cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

lpt.c (63225B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * This file is part of UBIFS.
      4 *
      5 * Copyright (C) 2006-2008 Nokia Corporation.
      6 *
      7 * Authors: Adrian Hunter
      8 *          Artem Bityutskiy (Битюцкий Артём)
      9 */
     10
     11/*
     12 * This file implements the LEB properties tree (LPT) area. The LPT area
     13 * contains the LEB properties tree, a table of LPT area eraseblocks (ltab), and
     14 * (for the "big" model) a table of saved LEB numbers (lsave). The LPT area sits
     15 * between the log and the orphan area.
     16 *
     17 * The LPT area is like a miniature self-contained file system. It is required
     18 * that it never runs out of space, is fast to access and update, and scales
     19 * logarithmically. The LEB properties tree is implemented as a wandering tree
     20 * much like the TNC, and the LPT area has its own garbage collection.
     21 *
     22 * The LPT has two slightly different forms called the "small model" and the
     23 * "big model". The small model is used when the entire LEB properties table
     24 * can be written into a single eraseblock. In that case, garbage collection
     25 * consists of just writing the whole table, which therefore makes all other
     26 * eraseblocks reusable. In the case of the big model, dirty eraseblocks are
     27 * selected for garbage collection, which consists of marking the clean nodes in
     28 * that LEB as dirty, and then only the dirty nodes are written out. Also, in
     29 * the case of the big model, a table of LEB numbers is saved so that the entire
     30 * LPT does not to be scanned looking for empty eraseblocks when UBIFS is first
     31 * mounted.
     32 */
     33
     34#include "ubifs.h"
     35#include <linux/crc16.h>
     36#include <linux/math64.h>
     37#include <linux/slab.h>
     38
     39/**
     40 * do_calc_lpt_geom - calculate sizes for the LPT area.
     41 * @c: the UBIFS file-system description object
     42 *
     43 * Calculate the sizes of LPT bit fields, nodes, and tree, based on the
     44 * properties of the flash and whether LPT is "big" (c->big_lpt).
     45 */
     46static void do_calc_lpt_geom(struct ubifs_info *c)
     47{
     48	int i, n, bits, per_leb_wastage, max_pnode_cnt;
     49	long long sz, tot_wastage;
     50
     51	n = c->main_lebs + c->max_leb_cnt - c->leb_cnt;
     52	max_pnode_cnt = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
     53
     54	c->lpt_hght = 1;
     55	n = UBIFS_LPT_FANOUT;
     56	while (n < max_pnode_cnt) {
     57		c->lpt_hght += 1;
     58		n <<= UBIFS_LPT_FANOUT_SHIFT;
     59	}
     60
     61	c->pnode_cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
     62
     63	n = DIV_ROUND_UP(c->pnode_cnt, UBIFS_LPT_FANOUT);
     64	c->nnode_cnt = n;
     65	for (i = 1; i < c->lpt_hght; i++) {
     66		n = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
     67		c->nnode_cnt += n;
     68	}
     69
     70	c->space_bits = fls(c->leb_size) - 3;
     71	c->lpt_lnum_bits = fls(c->lpt_lebs);
     72	c->lpt_offs_bits = fls(c->leb_size - 1);
     73	c->lpt_spc_bits = fls(c->leb_size);
     74
     75	n = DIV_ROUND_UP(c->max_leb_cnt, UBIFS_LPT_FANOUT);
     76	c->pcnt_bits = fls(n - 1);
     77
     78	c->lnum_bits = fls(c->max_leb_cnt - 1);
     79
     80	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
     81	       (c->big_lpt ? c->pcnt_bits : 0) +
     82	       (c->space_bits * 2 + 1) * UBIFS_LPT_FANOUT;
     83	c->pnode_sz = (bits + 7) / 8;
     84
     85	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
     86	       (c->big_lpt ? c->pcnt_bits : 0) +
     87	       (c->lpt_lnum_bits + c->lpt_offs_bits) * UBIFS_LPT_FANOUT;
     88	c->nnode_sz = (bits + 7) / 8;
     89
     90	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
     91	       c->lpt_lebs * c->lpt_spc_bits * 2;
     92	c->ltab_sz = (bits + 7) / 8;
     93
     94	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
     95	       c->lnum_bits * c->lsave_cnt;
     96	c->lsave_sz = (bits + 7) / 8;
     97
     98	/* Calculate the minimum LPT size */
     99	c->lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
    100	c->lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
    101	c->lpt_sz += c->ltab_sz;
    102	if (c->big_lpt)
    103		c->lpt_sz += c->lsave_sz;
    104
    105	/* Add wastage */
    106	sz = c->lpt_sz;
    107	per_leb_wastage = max_t(int, c->pnode_sz, c->nnode_sz);
    108	sz += per_leb_wastage;
    109	tot_wastage = per_leb_wastage;
    110	while (sz > c->leb_size) {
    111		sz += per_leb_wastage;
    112		sz -= c->leb_size;
    113		tot_wastage += per_leb_wastage;
    114	}
    115	tot_wastage += ALIGN(sz, c->min_io_size) - sz;
    116	c->lpt_sz += tot_wastage;
    117}
    118
    119/**
    120 * ubifs_calc_lpt_geom - calculate and check sizes for the LPT area.
    121 * @c: the UBIFS file-system description object
    122 *
    123 * This function returns %0 on success and a negative error code on failure.
    124 */
    125int ubifs_calc_lpt_geom(struct ubifs_info *c)
    126{
    127	int lebs_needed;
    128	long long sz;
    129
    130	do_calc_lpt_geom(c);
    131
    132	/* Verify that lpt_lebs is big enough */
    133	sz = c->lpt_sz * 2; /* Must have at least 2 times the size */
    134	lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
    135	if (lebs_needed > c->lpt_lebs) {
    136		ubifs_err(c, "too few LPT LEBs");
    137		return -EINVAL;
    138	}
    139
    140	/* Verify that ltab fits in a single LEB (since ltab is a single node */
    141	if (c->ltab_sz > c->leb_size) {
    142		ubifs_err(c, "LPT ltab too big");
    143		return -EINVAL;
    144	}
    145
    146	c->check_lpt_free = c->big_lpt;
    147	return 0;
    148}
    149
    150/**
    151 * calc_dflt_lpt_geom - calculate default LPT geometry.
    152 * @c: the UBIFS file-system description object
    153 * @main_lebs: number of main area LEBs is passed and returned here
    154 * @big_lpt: whether the LPT area is "big" is returned here
    155 *
    156 * The size of the LPT area depends on parameters that themselves are dependent
    157 * on the size of the LPT area. This function, successively recalculates the LPT
    158 * area geometry until the parameters and resultant geometry are consistent.
    159 *
    160 * This function returns %0 on success and a negative error code on failure.
    161 */
    162static int calc_dflt_lpt_geom(struct ubifs_info *c, int *main_lebs,
    163			      int *big_lpt)
    164{
    165	int i, lebs_needed;
    166	long long sz;
    167
    168	/* Start by assuming the minimum number of LPT LEBs */
    169	c->lpt_lebs = UBIFS_MIN_LPT_LEBS;
    170	c->main_lebs = *main_lebs - c->lpt_lebs;
    171	if (c->main_lebs <= 0)
    172		return -EINVAL;
    173
    174	/* And assume we will use the small LPT model */
    175	c->big_lpt = 0;
    176
    177	/*
    178	 * Calculate the geometry based on assumptions above and then see if it
    179	 * makes sense
    180	 */
    181	do_calc_lpt_geom(c);
    182
    183	/* Small LPT model must have lpt_sz < leb_size */
    184	if (c->lpt_sz > c->leb_size) {
    185		/* Nope, so try again using big LPT model */
    186		c->big_lpt = 1;
    187		do_calc_lpt_geom(c);
    188	}
    189
    190	/* Now check there are enough LPT LEBs */
    191	for (i = 0; i < 64 ; i++) {
    192		sz = c->lpt_sz * 4; /* Allow 4 times the size */
    193		lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
    194		if (lebs_needed > c->lpt_lebs) {
    195			/* Not enough LPT LEBs so try again with more */
    196			c->lpt_lebs = lebs_needed;
    197			c->main_lebs = *main_lebs - c->lpt_lebs;
    198			if (c->main_lebs <= 0)
    199				return -EINVAL;
    200			do_calc_lpt_geom(c);
    201			continue;
    202		}
    203		if (c->ltab_sz > c->leb_size) {
    204			ubifs_err(c, "LPT ltab too big");
    205			return -EINVAL;
    206		}
    207		*main_lebs = c->main_lebs;
    208		*big_lpt = c->big_lpt;
    209		return 0;
    210	}
    211	return -EINVAL;
    212}
    213
    214/**
    215 * pack_bits - pack bit fields end-to-end.
    216 * @c: UBIFS file-system description object
    217 * @addr: address at which to pack (passed and next address returned)
    218 * @pos: bit position at which to pack (passed and next position returned)
    219 * @val: value to pack
    220 * @nrbits: number of bits of value to pack (1-32)
    221 */
    222static void pack_bits(const struct ubifs_info *c, uint8_t **addr, int *pos, uint32_t val, int nrbits)
    223{
    224	uint8_t *p = *addr;
    225	int b = *pos;
    226
    227	ubifs_assert(c, nrbits > 0);
    228	ubifs_assert(c, nrbits <= 32);
    229	ubifs_assert(c, *pos >= 0);
    230	ubifs_assert(c, *pos < 8);
    231	ubifs_assert(c, (val >> nrbits) == 0 || nrbits == 32);
    232	if (b) {
    233		*p |= ((uint8_t)val) << b;
    234		nrbits += b;
    235		if (nrbits > 8) {
    236			*++p = (uint8_t)(val >>= (8 - b));
    237			if (nrbits > 16) {
    238				*++p = (uint8_t)(val >>= 8);
    239				if (nrbits > 24) {
    240					*++p = (uint8_t)(val >>= 8);
    241					if (nrbits > 32)
    242						*++p = (uint8_t)(val >>= 8);
    243				}
    244			}
    245		}
    246	} else {
    247		*p = (uint8_t)val;
    248		if (nrbits > 8) {
    249			*++p = (uint8_t)(val >>= 8);
    250			if (nrbits > 16) {
    251				*++p = (uint8_t)(val >>= 8);
    252				if (nrbits > 24)
    253					*++p = (uint8_t)(val >>= 8);
    254			}
    255		}
    256	}
    257	b = nrbits & 7;
    258	if (b == 0)
    259		p++;
    260	*addr = p;
    261	*pos = b;
    262}
    263
    264/**
    265 * ubifs_unpack_bits - unpack bit fields.
    266 * @c: UBIFS file-system description object
    267 * @addr: address at which to unpack (passed and next address returned)
    268 * @pos: bit position at which to unpack (passed and next position returned)
    269 * @nrbits: number of bits of value to unpack (1-32)
    270 *
    271 * This functions returns the value unpacked.
    272 */
    273uint32_t ubifs_unpack_bits(const struct ubifs_info *c, uint8_t **addr, int *pos, int nrbits)
    274{
    275	const int k = 32 - nrbits;
    276	uint8_t *p = *addr;
    277	int b = *pos;
    278	uint32_t val;
    279	const int bytes = (nrbits + b + 7) >> 3;
    280
    281	ubifs_assert(c, nrbits > 0);
    282	ubifs_assert(c, nrbits <= 32);
    283	ubifs_assert(c, *pos >= 0);
    284	ubifs_assert(c, *pos < 8);
    285	if (b) {
    286		switch (bytes) {
    287		case 2:
    288			val = p[1];
    289			break;
    290		case 3:
    291			val = p[1] | ((uint32_t)p[2] << 8);
    292			break;
    293		case 4:
    294			val = p[1] | ((uint32_t)p[2] << 8) |
    295				     ((uint32_t)p[3] << 16);
    296			break;
    297		case 5:
    298			val = p[1] | ((uint32_t)p[2] << 8) |
    299				     ((uint32_t)p[3] << 16) |
    300				     ((uint32_t)p[4] << 24);
    301		}
    302		val <<= (8 - b);
    303		val |= *p >> b;
    304		nrbits += b;
    305	} else {
    306		switch (bytes) {
    307		case 1:
    308			val = p[0];
    309			break;
    310		case 2:
    311			val = p[0] | ((uint32_t)p[1] << 8);
    312			break;
    313		case 3:
    314			val = p[0] | ((uint32_t)p[1] << 8) |
    315				     ((uint32_t)p[2] << 16);
    316			break;
    317		case 4:
    318			val = p[0] | ((uint32_t)p[1] << 8) |
    319				     ((uint32_t)p[2] << 16) |
    320				     ((uint32_t)p[3] << 24);
    321			break;
    322		}
    323	}
    324	val <<= k;
    325	val >>= k;
    326	b = nrbits & 7;
    327	p += nrbits >> 3;
    328	*addr = p;
    329	*pos = b;
    330	ubifs_assert(c, (val >> nrbits) == 0 || nrbits - b == 32);
    331	return val;
    332}
    333
    334/**
    335 * ubifs_pack_pnode - pack all the bit fields of a pnode.
    336 * @c: UBIFS file-system description object
    337 * @buf: buffer into which to pack
    338 * @pnode: pnode to pack
    339 */
    340void ubifs_pack_pnode(struct ubifs_info *c, void *buf,
    341		      struct ubifs_pnode *pnode)
    342{
    343	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
    344	int i, pos = 0;
    345	uint16_t crc;
    346
    347	pack_bits(c, &addr, &pos, UBIFS_LPT_PNODE, UBIFS_LPT_TYPE_BITS);
    348	if (c->big_lpt)
    349		pack_bits(c, &addr, &pos, pnode->num, c->pcnt_bits);
    350	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
    351		pack_bits(c, &addr, &pos, pnode->lprops[i].free >> 3,
    352			  c->space_bits);
    353		pack_bits(c, &addr, &pos, pnode->lprops[i].dirty >> 3,
    354			  c->space_bits);
    355		if (pnode->lprops[i].flags & LPROPS_INDEX)
    356			pack_bits(c, &addr, &pos, 1, 1);
    357		else
    358			pack_bits(c, &addr, &pos, 0, 1);
    359	}
    360	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
    361		    c->pnode_sz - UBIFS_LPT_CRC_BYTES);
    362	addr = buf;
    363	pos = 0;
    364	pack_bits(c, &addr, &pos, crc, UBIFS_LPT_CRC_BITS);
    365}
    366
    367/**
    368 * ubifs_pack_nnode - pack all the bit fields of a nnode.
    369 * @c: UBIFS file-system description object
    370 * @buf: buffer into which to pack
    371 * @nnode: nnode to pack
    372 */
    373void ubifs_pack_nnode(struct ubifs_info *c, void *buf,
    374		      struct ubifs_nnode *nnode)
    375{
    376	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
    377	int i, pos = 0;
    378	uint16_t crc;
    379
    380	pack_bits(c, &addr, &pos, UBIFS_LPT_NNODE, UBIFS_LPT_TYPE_BITS);
    381	if (c->big_lpt)
    382		pack_bits(c, &addr, &pos, nnode->num, c->pcnt_bits);
    383	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
    384		int lnum = nnode->nbranch[i].lnum;
    385
    386		if (lnum == 0)
    387			lnum = c->lpt_last + 1;
    388		pack_bits(c, &addr, &pos, lnum - c->lpt_first, c->lpt_lnum_bits);
    389		pack_bits(c, &addr, &pos, nnode->nbranch[i].offs,
    390			  c->lpt_offs_bits);
    391	}
    392	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
    393		    c->nnode_sz - UBIFS_LPT_CRC_BYTES);
    394	addr = buf;
    395	pos = 0;
    396	pack_bits(c, &addr, &pos, crc, UBIFS_LPT_CRC_BITS);
    397}
    398
    399/**
    400 * ubifs_pack_ltab - pack the LPT's own lprops table.
    401 * @c: UBIFS file-system description object
    402 * @buf: buffer into which to pack
    403 * @ltab: LPT's own lprops table to pack
    404 */
    405void ubifs_pack_ltab(struct ubifs_info *c, void *buf,
    406		     struct ubifs_lpt_lprops *ltab)
    407{
    408	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
    409	int i, pos = 0;
    410	uint16_t crc;
    411
    412	pack_bits(c, &addr, &pos, UBIFS_LPT_LTAB, UBIFS_LPT_TYPE_BITS);
    413	for (i = 0; i < c->lpt_lebs; i++) {
    414		pack_bits(c, &addr, &pos, ltab[i].free, c->lpt_spc_bits);
    415		pack_bits(c, &addr, &pos, ltab[i].dirty, c->lpt_spc_bits);
    416	}
    417	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
    418		    c->ltab_sz - UBIFS_LPT_CRC_BYTES);
    419	addr = buf;
    420	pos = 0;
    421	pack_bits(c, &addr, &pos, crc, UBIFS_LPT_CRC_BITS);
    422}
    423
    424/**
    425 * ubifs_pack_lsave - pack the LPT's save table.
    426 * @c: UBIFS file-system description object
    427 * @buf: buffer into which to pack
    428 * @lsave: LPT's save table to pack
    429 */
    430void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave)
    431{
    432	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
    433	int i, pos = 0;
    434	uint16_t crc;
    435
    436	pack_bits(c, &addr, &pos, UBIFS_LPT_LSAVE, UBIFS_LPT_TYPE_BITS);
    437	for (i = 0; i < c->lsave_cnt; i++)
    438		pack_bits(c, &addr, &pos, lsave[i], c->lnum_bits);
    439	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
    440		    c->lsave_sz - UBIFS_LPT_CRC_BYTES);
    441	addr = buf;
    442	pos = 0;
    443	pack_bits(c, &addr, &pos, crc, UBIFS_LPT_CRC_BITS);
    444}
    445
    446/**
    447 * ubifs_add_lpt_dirt - add dirty space to LPT LEB properties.
    448 * @c: UBIFS file-system description object
    449 * @lnum: LEB number to which to add dirty space
    450 * @dirty: amount of dirty space to add
    451 */
    452void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty)
    453{
    454	if (!dirty || !lnum)
    455		return;
    456	dbg_lp("LEB %d add %d to %d",
    457	       lnum, dirty, c->ltab[lnum - c->lpt_first].dirty);
    458	ubifs_assert(c, lnum >= c->lpt_first && lnum <= c->lpt_last);
    459	c->ltab[lnum - c->lpt_first].dirty += dirty;
    460}
    461
    462/**
    463 * set_ltab - set LPT LEB properties.
    464 * @c: UBIFS file-system description object
    465 * @lnum: LEB number
    466 * @free: amount of free space
    467 * @dirty: amount of dirty space
    468 */
    469static void set_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
    470{
    471	dbg_lp("LEB %d free %d dirty %d to %d %d",
    472	       lnum, c->ltab[lnum - c->lpt_first].free,
    473	       c->ltab[lnum - c->lpt_first].dirty, free, dirty);
    474	ubifs_assert(c, lnum >= c->lpt_first && lnum <= c->lpt_last);
    475	c->ltab[lnum - c->lpt_first].free = free;
    476	c->ltab[lnum - c->lpt_first].dirty = dirty;
    477}
    478
    479/**
    480 * ubifs_add_nnode_dirt - add dirty space to LPT LEB properties.
    481 * @c: UBIFS file-system description object
    482 * @nnode: nnode for which to add dirt
    483 */
    484void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode)
    485{
    486	struct ubifs_nnode *np = nnode->parent;
    487
    488	if (np)
    489		ubifs_add_lpt_dirt(c, np->nbranch[nnode->iip].lnum,
    490				   c->nnode_sz);
    491	else {
    492		ubifs_add_lpt_dirt(c, c->lpt_lnum, c->nnode_sz);
    493		if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
    494			c->lpt_drty_flgs |= LTAB_DIRTY;
    495			ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
    496		}
    497	}
    498}
    499
    500/**
    501 * add_pnode_dirt - add dirty space to LPT LEB properties.
    502 * @c: UBIFS file-system description object
    503 * @pnode: pnode for which to add dirt
    504 */
    505static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
    506{
    507	ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
    508			   c->pnode_sz);
    509}
    510
    511/**
    512 * calc_nnode_num - calculate nnode number.
    513 * @row: the row in the tree (root is zero)
    514 * @col: the column in the row (leftmost is zero)
    515 *
    516 * The nnode number is a number that uniquely identifies a nnode and can be used
    517 * easily to traverse the tree from the root to that nnode.
    518 *
    519 * This function calculates and returns the nnode number for the nnode at @row
    520 * and @col.
    521 */
    522static int calc_nnode_num(int row, int col)
    523{
    524	int num, bits;
    525
    526	num = 1;
    527	while (row--) {
    528		bits = (col & (UBIFS_LPT_FANOUT - 1));
    529		col >>= UBIFS_LPT_FANOUT_SHIFT;
    530		num <<= UBIFS_LPT_FANOUT_SHIFT;
    531		num |= bits;
    532	}
    533	return num;
    534}
    535
    536/**
    537 * calc_nnode_num_from_parent - calculate nnode number.
    538 * @c: UBIFS file-system description object
    539 * @parent: parent nnode
    540 * @iip: index in parent
    541 *
    542 * The nnode number is a number that uniquely identifies a nnode and can be used
    543 * easily to traverse the tree from the root to that nnode.
    544 *
    545 * This function calculates and returns the nnode number based on the parent's
    546 * nnode number and the index in parent.
    547 */
    548static int calc_nnode_num_from_parent(const struct ubifs_info *c,
    549				      struct ubifs_nnode *parent, int iip)
    550{
    551	int num, shft;
    552
    553	if (!parent)
    554		return 1;
    555	shft = (c->lpt_hght - parent->level) * UBIFS_LPT_FANOUT_SHIFT;
    556	num = parent->num ^ (1 << shft);
    557	num |= (UBIFS_LPT_FANOUT + iip) << shft;
    558	return num;
    559}
    560
    561/**
    562 * calc_pnode_num_from_parent - calculate pnode number.
    563 * @c: UBIFS file-system description object
    564 * @parent: parent nnode
    565 * @iip: index in parent
    566 *
    567 * The pnode number is a number that uniquely identifies a pnode and can be used
    568 * easily to traverse the tree from the root to that pnode.
    569 *
    570 * This function calculates and returns the pnode number based on the parent's
    571 * nnode number and the index in parent.
    572 */
    573static int calc_pnode_num_from_parent(const struct ubifs_info *c,
    574				      struct ubifs_nnode *parent, int iip)
    575{
    576	int i, n = c->lpt_hght - 1, pnum = parent->num, num = 0;
    577
    578	for (i = 0; i < n; i++) {
    579		num <<= UBIFS_LPT_FANOUT_SHIFT;
    580		num |= pnum & (UBIFS_LPT_FANOUT - 1);
    581		pnum >>= UBIFS_LPT_FANOUT_SHIFT;
    582	}
    583	num <<= UBIFS_LPT_FANOUT_SHIFT;
    584	num |= iip;
    585	return num;
    586}
    587
    588/**
    589 * ubifs_create_dflt_lpt - create default LPT.
    590 * @c: UBIFS file-system description object
    591 * @main_lebs: number of main area LEBs is passed and returned here
    592 * @lpt_first: LEB number of first LPT LEB
    593 * @lpt_lebs: number of LEBs for LPT is passed and returned here
    594 * @big_lpt: use big LPT model is passed and returned here
    595 * @hash: hash of the LPT is returned here
    596 *
    597 * This function returns %0 on success and a negative error code on failure.
    598 */
    599int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first,
    600			  int *lpt_lebs, int *big_lpt, u8 *hash)
    601{
    602	int lnum, err = 0, node_sz, iopos, i, j, cnt, len, alen, row;
    603	int blnum, boffs, bsz, bcnt;
    604	struct ubifs_pnode *pnode = NULL;
    605	struct ubifs_nnode *nnode = NULL;
    606	void *buf = NULL, *p;
    607	struct ubifs_lpt_lprops *ltab = NULL;
    608	int *lsave = NULL;
    609	struct shash_desc *desc;
    610
    611	err = calc_dflt_lpt_geom(c, main_lebs, big_lpt);
    612	if (err)
    613		return err;
    614	*lpt_lebs = c->lpt_lebs;
    615
    616	/* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */
    617	c->lpt_first = lpt_first;
    618	/* Needed by 'set_ltab()' */
    619	c->lpt_last = lpt_first + c->lpt_lebs - 1;
    620	/* Needed by 'ubifs_pack_lsave()' */
    621	c->main_first = c->leb_cnt - *main_lebs;
    622
    623	desc = ubifs_hash_get_desc(c);
    624	if (IS_ERR(desc))
    625		return PTR_ERR(desc);
    626
    627	lsave = kmalloc_array(c->lsave_cnt, sizeof(int), GFP_KERNEL);
    628	pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_KERNEL);
    629	nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_KERNEL);
    630	buf = vmalloc(c->leb_size);
    631	ltab = vmalloc(array_size(sizeof(struct ubifs_lpt_lprops),
    632				  c->lpt_lebs));
    633	if (!pnode || !nnode || !buf || !ltab || !lsave) {
    634		err = -ENOMEM;
    635		goto out;
    636	}
    637
    638	ubifs_assert(c, !c->ltab);
    639	c->ltab = ltab; /* Needed by set_ltab */
    640
    641	/* Initialize LPT's own lprops */
    642	for (i = 0; i < c->lpt_lebs; i++) {
    643		ltab[i].free = c->leb_size;
    644		ltab[i].dirty = 0;
    645		ltab[i].tgc = 0;
    646		ltab[i].cmt = 0;
    647	}
    648
    649	lnum = lpt_first;
    650	p = buf;
    651	/* Number of leaf nodes (pnodes) */
    652	cnt = c->pnode_cnt;
    653
    654	/*
    655	 * The first pnode contains the LEB properties for the LEBs that contain
    656	 * the root inode node and the root index node of the index tree.
    657	 */
    658	node_sz = ALIGN(ubifs_idx_node_sz(c, 1), 8);
    659	iopos = ALIGN(node_sz, c->min_io_size);
    660	pnode->lprops[0].free = c->leb_size - iopos;
    661	pnode->lprops[0].dirty = iopos - node_sz;
    662	pnode->lprops[0].flags = LPROPS_INDEX;
    663
    664	node_sz = UBIFS_INO_NODE_SZ;
    665	iopos = ALIGN(node_sz, c->min_io_size);
    666	pnode->lprops[1].free = c->leb_size - iopos;
    667	pnode->lprops[1].dirty = iopos - node_sz;
    668
    669	for (i = 2; i < UBIFS_LPT_FANOUT; i++)
    670		pnode->lprops[i].free = c->leb_size;
    671
    672	/* Add first pnode */
    673	ubifs_pack_pnode(c, p, pnode);
    674	err = ubifs_shash_update(c, desc, p, c->pnode_sz);
    675	if (err)
    676		goto out;
    677
    678	p += c->pnode_sz;
    679	len = c->pnode_sz;
    680	pnode->num += 1;
    681
    682	/* Reset pnode values for remaining pnodes */
    683	pnode->lprops[0].free = c->leb_size;
    684	pnode->lprops[0].dirty = 0;
    685	pnode->lprops[0].flags = 0;
    686
    687	pnode->lprops[1].free = c->leb_size;
    688	pnode->lprops[1].dirty = 0;
    689
    690	/*
    691	 * To calculate the internal node branches, we keep information about
    692	 * the level below.
    693	 */
    694	blnum = lnum; /* LEB number of level below */
    695	boffs = 0; /* Offset of level below */
    696	bcnt = cnt; /* Number of nodes in level below */
    697	bsz = c->pnode_sz; /* Size of nodes in level below */
    698
    699	/* Add all remaining pnodes */
    700	for (i = 1; i < cnt; i++) {
    701		if (len + c->pnode_sz > c->leb_size) {
    702			alen = ALIGN(len, c->min_io_size);
    703			set_ltab(c, lnum, c->leb_size - alen, alen - len);
    704			memset(p, 0xff, alen - len);
    705			err = ubifs_leb_change(c, lnum++, buf, alen);
    706			if (err)
    707				goto out;
    708			p = buf;
    709			len = 0;
    710		}
    711		ubifs_pack_pnode(c, p, pnode);
    712		err = ubifs_shash_update(c, desc, p, c->pnode_sz);
    713		if (err)
    714			goto out;
    715
    716		p += c->pnode_sz;
    717		len += c->pnode_sz;
    718		/*
    719		 * pnodes are simply numbered left to right starting at zero,
    720		 * which means the pnode number can be used easily to traverse
    721		 * down the tree to the corresponding pnode.
    722		 */
    723		pnode->num += 1;
    724	}
    725
    726	row = 0;
    727	for (i = UBIFS_LPT_FANOUT; cnt > i; i <<= UBIFS_LPT_FANOUT_SHIFT)
    728		row += 1;
    729	/* Add all nnodes, one level at a time */
    730	while (1) {
    731		/* Number of internal nodes (nnodes) at next level */
    732		cnt = DIV_ROUND_UP(cnt, UBIFS_LPT_FANOUT);
    733		for (i = 0; i < cnt; i++) {
    734			if (len + c->nnode_sz > c->leb_size) {
    735				alen = ALIGN(len, c->min_io_size);
    736				set_ltab(c, lnum, c->leb_size - alen,
    737					    alen - len);
    738				memset(p, 0xff, alen - len);
    739				err = ubifs_leb_change(c, lnum++, buf, alen);
    740				if (err)
    741					goto out;
    742				p = buf;
    743				len = 0;
    744			}
    745			/* Only 1 nnode at this level, so it is the root */
    746			if (cnt == 1) {
    747				c->lpt_lnum = lnum;
    748				c->lpt_offs = len;
    749			}
    750			/* Set branches to the level below */
    751			for (j = 0; j < UBIFS_LPT_FANOUT; j++) {
    752				if (bcnt) {
    753					if (boffs + bsz > c->leb_size) {
    754						blnum += 1;
    755						boffs = 0;
    756					}
    757					nnode->nbranch[j].lnum = blnum;
    758					nnode->nbranch[j].offs = boffs;
    759					boffs += bsz;
    760					bcnt--;
    761				} else {
    762					nnode->nbranch[j].lnum = 0;
    763					nnode->nbranch[j].offs = 0;
    764				}
    765			}
    766			nnode->num = calc_nnode_num(row, i);
    767			ubifs_pack_nnode(c, p, nnode);
    768			p += c->nnode_sz;
    769			len += c->nnode_sz;
    770		}
    771		/* Only 1 nnode at this level, so it is the root */
    772		if (cnt == 1)
    773			break;
    774		/* Update the information about the level below */
    775		bcnt = cnt;
    776		bsz = c->nnode_sz;
    777		row -= 1;
    778	}
    779
    780	if (*big_lpt) {
    781		/* Need to add LPT's save table */
    782		if (len + c->lsave_sz > c->leb_size) {
    783			alen = ALIGN(len, c->min_io_size);
    784			set_ltab(c, lnum, c->leb_size - alen, alen - len);
    785			memset(p, 0xff, alen - len);
    786			err = ubifs_leb_change(c, lnum++, buf, alen);
    787			if (err)
    788				goto out;
    789			p = buf;
    790			len = 0;
    791		}
    792
    793		c->lsave_lnum = lnum;
    794		c->lsave_offs = len;
    795
    796		for (i = 0; i < c->lsave_cnt && i < *main_lebs; i++)
    797			lsave[i] = c->main_first + i;
    798		for (; i < c->lsave_cnt; i++)
    799			lsave[i] = c->main_first;
    800
    801		ubifs_pack_lsave(c, p, lsave);
    802		p += c->lsave_sz;
    803		len += c->lsave_sz;
    804	}
    805
    806	/* Need to add LPT's own LEB properties table */
    807	if (len + c->ltab_sz > c->leb_size) {
    808		alen = ALIGN(len, c->min_io_size);
    809		set_ltab(c, lnum, c->leb_size - alen, alen - len);
    810		memset(p, 0xff, alen - len);
    811		err = ubifs_leb_change(c, lnum++, buf, alen);
    812		if (err)
    813			goto out;
    814		p = buf;
    815		len = 0;
    816	}
    817
    818	c->ltab_lnum = lnum;
    819	c->ltab_offs = len;
    820
    821	/* Update ltab before packing it */
    822	len += c->ltab_sz;
    823	alen = ALIGN(len, c->min_io_size);
    824	set_ltab(c, lnum, c->leb_size - alen, alen - len);
    825
    826	ubifs_pack_ltab(c, p, ltab);
    827	p += c->ltab_sz;
    828
    829	/* Write remaining buffer */
    830	memset(p, 0xff, alen - len);
    831	err = ubifs_leb_change(c, lnum, buf, alen);
    832	if (err)
    833		goto out;
    834
    835	err = ubifs_shash_final(c, desc, hash);
    836	if (err)
    837		goto out;
    838
    839	c->nhead_lnum = lnum;
    840	c->nhead_offs = ALIGN(len, c->min_io_size);
    841
    842	dbg_lp("space_bits %d", c->space_bits);
    843	dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
    844	dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
    845	dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
    846	dbg_lp("pcnt_bits %d", c->pcnt_bits);
    847	dbg_lp("lnum_bits %d", c->lnum_bits);
    848	dbg_lp("pnode_sz %d", c->pnode_sz);
    849	dbg_lp("nnode_sz %d", c->nnode_sz);
    850	dbg_lp("ltab_sz %d", c->ltab_sz);
    851	dbg_lp("lsave_sz %d", c->lsave_sz);
    852	dbg_lp("lsave_cnt %d", c->lsave_cnt);
    853	dbg_lp("lpt_hght %d", c->lpt_hght);
    854	dbg_lp("big_lpt %u", c->big_lpt);
    855	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
    856	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
    857	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
    858	if (c->big_lpt)
    859		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
    860out:
    861	c->ltab = NULL;
    862	kfree(desc);
    863	kfree(lsave);
    864	vfree(ltab);
    865	vfree(buf);
    866	kfree(nnode);
    867	kfree(pnode);
    868	return err;
    869}
    870
    871/**
    872 * update_cats - add LEB properties of a pnode to LEB category lists and heaps.
    873 * @c: UBIFS file-system description object
    874 * @pnode: pnode
    875 *
    876 * When a pnode is loaded into memory, the LEB properties it contains are added,
    877 * by this function, to the LEB category lists and heaps.
    878 */
    879static void update_cats(struct ubifs_info *c, struct ubifs_pnode *pnode)
    880{
    881	int i;
    882
    883	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
    884		int cat = pnode->lprops[i].flags & LPROPS_CAT_MASK;
    885		int lnum = pnode->lprops[i].lnum;
    886
    887		if (!lnum)
    888			return;
    889		ubifs_add_to_cat(c, &pnode->lprops[i], cat);
    890	}
    891}
    892
    893/**
    894 * replace_cats - add LEB properties of a pnode to LEB category lists and heaps.
    895 * @c: UBIFS file-system description object
    896 * @old_pnode: pnode copied
    897 * @new_pnode: pnode copy
    898 *
    899 * During commit it is sometimes necessary to copy a pnode
    900 * (see dirty_cow_pnode).  When that happens, references in
    901 * category lists and heaps must be replaced.  This function does that.
    902 */
    903static void replace_cats(struct ubifs_info *c, struct ubifs_pnode *old_pnode,
    904			 struct ubifs_pnode *new_pnode)
    905{
    906	int i;
    907
    908	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
    909		if (!new_pnode->lprops[i].lnum)
    910			return;
    911		ubifs_replace_cat(c, &old_pnode->lprops[i],
    912				  &new_pnode->lprops[i]);
    913	}
    914}
    915
    916/**
    917 * check_lpt_crc - check LPT node crc is correct.
    918 * @c: UBIFS file-system description object
    919 * @buf: buffer containing node
    920 * @len: length of node
    921 *
    922 * This function returns %0 on success and a negative error code on failure.
    923 */
    924static int check_lpt_crc(const struct ubifs_info *c, void *buf, int len)
    925{
    926	int pos = 0;
    927	uint8_t *addr = buf;
    928	uint16_t crc, calc_crc;
    929
    930	crc = ubifs_unpack_bits(c, &addr, &pos, UBIFS_LPT_CRC_BITS);
    931	calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
    932			 len - UBIFS_LPT_CRC_BYTES);
    933	if (crc != calc_crc) {
    934		ubifs_err(c, "invalid crc in LPT node: crc %hx calc %hx",
    935			  crc, calc_crc);
    936		dump_stack();
    937		return -EINVAL;
    938	}
    939	return 0;
    940}
    941
    942/**
    943 * check_lpt_type - check LPT node type is correct.
    944 * @c: UBIFS file-system description object
    945 * @addr: address of type bit field is passed and returned updated here
    946 * @pos: position of type bit field is passed and returned updated here
    947 * @type: expected type
    948 *
    949 * This function returns %0 on success and a negative error code on failure.
    950 */
    951static int check_lpt_type(const struct ubifs_info *c, uint8_t **addr,
    952			  int *pos, int type)
    953{
    954	int node_type;
    955
    956	node_type = ubifs_unpack_bits(c, addr, pos, UBIFS_LPT_TYPE_BITS);
    957	if (node_type != type) {
    958		ubifs_err(c, "invalid type (%d) in LPT node type %d",
    959			  node_type, type);
    960		dump_stack();
    961		return -EINVAL;
    962	}
    963	return 0;
    964}
    965
    966/**
    967 * unpack_pnode - unpack a pnode.
    968 * @c: UBIFS file-system description object
    969 * @buf: buffer containing packed pnode to unpack
    970 * @pnode: pnode structure to fill
    971 *
    972 * This function returns %0 on success and a negative error code on failure.
    973 */
    974static int unpack_pnode(const struct ubifs_info *c, void *buf,
    975			struct ubifs_pnode *pnode)
    976{
    977	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
    978	int i, pos = 0, err;
    979
    980	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_PNODE);
    981	if (err)
    982		return err;
    983	if (c->big_lpt)
    984		pnode->num = ubifs_unpack_bits(c, &addr, &pos, c->pcnt_bits);
    985	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
    986		struct ubifs_lprops * const lprops = &pnode->lprops[i];
    987
    988		lprops->free = ubifs_unpack_bits(c, &addr, &pos, c->space_bits);
    989		lprops->free <<= 3;
    990		lprops->dirty = ubifs_unpack_bits(c, &addr, &pos, c->space_bits);
    991		lprops->dirty <<= 3;
    992
    993		if (ubifs_unpack_bits(c, &addr, &pos, 1))
    994			lprops->flags = LPROPS_INDEX;
    995		else
    996			lprops->flags = 0;
    997		lprops->flags |= ubifs_categorize_lprops(c, lprops);
    998	}
    999	err = check_lpt_crc(c, buf, c->pnode_sz);
   1000	return err;
   1001}
   1002
   1003/**
   1004 * ubifs_unpack_nnode - unpack a nnode.
   1005 * @c: UBIFS file-system description object
   1006 * @buf: buffer containing packed nnode to unpack
   1007 * @nnode: nnode structure to fill
   1008 *
   1009 * This function returns %0 on success and a negative error code on failure.
   1010 */
   1011int ubifs_unpack_nnode(const struct ubifs_info *c, void *buf,
   1012		       struct ubifs_nnode *nnode)
   1013{
   1014	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
   1015	int i, pos = 0, err;
   1016
   1017	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_NNODE);
   1018	if (err)
   1019		return err;
   1020	if (c->big_lpt)
   1021		nnode->num = ubifs_unpack_bits(c, &addr, &pos, c->pcnt_bits);
   1022	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
   1023		int lnum;
   1024
   1025		lnum = ubifs_unpack_bits(c, &addr, &pos, c->lpt_lnum_bits) +
   1026		       c->lpt_first;
   1027		if (lnum == c->lpt_last + 1)
   1028			lnum = 0;
   1029		nnode->nbranch[i].lnum = lnum;
   1030		nnode->nbranch[i].offs = ubifs_unpack_bits(c, &addr, &pos,
   1031						     c->lpt_offs_bits);
   1032	}
   1033	err = check_lpt_crc(c, buf, c->nnode_sz);
   1034	return err;
   1035}
   1036
   1037/**
   1038 * unpack_ltab - unpack the LPT's own lprops table.
   1039 * @c: UBIFS file-system description object
   1040 * @buf: buffer from which to unpack
   1041 *
   1042 * This function returns %0 on success and a negative error code on failure.
   1043 */
   1044static int unpack_ltab(const struct ubifs_info *c, void *buf)
   1045{
   1046	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
   1047	int i, pos = 0, err;
   1048
   1049	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LTAB);
   1050	if (err)
   1051		return err;
   1052	for (i = 0; i < c->lpt_lebs; i++) {
   1053		int free = ubifs_unpack_bits(c, &addr, &pos, c->lpt_spc_bits);
   1054		int dirty = ubifs_unpack_bits(c, &addr, &pos, c->lpt_spc_bits);
   1055
   1056		if (free < 0 || free > c->leb_size || dirty < 0 ||
   1057		    dirty > c->leb_size || free + dirty > c->leb_size)
   1058			return -EINVAL;
   1059
   1060		c->ltab[i].free = free;
   1061		c->ltab[i].dirty = dirty;
   1062		c->ltab[i].tgc = 0;
   1063		c->ltab[i].cmt = 0;
   1064	}
   1065	err = check_lpt_crc(c, buf, c->ltab_sz);
   1066	return err;
   1067}
   1068
   1069/**
   1070 * unpack_lsave - unpack the LPT's save table.
   1071 * @c: UBIFS file-system description object
   1072 * @buf: buffer from which to unpack
   1073 *
   1074 * This function returns %0 on success and a negative error code on failure.
   1075 */
   1076static int unpack_lsave(const struct ubifs_info *c, void *buf)
   1077{
   1078	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
   1079	int i, pos = 0, err;
   1080
   1081	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LSAVE);
   1082	if (err)
   1083		return err;
   1084	for (i = 0; i < c->lsave_cnt; i++) {
   1085		int lnum = ubifs_unpack_bits(c, &addr, &pos, c->lnum_bits);
   1086
   1087		if (lnum < c->main_first || lnum >= c->leb_cnt)
   1088			return -EINVAL;
   1089		c->lsave[i] = lnum;
   1090	}
   1091	err = check_lpt_crc(c, buf, c->lsave_sz);
   1092	return err;
   1093}
   1094
   1095/**
   1096 * validate_nnode - validate a nnode.
   1097 * @c: UBIFS file-system description object
   1098 * @nnode: nnode to validate
   1099 * @parent: parent nnode (or NULL for the root nnode)
   1100 * @iip: index in parent
   1101 *
   1102 * This function returns %0 on success and a negative error code on failure.
   1103 */
   1104static int validate_nnode(const struct ubifs_info *c, struct ubifs_nnode *nnode,
   1105			  struct ubifs_nnode *parent, int iip)
   1106{
   1107	int i, lvl, max_offs;
   1108
   1109	if (c->big_lpt) {
   1110		int num = calc_nnode_num_from_parent(c, parent, iip);
   1111
   1112		if (nnode->num != num)
   1113			return -EINVAL;
   1114	}
   1115	lvl = parent ? parent->level - 1 : c->lpt_hght;
   1116	if (lvl < 1)
   1117		return -EINVAL;
   1118	if (lvl == 1)
   1119		max_offs = c->leb_size - c->pnode_sz;
   1120	else
   1121		max_offs = c->leb_size - c->nnode_sz;
   1122	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
   1123		int lnum = nnode->nbranch[i].lnum;
   1124		int offs = nnode->nbranch[i].offs;
   1125
   1126		if (lnum == 0) {
   1127			if (offs != 0)
   1128				return -EINVAL;
   1129			continue;
   1130		}
   1131		if (lnum < c->lpt_first || lnum > c->lpt_last)
   1132			return -EINVAL;
   1133		if (offs < 0 || offs > max_offs)
   1134			return -EINVAL;
   1135	}
   1136	return 0;
   1137}
   1138
   1139/**
   1140 * validate_pnode - validate a pnode.
   1141 * @c: UBIFS file-system description object
   1142 * @pnode: pnode to validate
   1143 * @parent: parent nnode
   1144 * @iip: index in parent
   1145 *
   1146 * This function returns %0 on success and a negative error code on failure.
   1147 */
   1148static int validate_pnode(const struct ubifs_info *c, struct ubifs_pnode *pnode,
   1149			  struct ubifs_nnode *parent, int iip)
   1150{
   1151	int i;
   1152
   1153	if (c->big_lpt) {
   1154		int num = calc_pnode_num_from_parent(c, parent, iip);
   1155
   1156		if (pnode->num != num)
   1157			return -EINVAL;
   1158	}
   1159	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
   1160		int free = pnode->lprops[i].free;
   1161		int dirty = pnode->lprops[i].dirty;
   1162
   1163		if (free < 0 || free > c->leb_size || free % c->min_io_size ||
   1164		    (free & 7))
   1165			return -EINVAL;
   1166		if (dirty < 0 || dirty > c->leb_size || (dirty & 7))
   1167			return -EINVAL;
   1168		if (dirty + free > c->leb_size)
   1169			return -EINVAL;
   1170	}
   1171	return 0;
   1172}
   1173
   1174/**
   1175 * set_pnode_lnum - set LEB numbers on a pnode.
   1176 * @c: UBIFS file-system description object
   1177 * @pnode: pnode to update
   1178 *
   1179 * This function calculates the LEB numbers for the LEB properties it contains
   1180 * based on the pnode number.
   1181 */
   1182static void set_pnode_lnum(const struct ubifs_info *c,
   1183			   struct ubifs_pnode *pnode)
   1184{
   1185	int i, lnum;
   1186
   1187	lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + c->main_first;
   1188	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
   1189		if (lnum >= c->leb_cnt)
   1190			return;
   1191		pnode->lprops[i].lnum = lnum++;
   1192	}
   1193}
   1194
   1195/**
   1196 * ubifs_read_nnode - read a nnode from flash and link it to the tree in memory.
   1197 * @c: UBIFS file-system description object
   1198 * @parent: parent nnode (or NULL for the root)
   1199 * @iip: index in parent
   1200 *
   1201 * This function returns %0 on success and a negative error code on failure.
   1202 */
   1203int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
   1204{
   1205	struct ubifs_nbranch *branch = NULL;
   1206	struct ubifs_nnode *nnode = NULL;
   1207	void *buf = c->lpt_nod_buf;
   1208	int err, lnum, offs;
   1209
   1210	if (parent) {
   1211		branch = &parent->nbranch[iip];
   1212		lnum = branch->lnum;
   1213		offs = branch->offs;
   1214	} else {
   1215		lnum = c->lpt_lnum;
   1216		offs = c->lpt_offs;
   1217	}
   1218	nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
   1219	if (!nnode) {
   1220		err = -ENOMEM;
   1221		goto out;
   1222	}
   1223	if (lnum == 0) {
   1224		/*
   1225		 * This nnode was not written which just means that the LEB
   1226		 * properties in the subtree below it describe empty LEBs. We
   1227		 * make the nnode as though we had read it, which in fact means
   1228		 * doing almost nothing.
   1229		 */
   1230		if (c->big_lpt)
   1231			nnode->num = calc_nnode_num_from_parent(c, parent, iip);
   1232	} else {
   1233		err = ubifs_leb_read(c, lnum, buf, offs, c->nnode_sz, 1);
   1234		if (err)
   1235			goto out;
   1236		err = ubifs_unpack_nnode(c, buf, nnode);
   1237		if (err)
   1238			goto out;
   1239	}
   1240	err = validate_nnode(c, nnode, parent, iip);
   1241	if (err)
   1242		goto out;
   1243	if (!c->big_lpt)
   1244		nnode->num = calc_nnode_num_from_parent(c, parent, iip);
   1245	if (parent) {
   1246		branch->nnode = nnode;
   1247		nnode->level = parent->level - 1;
   1248	} else {
   1249		c->nroot = nnode;
   1250		nnode->level = c->lpt_hght;
   1251	}
   1252	nnode->parent = parent;
   1253	nnode->iip = iip;
   1254	return 0;
   1255
   1256out:
   1257	ubifs_err(c, "error %d reading nnode at %d:%d", err, lnum, offs);
   1258	dump_stack();
   1259	kfree(nnode);
   1260	return err;
   1261}
   1262
   1263/**
   1264 * read_pnode - read a pnode from flash and link it to the tree in memory.
   1265 * @c: UBIFS file-system description object
   1266 * @parent: parent nnode
   1267 * @iip: index in parent
   1268 *
   1269 * This function returns %0 on success and a negative error code on failure.
   1270 */
   1271static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
   1272{
   1273	struct ubifs_nbranch *branch;
   1274	struct ubifs_pnode *pnode = NULL;
   1275	void *buf = c->lpt_nod_buf;
   1276	int err, lnum, offs;
   1277
   1278	branch = &parent->nbranch[iip];
   1279	lnum = branch->lnum;
   1280	offs = branch->offs;
   1281	pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
   1282	if (!pnode)
   1283		return -ENOMEM;
   1284
   1285	if (lnum == 0) {
   1286		/*
   1287		 * This pnode was not written which just means that the LEB
   1288		 * properties in it describe empty LEBs. We make the pnode as
   1289		 * though we had read it.
   1290		 */
   1291		int i;
   1292
   1293		if (c->big_lpt)
   1294			pnode->num = calc_pnode_num_from_parent(c, parent, iip);
   1295		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
   1296			struct ubifs_lprops * const lprops = &pnode->lprops[i];
   1297
   1298			lprops->free = c->leb_size;
   1299			lprops->flags = ubifs_categorize_lprops(c, lprops);
   1300		}
   1301	} else {
   1302		err = ubifs_leb_read(c, lnum, buf, offs, c->pnode_sz, 1);
   1303		if (err)
   1304			goto out;
   1305		err = unpack_pnode(c, buf, pnode);
   1306		if (err)
   1307			goto out;
   1308	}
   1309	err = validate_pnode(c, pnode, parent, iip);
   1310	if (err)
   1311		goto out;
   1312	if (!c->big_lpt)
   1313		pnode->num = calc_pnode_num_from_parent(c, parent, iip);
   1314	branch->pnode = pnode;
   1315	pnode->parent = parent;
   1316	pnode->iip = iip;
   1317	set_pnode_lnum(c, pnode);
   1318	c->pnodes_have += 1;
   1319	return 0;
   1320
   1321out:
   1322	ubifs_err(c, "error %d reading pnode at %d:%d", err, lnum, offs);
   1323	ubifs_dump_pnode(c, pnode, parent, iip);
   1324	dump_stack();
   1325	ubifs_err(c, "calc num: %d", calc_pnode_num_from_parent(c, parent, iip));
   1326	kfree(pnode);
   1327	return err;
   1328}
   1329
   1330/**
   1331 * read_ltab - read LPT's own lprops table.
   1332 * @c: UBIFS file-system description object
   1333 *
   1334 * This function returns %0 on success and a negative error code on failure.
   1335 */
   1336static int read_ltab(struct ubifs_info *c)
   1337{
   1338	int err;
   1339	void *buf;
   1340
   1341	buf = vmalloc(c->ltab_sz);
   1342	if (!buf)
   1343		return -ENOMEM;
   1344	err = ubifs_leb_read(c, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz, 1);
   1345	if (err)
   1346		goto out;
   1347	err = unpack_ltab(c, buf);
   1348out:
   1349	vfree(buf);
   1350	return err;
   1351}
   1352
   1353/**
   1354 * read_lsave - read LPT's save table.
   1355 * @c: UBIFS file-system description object
   1356 *
   1357 * This function returns %0 on success and a negative error code on failure.
   1358 */
   1359static int read_lsave(struct ubifs_info *c)
   1360{
   1361	int err, i;
   1362	void *buf;
   1363
   1364	buf = vmalloc(c->lsave_sz);
   1365	if (!buf)
   1366		return -ENOMEM;
   1367	err = ubifs_leb_read(c, c->lsave_lnum, buf, c->lsave_offs,
   1368			     c->lsave_sz, 1);
   1369	if (err)
   1370		goto out;
   1371	err = unpack_lsave(c, buf);
   1372	if (err)
   1373		goto out;
   1374	for (i = 0; i < c->lsave_cnt; i++) {
   1375		int lnum = c->lsave[i];
   1376		struct ubifs_lprops *lprops;
   1377
   1378		/*
   1379		 * Due to automatic resizing, the values in the lsave table
   1380		 * could be beyond the volume size - just ignore them.
   1381		 */
   1382		if (lnum >= c->leb_cnt)
   1383			continue;
   1384		lprops = ubifs_lpt_lookup(c, lnum);
   1385		if (IS_ERR(lprops)) {
   1386			err = PTR_ERR(lprops);
   1387			goto out;
   1388		}
   1389	}
   1390out:
   1391	vfree(buf);
   1392	return err;
   1393}
   1394
   1395/**
   1396 * ubifs_get_nnode - get a nnode.
   1397 * @c: UBIFS file-system description object
   1398 * @parent: parent nnode (or NULL for the root)
   1399 * @iip: index in parent
   1400 *
   1401 * This function returns a pointer to the nnode on success or a negative error
   1402 * code on failure.
   1403 */
   1404struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c,
   1405				    struct ubifs_nnode *parent, int iip)
   1406{
   1407	struct ubifs_nbranch *branch;
   1408	struct ubifs_nnode *nnode;
   1409	int err;
   1410
   1411	branch = &parent->nbranch[iip];
   1412	nnode = branch->nnode;
   1413	if (nnode)
   1414		return nnode;
   1415	err = ubifs_read_nnode(c, parent, iip);
   1416	if (err)
   1417		return ERR_PTR(err);
   1418	return branch->nnode;
   1419}
   1420
   1421/**
   1422 * ubifs_get_pnode - get a pnode.
   1423 * @c: UBIFS file-system description object
   1424 * @parent: parent nnode
   1425 * @iip: index in parent
   1426 *
   1427 * This function returns a pointer to the pnode on success or a negative error
   1428 * code on failure.
   1429 */
   1430struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c,
   1431				    struct ubifs_nnode *parent, int iip)
   1432{
   1433	struct ubifs_nbranch *branch;
   1434	struct ubifs_pnode *pnode;
   1435	int err;
   1436
   1437	branch = &parent->nbranch[iip];
   1438	pnode = branch->pnode;
   1439	if (pnode)
   1440		return pnode;
   1441	err = read_pnode(c, parent, iip);
   1442	if (err)
   1443		return ERR_PTR(err);
   1444	update_cats(c, branch->pnode);
   1445	return branch->pnode;
   1446}
   1447
   1448/**
   1449 * ubifs_pnode_lookup - lookup a pnode in the LPT.
   1450 * @c: UBIFS file-system description object
   1451 * @i: pnode number (0 to (main_lebs - 1) / UBIFS_LPT_FANOUT)
   1452 *
   1453 * This function returns a pointer to the pnode on success or a negative
   1454 * error code on failure.
   1455 */
   1456struct ubifs_pnode *ubifs_pnode_lookup(struct ubifs_info *c, int i)
   1457{
   1458	int err, h, iip, shft;
   1459	struct ubifs_nnode *nnode;
   1460
   1461	if (!c->nroot) {
   1462		err = ubifs_read_nnode(c, NULL, 0);
   1463		if (err)
   1464			return ERR_PTR(err);
   1465	}
   1466	i <<= UBIFS_LPT_FANOUT_SHIFT;
   1467	nnode = c->nroot;
   1468	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
   1469	for (h = 1; h < c->lpt_hght; h++) {
   1470		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
   1471		shft -= UBIFS_LPT_FANOUT_SHIFT;
   1472		nnode = ubifs_get_nnode(c, nnode, iip);
   1473		if (IS_ERR(nnode))
   1474			return ERR_CAST(nnode);
   1475	}
   1476	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
   1477	return ubifs_get_pnode(c, nnode, iip);
   1478}
   1479
   1480/**
   1481 * ubifs_lpt_lookup - lookup LEB properties in the LPT.
   1482 * @c: UBIFS file-system description object
   1483 * @lnum: LEB number to lookup
   1484 *
   1485 * This function returns a pointer to the LEB properties on success or a
   1486 * negative error code on failure.
   1487 */
   1488struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum)
   1489{
   1490	int i, iip;
   1491	struct ubifs_pnode *pnode;
   1492
   1493	i = lnum - c->main_first;
   1494	pnode = ubifs_pnode_lookup(c, i >> UBIFS_LPT_FANOUT_SHIFT);
   1495	if (IS_ERR(pnode))
   1496		return ERR_CAST(pnode);
   1497	iip = (i & (UBIFS_LPT_FANOUT - 1));
   1498	dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
   1499	       pnode->lprops[iip].free, pnode->lprops[iip].dirty,
   1500	       pnode->lprops[iip].flags);
   1501	return &pnode->lprops[iip];
   1502}
   1503
   1504/**
   1505 * dirty_cow_nnode - ensure a nnode is not being committed.
   1506 * @c: UBIFS file-system description object
   1507 * @nnode: nnode to check
   1508 *
   1509 * Returns dirtied nnode on success or negative error code on failure.
   1510 */
   1511static struct ubifs_nnode *dirty_cow_nnode(struct ubifs_info *c,
   1512					   struct ubifs_nnode *nnode)
   1513{
   1514	struct ubifs_nnode *n;
   1515	int i;
   1516
   1517	if (!test_bit(COW_CNODE, &nnode->flags)) {
   1518		/* nnode is not being committed */
   1519		if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
   1520			c->dirty_nn_cnt += 1;
   1521			ubifs_add_nnode_dirt(c, nnode);
   1522		}
   1523		return nnode;
   1524	}
   1525
   1526	/* nnode is being committed, so copy it */
   1527	n = kmemdup(nnode, sizeof(struct ubifs_nnode), GFP_NOFS);
   1528	if (unlikely(!n))
   1529		return ERR_PTR(-ENOMEM);
   1530
   1531	n->cnext = NULL;
   1532	__set_bit(DIRTY_CNODE, &n->flags);
   1533	__clear_bit(COW_CNODE, &n->flags);
   1534
   1535	/* The children now have new parent */
   1536	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
   1537		struct ubifs_nbranch *branch = &n->nbranch[i];
   1538
   1539		if (branch->cnode)
   1540			branch->cnode->parent = n;
   1541	}
   1542
   1543	ubifs_assert(c, !test_bit(OBSOLETE_CNODE, &nnode->flags));
   1544	__set_bit(OBSOLETE_CNODE, &nnode->flags);
   1545
   1546	c->dirty_nn_cnt += 1;
   1547	ubifs_add_nnode_dirt(c, nnode);
   1548	if (nnode->parent)
   1549		nnode->parent->nbranch[n->iip].nnode = n;
   1550	else
   1551		c->nroot = n;
   1552	return n;
   1553}
   1554
   1555/**
   1556 * dirty_cow_pnode - ensure a pnode is not being committed.
   1557 * @c: UBIFS file-system description object
   1558 * @pnode: pnode to check
   1559 *
   1560 * Returns dirtied pnode on success or negative error code on failure.
   1561 */
   1562static struct ubifs_pnode *dirty_cow_pnode(struct ubifs_info *c,
   1563					   struct ubifs_pnode *pnode)
   1564{
   1565	struct ubifs_pnode *p;
   1566
   1567	if (!test_bit(COW_CNODE, &pnode->flags)) {
   1568		/* pnode is not being committed */
   1569		if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
   1570			c->dirty_pn_cnt += 1;
   1571			add_pnode_dirt(c, pnode);
   1572		}
   1573		return pnode;
   1574	}
   1575
   1576	/* pnode is being committed, so copy it */
   1577	p = kmemdup(pnode, sizeof(struct ubifs_pnode), GFP_NOFS);
   1578	if (unlikely(!p))
   1579		return ERR_PTR(-ENOMEM);
   1580
   1581	p->cnext = NULL;
   1582	__set_bit(DIRTY_CNODE, &p->flags);
   1583	__clear_bit(COW_CNODE, &p->flags);
   1584	replace_cats(c, pnode, p);
   1585
   1586	ubifs_assert(c, !test_bit(OBSOLETE_CNODE, &pnode->flags));
   1587	__set_bit(OBSOLETE_CNODE, &pnode->flags);
   1588
   1589	c->dirty_pn_cnt += 1;
   1590	add_pnode_dirt(c, pnode);
   1591	pnode->parent->nbranch[p->iip].pnode = p;
   1592	return p;
   1593}
   1594
   1595/**
   1596 * ubifs_lpt_lookup_dirty - lookup LEB properties in the LPT.
   1597 * @c: UBIFS file-system description object
   1598 * @lnum: LEB number to lookup
   1599 *
   1600 * This function returns a pointer to the LEB properties on success or a
   1601 * negative error code on failure.
   1602 */
   1603struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum)
   1604{
   1605	int err, i, h, iip, shft;
   1606	struct ubifs_nnode *nnode;
   1607	struct ubifs_pnode *pnode;
   1608
   1609	if (!c->nroot) {
   1610		err = ubifs_read_nnode(c, NULL, 0);
   1611		if (err)
   1612			return ERR_PTR(err);
   1613	}
   1614	nnode = c->nroot;
   1615	nnode = dirty_cow_nnode(c, nnode);
   1616	if (IS_ERR(nnode))
   1617		return ERR_CAST(nnode);
   1618	i = lnum - c->main_first;
   1619	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
   1620	for (h = 1; h < c->lpt_hght; h++) {
   1621		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
   1622		shft -= UBIFS_LPT_FANOUT_SHIFT;
   1623		nnode = ubifs_get_nnode(c, nnode, iip);
   1624		if (IS_ERR(nnode))
   1625			return ERR_CAST(nnode);
   1626		nnode = dirty_cow_nnode(c, nnode);
   1627		if (IS_ERR(nnode))
   1628			return ERR_CAST(nnode);
   1629	}
   1630	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
   1631	pnode = ubifs_get_pnode(c, nnode, iip);
   1632	if (IS_ERR(pnode))
   1633		return ERR_CAST(pnode);
   1634	pnode = dirty_cow_pnode(c, pnode);
   1635	if (IS_ERR(pnode))
   1636		return ERR_CAST(pnode);
   1637	iip = (i & (UBIFS_LPT_FANOUT - 1));
   1638	dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
   1639	       pnode->lprops[iip].free, pnode->lprops[iip].dirty,
   1640	       pnode->lprops[iip].flags);
   1641	ubifs_assert(c, test_bit(DIRTY_CNODE, &pnode->flags));
   1642	return &pnode->lprops[iip];
   1643}
   1644
   1645/**
   1646 * ubifs_lpt_calc_hash - Calculate hash of the LPT pnodes
   1647 * @c: UBIFS file-system description object
   1648 * @hash: the returned hash of the LPT pnodes
   1649 *
   1650 * This function iterates over the LPT pnodes and creates a hash over them.
   1651 * Returns 0 for success or a negative error code otherwise.
   1652 */
   1653int ubifs_lpt_calc_hash(struct ubifs_info *c, u8 *hash)
   1654{
   1655	struct ubifs_nnode *nnode, *nn;
   1656	struct ubifs_cnode *cnode;
   1657	struct shash_desc *desc;
   1658	int iip = 0, i;
   1659	int bufsiz = max_t(int, c->nnode_sz, c->pnode_sz);
   1660	void *buf;
   1661	int err;
   1662
   1663	if (!ubifs_authenticated(c))
   1664		return 0;
   1665
   1666	if (!c->nroot) {
   1667		err = ubifs_read_nnode(c, NULL, 0);
   1668		if (err)
   1669			return err;
   1670	}
   1671
   1672	desc = ubifs_hash_get_desc(c);
   1673	if (IS_ERR(desc))
   1674		return PTR_ERR(desc);
   1675
   1676	buf = kmalloc(bufsiz, GFP_NOFS);
   1677	if (!buf) {
   1678		err = -ENOMEM;
   1679		goto out;
   1680	}
   1681
   1682	cnode = (struct ubifs_cnode *)c->nroot;
   1683
   1684	while (cnode) {
   1685		nnode = cnode->parent;
   1686		nn = (struct ubifs_nnode *)cnode;
   1687		if (cnode->level > 1) {
   1688			while (iip < UBIFS_LPT_FANOUT) {
   1689				if (nn->nbranch[iip].lnum == 0) {
   1690					/* Go right */
   1691					iip++;
   1692					continue;
   1693				}
   1694
   1695				nnode = ubifs_get_nnode(c, nn, iip);
   1696				if (IS_ERR(nnode)) {
   1697					err = PTR_ERR(nnode);
   1698					goto out;
   1699				}
   1700
   1701				/* Go down */
   1702				iip = 0;
   1703				cnode = (struct ubifs_cnode *)nnode;
   1704				break;
   1705			}
   1706			if (iip < UBIFS_LPT_FANOUT)
   1707				continue;
   1708		} else {
   1709			struct ubifs_pnode *pnode;
   1710
   1711			for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
   1712				if (nn->nbranch[i].lnum == 0)
   1713					continue;
   1714				pnode = ubifs_get_pnode(c, nn, i);
   1715				if (IS_ERR(pnode)) {
   1716					err = PTR_ERR(pnode);
   1717					goto out;
   1718				}
   1719
   1720				ubifs_pack_pnode(c, buf, pnode);
   1721				err = ubifs_shash_update(c, desc, buf,
   1722							 c->pnode_sz);
   1723				if (err)
   1724					goto out;
   1725			}
   1726		}
   1727		/* Go up and to the right */
   1728		iip = cnode->iip + 1;
   1729		cnode = (struct ubifs_cnode *)nnode;
   1730	}
   1731
   1732	err = ubifs_shash_final(c, desc, hash);
   1733out:
   1734	kfree(desc);
   1735	kfree(buf);
   1736
   1737	return err;
   1738}
   1739
   1740/**
   1741 * lpt_check_hash - check the hash of the LPT.
   1742 * @c: UBIFS file-system description object
   1743 *
   1744 * This function calculates a hash over all pnodes in the LPT and compares it with
   1745 * the hash stored in the master node. Returns %0 on success and a negative error
   1746 * code on failure.
   1747 */
   1748static int lpt_check_hash(struct ubifs_info *c)
   1749{
   1750	int err;
   1751	u8 hash[UBIFS_HASH_ARR_SZ];
   1752
   1753	if (!ubifs_authenticated(c))
   1754		return 0;
   1755
   1756	err = ubifs_lpt_calc_hash(c, hash);
   1757	if (err)
   1758		return err;
   1759
   1760	if (ubifs_check_hash(c, c->mst_node->hash_lpt, hash)) {
   1761		err = -EPERM;
   1762		ubifs_err(c, "Failed to authenticate LPT");
   1763	} else {
   1764		err = 0;
   1765	}
   1766
   1767	return err;
   1768}
   1769
   1770/**
   1771 * lpt_init_rd - initialize the LPT for reading.
   1772 * @c: UBIFS file-system description object
   1773 *
   1774 * This function returns %0 on success and a negative error code on failure.
   1775 */
   1776static int lpt_init_rd(struct ubifs_info *c)
   1777{
   1778	int err, i;
   1779
   1780	c->ltab = vmalloc(array_size(sizeof(struct ubifs_lpt_lprops),
   1781				     c->lpt_lebs));
   1782	if (!c->ltab)
   1783		return -ENOMEM;
   1784
   1785	i = max_t(int, c->nnode_sz, c->pnode_sz);
   1786	c->lpt_nod_buf = kmalloc(i, GFP_KERNEL);
   1787	if (!c->lpt_nod_buf)
   1788		return -ENOMEM;
   1789
   1790	for (i = 0; i < LPROPS_HEAP_CNT; i++) {
   1791		c->lpt_heap[i].arr = kmalloc_array(LPT_HEAP_SZ,
   1792						   sizeof(void *),
   1793						   GFP_KERNEL);
   1794		if (!c->lpt_heap[i].arr)
   1795			return -ENOMEM;
   1796		c->lpt_heap[i].cnt = 0;
   1797		c->lpt_heap[i].max_cnt = LPT_HEAP_SZ;
   1798	}
   1799
   1800	c->dirty_idx.arr = kmalloc_array(LPT_HEAP_SZ, sizeof(void *),
   1801					 GFP_KERNEL);
   1802	if (!c->dirty_idx.arr)
   1803		return -ENOMEM;
   1804	c->dirty_idx.cnt = 0;
   1805	c->dirty_idx.max_cnt = LPT_HEAP_SZ;
   1806
   1807	err = read_ltab(c);
   1808	if (err)
   1809		return err;
   1810
   1811	err = lpt_check_hash(c);
   1812	if (err)
   1813		return err;
   1814
   1815	dbg_lp("space_bits %d", c->space_bits);
   1816	dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
   1817	dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
   1818	dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
   1819	dbg_lp("pcnt_bits %d", c->pcnt_bits);
   1820	dbg_lp("lnum_bits %d", c->lnum_bits);
   1821	dbg_lp("pnode_sz %d", c->pnode_sz);
   1822	dbg_lp("nnode_sz %d", c->nnode_sz);
   1823	dbg_lp("ltab_sz %d", c->ltab_sz);
   1824	dbg_lp("lsave_sz %d", c->lsave_sz);
   1825	dbg_lp("lsave_cnt %d", c->lsave_cnt);
   1826	dbg_lp("lpt_hght %d", c->lpt_hght);
   1827	dbg_lp("big_lpt %u", c->big_lpt);
   1828	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
   1829	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
   1830	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
   1831	if (c->big_lpt)
   1832		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
   1833
   1834	return 0;
   1835}
   1836
   1837/**
   1838 * lpt_init_wr - initialize the LPT for writing.
   1839 * @c: UBIFS file-system description object
   1840 *
   1841 * 'lpt_init_rd()' must have been called already.
   1842 *
   1843 * This function returns %0 on success and a negative error code on failure.
   1844 */
   1845static int lpt_init_wr(struct ubifs_info *c)
   1846{
   1847	int err, i;
   1848
   1849	c->ltab_cmt = vmalloc(array_size(sizeof(struct ubifs_lpt_lprops),
   1850					 c->lpt_lebs));
   1851	if (!c->ltab_cmt)
   1852		return -ENOMEM;
   1853
   1854	c->lpt_buf = vmalloc(c->leb_size);
   1855	if (!c->lpt_buf)
   1856		return -ENOMEM;
   1857
   1858	if (c->big_lpt) {
   1859		c->lsave = kmalloc_array(c->lsave_cnt, sizeof(int), GFP_NOFS);
   1860		if (!c->lsave)
   1861			return -ENOMEM;
   1862		err = read_lsave(c);
   1863		if (err)
   1864			return err;
   1865	}
   1866
   1867	for (i = 0; i < c->lpt_lebs; i++)
   1868		if (c->ltab[i].free == c->leb_size) {
   1869			err = ubifs_leb_unmap(c, i + c->lpt_first);
   1870			if (err)
   1871				return err;
   1872		}
   1873
   1874	return 0;
   1875}
   1876
   1877/**
   1878 * ubifs_lpt_init - initialize the LPT.
   1879 * @c: UBIFS file-system description object
   1880 * @rd: whether to initialize lpt for reading
   1881 * @wr: whether to initialize lpt for writing
   1882 *
   1883 * For mounting 'rw', @rd and @wr are both true. For mounting 'ro', @rd is true
   1884 * and @wr is false. For mounting from 'ro' to 'rw', @rd is false and @wr is
   1885 * true.
   1886 *
   1887 * This function returns %0 on success and a negative error code on failure.
   1888 */
   1889int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr)
   1890{
   1891	int err;
   1892
   1893	if (rd) {
   1894		err = lpt_init_rd(c);
   1895		if (err)
   1896			goto out_err;
   1897	}
   1898
   1899	if (wr) {
   1900		err = lpt_init_wr(c);
   1901		if (err)
   1902			goto out_err;
   1903	}
   1904
   1905	return 0;
   1906
   1907out_err:
   1908	if (wr)
   1909		ubifs_lpt_free(c, 1);
   1910	if (rd)
   1911		ubifs_lpt_free(c, 0);
   1912	return err;
   1913}
   1914
   1915/**
   1916 * struct lpt_scan_node - somewhere to put nodes while we scan LPT.
   1917 * @nnode: where to keep a nnode
   1918 * @pnode: where to keep a pnode
   1919 * @cnode: where to keep a cnode
   1920 * @in_tree: is the node in the tree in memory
   1921 * @ptr.nnode: pointer to the nnode (if it is an nnode) which may be here or in
   1922 * the tree
   1923 * @ptr.pnode: ditto for pnode
   1924 * @ptr.cnode: ditto for cnode
   1925 */
   1926struct lpt_scan_node {
   1927	union {
   1928		struct ubifs_nnode nnode;
   1929		struct ubifs_pnode pnode;
   1930		struct ubifs_cnode cnode;
   1931	};
   1932	int in_tree;
   1933	union {
   1934		struct ubifs_nnode *nnode;
   1935		struct ubifs_pnode *pnode;
   1936		struct ubifs_cnode *cnode;
   1937	} ptr;
   1938};
   1939
   1940/**
   1941 * scan_get_nnode - for the scan, get a nnode from either the tree or flash.
   1942 * @c: the UBIFS file-system description object
   1943 * @path: where to put the nnode
   1944 * @parent: parent of the nnode
   1945 * @iip: index in parent of the nnode
   1946 *
   1947 * This function returns a pointer to the nnode on success or a negative error
   1948 * code on failure.
   1949 */
   1950static struct ubifs_nnode *scan_get_nnode(struct ubifs_info *c,
   1951					  struct lpt_scan_node *path,
   1952					  struct ubifs_nnode *parent, int iip)
   1953{
   1954	struct ubifs_nbranch *branch;
   1955	struct ubifs_nnode *nnode;
   1956	void *buf = c->lpt_nod_buf;
   1957	int err;
   1958
   1959	branch = &parent->nbranch[iip];
   1960	nnode = branch->nnode;
   1961	if (nnode) {
   1962		path->in_tree = 1;
   1963		path->ptr.nnode = nnode;
   1964		return nnode;
   1965	}
   1966	nnode = &path->nnode;
   1967	path->in_tree = 0;
   1968	path->ptr.nnode = nnode;
   1969	memset(nnode, 0, sizeof(struct ubifs_nnode));
   1970	if (branch->lnum == 0) {
   1971		/*
   1972		 * This nnode was not written which just means that the LEB
   1973		 * properties in the subtree below it describe empty LEBs. We
   1974		 * make the nnode as though we had read it, which in fact means
   1975		 * doing almost nothing.
   1976		 */
   1977		if (c->big_lpt)
   1978			nnode->num = calc_nnode_num_from_parent(c, parent, iip);
   1979	} else {
   1980		err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
   1981				     c->nnode_sz, 1);
   1982		if (err)
   1983			return ERR_PTR(err);
   1984		err = ubifs_unpack_nnode(c, buf, nnode);
   1985		if (err)
   1986			return ERR_PTR(err);
   1987	}
   1988	err = validate_nnode(c, nnode, parent, iip);
   1989	if (err)
   1990		return ERR_PTR(err);
   1991	if (!c->big_lpt)
   1992		nnode->num = calc_nnode_num_from_parent(c, parent, iip);
   1993	nnode->level = parent->level - 1;
   1994	nnode->parent = parent;
   1995	nnode->iip = iip;
   1996	return nnode;
   1997}
   1998
   1999/**
   2000 * scan_get_pnode - for the scan, get a pnode from either the tree or flash.
   2001 * @c: the UBIFS file-system description object
   2002 * @path: where to put the pnode
   2003 * @parent: parent of the pnode
   2004 * @iip: index in parent of the pnode
   2005 *
   2006 * This function returns a pointer to the pnode on success or a negative error
   2007 * code on failure.
   2008 */
   2009static struct ubifs_pnode *scan_get_pnode(struct ubifs_info *c,
   2010					  struct lpt_scan_node *path,
   2011					  struct ubifs_nnode *parent, int iip)
   2012{
   2013	struct ubifs_nbranch *branch;
   2014	struct ubifs_pnode *pnode;
   2015	void *buf = c->lpt_nod_buf;
   2016	int err;
   2017
   2018	branch = &parent->nbranch[iip];
   2019	pnode = branch->pnode;
   2020	if (pnode) {
   2021		path->in_tree = 1;
   2022		path->ptr.pnode = pnode;
   2023		return pnode;
   2024	}
   2025	pnode = &path->pnode;
   2026	path->in_tree = 0;
   2027	path->ptr.pnode = pnode;
   2028	memset(pnode, 0, sizeof(struct ubifs_pnode));
   2029	if (branch->lnum == 0) {
   2030		/*
   2031		 * This pnode was not written which just means that the LEB
   2032		 * properties in it describe empty LEBs. We make the pnode as
   2033		 * though we had read it.
   2034		 */
   2035		int i;
   2036
   2037		if (c->big_lpt)
   2038			pnode->num = calc_pnode_num_from_parent(c, parent, iip);
   2039		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
   2040			struct ubifs_lprops * const lprops = &pnode->lprops[i];
   2041
   2042			lprops->free = c->leb_size;
   2043			lprops->flags = ubifs_categorize_lprops(c, lprops);
   2044		}
   2045	} else {
   2046		ubifs_assert(c, branch->lnum >= c->lpt_first &&
   2047			     branch->lnum <= c->lpt_last);
   2048		ubifs_assert(c, branch->offs >= 0 && branch->offs < c->leb_size);
   2049		err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
   2050				     c->pnode_sz, 1);
   2051		if (err)
   2052			return ERR_PTR(err);
   2053		err = unpack_pnode(c, buf, pnode);
   2054		if (err)
   2055			return ERR_PTR(err);
   2056	}
   2057	err = validate_pnode(c, pnode, parent, iip);
   2058	if (err)
   2059		return ERR_PTR(err);
   2060	if (!c->big_lpt)
   2061		pnode->num = calc_pnode_num_from_parent(c, parent, iip);
   2062	pnode->parent = parent;
   2063	pnode->iip = iip;
   2064	set_pnode_lnum(c, pnode);
   2065	return pnode;
   2066}
   2067
   2068/**
   2069 * ubifs_lpt_scan_nolock - scan the LPT.
   2070 * @c: the UBIFS file-system description object
   2071 * @start_lnum: LEB number from which to start scanning
   2072 * @end_lnum: LEB number at which to stop scanning
   2073 * @scan_cb: callback function called for each lprops
   2074 * @data: data to be passed to the callback function
   2075 *
   2076 * This function returns %0 on success and a negative error code on failure.
   2077 */
   2078int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum,
   2079			  ubifs_lpt_scan_callback scan_cb, void *data)
   2080{
   2081	int err = 0, i, h, iip, shft;
   2082	struct ubifs_nnode *nnode;
   2083	struct ubifs_pnode *pnode;
   2084	struct lpt_scan_node *path;
   2085
   2086	if (start_lnum == -1) {
   2087		start_lnum = end_lnum + 1;
   2088		if (start_lnum >= c->leb_cnt)
   2089			start_lnum = c->main_first;
   2090	}
   2091
   2092	ubifs_assert(c, start_lnum >= c->main_first && start_lnum < c->leb_cnt);
   2093	ubifs_assert(c, end_lnum >= c->main_first && end_lnum < c->leb_cnt);
   2094
   2095	if (!c->nroot) {
   2096		err = ubifs_read_nnode(c, NULL, 0);
   2097		if (err)
   2098			return err;
   2099	}
   2100
   2101	path = kmalloc_array(c->lpt_hght + 1, sizeof(struct lpt_scan_node),
   2102			     GFP_NOFS);
   2103	if (!path)
   2104		return -ENOMEM;
   2105
   2106	path[0].ptr.nnode = c->nroot;
   2107	path[0].in_tree = 1;
   2108again:
   2109	/* Descend to the pnode containing start_lnum */
   2110	nnode = c->nroot;
   2111	i = start_lnum - c->main_first;
   2112	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
   2113	for (h = 1; h < c->lpt_hght; h++) {
   2114		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
   2115		shft -= UBIFS_LPT_FANOUT_SHIFT;
   2116		nnode = scan_get_nnode(c, path + h, nnode, iip);
   2117		if (IS_ERR(nnode)) {
   2118			err = PTR_ERR(nnode);
   2119			goto out;
   2120		}
   2121	}
   2122	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
   2123	pnode = scan_get_pnode(c, path + h, nnode, iip);
   2124	if (IS_ERR(pnode)) {
   2125		err = PTR_ERR(pnode);
   2126		goto out;
   2127	}
   2128	iip = (i & (UBIFS_LPT_FANOUT - 1));
   2129
   2130	/* Loop for each lprops */
   2131	while (1) {
   2132		struct ubifs_lprops *lprops = &pnode->lprops[iip];
   2133		int ret, lnum = lprops->lnum;
   2134
   2135		ret = scan_cb(c, lprops, path[h].in_tree, data);
   2136		if (ret < 0) {
   2137			err = ret;
   2138			goto out;
   2139		}
   2140		if (ret & LPT_SCAN_ADD) {
   2141			/* Add all the nodes in path to the tree in memory */
   2142			for (h = 1; h < c->lpt_hght; h++) {
   2143				const size_t sz = sizeof(struct ubifs_nnode);
   2144				struct ubifs_nnode *parent;
   2145
   2146				if (path[h].in_tree)
   2147					continue;
   2148				nnode = kmemdup(&path[h].nnode, sz, GFP_NOFS);
   2149				if (!nnode) {
   2150					err = -ENOMEM;
   2151					goto out;
   2152				}
   2153				parent = nnode->parent;
   2154				parent->nbranch[nnode->iip].nnode = nnode;
   2155				path[h].ptr.nnode = nnode;
   2156				path[h].in_tree = 1;
   2157				path[h + 1].cnode.parent = nnode;
   2158			}
   2159			if (path[h].in_tree)
   2160				ubifs_ensure_cat(c, lprops);
   2161			else {
   2162				const size_t sz = sizeof(struct ubifs_pnode);
   2163				struct ubifs_nnode *parent;
   2164
   2165				pnode = kmemdup(&path[h].pnode, sz, GFP_NOFS);
   2166				if (!pnode) {
   2167					err = -ENOMEM;
   2168					goto out;
   2169				}
   2170				parent = pnode->parent;
   2171				parent->nbranch[pnode->iip].pnode = pnode;
   2172				path[h].ptr.pnode = pnode;
   2173				path[h].in_tree = 1;
   2174				update_cats(c, pnode);
   2175				c->pnodes_have += 1;
   2176			}
   2177			err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)
   2178						  c->nroot, 0, 0);
   2179			if (err)
   2180				goto out;
   2181			err = dbg_check_cats(c);
   2182			if (err)
   2183				goto out;
   2184		}
   2185		if (ret & LPT_SCAN_STOP) {
   2186			err = 0;
   2187			break;
   2188		}
   2189		/* Get the next lprops */
   2190		if (lnum == end_lnum) {
   2191			/*
   2192			 * We got to the end without finding what we were
   2193			 * looking for
   2194			 */
   2195			err = -ENOSPC;
   2196			goto out;
   2197		}
   2198		if (lnum + 1 >= c->leb_cnt) {
   2199			/* Wrap-around to the beginning */
   2200			start_lnum = c->main_first;
   2201			goto again;
   2202		}
   2203		if (iip + 1 < UBIFS_LPT_FANOUT) {
   2204			/* Next lprops is in the same pnode */
   2205			iip += 1;
   2206			continue;
   2207		}
   2208		/* We need to get the next pnode. Go up until we can go right */
   2209		iip = pnode->iip;
   2210		while (1) {
   2211			h -= 1;
   2212			ubifs_assert(c, h >= 0);
   2213			nnode = path[h].ptr.nnode;
   2214			if (iip + 1 < UBIFS_LPT_FANOUT)
   2215				break;
   2216			iip = nnode->iip;
   2217		}
   2218		/* Go right */
   2219		iip += 1;
   2220		/* Descend to the pnode */
   2221		h += 1;
   2222		for (; h < c->lpt_hght; h++) {
   2223			nnode = scan_get_nnode(c, path + h, nnode, iip);
   2224			if (IS_ERR(nnode)) {
   2225				err = PTR_ERR(nnode);
   2226				goto out;
   2227			}
   2228			iip = 0;
   2229		}
   2230		pnode = scan_get_pnode(c, path + h, nnode, iip);
   2231		if (IS_ERR(pnode)) {
   2232			err = PTR_ERR(pnode);
   2233			goto out;
   2234		}
   2235		iip = 0;
   2236	}
   2237out:
   2238	kfree(path);
   2239	return err;
   2240}
   2241
   2242/**
   2243 * dbg_chk_pnode - check a pnode.
   2244 * @c: the UBIFS file-system description object
   2245 * @pnode: pnode to check
   2246 * @col: pnode column
   2247 *
   2248 * This function returns %0 on success and a negative error code on failure.
   2249 */
   2250static int dbg_chk_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
   2251			 int col)
   2252{
   2253	int i;
   2254
   2255	if (pnode->num != col) {
   2256		ubifs_err(c, "pnode num %d expected %d parent num %d iip %d",
   2257			  pnode->num, col, pnode->parent->num, pnode->iip);
   2258		return -EINVAL;
   2259	}
   2260	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
   2261		struct ubifs_lprops *lp, *lprops = &pnode->lprops[i];
   2262		int lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + i +
   2263			   c->main_first;
   2264		int found, cat = lprops->flags & LPROPS_CAT_MASK;
   2265		struct ubifs_lpt_heap *heap;
   2266		struct list_head *list = NULL;
   2267
   2268		if (lnum >= c->leb_cnt)
   2269			continue;
   2270		if (lprops->lnum != lnum) {
   2271			ubifs_err(c, "bad LEB number %d expected %d",
   2272				  lprops->lnum, lnum);
   2273			return -EINVAL;
   2274		}
   2275		if (lprops->flags & LPROPS_TAKEN) {
   2276			if (cat != LPROPS_UNCAT) {
   2277				ubifs_err(c, "LEB %d taken but not uncat %d",
   2278					  lprops->lnum, cat);
   2279				return -EINVAL;
   2280			}
   2281			continue;
   2282		}
   2283		if (lprops->flags & LPROPS_INDEX) {
   2284			switch (cat) {
   2285			case LPROPS_UNCAT:
   2286			case LPROPS_DIRTY_IDX:
   2287			case LPROPS_FRDI_IDX:
   2288				break;
   2289			default:
   2290				ubifs_err(c, "LEB %d index but cat %d",
   2291					  lprops->lnum, cat);
   2292				return -EINVAL;
   2293			}
   2294		} else {
   2295			switch (cat) {
   2296			case LPROPS_UNCAT:
   2297			case LPROPS_DIRTY:
   2298			case LPROPS_FREE:
   2299			case LPROPS_EMPTY:
   2300			case LPROPS_FREEABLE:
   2301				break;
   2302			default:
   2303				ubifs_err(c, "LEB %d not index but cat %d",
   2304					  lprops->lnum, cat);
   2305				return -EINVAL;
   2306			}
   2307		}
   2308		switch (cat) {
   2309		case LPROPS_UNCAT:
   2310			list = &c->uncat_list;
   2311			break;
   2312		case LPROPS_EMPTY:
   2313			list = &c->empty_list;
   2314			break;
   2315		case LPROPS_FREEABLE:
   2316			list = &c->freeable_list;
   2317			break;
   2318		case LPROPS_FRDI_IDX:
   2319			list = &c->frdi_idx_list;
   2320			break;
   2321		}
   2322		found = 0;
   2323		switch (cat) {
   2324		case LPROPS_DIRTY:
   2325		case LPROPS_DIRTY_IDX:
   2326		case LPROPS_FREE:
   2327			heap = &c->lpt_heap[cat - 1];
   2328			if (lprops->hpos < heap->cnt &&
   2329			    heap->arr[lprops->hpos] == lprops)
   2330				found = 1;
   2331			break;
   2332		case LPROPS_UNCAT:
   2333		case LPROPS_EMPTY:
   2334		case LPROPS_FREEABLE:
   2335		case LPROPS_FRDI_IDX:
   2336			list_for_each_entry(lp, list, list)
   2337				if (lprops == lp) {
   2338					found = 1;
   2339					break;
   2340				}
   2341			break;
   2342		}
   2343		if (!found) {
   2344			ubifs_err(c, "LEB %d cat %d not found in cat heap/list",
   2345				  lprops->lnum, cat);
   2346			return -EINVAL;
   2347		}
   2348		switch (cat) {
   2349		case LPROPS_EMPTY:
   2350			if (lprops->free != c->leb_size) {
   2351				ubifs_err(c, "LEB %d cat %d free %d dirty %d",
   2352					  lprops->lnum, cat, lprops->free,
   2353					  lprops->dirty);
   2354				return -EINVAL;
   2355			}
   2356			break;
   2357		case LPROPS_FREEABLE:
   2358		case LPROPS_FRDI_IDX:
   2359			if (lprops->free + lprops->dirty != c->leb_size) {
   2360				ubifs_err(c, "LEB %d cat %d free %d dirty %d",
   2361					  lprops->lnum, cat, lprops->free,
   2362					  lprops->dirty);
   2363				return -EINVAL;
   2364			}
   2365			break;
   2366		}
   2367	}
   2368	return 0;
   2369}
   2370
   2371/**
   2372 * dbg_check_lpt_nodes - check nnodes and pnodes.
   2373 * @c: the UBIFS file-system description object
   2374 * @cnode: next cnode (nnode or pnode) to check
   2375 * @row: row of cnode (root is zero)
   2376 * @col: column of cnode (leftmost is zero)
   2377 *
   2378 * This function returns %0 on success and a negative error code on failure.
   2379 */
   2380int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode,
   2381			int row, int col)
   2382{
   2383	struct ubifs_nnode *nnode, *nn;
   2384	struct ubifs_cnode *cn;
   2385	int num, iip = 0, err;
   2386
   2387	if (!dbg_is_chk_lprops(c))
   2388		return 0;
   2389
   2390	while (cnode) {
   2391		ubifs_assert(c, row >= 0);
   2392		nnode = cnode->parent;
   2393		if (cnode->level) {
   2394			/* cnode is a nnode */
   2395			num = calc_nnode_num(row, col);
   2396			if (cnode->num != num) {
   2397				ubifs_err(c, "nnode num %d expected %d parent num %d iip %d",
   2398					  cnode->num, num,
   2399					  (nnode ? nnode->num : 0), cnode->iip);
   2400				return -EINVAL;
   2401			}
   2402			nn = (struct ubifs_nnode *)cnode;
   2403			while (iip < UBIFS_LPT_FANOUT) {
   2404				cn = nn->nbranch[iip].cnode;
   2405				if (cn) {
   2406					/* Go down */
   2407					row += 1;
   2408					col <<= UBIFS_LPT_FANOUT_SHIFT;
   2409					col += iip;
   2410					iip = 0;
   2411					cnode = cn;
   2412					break;
   2413				}
   2414				/* Go right */
   2415				iip += 1;
   2416			}
   2417			if (iip < UBIFS_LPT_FANOUT)
   2418				continue;
   2419		} else {
   2420			struct ubifs_pnode *pnode;
   2421
   2422			/* cnode is a pnode */
   2423			pnode = (struct ubifs_pnode *)cnode;
   2424			err = dbg_chk_pnode(c, pnode, col);
   2425			if (err)
   2426				return err;
   2427		}
   2428		/* Go up and to the right */
   2429		row -= 1;
   2430		col >>= UBIFS_LPT_FANOUT_SHIFT;
   2431		iip = cnode->iip + 1;
   2432		cnode = (struct ubifs_cnode *)nnode;
   2433	}
   2434	return 0;
   2435}