    633		orphan_added = 1;
    634	}
    635
    636	err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
    637	if (err)
    638		goto out_release;
    639	if (!sync) {
    640		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
    641
    642		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
    643		ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
    644	}
    645	release_head(c, BASEHD);
    646	kfree(dent);
    647	ubifs_add_auth_dirt(c, lnum);
    648
    649	if (deletion) {
    650		if (fname_name(nm) == NULL)
    651			err = ubifs_tnc_remove_dh(c, &dent_key, nm->minor_hash);
    652		else
    653			err = ubifs_tnc_remove_nm(c, &dent_key, nm);
    654		if (err)
    655			goto out_ro;
    656		err = ubifs_add_dirt(c, lnum, dlen);
    657	} else
    658		err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen,
    659				       hash_dent, nm);
    660	if (err)
    661		goto out_ro;
    662
    663	/*
    664	 * Note, we do not remove the inode from TNC even if the last reference
    665	 * to it has just been deleted, because the inode may still be opened.
    666	 * Instead, the inode has been added to orphan lists and the orphan
    667	 * subsystem will take further care about it.
    668	 */
    669	ino_key_init(c, &ino_key, inode->i_ino);
    670	ino_offs = dent_offs + aligned_dlen;
    671	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen, hash_ino);
    672	if (err)
    673		goto out_ro;
    674
    675	ino_key_init(c, &ino_key, dir->i_ino);
    676	ino_offs += aligned_ilen;
    677	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs,
    678			    UBIFS_INO_NODE_SZ + host_ui->data_len, hash_ino_host);
    679	if (err)
    680		goto out_ro;
    681
    682	finish_reservation(c);
    683	spin_lock(&ui->ui_lock);
    684	ui->synced_i_size = ui->ui_size;
    685	spin_unlock(&ui->ui_lock);
    686	if (xent) {
    687		spin_lock(&host_ui->ui_lock);
    688		host_ui->synced_i_size = host_ui->ui_size;
    689		spin_unlock(&host_ui->ui_lock);
    690	}
    691	mark_inode_clean(c, ui);
    692	mark_inode_clean(c, host_ui);
    693	return 0;
    694
    695out_finish:
    696	finish_reservation(c);
    697out_free:
    698	kfree(dent);
    699	return err;
    700
    701out_release:
    702	release_head(c, BASEHD);
    703	kfree(dent);
    704out_ro:
    705	ubifs_ro_mode(c, err);
    706	if (orphan_added)
    707		ubifs_delete_orphan(c, inode->i_ino);
    708	finish_reservation(c);
    709	return err;
    710}
    711
    712/**
    713 * ubifs_jnl_write_data - write a data node to the journal.
    714 * @c: UBIFS file-system description object
    715 * @inode: inode the data node belongs to
    716 * @key: node key
    717 * @buf: buffer to write
    718 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
    719 *
    720 * This function writes a data node to the journal. Returns %0 if the data node
    721 * was successfully written, and a negative error code in case of failure.
    722 */
    723int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
    724			 const union ubifs_key *key, const void *buf, int len)
    725{
    726	struct ubifs_data_node *data;
    727	int err, lnum, offs, compr_type, out_len, compr_len, auth_len;
    728	int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
    729	int write_len;
    730	struct ubifs_inode *ui = ubifs_inode(inode);
    731	bool encrypted = IS_ENCRYPTED(inode);
    732	u8 hash[UBIFS_HASH_ARR_SZ];
    733
    734	dbg_jnlk(key, "ino %lu, blk %u, len %d, key ",
    735		(unsigned long)key_inum(c, key), key_block(c, key), len);
    736	ubifs_assert(c, len <= UBIFS_BLOCK_SIZE);
    737
    738	if (encrypted)
    739		dlen += UBIFS_CIPHER_BLOCK_SIZE;
    740
    741	auth_len = ubifs_auth_node_sz(c);
    742
    743	data = kmalloc(dlen + auth_len, GFP_NOFS | __GFP_NOWARN);
    744	if (!data) {
    745		/*
    746		 * Fall-back to the write reserve buffer. Note, we might be
    747		 * currently on the memory reclaim path, when the kernel is
    748		 * trying to free some memory by writing out dirty pages. The
    749		 * write reserve buffer helps us to guarantee that we are
    750		 * always able to write the data.
    751		 */
    752		allocated = 0;
    753		mutex_lock(&c->write_reserve_mutex);
    754		data = c->write_reserve_buf;
    755	}
    756
    757	data->ch.node_type = UBIFS_DATA_NODE;
    758	key_write(c, key, &data->key);
    759	data->size = cpu_to_le32(len);
    760
    761	if (!(ui->flags & UBIFS_COMPR_FL))
    762		/* Compression is disabled for this inode */
    763		compr_type = UBIFS_COMPR_NONE;
    764	else
    765		compr_type = ui->compr_type;
    766
    767	out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ;
    768	ubifs_compress(c, buf, len, &data->data, &compr_len, &compr_type);
    769	ubifs_assert(c, compr_len <= UBIFS_BLOCK_SIZE);
    770
    771	if (encrypted) {
    772		err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key));
    773		if (err)
    774			goto out_free;
    775
    776	} else {
    777		data->compr_size = 0;
    778		out_len = compr_len;
    779	}
    780
    781	dlen = UBIFS_DATA_NODE_SZ + out_len;
    782	if (ubifs_authenticated(c))
    783		write_len = ALIGN(dlen, 8) + auth_len;
    784	else
    785		write_len = dlen;
    786
    787	data->compr_type = cpu_to_le16(compr_type);
    788
    789	/* Make reservation before allocating sequence numbers */
    790	err = make_reservation(c, DATAHD, write_len);
    791	if (err)
    792		goto out_free;
    793
    794	ubifs_prepare_node(c, data, dlen, 0);
    795	err = write_head(c, DATAHD, data, write_len, &lnum, &offs, 0);
    796	if (err)
    797		goto out_release;
    798
    799	err = ubifs_node_calc_hash(c, data, hash);
    800	if (err)
    801		goto out_release;
    802
    803	ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
    804	release_head(c, DATAHD);
    805
    806	ubifs_add_auth_dirt(c, lnum);
    807
    808	err = ubifs_tnc_add(c, key, lnum, offs, dlen, hash);
    809	if (err)
    810		goto out_ro;
    811
    812	finish_reservation(c);
    813	if (!allocated)
    814		mutex_unlock(&c->write_reserve_mutex);
    815	else
    816		kfree(data);
    817	return 0;
    818
    819out_release:
    820	release_head(c, DATAHD);
    821out_ro:
    822	ubifs_ro_mode(c, err);
    823	finish_reservation(c);
    824out_free:
    825	if (!allocated)
    826		mutex_unlock(&c->write_reserve_mutex);
    827	else
    828		kfree(data);
    829	return err;
    830}
    831
    832/**
    833 * ubifs_jnl_write_inode - flush inode to the journal.
    834 * @c: UBIFS file-system description object
    835 * @inode: inode to flush
    836 *
    837 * This function writes inode @inode to the journal. If the inode is
    838 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
    839 * success and a negative error code in case of failure.
    840 */
    841int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
    842{
    843	int err, lnum, offs;
    844	struct ubifs_ino_node *ino, *ino_start;
    845	struct ubifs_inode *ui = ubifs_inode(inode);
    846	int sync = 0, write_len = 0, ilen = UBIFS_INO_NODE_SZ;
    847	int last_reference = !inode->i_nlink;
    848	int kill_xattrs = ui->xattr_cnt && last_reference;
    849	u8 hash[UBIFS_HASH_ARR_SZ];
    850
    851	dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
    852
    853	/*
    854	 * If the inode is being deleted, do not write the attached data. No
    855	 * need to synchronize the write-buffer either.
    856	 */
    857	if (!last_reference) {
    858		ilen += ui->data_len;
    859		sync = IS_SYNC(inode);
    860	} else if (kill_xattrs) {
    861		write_len += UBIFS_INO_NODE_SZ * ui->xattr_cnt;
    862	}
    863
    864	if (ubifs_authenticated(c))
    865		write_len += ALIGN(ilen, 8) + ubifs_auth_node_sz(c);
    866	else
    867		write_len += ilen;
    868
    869	ino_start = ino = kmalloc(write_len, GFP_NOFS);
    870	if (!ino)
    871		return -ENOMEM;
    872
    873	/* Make reservation before allocating sequence numbers */
    874	err = make_reservation(c, BASEHD, write_len);
    875	if (err)
    876		goto out_free;
    877
    878	if (kill_xattrs) {
    879		union ubifs_key key;
    880		struct fscrypt_name nm = {0};
    881		struct inode *xino;
    882		struct ubifs_dent_node *xent, *pxent = NULL;
    883
    884		if (ui->xattr_cnt > ubifs_xattr_max_cnt(c)) {
    885			err = -EPERM;
    886			ubifs_err(c, "Cannot delete inode, it has too much xattrs!");
    887			goto out_release;
    888		}
    889
    890		lowest_xent_key(c, &key, inode->i_ino);
    891		while (1) {
    892			xent = ubifs_tnc_next_ent(c, &key, &nm);
    893			if (IS_ERR(xent)) {
    894				err = PTR_ERR(xent);
    895				if (err == -ENOENT)
    896					break;
    897
    898				kfree(pxent);
    899				goto out_release;
    900			}
    901
    902			fname_name(&nm) = xent->name;
    903			fname_len(&nm) = le16_to_cpu(xent->nlen);
    904
    905			xino = ubifs_iget(c->vfs_sb, le64_to_cpu(xent->inum));
    906			if (IS_ERR(xino)) {
    907				err = PTR_ERR(xino);
    908				ubifs_err(c, "dead directory entry '%s', error %d",
    909					  xent->name, err);
    910				ubifs_ro_mode(c, err);
    911				kfree(pxent);
    912				kfree(xent);
    913				goto out_release;
    914			}
    915			ubifs_assert(c, ubifs_inode(xino)->xattr);
    916
    917			clear_nlink(xino);
    918			pack_inode(c, ino, xino, 0);
    919			ino = (void *)ino + UBIFS_INO_NODE_SZ;
    920			iput(xino);
    921
    922			kfree(pxent);
    923			pxent = xent;
    924			key_read(c, &xent->key, &key);
    925		}
    926		kfree(pxent);
    927	}
    928
    929	pack_inode(c, ino, inode, 1);
    930	err = ubifs_node_calc_hash(c, ino, hash);
    931	if (err)
    932		goto out_release;
    933
    934	err = write_head(c, BASEHD, ino_start, write_len, &lnum, &offs, sync);
    935	if (err)
    936		goto out_release;
    937	if (!sync)
    938		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
    939					  inode->i_ino);
    940	release_head(c, BASEHD);
    941
    942	if (last_reference) {
    943		err = ubifs_tnc_remove_ino(c, inode->i_ino);
    944		if (err)
    945			goto out_ro;
    946		ubifs_delete_orphan(c, inode->i_ino);
    947		err = ubifs_add_dirt(c, lnum, write_len);
    948	} else {
    949		union ubifs_key key;
    950
    951		ubifs_add_auth_dirt(c, lnum);
    952
    953		ino_key_init(c, &key, inode->i_ino);
    954		err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash);
    955	}
    956	if (err)
    957		goto out_ro;
    958
    959	finish_reservation(c);
    960	spin_lock(&ui->ui_lock);
    961	ui->synced_i_size = ui->ui_size;
    962	spin_unlock(&ui->ui_lock);
    963	kfree(ino_start);
    964	return 0;
    965
    966out_release:
    967	release_head(c, BASEHD);
    968out_ro:
    969	ubifs_ro_mode(c, err);
    970	finish_reservation(c);
    971out_free:
    972	kfree(ino_start);
    973	return err;
    974}
    975
    976/**
    977 * ubifs_jnl_delete_inode - delete an inode.
    978 * @c: UBIFS file-system description object
    979 * @inode: inode to delete
    980 *
    981 * This function deletes inode @inode which includes removing it from orphans,
    982 * deleting it from TNC and, in some cases, writing a deletion inode to the
    983 * journal.
    984 *
    985 * When regular file inodes are unlinked or a directory inode is removed, the
    986 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
    987 * direntry to the media, and adds the inode to orphans. After this, when the
    988 * last reference to this inode has been dropped, this function is called. In
    989 * general, it has to write one more deletion inode to the media, because if
    990 * a commit happened between 'ubifs_jnl_update()' and
    991 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
    992 * anymore, and in fact it might not be on the flash anymore, because it might
    993 * have been garbage-collected already. And for optimization reasons UBIFS does
    994 * not read the orphan area if it has been unmounted cleanly, so it would have
    995 * no indication in the journal that there is a deleted inode which has to be
    996 * removed from TNC.
    997 *
    998 * However, if there was no commit between 'ubifs_jnl_update()' and
    999 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
   1000 * inode to the media for the second time. And this is quite a typical case.
   1001 *
   1002 * This function returns zero in case of success and a negative error code in
   1003 * case of failure.
   1004 */
   1005int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
   1006{
   1007	int err;
   1008	struct ubifs_inode *ui = ubifs_inode(inode);
   1009
   1010	ubifs_assert(c, inode->i_nlink == 0);
   1011
   1012	if (ui->xattr_cnt || ui->del_cmtno != c->cmt_no)
   1013		/* A commit happened for sure or inode hosts xattrs */
   1014		return ubifs_jnl_write_inode(c, inode);
   1015
   1016	down_read(&c->commit_sem);
   1017	/*
   1018	 * Check commit number again, because the first test has been done
   1019	 * without @c->commit_sem, so a commit might have happened.
   1020	 */
   1021	if (ui->del_cmtno != c->cmt_no) {
   1022		up_read(&c->commit_sem);
   1023		return ubifs_jnl_write_inode(c, inode);
   1024	}
   1025
   1026	err = ubifs_tnc_remove_ino(c, inode->i_ino);
   1027	if (err)
   1028		ubifs_ro_mode(c, err);
   1029	else
   1030		ubifs_delete_orphan(c, inode->i_ino);
   1031	up_read(&c->commit_sem);
   1032	return err;
   1033}
   1034
   1035/**
   1036 * ubifs_jnl_xrename - cross rename two directory entries.
   1037 * @c: UBIFS file-system description object
   1038 * @fst_dir: parent inode of 1st directory entry to exchange
   1039 * @fst_inode: 1st inode to exchange
   1040 * @fst_nm: name of 1st inode to exchange
   1041 * @snd_dir: parent inode of 2nd directory entry to exchange
   1042 * @snd_inode: 2nd inode to exchange
   1043 * @snd_nm: name of 2nd inode to exchange
   1044 * @sync: non-zero if the write-buffer has to be synchronized
   1045 *
   1046 * This function implements the cross rename operation which may involve
   1047 * writing 2 inodes and 2 directory entries. It marks the written inodes as clean
   1048 * and returns zero on success. In case of failure, a negative error code is
   1049 * returned.
   1050 */
   1051int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir,
   1052		      const struct inode *fst_inode,
   1053		      const struct fscrypt_name *fst_nm,
   1054		      const struct inode *snd_dir,
   1055		      const struct inode *snd_inode,
   1056		      const struct fscrypt_name *snd_nm, int sync)
   1057{
   1058	union ubifs_key key;
   1059	struct ubifs_dent_node *dent1, *dent2;
   1060	int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ;
   1061	int aligned_dlen1, aligned_dlen2;
   1062	int twoparents = (fst_dir != snd_dir);
   1063	void *p;
   1064	u8 hash_dent1[UBIFS_HASH_ARR_SZ];
   1065	u8 hash_dent2[UBIFS_HASH_ARR_SZ];
   1066	u8 hash_p1[UBIFS_HASH_ARR_SZ];
   1067	u8 hash_p2[UBIFS_HASH_ARR_SZ];
   1068
   1069	ubifs_assert(c, ubifs_inode(fst_dir)->data_len == 0);
   1070	ubifs_assert(c, ubifs_inode(snd_dir)->data_len == 0);
   1071	ubifs_assert(c, mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex));
   1072	ubifs_assert(c, mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex));
   1073
   1074	dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1;
   1075	dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1;
   1076	aligned_dlen1 = ALIGN(dlen1, 8);
   1077	aligned_dlen2 = ALIGN(dlen2, 8);
   1078
   1079	len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8);
   1080	if (twoparents)
   1081		len += plen;
   1082
   1083	len += ubifs_auth_node_sz(c);
   1084
   1085	dent1 = kzalloc(len, GFP_NOFS);
   1086	if (!dent1)
   1087		return -ENOMEM;
   1088
   1089	/* Make reservation before allocating sequence numbers */
   1090	err = make_reservation(c, BASEHD, len);
   1091	if (err)
   1092		goto out_free;
   1093
   1094	/* Make new dent for 1st entry */
   1095	dent1->ch.node_type = UBIFS_DENT_NODE;
   1096	dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, snd_nm);
   1097	dent1->inum = cpu_to_le64(fst_inode->i_ino);
   1098	dent1->type = get_dent_type(fst_inode->i_mode);
   1099	dent1->nlen = cpu_to_le16(fname_len(snd_nm));
   1100	memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm));
   1101	dent1->name[fname_len(snd_nm)] = '\0';
   1102	set_dent_cookie(c, dent1);
   1103	zero_dent_node_unused(dent1);
   1104	ubifs_prep_grp_node(c, dent1, dlen1, 0);
   1105	err = ubifs_node_calc_hash(c, dent1, hash_dent1);
   1106	if (err)
   1107		goto out_release;
   1108
   1109	/* Make new dent for 2nd entry */
   1110	dent2 = (void *)dent1 + aligned_dlen1;
   1111	dent2->ch.node_type = UBIFS_DENT_NODE;
   1112	dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, fst_nm);
   1113	dent2->inum = cpu_to_le64(snd_inode->i_ino);
   1114	dent2->type = get_dent_type(snd_inode->i_mode);
   1115	dent2->nlen = cpu_to_le16(fname_len(fst_nm));
   1116	memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm));
   1117	dent2->name[fname_len(fst_nm)] = '\0';
   1118	set_dent_cookie(c, dent2);
   1119	zero_dent_node_unused(dent2);
   1120	ubifs_prep_grp_node(c, dent2, dlen2, 0);
   1121	err = ubifs_node_calc_hash(c, dent2, hash_dent2);
   1122	if (err)
   1123		goto out_release;
   1124
   1125	p = (void *)dent2 + aligned_dlen2;
   1126	if (!twoparents) {
   1127		pack_inode(c, p, fst_dir, 1);
   1128		err = ubifs_node_calc_hash(c, p, hash_p1);
   1129		if (err)
   1130			goto out_release;
   1131	} else {
   1132		pack_inode(c, p, fst_dir, 0);
   1133		err = ubifs_node_calc_hash(c, p, hash_p1);
   1134		if (err)
   1135			goto out_release;
   1136		p += ALIGN(plen, 8);
   1137		pack_inode(c, p, snd_dir, 1);
   1138		err = ubifs_node_calc_hash(c, p, hash_p2);
   1139		if (err)
   1140			goto out_release;
   1141	}
   1142
   1143	err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync);
   1144	if (err)
   1145		goto out_release;
   1146	if (!sync) {
   1147		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
   1148
   1149		ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino);
   1150		ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino);
   1151	}
   1152	release_head(c, BASEHD);
   1153
   1154	ubifs_add_auth_dirt(c, lnum);
   1155
   1156	dent_key_init(c, &key, snd_dir->i_ino, snd_nm);
   1157	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, snd_nm);
   1158	if (err)
   1159		goto out_ro;
   1160
   1161	offs += aligned_dlen1;
   1162	dent_key_init(c, &key, fst_dir->i_ino, fst_nm);
   1163	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, fst_nm);
   1164	if (err)
   1165		goto out_ro;
   1166
   1167	offs += aligned_dlen2;
   1168
   1169	ino_key_init(c, &key, fst_dir->i_ino);
   1170	err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p1);
   1171	if (err)
   1172		goto out_ro;
   1173
   1174	if (twoparents) {
   1175		offs += ALIGN(plen, 8);
   1176		ino_key_init(c, &key, snd_dir->i_ino);
   1177		err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p2);
   1178		if (err)
   1179			goto out_ro;
   1180	}
   1181
   1182	finish_reservation(c);
   1183
   1184	mark_inode_clean(c, ubifs_inode(fst_dir));
   1185	if (twoparents)
   1186		mark_inode_clean(c, ubifs_inode(snd_dir));
   1187	kfree(dent1);
   1188	return 0;
   1189
   1190out_release:
   1191	release_head(c, BASEHD);
   1192out_ro:
   1193	ubifs_ro_mode(c, err);
   1194	finish_reservation(c);
   1195out_free:
   1196	kfree(dent1);
   1197	return err;
   1198}
   1199
   1200/**
   1201 * ubifs_jnl_rename - rename a directory entry.
   1202 * @c: UBIFS file-system description object
   1203 * @old_dir: parent inode of directory entry to rename
   1204 * @old_dentry: directory entry to rename
   1205 * @new_dir: parent inode of directory entry to rename
   1206 * @new_dentry: new directory entry (or directory entry to replace)
   1207 * @sync: non-zero if the write-buffer has to be synchronized
   1208 *
   1209 * This function implements the re-name operation which may involve writing up
   1210 * to 4 inodes(new inode, whiteout inode, old and new parent directory inodes)
   1211 * and 2 directory entries. It marks the written inodes as clean and returns
   1212 * zero on success. In case of failure, a negative error code is returned.
   1213 */
   1214int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
   1215		     const struct inode *old_inode,
   1216		     const struct fscrypt_name *old_nm,
   1217		     const struct inode *new_dir,
   1218		     const struct inode *new_inode,
   1219		     const struct fscrypt_name *new_nm,
   1220		     const struct inode *whiteout, int sync)
   1221{
   1222	void *p;
   1223	union ubifs_key key;
   1224	struct ubifs_dent_node *dent, *dent2;
   1225	int err, dlen1, dlen2, ilen, wlen, lnum, offs, len, orphan_added = 0;
   1226	int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
   1227	int last_reference = !!(new_inode && new_inode->i_nlink == 0);
   1228	int move = (old_dir != new_dir);
   1229	struct ubifs_inode *new_ui, *whiteout_ui;
   1230	u8 hash_old_dir[UBIFS_HASH_ARR_SZ];
   1231	u8 hash_new_dir[UBIFS_HASH_ARR_SZ];
   1232	u8 hash_new_inode[UBIFS_HASH_ARR_SZ];
   1233	u8 hash_whiteout_inode[UBIFS_HASH_ARR_SZ];
   1234	u8 hash_dent1[UBIFS_HASH_ARR_SZ];
   1235	u8 hash_dent2[UBIFS_HASH_ARR_SZ];
   1236
   1237	ubifs_assert(c, ubifs_inode(old_dir)->data_len == 0);
   1238	ubifs_assert(c, ubifs_inode(new_dir)->data_len == 0);
   1239	ubifs_assert(c, mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
   1240	ubifs_assert(c, mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
   1241
   1242	dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1;
   1243	dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1;
   1244	if (new_inode) {
   1245		new_ui = ubifs_inode(new_inode);
   1246		ubifs_assert(c, mutex_is_locked(&new_ui->ui_mutex));
   1247		ilen = UBIFS_INO_NODE_SZ;
   1248		if (!last_reference)
   1249			ilen += new_ui->data_len;
   1250	} else
   1251		ilen = 0;
   1252
   1253	if (whiteout) {
   1254		whiteout_ui = ubifs_inode(whiteout);
   1255		ubifs_assert(c, mutex_is_locked(&whiteout_ui->ui_mutex));
   1256		ubifs_assert(c, whiteout->i_nlink == 1);
   1257		ubifs_assert(c, !whiteout_ui->dirty);
   1258		wlen = UBIFS_INO_NODE_SZ;
   1259		wlen += whiteout_ui->data_len;
   1260	} else
   1261		wlen = 0;
   1262
   1263	aligned_dlen1 = ALIGN(dlen1, 8);
   1264	aligned_dlen2 = ALIGN(dlen2, 8);
   1265	len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) +
   1266	      ALIGN(wlen, 8) + ALIGN(plen, 8);
   1267	if (move)
   1268		len += plen;
   1269
   1270	len += ubifs_auth_node_sz(c);
   1271
   1272	dent = kzalloc(len, GFP_NOFS);
   1273	if (!dent)
   1274		return -ENOMEM;
   1275
   1276	/* Make reservation before allocating sequence numbers */
   1277	err = make_reservation(c, BASEHD, len);
   1278	if (err)
   1279		goto out_free;
   1280
   1281	/* Make new dent */
   1282	dent->ch.node_type = UBIFS_DENT_NODE;
   1283	dent_key_init_flash(c, &dent->key, new_dir->i_ino, new_nm);
   1284	dent->inum = cpu_to_le64(old_inode->i_ino);
   1285	dent->type = get_dent_type(old_inode->i_mode);
   1286	dent->nlen = cpu_to_le16(fname_len(new_nm));
   1287	memcpy(dent->name, fname_name(new_nm), fname_len(new_nm));
   1288	dent->name[fname_len(new_nm)] = '\0';
   1289	set_dent_cookie(c, dent);
   1290	zero_dent_node_unused(dent);
   1291	ubifs_prep_grp_node(c, dent, dlen1, 0);
   1292	err = ubifs_node_calc_hash(c, dent, hash_dent1);
   1293	if (err)
   1294		goto out_release;
   1295
   1296	dent2 = (void *)dent + aligned_dlen1;
   1297	dent2->ch.node_type = UBIFS_DENT_NODE;
   1298	dent_key_init_flash(c, &dent2->key, old_dir->i_ino, old_nm);
   1299
   1300	if (whiteout) {
   1301		dent2->inum = cpu_to_le64(whiteout->i_ino);
   1302		dent2->type = get_dent_type(whiteout->i_mode);
   1303	} else {
   1304		/* Make deletion dent */
   1305		dent2->inum = 0;
   1306		dent2->type = DT_UNKNOWN;
   1307	}
   1308	dent2->nlen = cpu_to_le16(fname_len(old_nm));
   1309	memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm));
   1310	dent2->name[fname_len(old_nm)] = '\0';
   1311	set_dent_cookie(c, dent2);
   1312	zero_dent_node_unused(dent2);
   1313	ubifs_prep_grp_node(c, dent2, dlen2, 0);
   1314	err = ubifs_node_calc_hash(c, dent2, hash_dent2);
   1315	if (err)
   1316		goto out_release;
   1317
   1318	p = (void *)dent2 + aligned_dlen2;
   1319	if (new_inode) {
   1320		pack_inode(c, p, new_inode, 0);
   1321		err = ubifs_node_calc_hash(c, p, hash_new_inode);
   1322		if (err)
   1323			goto out_release;
   1324
   1325		p += ALIGN(ilen, 8);
   1326	}
   1327
   1328	if (whiteout) {
   1329		pack_inode(c, p, whiteout, 0);
   1330		err = ubifs_node_calc_hash(c, p, hash_whiteout_inode);
   1331		if (err)
   1332			goto out_release;
   1333
   1334		p += ALIGN(wlen, 8);
   1335	}
   1336
   1337	if (!move) {
   1338		pack_inode(c, p, old_dir, 1);
   1339		err = ubifs_node_calc_hash(c, p, hash_old_dir);
   1340		if (err)
   1341			goto out_release;
   1342	} else {
   1343		pack_inode(c, p, old_dir, 0);
   1344		err = ubifs_node_calc_hash(c, p, hash_old_dir);
   1345		if (err)
   1346			goto out_release;
   1347
   1348		p += ALIGN(plen, 8);
   1349		pack_inode(c, p, new_dir, 1);
   1350		err = ubifs_node_calc_hash(c, p, hash_new_dir);
   1351		if (err)
   1352			goto out_release;
   1353	}
   1354
   1355	if (last_reference) {
   1356		err = ubifs_add_orphan(c, new_inode->i_ino);
   1357		if (err) {
   1358			release_head(c, BASEHD);
   1359			goto out_finish;
   1360		}
   1361		new_ui->del_cmtno = c->cmt_no;
   1362		orphan_added = 1;
   1363	}
   1364
   1365	err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
   1366	if (err)
   1367		goto out_release;
   1368	if (!sync) {
   1369		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
   1370
   1371		ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
   1372		ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
   1373		if (new_inode)
   1374			ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
   1375						  new_inode->i_ino);
   1376		if (whiteout)
   1377			ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
   1378						  whiteout->i_ino);
   1379	}
   1380	release_head(c, BASEHD);
   1381
   1382	ubifs_add_auth_dirt(c, lnum);
   1383
   1384	dent_key_init(c, &key, new_dir->i_ino, new_nm);
   1385	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, new_nm);
   1386	if (err)
   1387		goto out_ro;
   1388
   1389	offs += aligned_dlen1;
   1390	if (whiteout) {
   1391		dent_key_init(c, &key, old_dir->i_ino, old_nm);
   1392		err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, old_nm);
   1393		if (err)
   1394			goto out_ro;
   1395	} else {
   1396		err = ubifs_add_dirt(c, lnum, dlen2);
   1397		if (err)
   1398			goto out_ro;
   1399
   1400		dent_key_init(c, &key, old_dir->i_ino, old_nm);
   1401		err = ubifs_tnc_remove_nm(c, &key, old_nm);
   1402		if (err)
   1403			goto out_ro;
   1404	}
   1405
   1406	offs += aligned_dlen2;
   1407	if (new_inode) {
   1408		ino_key_init(c, &key, new_inode->i_ino);
   1409		err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash_new_inode);
   1410		if (err)
   1411			goto out_ro;
   1412		offs += ALIGN(ilen, 8);
   1413	}
   1414
   1415	if (whiteout) {
   1416		ino_key_init(c, &key, whiteout->i_ino);
   1417		err = ubifs_tnc_add(c, &key, lnum, offs, wlen,
   1418				    hash_whiteout_inode);
   1419		if (err)
   1420			goto out_ro;
   1421		offs += ALIGN(wlen, 8);
   1422	}
   1423
   1424	ino_key_init(c, &key, old_dir->i_ino);
   1425	err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_old_dir);
   1426	if (err)
   1427		goto out_ro;
   1428
   1429	if (move) {
   1430		offs += ALIGN(plen, 8);
   1431		ino_key_init(c, &key, new_dir->i_ino);
   1432		err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_new_dir);
   1433		if (err)
   1434			goto out_ro;
   1435	}
   1436
   1437	finish_reservation(c);
   1438	if (new_inode) {
   1439		mark_inode_clean(c, new_ui);
   1440		spin_lock(&new_ui->ui_lock);
   1441		new_ui->synced_i_size = new_ui->ui_size;
   1442		spin_unlock(&new_ui->ui_lock);
   1443	}
   1444	/*
   1445	 * No need to mark whiteout inode clean.
   1446	 * Whiteout doesn't have non-zero size, no need to update
   1447	 * synced_i_size for whiteout_ui.
   1448	 */
   1449	mark_inode_clean(c, ubifs_inode(old_dir));
   1450	if (move)
   1451		mark_inode_clean(c, ubifs_inode(new_dir));
   1452	kfree(dent);
   1453	return 0;
   1454
   1455out_release:
   1456	release_head(c, BASEHD);
   1457out_ro:
   1458	ubifs_ro_mode(c, err);
   1459	if (orphan_added)
   1460		ubifs_delete_orphan(c, new_inode->i_ino);
   1461out_finish:
   1462	finish_reservation(c);
   1463out_free:
   1464	kfree(dent);
   1465	return err;
   1466}
   1467
   1468/**
   1469 * truncate_data_node - re-compress/encrypt a truncated data node.
   1470 * @c: UBIFS file-system description object
   1471 * @inode: inode which refers to the data node
   1472 * @block: data block number
   1473 * @dn: data node to re-compress
   1474 * @new_len: new length
   1475 *
   1476 * This function is used when an inode is truncated and the last data node of
   1477 * the inode has to be re-compressed/encrypted and re-written.
   1478 */
   1479static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode,
   1480			      unsigned int block, struct ubifs_data_node *dn,
   1481			      int *new_len)
   1482{
   1483	void *buf;
   1484	int err, dlen, compr_type, out_len, old_dlen;
   1485
   1486	out_len = le32_to_cpu(dn->size);
   1487	buf = kmalloc_array(out_len, WORST_COMPR_FACTOR, GFP_NOFS);
   1488	if (!buf)
   1489		return -ENOMEM;
   1490
   1491	dlen = old_dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
   1492	compr_type = le16_to_cpu(dn->compr_type);
   1493
   1494	if (IS_ENCRYPTED(inode)) {
   1495		err = ubifs_decrypt(inode, dn, &dlen, block);
   1496		if (err)
   1497			goto out;
   1498	}
   1499
   1500	if (compr_type == UBIFS_COMPR_NONE) {
   1501		out_len = *new_len;
   1502	} else {
   1503		err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type);
   1504		if (err)
   1505			goto out;
   1506
   1507		ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type);
   1508	}
   1509
   1510	if (IS_ENCRYPTED(inode)) {
   1511		err = ubifs_encrypt(inode, dn, out_len, &old_dlen, block);
   1512		if (err)
   1513			goto out;
   1514
   1515		out_len = old_dlen;
   1516	} else {
   1517		dn->compr_size = 0;
   1518	}
   1519
   1520	ubifs_assert(c, out_len <= UBIFS_BLOCK_SIZE);
   1521	dn->compr_type = cpu_to_le16(compr_type);
   1522	dn->size = cpu_to_le32(*new_len);
   1523	*new_len = UBIFS_DATA_NODE_SZ + out_len;
   1524	err = 0;
   1525out:
   1526	kfree(buf);
   1527	return err;
   1528}
   1529
   1530/**
   1531 * ubifs_jnl_truncate - update the journal for a truncation.
   1532 * @c: UBIFS file-system description object
   1533 * @inode: inode to truncate
   1534 * @old_size: old size
   1535 * @new_size: new size
   1536 *
   1537 * When the size of a file decreases due to truncation, a truncation node is
   1538 * written, the journal tree is updated, and the last data block is re-written
   1539 * if it has been affected. The inode is also updated in order to synchronize
   1540 * the new inode size.
   1541 *
   1542 * This function marks the inode as clean and returns zero on success. In case
   1543 * of failure, a negative error code is returned.
   1544 */
   1545int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
   1546		       loff_t old_size, loff_t new_size)
   1547{
   1548	union ubifs_key key, to_key;
   1549	struct ubifs_ino_node *ino;
   1550	struct ubifs_trun_node *trun;
   1551	struct ubifs_data_node *dn;
   1552	int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
   1553	struct ubifs_inode *ui = ubifs_inode(inode);
   1554	ino_t inum = inode->i_ino;
   1555	unsigned int blk;
   1556	u8 hash_ino[UBIFS_HASH_ARR_SZ];
   1557	u8 hash_dn[UBIFS_HASH_ARR_SZ];
   1558
   1559	dbg_jnl("ino %lu, size %lld -> %lld",
   1560		(unsigned long)inum, old_size, new_size);
   1561	ubifs_assert(c, !ui->data_len);
   1562	ubifs_assert(c, S_ISREG(inode->i_mode));
   1563	ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
   1564
   1565	sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
   1566	     UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
   1567
   1568	sz += ubifs_auth_node_sz(c);
   1569
   1570	ino = kmalloc(sz, GFP_NOFS);
   1571	if (!ino)
   1572		return -ENOMEM;
   1573
   1574	trun = (void *)ino + UBIFS_INO_NODE_SZ;
   1575	trun->ch.node_type = UBIFS_TRUN_NODE;
   1576	trun->inum = cpu_to_le32(inum);
   1577	trun->old_size = cpu_to_le64(old_size);
   1578	trun->new_size = cpu_to_le64(new_size);
   1579	zero_trun_node_unused(trun);
   1580
   1581	dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
   1582	if (dlen) {
   1583		/* Get last data block so it can be truncated */
   1584		dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
   1585		blk = new_size >> UBIFS_BLOCK_SHIFT;
   1586		data_key_init(c, &key, inum, blk);
   1587		dbg_jnlk(&key, "last block key ");
   1588		err = ubifs_tnc_lookup(c, &key, dn);
   1589		if (err == -ENOENT)
   1590			dlen = 0; /* Not found (so it is a hole) */
   1591		else if (err)
   1592			goto out_free;
   1593		else {
   1594			int dn_len = le32_to_cpu(dn->size);
   1595
   1596			if (dn_len <= 0 || dn_len > UBIFS_BLOCK_SIZE) {
   1597				ubifs_err(c, "bad data node (block %u, inode %lu)",
   1598					  blk, inode->i_ino);
   1599				ubifs_dump_node(c, dn, sz - UBIFS_INO_NODE_SZ -
   1600						UBIFS_TRUN_NODE_SZ);
   1601				goto out_free;
   1602			}
   1603
   1604			if (dn_len <= dlen)
   1605				dlen = 0; /* Nothing to do */
   1606			else {
   1607				err = truncate_data_node(c, inode, blk, dn, &dlen);
   1608				if (err)
   1609					goto out_free;
   1610			}
   1611		}
   1612	}
   1613
   1614	/* Must make reservation before allocating sequence numbers */
   1615	len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
   1616
   1617	if (ubifs_authenticated(c))
   1618		len += ALIGN(dlen, 8) + ubifs_auth_node_sz(c);
   1619	else
   1620		len += dlen;
   1621
   1622	err = make_reservation(c, BASEHD, len);
   1623	if (err)
   1624		goto out_free;
   1625
   1626	pack_inode(c, ino, inode, 0);
   1627	err = ubifs_node_calc_hash(c, ino, hash_ino);
   1628	if (err)
   1629		goto out_release;
   1630
   1631	ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
   1632	if (dlen) {
   1633		ubifs_prep_grp_node(c, dn, dlen, 1);
   1634		err = ubifs_node_calc_hash(c, dn, hash_dn);
   1635		if (err)
   1636			goto out_release;
   1637	}
   1638
   1639	err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
   1640	if (err)
   1641		goto out_release;
   1642	if (!sync)
   1643		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
   1644	release_head(c, BASEHD);
   1645
   1646	ubifs_add_auth_dirt(c, lnum);
   1647
   1648	if (dlen) {
   1649		sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
   1650		err = ubifs_tnc_add(c, &key, lnum, sz, dlen, hash_dn);
   1651		if (err)
   1652			goto out_ro;
   1653	}
   1654
   1655	ino_key_init(c, &key, inum);
   1656	err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ, hash_ino);
   1657	if (err)
   1658		goto out_ro;
   1659
   1660	err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
   1661	if (err)
   1662		goto out_ro;
   1663
   1664	bit = new_size & (UBIFS_BLOCK_SIZE - 1);
   1665	blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
   1666	data_key_init(c, &key, inum, blk);
   1667
   1668	bit = old_size & (UBIFS_BLOCK_SIZE - 1);
   1669	blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
   1670	data_key_init(c, &to_key, inum, blk);
   1671
   1672	err = ubifs_tnc_remove_range(c, &key, &to_key);
   1673	if (err)
   1674		goto out_ro;
   1675
   1676	finish_reservation(c);
   1677	spin_lock(&ui->ui_lock);
   1678	ui->synced_i_size = ui->ui_size;
   1679	spin_unlock(&ui->ui_lock);
   1680	mark_inode_clean(c, ui);
   1681	kfree(ino);
   1682	return 0;
   1683
   1684out_release:
   1685	release_head(c, BASEHD);
   1686out_ro:
   1687	ubifs_ro_mode(c, err);
   1688	finish_reservation(c);
   1689out_free:
   1690	kfree(ino);
   1691	return err;
   1692}
   1693
   1694
   1695/**
   1696 * ubifs_jnl_delete_xattr - delete an extended attribute.
   1697 * @c: UBIFS file-system description object
   1698 * @host: host inode
   1699 * @inode: extended attribute inode
   1700 * @nm: extended attribute entry name
   1701 *
   1702 * This function delete an extended attribute which is very similar to
   1703 * un-linking regular files - it writes a deletion xentry, a deletion inode and
   1704 * updates the target inode. Returns zero in case of success and a negative
   1705 * error code in case of failure.
   1706 */
   1707int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
   1708			   const struct inode *inode,
   1709			   const struct fscrypt_name *nm)
   1710{
   1711	int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen, write_len;
   1712	struct ubifs_dent_node *xent;
   1713	struct ubifs_ino_node *ino;
   1714	union ubifs_key xent_key, key1, key2;
   1715	int sync = IS_DIRSYNC(host);
   1716	struct ubifs_inode *host_ui = ubifs_inode(host);
   1717	u8 hash[UBIFS_HASH_ARR_SZ];
   1718
   1719	ubifs_assert(c, inode->i_nlink == 0);
   1720	ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
   1721
   1722	/*
   1723	 * Since we are deleting the inode, we do not bother to attach any data
   1724	 * to it and assume its length is %UBIFS_INO_NODE_SZ.
   1725	 */
   1726	xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
   1727	aligned_xlen = ALIGN(xlen, 8);
   1728	hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
   1729	len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
   1730
   1731	write_len = len + ubifs_auth_node_sz(c);
   1732
   1733	xent = kzalloc(write_len, GFP_NOFS);
   1734	if (!xent)
   1735		return -ENOMEM;
   1736
   1737	/* Make reservation before allocating sequence numbers */
   1738	err = make_reservation(c, BASEHD, write_len);
   1739	if (err) {
   1740		kfree(xent);
   1741		return err;
   1742	}
   1743
   1744	xent->ch.node_type = UBIFS_XENT_NODE;
   1745	xent_key_init(c, &xent_key, host->i_ino, nm);
   1746	key_write(c, &xent_key, xent->key);
   1747	xent->inum = 0;
   1748	xent->type = get_dent_type(inode->i_mode);
   1749	xent->nlen = cpu_to_le16(fname_len(nm));
   1750	memcpy(xent->name, fname_name(nm), fname_len(nm));
   1751	xent->name[fname_len(nm)] = '\0';
   1752	zero_dent_node_unused(xent);
   1753	ubifs_prep_grp_node(c, xent, xlen, 0);
   1754
   1755	ino = (void *)xent + aligned_xlen;
   1756	pack_inode(c, ino, inode, 0);
   1757	ino = (void *)ino + UBIFS_INO_NODE_SZ;
   1758	pack_inode(c, ino, host, 1);
   1759	err = ubifs_node_calc_hash(c, ino, hash);
   1760	if (err)
   1761		goto out_release;
   1762
   1763	err = write_head(c, BASEHD, xent, write_len, &lnum, &xent_offs, sync);
   1764	if (!sync && !err)
   1765		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
   1766	release_head(c, BASEHD);
   1767
   1768	ubifs_add_auth_dirt(c, lnum);
   1769	kfree(xent);
   1770	if (err)
   1771		goto out_ro;
   1772
   1773	/* Remove the extended attribute entry from TNC */
   1774	err = ubifs_tnc_remove_nm(c, &xent_key, nm);
   1775	if (err)
   1776		goto out_ro;
   1777	err = ubifs_add_dirt(c, lnum, xlen);
   1778	if (err)
   1779		goto out_ro;
   1780
   1781	/*
   1782	 * Remove all nodes belonging to the extended attribute inode from TNC.
   1783	 * Well, there actually must be only one node - the inode itself.
   1784	 */
   1785	lowest_ino_key(c, &key1, inode->i_ino);
   1786	highest_ino_key(c, &key2, inode->i_ino);
   1787	err = ubifs_tnc_remove_range(c, &key1, &key2);
   1788	if (err)
   1789		goto out_ro;
   1790	err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
   1791	if (err)
   1792		goto out_ro;
   1793
   1794	/* And update TNC with the new host inode position */
   1795	ino_key_init(c, &key1, host->i_ino);
   1796	err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen, hash);
   1797	if (err)
   1798		goto out_ro;
   1799
   1800	finish_reservation(c);
   1801	spin_lock(&host_ui->ui_lock);
   1802	host_ui->synced_i_size = host_ui->ui_size;
   1803	spin_unlock(&host_ui->ui_lock);
   1804	mark_inode_clean(c, host_ui);
   1805	return 0;
   1806
   1807out_release:
   1808	kfree(xent);
   1809	release_head(c, BASEHD);
   1810out_ro:
   1811	ubifs_ro_mode(c, err);
   1812	finish_reservation(c);
   1813	return err;
   1814}
   1815
   1816/**
   1817 * ubifs_jnl_change_xattr - change an extended attribute.
   1818 * @c: UBIFS file-system description object
   1819 * @inode: extended attribute inode
   1820 * @host: host inode
   1821 *
   1822 * This function writes the updated version of an extended attribute inode and
   1823 * the host inode to the journal (to the base head). The host inode is written
   1824 * after the extended attribute inode in order to guarantee that the extended
   1825 * attribute will be flushed when the inode is synchronized by 'fsync()' and
   1826 * consequently, the write-buffer is synchronized. This function returns zero
   1827 * in case of success and a negative error code in case of failure.
   1828 */
   1829int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
   1830			   const struct inode *host)
   1831{
   1832	int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
   1833	struct ubifs_inode *host_ui = ubifs_inode(host);
   1834	struct ubifs_ino_node *ino;
   1835	union ubifs_key key;
   1836	int sync = IS_DIRSYNC(host);
   1837	u8 hash_host[UBIFS_HASH_ARR_SZ];
   1838	u8 hash[UBIFS_HASH_ARR_SZ];
   1839
   1840	dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
   1841	ubifs_assert(c, inode->i_nlink > 0);
   1842	ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
   1843
   1844	len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
   1845	len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
   1846	aligned_len1 = ALIGN(len1, 8);
   1847	aligned_len = aligned_len1 + ALIGN(len2, 8);
   1848
   1849	aligned_len += ubifs_auth_node_sz(c);
   1850
   1851	ino = kzalloc(aligned_len, GFP_NOFS);
   1852	if (!ino)
   1853		return -ENOMEM;
   1854
   1855	/* Make reservation before allocating sequence numbers */
   1856	err = make_reservation(c, BASEHD, aligned_len);
   1857	if (err)
   1858		goto out_free;
   1859
   1860	pack_inode(c, ino, host, 0);
   1861	err = ubifs_node_calc_hash(c, ino, hash_host);
   1862	if (err)
   1863		goto out_release;
   1864	pack_inode(c, (void *)ino + aligned_len1, inode, 1);
   1865	err = ubifs_node_calc_hash(c, (void *)ino + aligned_len1, hash);
   1866	if (err)
   1867		goto out_release;
   1868
   1869	err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
   1870	if (!sync && !err) {
   1871		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
   1872
   1873		ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
   1874		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
   1875	}
   1876	release_head(c, BASEHD);
   1877	if (err)
   1878		goto out_ro;
   1879
   1880	ubifs_add_auth_dirt(c, lnum);
   1881
   1882	ino_key_init(c, &key, host->i_ino);
   1883	err = ubifs_tnc_add(c, &key, lnum, offs, len1, hash_host);
   1884	if (err)
   1885		goto out_ro;
   1886
   1887	ino_key_init(c, &key, inode->i_ino);
   1888	err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2, hash);
   1889	if (err)
   1890		goto out_ro;
   1891
   1892	finish_reservation(c);
   1893	spin_lock(&host_ui->ui_lock);
   1894	host_ui->synced_i_size = host_ui->ui_size;
   1895	spin_unlock(&host_ui->ui_lock);
   1896	mark_inode_clean(c, host_ui);
   1897	kfree(ino);
   1898	return 0;
   1899
   1900out_release:
   1901	release_head(c, BASEHD);
   1902out_ro:
   1903	ubifs_ro_mode(c, err);
   1904	finish_reservation(c);
   1905out_free:
   1906	kfree(ino);
   1907	return err;
   1908}
   1909