cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

recovery.c (44163B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * This file is part of UBIFS.
      4 *
      5 * Copyright (C) 2006-2008 Nokia Corporation
      6 *
      7 * Authors: Adrian Hunter
      8 *          Artem Bityutskiy (Битюцкий Артём)
      9 */
     10
     11/*
     12 * This file implements functions needed to recover from unclean un-mounts.
     13 * When UBIFS is mounted, it checks a flag on the master node to determine if
     14 * an un-mount was completed successfully. If not, the process of mounting
     15 * incorporates additional checking and fixing of on-flash data structures.
     16 * UBIFS always cleans away all remnants of an unclean un-mount, so that
     17 * errors do not accumulate. However UBIFS defers recovery if it is mounted
     18 * read-only, and the flash is not modified in that case.
     19 *
     20 * The general UBIFS approach to the recovery is that it recovers from
     21 * corruptions which could be caused by power cuts, but it refuses to recover
     22 * from corruption caused by other reasons. And UBIFS tries to distinguish
     23 * between these 2 reasons of corruptions and silently recover in the former
     24 * case and loudly complain in the latter case.
     25 *
     26 * UBIFS writes only to erased LEBs, so it writes only to the flash space
     27 * containing only 0xFFs. UBIFS also always writes strictly from the beginning
     28 * of the LEB to the end. And UBIFS assumes that the underlying flash media
     29 * writes in @c->max_write_size bytes at a time.
     30 *
     31 * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min.
     32 * I/O unit corresponding to offset X to contain corrupted data, all the
     33 * following min. I/O units have to contain empty space (all 0xFFs). If this is
     34 * not true, the corruption cannot be the result of a power cut, and UBIFS
     35 * refuses to mount.
     36 */
     37
     38#include <linux/crc32.h>
     39#include <linux/slab.h>
     40#include "ubifs.h"
     41
     42/**
     43 * is_empty - determine whether a buffer is empty (contains all 0xff).
     44 * @buf: buffer to clean
     45 * @len: length of buffer
     46 *
     47 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
     48 * %0 is returned.
     49 */
     50static int is_empty(void *buf, int len)
     51{
     52	uint8_t *p = buf;
     53	int i;
     54
     55	for (i = 0; i < len; i++)
     56		if (*p++ != 0xff)
     57			return 0;
     58	return 1;
     59}
     60
     61/**
     62 * first_non_ff - find offset of the first non-0xff byte.
     63 * @buf: buffer to search in
     64 * @len: length of buffer
     65 *
     66 * This function returns offset of the first non-0xff byte in @buf or %-1 if
     67 * the buffer contains only 0xff bytes.
     68 */
     69static int first_non_ff(void *buf, int len)
     70{
     71	uint8_t *p = buf;
     72	int i;
     73
     74	for (i = 0; i < len; i++)
     75		if (*p++ != 0xff)
     76			return i;
     77	return -1;
     78}
     79
     80/**
     81 * get_master_node - get the last valid master node allowing for corruption.
     82 * @c: UBIFS file-system description object
     83 * @lnum: LEB number
     84 * @pbuf: buffer containing the LEB read, is returned here
     85 * @mst: master node, if found, is returned here
     86 * @cor: corruption, if found, is returned here
     87 *
     88 * This function allocates a buffer, reads the LEB into it, and finds and
     89 * returns the last valid master node allowing for one area of corruption.
     90 * The corrupt area, if there is one, must be consistent with the assumption
     91 * that it is the result of an unclean unmount while the master node was being
     92 * written. Under those circumstances, it is valid to use the previously written
     93 * master node.
     94 *
     95 * This function returns %0 on success and a negative error code on failure.
     96 */
     97static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
     98			   struct ubifs_mst_node **mst, void **cor)
     99{
    100	const int sz = c->mst_node_alsz;
    101	int err, offs, len;
    102	void *sbuf, *buf;
    103
    104	sbuf = vmalloc(c->leb_size);
    105	if (!sbuf)
    106		return -ENOMEM;
    107
    108	err = ubifs_leb_read(c, lnum, sbuf, 0, c->leb_size, 0);
    109	if (err && err != -EBADMSG)
    110		goto out_free;
    111
    112	/* Find the first position that is definitely not a node */
    113	offs = 0;
    114	buf = sbuf;
    115	len = c->leb_size;
    116	while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
    117		struct ubifs_ch *ch = buf;
    118
    119		if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
    120			break;
    121		offs += sz;
    122		buf  += sz;
    123		len  -= sz;
    124	}
    125	/* See if there was a valid master node before that */
    126	if (offs) {
    127		int ret;
    128
    129		offs -= sz;
    130		buf  -= sz;
    131		len  += sz;
    132		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
    133		if (ret != SCANNED_A_NODE && offs) {
    134			/* Could have been corruption so check one place back */
    135			offs -= sz;
    136			buf  -= sz;
    137			len  += sz;
    138			ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
    139			if (ret != SCANNED_A_NODE)
    140				/*
    141				 * We accept only one area of corruption because
    142				 * we are assuming that it was caused while
    143				 * trying to write a master node.
    144				 */
    145				goto out_err;
    146		}
    147		if (ret == SCANNED_A_NODE) {
    148			struct ubifs_ch *ch = buf;
    149
    150			if (ch->node_type != UBIFS_MST_NODE)
    151				goto out_err;
    152			dbg_rcvry("found a master node at %d:%d", lnum, offs);
    153			*mst = buf;
    154			offs += sz;
    155			buf  += sz;
    156			len  -= sz;
    157		}
    158	}
    159	/* Check for corruption */
    160	if (offs < c->leb_size) {
    161		if (!is_empty(buf, min_t(int, len, sz))) {
    162			*cor = buf;
    163			dbg_rcvry("found corruption at %d:%d", lnum, offs);
    164		}
    165		offs += sz;
    166		buf  += sz;
    167		len  -= sz;
    168	}
    169	/* Check remaining empty space */
    170	if (offs < c->leb_size)
    171		if (!is_empty(buf, len))
    172			goto out_err;
    173	*pbuf = sbuf;
    174	return 0;
    175
    176out_err:
    177	err = -EINVAL;
    178out_free:
    179	vfree(sbuf);
    180	*mst = NULL;
    181	*cor = NULL;
    182	return err;
    183}
    184
    185/**
    186 * write_rcvrd_mst_node - write recovered master node.
    187 * @c: UBIFS file-system description object
    188 * @mst: master node
    189 *
    190 * This function returns %0 on success and a negative error code on failure.
    191 */
    192static int write_rcvrd_mst_node(struct ubifs_info *c,
    193				struct ubifs_mst_node *mst)
    194{
    195	int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
    196	__le32 save_flags;
    197
    198	dbg_rcvry("recovery");
    199
    200	save_flags = mst->flags;
    201	mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
    202
    203	err = ubifs_prepare_node_hmac(c, mst, UBIFS_MST_NODE_SZ,
    204				      offsetof(struct ubifs_mst_node, hmac), 1);
    205	if (err)
    206		goto out;
    207	err = ubifs_leb_change(c, lnum, mst, sz);
    208	if (err)
    209		goto out;
    210	err = ubifs_leb_change(c, lnum + 1, mst, sz);
    211	if (err)
    212		goto out;
    213out:
    214	mst->flags = save_flags;
    215	return err;
    216}
    217
    218/**
    219 * ubifs_recover_master_node - recover the master node.
    220 * @c: UBIFS file-system description object
    221 *
    222 * This function recovers the master node from corruption that may occur due to
    223 * an unclean unmount.
    224 *
    225 * This function returns %0 on success and a negative error code on failure.
    226 */
    227int ubifs_recover_master_node(struct ubifs_info *c)
    228{
    229	void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
    230	struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
    231	const int sz = c->mst_node_alsz;
    232	int err, offs1, offs2;
    233
    234	dbg_rcvry("recovery");
    235
    236	err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
    237	if (err)
    238		goto out_free;
    239
    240	err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
    241	if (err)
    242		goto out_free;
    243
    244	if (mst1) {
    245		offs1 = (void *)mst1 - buf1;
    246		if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
    247		    (offs1 == 0 && !cor1)) {
    248			/*
    249			 * mst1 was written by recovery at offset 0 with no
    250			 * corruption.
    251			 */
    252			dbg_rcvry("recovery recovery");
    253			mst = mst1;
    254		} else if (mst2) {
    255			offs2 = (void *)mst2 - buf2;
    256			if (offs1 == offs2) {
    257				/* Same offset, so must be the same */
    258				if (ubifs_compare_master_node(c, mst1, mst2))
    259					goto out_err;
    260				mst = mst1;
    261			} else if (offs2 + sz == offs1) {
    262				/* 1st LEB was written, 2nd was not */
    263				if (cor1)
    264					goto out_err;
    265				mst = mst1;
    266			} else if (offs1 == 0 &&
    267				   c->leb_size - offs2 - sz < sz) {
    268				/* 1st LEB was unmapped and written, 2nd not */
    269				if (cor1)
    270					goto out_err;
    271				mst = mst1;
    272			} else
    273				goto out_err;
    274		} else {
    275			/*
    276			 * 2nd LEB was unmapped and about to be written, so
    277			 * there must be only one master node in the first LEB
    278			 * and no corruption.
    279			 */
    280			if (offs1 != 0 || cor1)
    281				goto out_err;
    282			mst = mst1;
    283		}
    284	} else {
    285		if (!mst2)
    286			goto out_err;
    287		/*
    288		 * 1st LEB was unmapped and about to be written, so there must
    289		 * be no room left in 2nd LEB.
    290		 */
    291		offs2 = (void *)mst2 - buf2;
    292		if (offs2 + sz + sz <= c->leb_size)
    293			goto out_err;
    294		mst = mst2;
    295	}
    296
    297	ubifs_msg(c, "recovered master node from LEB %d",
    298		  (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
    299
    300	memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
    301
    302	if (c->ro_mount) {
    303		/* Read-only mode. Keep a copy for switching to rw mode */
    304		c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
    305		if (!c->rcvrd_mst_node) {
    306			err = -ENOMEM;
    307			goto out_free;
    308		}
    309		memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
    310
    311		/*
    312		 * We had to recover the master node, which means there was an
    313		 * unclean reboot. However, it is possible that the master node
    314		 * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set.
    315		 * E.g., consider the following chain of events:
    316		 *
    317		 * 1. UBIFS was cleanly unmounted, so the master node is clean
    318		 * 2. UBIFS is being mounted R/W and starts changing the master
    319		 *    node in the first (%UBIFS_MST_LNUM). A power cut happens,
    320		 *    so this LEB ends up with some amount of garbage at the
    321		 *    end.
    322		 * 3. UBIFS is being mounted R/O. We reach this place and
    323		 *    recover the master node from the second LEB
    324		 *    (%UBIFS_MST_LNUM + 1). But we cannot update the media
    325		 *    because we are being mounted R/O. We have to defer the
    326		 *    operation.
    327		 * 4. However, this master node (@c->mst_node) is marked as
    328		 *    clean (since the step 1). And if we just return, the
    329		 *    mount code will be confused and won't recover the master
    330		 *    node when it is re-mounter R/W later.
    331		 *
    332		 *    Thus, to force the recovery by marking the master node as
    333		 *    dirty.
    334		 */
    335		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
    336	} else {
    337		/* Write the recovered master node */
    338		c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
    339		err = write_rcvrd_mst_node(c, c->mst_node);
    340		if (err)
    341			goto out_free;
    342	}
    343
    344	vfree(buf2);
    345	vfree(buf1);
    346
    347	return 0;
    348
    349out_err:
    350	err = -EINVAL;
    351out_free:
    352	ubifs_err(c, "failed to recover master node");
    353	if (mst1) {
    354		ubifs_err(c, "dumping first master node");
    355		ubifs_dump_node(c, mst1, c->leb_size - ((void *)mst1 - buf1));
    356	}
    357	if (mst2) {
    358		ubifs_err(c, "dumping second master node");
    359		ubifs_dump_node(c, mst2, c->leb_size - ((void *)mst2 - buf2));
    360	}
    361	vfree(buf2);
    362	vfree(buf1);
    363	return err;
    364}
    365
    366/**
    367 * ubifs_write_rcvrd_mst_node - write the recovered master node.
    368 * @c: UBIFS file-system description object
    369 *
    370 * This function writes the master node that was recovered during mounting in
    371 * read-only mode and must now be written because we are remounting rw.
    372 *
    373 * This function returns %0 on success and a negative error code on failure.
    374 */
    375int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
    376{
    377	int err;
    378
    379	if (!c->rcvrd_mst_node)
    380		return 0;
    381	c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
    382	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
    383	err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
    384	if (err)
    385		return err;
    386	kfree(c->rcvrd_mst_node);
    387	c->rcvrd_mst_node = NULL;
    388	return 0;
    389}
    390
    391/**
    392 * is_last_write - determine if an offset was in the last write to a LEB.
    393 * @c: UBIFS file-system description object
    394 * @buf: buffer to check
    395 * @offs: offset to check
    396 *
    397 * This function returns %1 if @offs was in the last write to the LEB whose data
    398 * is in @buf, otherwise %0 is returned. The determination is made by checking
    399 * for subsequent empty space starting from the next @c->max_write_size
    400 * boundary.
    401 */
    402static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
    403{
    404	int empty_offs, check_len;
    405	uint8_t *p;
    406
    407	/*
    408	 * Round up to the next @c->max_write_size boundary i.e. @offs is in
    409	 * the last wbuf written. After that should be empty space.
    410	 */
    411	empty_offs = ALIGN(offs + 1, c->max_write_size);
    412	check_len = c->leb_size - empty_offs;
    413	p = buf + empty_offs - offs;
    414	return is_empty(p, check_len);
    415}
    416
    417/**
    418 * clean_buf - clean the data from an LEB sitting in a buffer.
    419 * @c: UBIFS file-system description object
    420 * @buf: buffer to clean
    421 * @lnum: LEB number to clean
    422 * @offs: offset from which to clean
    423 * @len: length of buffer
    424 *
    425 * This function pads up to the next min_io_size boundary (if there is one) and
    426 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
    427 * @c->min_io_size boundary.
    428 */
    429static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
    430		      int *offs, int *len)
    431{
    432	int empty_offs, pad_len;
    433
    434	dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
    435
    436	ubifs_assert(c, !(*offs & 7));
    437	empty_offs = ALIGN(*offs, c->min_io_size);
    438	pad_len = empty_offs - *offs;
    439	ubifs_pad(c, *buf, pad_len);
    440	*offs += pad_len;
    441	*buf += pad_len;
    442	*len -= pad_len;
    443	memset(*buf, 0xff, c->leb_size - empty_offs);
    444}
    445
    446/**
    447 * no_more_nodes - determine if there are no more nodes in a buffer.
    448 * @c: UBIFS file-system description object
    449 * @buf: buffer to check
    450 * @len: length of buffer
    451 * @lnum: LEB number of the LEB from which @buf was read
    452 * @offs: offset from which @buf was read
    453 *
    454 * This function ensures that the corrupted node at @offs is the last thing
    455 * written to a LEB. This function returns %1 if more data is not found and
    456 * %0 if more data is found.
    457 */
    458static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
    459			int lnum, int offs)
    460{
    461	struct ubifs_ch *ch = buf;
    462	int skip, dlen = le32_to_cpu(ch->len);
    463
    464	/* Check for empty space after the corrupt node's common header */
    465	skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs;
    466	if (is_empty(buf + skip, len - skip))
    467		return 1;
    468	/*
    469	 * The area after the common header size is not empty, so the common
    470	 * header must be intact. Check it.
    471	 */
    472	if (ubifs_check_node(c, buf, len, lnum, offs, 1, 0) != -EUCLEAN) {
    473		dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
    474		return 0;
    475	}
    476	/* Now we know the corrupt node's length we can skip over it */
    477	skip = ALIGN(offs + dlen, c->max_write_size) - offs;
    478	/* After which there should be empty space */
    479	if (is_empty(buf + skip, len - skip))
    480		return 1;
    481	dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
    482	return 0;
    483}
    484
    485/**
    486 * fix_unclean_leb - fix an unclean LEB.
    487 * @c: UBIFS file-system description object
    488 * @sleb: scanned LEB information
    489 * @start: offset where scan started
    490 */
    491static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
    492			   int start)
    493{
    494	int lnum = sleb->lnum, endpt = start;
    495
    496	/* Get the end offset of the last node we are keeping */
    497	if (!list_empty(&sleb->nodes)) {
    498		struct ubifs_scan_node *snod;
    499
    500		snod = list_entry(sleb->nodes.prev,
    501				  struct ubifs_scan_node, list);
    502		endpt = snod->offs + snod->len;
    503	}
    504
    505	if (c->ro_mount && !c->remounting_rw) {
    506		/* Add to recovery list */
    507		struct ubifs_unclean_leb *ucleb;
    508
    509		dbg_rcvry("need to fix LEB %d start %d endpt %d",
    510			  lnum, start, sleb->endpt);
    511		ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
    512		if (!ucleb)
    513			return -ENOMEM;
    514		ucleb->lnum = lnum;
    515		ucleb->endpt = endpt;
    516		list_add_tail(&ucleb->list, &c->unclean_leb_list);
    517	} else {
    518		/* Write the fixed LEB back to flash */
    519		int err;
    520
    521		dbg_rcvry("fixing LEB %d start %d endpt %d",
    522			  lnum, start, sleb->endpt);
    523		if (endpt == 0) {
    524			err = ubifs_leb_unmap(c, lnum);
    525			if (err)
    526				return err;
    527		} else {
    528			int len = ALIGN(endpt, c->min_io_size);
    529
    530			if (start) {
    531				err = ubifs_leb_read(c, lnum, sleb->buf, 0,
    532						     start, 1);
    533				if (err)
    534					return err;
    535			}
    536			/* Pad to min_io_size */
    537			if (len > endpt) {
    538				int pad_len = len - ALIGN(endpt, 8);
    539
    540				if (pad_len > 0) {
    541					void *buf = sleb->buf + len - pad_len;
    542
    543					ubifs_pad(c, buf, pad_len);
    544				}
    545			}
    546			err = ubifs_leb_change(c, lnum, sleb->buf, len);
    547			if (err)
    548				return err;
    549		}
    550	}
    551	return 0;
    552}
    553
    554/**
    555 * drop_last_group - drop the last group of nodes.
    556 * @sleb: scanned LEB information
    557 * @offs: offset of dropped nodes is returned here
    558 *
    559 * This is a helper function for 'ubifs_recover_leb()' which drops the last
    560 * group of nodes of the scanned LEB.
    561 */
    562static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs)
    563{
    564	while (!list_empty(&sleb->nodes)) {
    565		struct ubifs_scan_node *snod;
    566		struct ubifs_ch *ch;
    567
    568		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
    569				  list);
    570		ch = snod->node;
    571		if (ch->group_type != UBIFS_IN_NODE_GROUP)
    572			break;
    573
    574		dbg_rcvry("dropping grouped node at %d:%d",
    575			  sleb->lnum, snod->offs);
    576		*offs = snod->offs;
    577		list_del(&snod->list);
    578		kfree(snod);
    579		sleb->nodes_cnt -= 1;
    580	}
    581}
    582
    583/**
    584 * drop_last_node - drop the last node.
    585 * @sleb: scanned LEB information
    586 * @offs: offset of dropped nodes is returned here
    587 *
    588 * This is a helper function for 'ubifs_recover_leb()' which drops the last
    589 * node of the scanned LEB.
    590 */
    591static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs)
    592{
    593	struct ubifs_scan_node *snod;
    594
    595	if (!list_empty(&sleb->nodes)) {
    596		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
    597				  list);
    598
    599		dbg_rcvry("dropping last node at %d:%d",
    600			  sleb->lnum, snod->offs);
    601		*offs = snod->offs;
    602		list_del(&snod->list);
    603		kfree(snod);
    604		sleb->nodes_cnt -= 1;
    605	}
    606}
    607
    608/**
    609 * ubifs_recover_leb - scan and recover a LEB.
    610 * @c: UBIFS file-system description object
    611 * @lnum: LEB number
    612 * @offs: offset
    613 * @sbuf: LEB-sized buffer to use
    614 * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not
    615 *         belong to any journal head)
    616 *
    617 * This function does a scan of a LEB, but caters for errors that might have
    618 * been caused by the unclean unmount from which we are attempting to recover.
    619 * Returns the scanned information on success and a negative error code on
    620 * failure.
    621 */
    622struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
    623					 int offs, void *sbuf, int jhead)
    624{
    625	int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit;
    626	int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped;
    627	struct ubifs_scan_leb *sleb;
    628	void *buf = sbuf + offs;
    629
    630	dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped);
    631
    632	sleb = ubifs_start_scan(c, lnum, offs, sbuf);
    633	if (IS_ERR(sleb))
    634		return sleb;
    635
    636	ubifs_assert(c, len >= 8);
    637	while (len >= 8) {
    638		dbg_scan("look at LEB %d:%d (%d bytes left)",
    639			 lnum, offs, len);
    640
    641		cond_resched();
    642
    643		/*
    644		 * Scan quietly until there is an error from which we cannot
    645		 * recover
    646		 */
    647		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
    648		if (ret == SCANNED_A_NODE) {
    649			/* A valid node, and not a padding node */
    650			struct ubifs_ch *ch = buf;
    651			int node_len;
    652
    653			err = ubifs_add_snod(c, sleb, buf, offs);
    654			if (err)
    655				goto error;
    656			node_len = ALIGN(le32_to_cpu(ch->len), 8);
    657			offs += node_len;
    658			buf += node_len;
    659			len -= node_len;
    660		} else if (ret > 0) {
    661			/* Padding bytes or a valid padding node */
    662			offs += ret;
    663			buf += ret;
    664			len -= ret;
    665		} else if (ret == SCANNED_EMPTY_SPACE ||
    666			   ret == SCANNED_GARBAGE     ||
    667			   ret == SCANNED_A_BAD_PAD_NODE ||
    668			   ret == SCANNED_A_CORRUPT_NODE) {
    669			dbg_rcvry("found corruption (%d) at %d:%d",
    670				  ret, lnum, offs);
    671			break;
    672		} else {
    673			ubifs_err(c, "unexpected return value %d", ret);
    674			err = -EINVAL;
    675			goto error;
    676		}
    677	}
    678
    679	if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) {
    680		if (!is_last_write(c, buf, offs))
    681			goto corrupted_rescan;
    682	} else if (ret == SCANNED_A_CORRUPT_NODE) {
    683		if (!no_more_nodes(c, buf, len, lnum, offs))
    684			goto corrupted_rescan;
    685	} else if (!is_empty(buf, len)) {
    686		if (!is_last_write(c, buf, offs)) {
    687			int corruption = first_non_ff(buf, len);
    688
    689			/*
    690			 * See header comment for this file for more
    691			 * explanations about the reasons we have this check.
    692			 */
    693			ubifs_err(c, "corrupt empty space LEB %d:%d, corruption starts at %d",
    694				  lnum, offs, corruption);
    695			/* Make sure we dump interesting non-0xFF data */
    696			offs += corruption;
    697			buf += corruption;
    698			goto corrupted;
    699		}
    700	}
    701
    702	min_io_unit = round_down(offs, c->min_io_size);
    703	if (grouped)
    704		/*
    705		 * If nodes are grouped, always drop the incomplete group at
    706		 * the end.
    707		 */
    708		drop_last_group(sleb, &offs);
    709
    710	if (jhead == GCHD) {
    711		/*
    712		 * If this LEB belongs to the GC head then while we are in the
    713		 * middle of the same min. I/O unit keep dropping nodes. So
    714		 * basically, what we want is to make sure that the last min.
    715		 * I/O unit where we saw the corruption is dropped completely
    716		 * with all the uncorrupted nodes which may possibly sit there.
    717		 *
    718		 * In other words, let's name the min. I/O unit where the
    719		 * corruption starts B, and the previous min. I/O unit A. The
    720		 * below code tries to deal with a situation when half of B
    721		 * contains valid nodes or the end of a valid node, and the
    722		 * second half of B contains corrupted data or garbage. This
    723		 * means that UBIFS had been writing to B just before the power
    724		 * cut happened. I do not know how realistic is this scenario
    725		 * that half of the min. I/O unit had been written successfully
    726		 * and the other half not, but this is possible in our 'failure
    727		 * mode emulation' infrastructure at least.
    728		 *
    729		 * So what is the problem, why we need to drop those nodes? Why
    730		 * can't we just clean-up the second half of B by putting a
    731		 * padding node there? We can, and this works fine with one
    732		 * exception which was reproduced with power cut emulation
    733		 * testing and happens extremely rarely.
    734		 *
    735		 * Imagine the file-system is full, we run GC which starts
    736		 * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is
    737		 * the current GC head LEB). The @c->gc_lnum is -1, which means
    738		 * that GC will retain LEB X and will try to continue. Imagine
    739		 * that LEB X is currently the dirtiest LEB, and the amount of
    740		 * used space in LEB Y is exactly the same as amount of free
    741		 * space in LEB X.
    742		 *
    743		 * And a power cut happens when nodes are moved from LEB X to
    744		 * LEB Y. We are here trying to recover LEB Y which is the GC
    745		 * head LEB. We find the min. I/O unit B as described above.
    746		 * Then we clean-up LEB Y by padding min. I/O unit. And later
    747		 * 'ubifs_rcvry_gc_commit()' function fails, because it cannot
    748		 * find a dirty LEB which could be GC'd into LEB Y! Even LEB X
    749		 * does not match because the amount of valid nodes there does
    750		 * not fit the free space in LEB Y any more! And this is
    751		 * because of the padding node which we added to LEB Y. The
    752		 * user-visible effect of this which I once observed and
    753		 * analysed is that we cannot mount the file-system with
    754		 * -ENOSPC error.
    755		 *
    756		 * So obviously, to make sure that situation does not happen we
    757		 * should free min. I/O unit B in LEB Y completely and the last
    758		 * used min. I/O unit in LEB Y should be A. This is basically
    759		 * what the below code tries to do.
    760		 */
    761		while (offs > min_io_unit)
    762			drop_last_node(sleb, &offs);
    763	}
    764
    765	buf = sbuf + offs;
    766	len = c->leb_size - offs;
    767
    768	clean_buf(c, &buf, lnum, &offs, &len);
    769	ubifs_end_scan(c, sleb, lnum, offs);
    770
    771	err = fix_unclean_leb(c, sleb, start);
    772	if (err)
    773		goto error;
    774
    775	return sleb;
    776
    777corrupted_rescan:
    778	/* Re-scan the corrupted data with verbose messages */
    779	ubifs_err(c, "corruption %d", ret);
    780	ubifs_scan_a_node(c, buf, len, lnum, offs, 0);
    781corrupted:
    782	ubifs_scanned_corruption(c, lnum, offs, buf);
    783	err = -EUCLEAN;
    784error:
    785	ubifs_err(c, "LEB %d scanning failed", lnum);
    786	ubifs_scan_destroy(sleb);
    787	return ERR_PTR(err);
    788}
    789
    790/**
    791 * get_cs_sqnum - get commit start sequence number.
    792 * @c: UBIFS file-system description object
    793 * @lnum: LEB number of commit start node
    794 * @offs: offset of commit start node
    795 * @cs_sqnum: commit start sequence number is returned here
    796 *
    797 * This function returns %0 on success and a negative error code on failure.
    798 */
    799static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
    800			unsigned long long *cs_sqnum)
    801{
    802	struct ubifs_cs_node *cs_node = NULL;
    803	int err, ret;
    804
    805	dbg_rcvry("at %d:%d", lnum, offs);
    806	cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
    807	if (!cs_node)
    808		return -ENOMEM;
    809	if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
    810		goto out_err;
    811	err = ubifs_leb_read(c, lnum, (void *)cs_node, offs,
    812			     UBIFS_CS_NODE_SZ, 0);
    813	if (err && err != -EBADMSG)
    814		goto out_free;
    815	ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
    816	if (ret != SCANNED_A_NODE) {
    817		ubifs_err(c, "Not a valid node");
    818		goto out_err;
    819	}
    820	if (cs_node->ch.node_type != UBIFS_CS_NODE) {
    821		ubifs_err(c, "Not a CS node, type is %d", cs_node->ch.node_type);
    822		goto out_err;
    823	}
    824	if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
    825		ubifs_err(c, "CS node cmt_no %llu != current cmt_no %llu",
    826			  (unsigned long long)le64_to_cpu(cs_node->cmt_no),
    827			  c->cmt_no);
    828		goto out_err;
    829	}
    830	*cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
    831	dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
    832	kfree(cs_node);
    833	return 0;
    834
    835out_err:
    836	err = -EINVAL;
    837out_free:
    838	ubifs_err(c, "failed to get CS sqnum");
    839	kfree(cs_node);
    840	return err;
    841}
    842
    843/**
    844 * ubifs_recover_log_leb - scan and recover a log LEB.
    845 * @c: UBIFS file-system description object
    846 * @lnum: LEB number
    847 * @offs: offset
    848 * @sbuf: LEB-sized buffer to use
    849 *
    850 * This function does a scan of a LEB, but caters for errors that might have
    851 * been caused by unclean reboots from which we are attempting to recover
    852 * (assume that only the last log LEB can be corrupted by an unclean reboot).
    853 *
    854 * This function returns %0 on success and a negative error code on failure.
    855 */
    856struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
    857					     int offs, void *sbuf)
    858{
    859	struct ubifs_scan_leb *sleb;
    860	int next_lnum;
    861
    862	dbg_rcvry("LEB %d", lnum);
    863	next_lnum = lnum + 1;
    864	if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
    865		next_lnum = UBIFS_LOG_LNUM;
    866	if (next_lnum != c->ltail_lnum) {
    867		/*
    868		 * We can only recover at the end of the log, so check that the
    869		 * next log LEB is empty or out of date.
    870		 */
    871		sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0);
    872		if (IS_ERR(sleb))
    873			return sleb;
    874		if (sleb->nodes_cnt) {
    875			struct ubifs_scan_node *snod;
    876			unsigned long long cs_sqnum = c->cs_sqnum;
    877
    878			snod = list_entry(sleb->nodes.next,
    879					  struct ubifs_scan_node, list);
    880			if (cs_sqnum == 0) {
    881				int err;
    882
    883				err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
    884				if (err) {
    885					ubifs_scan_destroy(sleb);
    886					return ERR_PTR(err);
    887				}
    888			}
    889			if (snod->sqnum > cs_sqnum) {
    890				ubifs_err(c, "unrecoverable log corruption in LEB %d",
    891					  lnum);
    892				ubifs_scan_destroy(sleb);
    893				return ERR_PTR(-EUCLEAN);
    894			}
    895		}
    896		ubifs_scan_destroy(sleb);
    897	}
    898	return ubifs_recover_leb(c, lnum, offs, sbuf, -1);
    899}
    900
    901/**
    902 * recover_head - recover a head.
    903 * @c: UBIFS file-system description object
    904 * @lnum: LEB number of head to recover
    905 * @offs: offset of head to recover
    906 * @sbuf: LEB-sized buffer to use
    907 *
    908 * This function ensures that there is no data on the flash at a head location.
    909 *
    910 * This function returns %0 on success and a negative error code on failure.
    911 */
    912static int recover_head(struct ubifs_info *c, int lnum, int offs, void *sbuf)
    913{
    914	int len = c->max_write_size, err;
    915
    916	if (offs + len > c->leb_size)
    917		len = c->leb_size - offs;
    918
    919	if (!len)
    920		return 0;
    921
    922	/* Read at the head location and check it is empty flash */
    923	err = ubifs_leb_read(c, lnum, sbuf, offs, len, 1);
    924	if (err || !is_empty(sbuf, len)) {
    925		dbg_rcvry("cleaning head at %d:%d", lnum, offs);
    926		if (offs == 0)
    927			return ubifs_leb_unmap(c, lnum);
    928		err = ubifs_leb_read(c, lnum, sbuf, 0, offs, 1);
    929		if (err)
    930			return err;
    931		return ubifs_leb_change(c, lnum, sbuf, offs);
    932	}
    933
    934	return 0;
    935}
    936
    937/**
    938 * ubifs_recover_inl_heads - recover index and LPT heads.
    939 * @c: UBIFS file-system description object
    940 * @sbuf: LEB-sized buffer to use
    941 *
    942 * This function ensures that there is no data on the flash at the index and
    943 * LPT head locations.
    944 *
    945 * This deals with the recovery of a half-completed journal commit. UBIFS is
    946 * careful never to overwrite the last version of the index or the LPT. Because
    947 * the index and LPT are wandering trees, data from a half-completed commit will
    948 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
    949 * assumed to be empty and will be unmapped anyway before use, or in the index
    950 * and LPT heads.
    951 *
    952 * This function returns %0 on success and a negative error code on failure.
    953 */
    954int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf)
    955{
    956	int err;
    957
    958	ubifs_assert(c, !c->ro_mount || c->remounting_rw);
    959
    960	dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
    961	err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
    962	if (err)
    963		return err;
    964
    965	dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
    966
    967	return recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
    968}
    969
    970/**
    971 * clean_an_unclean_leb - read and write a LEB to remove corruption.
    972 * @c: UBIFS file-system description object
    973 * @ucleb: unclean LEB information
    974 * @sbuf: LEB-sized buffer to use
    975 *
    976 * This function reads a LEB up to a point pre-determined by the mount recovery,
    977 * checks the nodes, and writes the result back to the flash, thereby cleaning
    978 * off any following corruption, or non-fatal ECC errors.
    979 *
    980 * This function returns %0 on success and a negative error code on failure.
    981 */
    982static int clean_an_unclean_leb(struct ubifs_info *c,
    983				struct ubifs_unclean_leb *ucleb, void *sbuf)
    984{
    985	int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
    986	void *buf = sbuf;
    987
    988	dbg_rcvry("LEB %d len %d", lnum, len);
    989
    990	if (len == 0) {
    991		/* Nothing to read, just unmap it */
    992		return ubifs_leb_unmap(c, lnum);
    993	}
    994
    995	err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
    996	if (err && err != -EBADMSG)
    997		return err;
    998
    999	while (len >= 8) {
   1000		int ret;
   1001
   1002		cond_resched();
   1003
   1004		/* Scan quietly until there is an error */
   1005		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
   1006
   1007		if (ret == SCANNED_A_NODE) {
   1008			/* A valid node, and not a padding node */
   1009			struct ubifs_ch *ch = buf;
   1010			int node_len;
   1011
   1012			node_len = ALIGN(le32_to_cpu(ch->len), 8);
   1013			offs += node_len;
   1014			buf += node_len;
   1015			len -= node_len;
   1016			continue;
   1017		}
   1018
   1019		if (ret > 0) {
   1020			/* Padding bytes or a valid padding node */
   1021			offs += ret;
   1022			buf += ret;
   1023			len -= ret;
   1024			continue;
   1025		}
   1026
   1027		if (ret == SCANNED_EMPTY_SPACE) {
   1028			ubifs_err(c, "unexpected empty space at %d:%d",
   1029				  lnum, offs);
   1030			return -EUCLEAN;
   1031		}
   1032
   1033		if (quiet) {
   1034			/* Redo the last scan but noisily */
   1035			quiet = 0;
   1036			continue;
   1037		}
   1038
   1039		ubifs_scanned_corruption(c, lnum, offs, buf);
   1040		return -EUCLEAN;
   1041	}
   1042
   1043	/* Pad to min_io_size */
   1044	len = ALIGN(ucleb->endpt, c->min_io_size);
   1045	if (len > ucleb->endpt) {
   1046		int pad_len = len - ALIGN(ucleb->endpt, 8);
   1047
   1048		if (pad_len > 0) {
   1049			buf = c->sbuf + len - pad_len;
   1050			ubifs_pad(c, buf, pad_len);
   1051		}
   1052	}
   1053
   1054	/* Write back the LEB atomically */
   1055	err = ubifs_leb_change(c, lnum, sbuf, len);
   1056	if (err)
   1057		return err;
   1058
   1059	dbg_rcvry("cleaned LEB %d", lnum);
   1060
   1061	return 0;
   1062}
   1063
   1064/**
   1065 * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
   1066 * @c: UBIFS file-system description object
   1067 * @sbuf: LEB-sized buffer to use
   1068 *
   1069 * This function cleans a LEB identified during recovery that needs to be
   1070 * written but was not because UBIFS was mounted read-only. This happens when
   1071 * remounting to read-write mode.
   1072 *
   1073 * This function returns %0 on success and a negative error code on failure.
   1074 */
   1075int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf)
   1076{
   1077	dbg_rcvry("recovery");
   1078	while (!list_empty(&c->unclean_leb_list)) {
   1079		struct ubifs_unclean_leb *ucleb;
   1080		int err;
   1081
   1082		ucleb = list_entry(c->unclean_leb_list.next,
   1083				   struct ubifs_unclean_leb, list);
   1084		err = clean_an_unclean_leb(c, ucleb, sbuf);
   1085		if (err)
   1086			return err;
   1087		list_del(&ucleb->list);
   1088		kfree(ucleb);
   1089	}
   1090	return 0;
   1091}
   1092
   1093/**
   1094 * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit.
   1095 * @c: UBIFS file-system description object
   1096 *
   1097 * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty
   1098 * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns
   1099 * zero in case of success and a negative error code in case of failure.
   1100 */
   1101static int grab_empty_leb(struct ubifs_info *c)
   1102{
   1103	int lnum, err;
   1104
   1105	/*
   1106	 * Note, it is very important to first search for an empty LEB and then
   1107	 * run the commit, not vice-versa. The reason is that there might be
   1108	 * only one empty LEB at the moment, the one which has been the
   1109	 * @c->gc_lnum just before the power cut happened. During the regular
   1110	 * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no
   1111	 * one but GC can grab it. But at this moment this single empty LEB is
   1112	 * not marked as taken, so if we run commit - what happens? Right, the
   1113	 * commit will grab it and write the index there. Remember that the
   1114	 * index always expands as long as there is free space, and it only
   1115	 * starts consolidating when we run out of space.
   1116	 *
   1117	 * IOW, if we run commit now, we might not be able to find a free LEB
   1118	 * after this.
   1119	 */
   1120	lnum = ubifs_find_free_leb_for_idx(c);
   1121	if (lnum < 0) {
   1122		ubifs_err(c, "could not find an empty LEB");
   1123		ubifs_dump_lprops(c);
   1124		ubifs_dump_budg(c, &c->bi);
   1125		return lnum;
   1126	}
   1127
   1128	/* Reset the index flag */
   1129	err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
   1130				  LPROPS_INDEX, 0);
   1131	if (err)
   1132		return err;
   1133
   1134	c->gc_lnum = lnum;
   1135	dbg_rcvry("found empty LEB %d, run commit", lnum);
   1136
   1137	return ubifs_run_commit(c);
   1138}
   1139
   1140/**
   1141 * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
   1142 * @c: UBIFS file-system description object
   1143 *
   1144 * Out-of-place garbage collection requires always one empty LEB with which to
   1145 * start garbage collection. The LEB number is recorded in c->gc_lnum and is
   1146 * written to the master node on unmounting. In the case of an unclean unmount
   1147 * the value of gc_lnum recorded in the master node is out of date and cannot
   1148 * be used. Instead, recovery must allocate an empty LEB for this purpose.
   1149 * However, there may not be enough empty space, in which case it must be
   1150 * possible to GC the dirtiest LEB into the GC head LEB.
   1151 *
   1152 * This function also runs the commit which causes the TNC updates from
   1153 * size-recovery and orphans to be written to the flash. That is important to
   1154 * ensure correct replay order for subsequent mounts.
   1155 *
   1156 * This function returns %0 on success and a negative error code on failure.
   1157 */
   1158int ubifs_rcvry_gc_commit(struct ubifs_info *c)
   1159{
   1160	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
   1161	struct ubifs_lprops lp;
   1162	int err;
   1163
   1164	dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs);
   1165
   1166	c->gc_lnum = -1;
   1167	if (wbuf->lnum == -1 || wbuf->offs == c->leb_size)
   1168		return grab_empty_leb(c);
   1169
   1170	err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
   1171	if (err) {
   1172		if (err != -ENOSPC)
   1173			return err;
   1174
   1175		dbg_rcvry("could not find a dirty LEB");
   1176		return grab_empty_leb(c);
   1177	}
   1178
   1179	ubifs_assert(c, !(lp.flags & LPROPS_INDEX));
   1180	ubifs_assert(c, lp.free + lp.dirty >= wbuf->offs);
   1181
   1182	/*
   1183	 * We run the commit before garbage collection otherwise subsequent
   1184	 * mounts will see the GC and orphan deletion in a different order.
   1185	 */
   1186	dbg_rcvry("committing");
   1187	err = ubifs_run_commit(c);
   1188	if (err)
   1189		return err;
   1190
   1191	dbg_rcvry("GC'ing LEB %d", lp.lnum);
   1192	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
   1193	err = ubifs_garbage_collect_leb(c, &lp);
   1194	if (err >= 0) {
   1195		int err2 = ubifs_wbuf_sync_nolock(wbuf);
   1196
   1197		if (err2)
   1198			err = err2;
   1199	}
   1200	mutex_unlock(&wbuf->io_mutex);
   1201	if (err < 0) {
   1202		ubifs_err(c, "GC failed, error %d", err);
   1203		if (err == -EAGAIN)
   1204			err = -EINVAL;
   1205		return err;
   1206	}
   1207
   1208	ubifs_assert(c, err == LEB_RETAINED);
   1209	if (err != LEB_RETAINED)
   1210		return -EINVAL;
   1211
   1212	err = ubifs_leb_unmap(c, c->gc_lnum);
   1213	if (err)
   1214		return err;
   1215
   1216	dbg_rcvry("allocated LEB %d for GC", lp.lnum);
   1217	return 0;
   1218}
   1219
   1220/**
   1221 * struct size_entry - inode size information for recovery.
   1222 * @rb: link in the RB-tree of sizes
   1223 * @inum: inode number
   1224 * @i_size: size on inode
   1225 * @d_size: maximum size based on data nodes
   1226 * @exists: indicates whether the inode exists
   1227 * @inode: inode if pinned in memory awaiting rw mode to fix it
   1228 */
   1229struct size_entry {
   1230	struct rb_node rb;
   1231	ino_t inum;
   1232	loff_t i_size;
   1233	loff_t d_size;
   1234	int exists;
   1235	struct inode *inode;
   1236};
   1237
   1238/**
   1239 * add_ino - add an entry to the size tree.
   1240 * @c: UBIFS file-system description object
   1241 * @inum: inode number
   1242 * @i_size: size on inode
   1243 * @d_size: maximum size based on data nodes
   1244 * @exists: indicates whether the inode exists
   1245 */
   1246static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
   1247		   loff_t d_size, int exists)
   1248{
   1249	struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
   1250	struct size_entry *e;
   1251
   1252	while (*p) {
   1253		parent = *p;
   1254		e = rb_entry(parent, struct size_entry, rb);
   1255		if (inum < e->inum)
   1256			p = &(*p)->rb_left;
   1257		else
   1258			p = &(*p)->rb_right;
   1259	}
   1260
   1261	e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
   1262	if (!e)
   1263		return -ENOMEM;
   1264
   1265	e->inum = inum;
   1266	e->i_size = i_size;
   1267	e->d_size = d_size;
   1268	e->exists = exists;
   1269
   1270	rb_link_node(&e->rb, parent, p);
   1271	rb_insert_color(&e->rb, &c->size_tree);
   1272
   1273	return 0;
   1274}
   1275
   1276/**
   1277 * find_ino - find an entry on the size tree.
   1278 * @c: UBIFS file-system description object
   1279 * @inum: inode number
   1280 */
   1281static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
   1282{
   1283	struct rb_node *p = c->size_tree.rb_node;
   1284	struct size_entry *e;
   1285
   1286	while (p) {
   1287		e = rb_entry(p, struct size_entry, rb);
   1288		if (inum < e->inum)
   1289			p = p->rb_left;
   1290		else if (inum > e->inum)
   1291			p = p->rb_right;
   1292		else
   1293			return e;
   1294	}
   1295	return NULL;
   1296}
   1297
   1298/**
   1299 * remove_ino - remove an entry from the size tree.
   1300 * @c: UBIFS file-system description object
   1301 * @inum: inode number
   1302 */
   1303static void remove_ino(struct ubifs_info *c, ino_t inum)
   1304{
   1305	struct size_entry *e = find_ino(c, inum);
   1306
   1307	if (!e)
   1308		return;
   1309	rb_erase(&e->rb, &c->size_tree);
   1310	kfree(e);
   1311}
   1312
   1313/**
   1314 * ubifs_destroy_size_tree - free resources related to the size tree.
   1315 * @c: UBIFS file-system description object
   1316 */
   1317void ubifs_destroy_size_tree(struct ubifs_info *c)
   1318{
   1319	struct size_entry *e, *n;
   1320
   1321	rbtree_postorder_for_each_entry_safe(e, n, &c->size_tree, rb) {
   1322		iput(e->inode);
   1323		kfree(e);
   1324	}
   1325
   1326	c->size_tree = RB_ROOT;
   1327}
   1328
   1329/**
   1330 * ubifs_recover_size_accum - accumulate inode sizes for recovery.
   1331 * @c: UBIFS file-system description object
   1332 * @key: node key
   1333 * @deletion: node is for a deletion
   1334 * @new_size: inode size
   1335 *
   1336 * This function has two purposes:
   1337 *     1) to ensure there are no data nodes that fall outside the inode size
   1338 *     2) to ensure there are no data nodes for inodes that do not exist
   1339 * To accomplish those purposes, a rb-tree is constructed containing an entry
   1340 * for each inode number in the journal that has not been deleted, and recording
   1341 * the size from the inode node, the maximum size of any data node (also altered
   1342 * by truncations) and a flag indicating a inode number for which no inode node
   1343 * was present in the journal.
   1344 *
   1345 * Note that there is still the possibility that there are data nodes that have
   1346 * been committed that are beyond the inode size, however the only way to find
   1347 * them would be to scan the entire index. Alternatively, some provision could
   1348 * be made to record the size of inodes at the start of commit, which would seem
   1349 * very cumbersome for a scenario that is quite unlikely and the only negative
   1350 * consequence of which is wasted space.
   1351 *
   1352 * This functions returns %0 on success and a negative error code on failure.
   1353 */
   1354int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
   1355			     int deletion, loff_t new_size)
   1356{
   1357	ino_t inum = key_inum(c, key);
   1358	struct size_entry *e;
   1359	int err;
   1360
   1361	switch (key_type(c, key)) {
   1362	case UBIFS_INO_KEY:
   1363		if (deletion)
   1364			remove_ino(c, inum);
   1365		else {
   1366			e = find_ino(c, inum);
   1367			if (e) {
   1368				e->i_size = new_size;
   1369				e->exists = 1;
   1370			} else {
   1371				err = add_ino(c, inum, new_size, 0, 1);
   1372				if (err)
   1373					return err;
   1374			}
   1375		}
   1376		break;
   1377	case UBIFS_DATA_KEY:
   1378		e = find_ino(c, inum);
   1379		if (e) {
   1380			if (new_size > e->d_size)
   1381				e->d_size = new_size;
   1382		} else {
   1383			err = add_ino(c, inum, 0, new_size, 0);
   1384			if (err)
   1385				return err;
   1386		}
   1387		break;
   1388	case UBIFS_TRUN_KEY:
   1389		e = find_ino(c, inum);
   1390		if (e)
   1391			e->d_size = new_size;
   1392		break;
   1393	}
   1394	return 0;
   1395}
   1396
   1397/**
   1398 * fix_size_in_place - fix inode size in place on flash.
   1399 * @c: UBIFS file-system description object
   1400 * @e: inode size information for recovery
   1401 */
   1402static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
   1403{
   1404	struct ubifs_ino_node *ino = c->sbuf;
   1405	unsigned char *p;
   1406	union ubifs_key key;
   1407	int err, lnum, offs, len;
   1408	loff_t i_size;
   1409	uint32_t crc;
   1410
   1411	/* Locate the inode node LEB number and offset */
   1412	ino_key_init(c, &key, e->inum);
   1413	err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
   1414	if (err)
   1415		goto out;
   1416	/*
   1417	 * If the size recorded on the inode node is greater than the size that
   1418	 * was calculated from nodes in the journal then don't change the inode.
   1419	 */
   1420	i_size = le64_to_cpu(ino->size);
   1421	if (i_size >= e->d_size)
   1422		return 0;
   1423	/* Read the LEB */
   1424	err = ubifs_leb_read(c, lnum, c->sbuf, 0, c->leb_size, 1);
   1425	if (err)
   1426		goto out;
   1427	/* Change the size field and recalculate the CRC */
   1428	ino = c->sbuf + offs;
   1429	ino->size = cpu_to_le64(e->d_size);
   1430	len = le32_to_cpu(ino->ch.len);
   1431	crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
   1432	ino->ch.crc = cpu_to_le32(crc);
   1433	/* Work out where data in the LEB ends and free space begins */
   1434	p = c->sbuf;
   1435	len = c->leb_size - 1;
   1436	while (p[len] == 0xff)
   1437		len -= 1;
   1438	len = ALIGN(len + 1, c->min_io_size);
   1439	/* Atomically write the fixed LEB back again */
   1440	err = ubifs_leb_change(c, lnum, c->sbuf, len);
   1441	if (err)
   1442		goto out;
   1443	dbg_rcvry("inode %lu at %d:%d size %lld -> %lld",
   1444		  (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
   1445	return 0;
   1446
   1447out:
   1448	ubifs_warn(c, "inode %lu failed to fix size %lld -> %lld error %d",
   1449		   (unsigned long)e->inum, e->i_size, e->d_size, err);
   1450	return err;
   1451}
   1452
   1453/**
   1454 * inode_fix_size - fix inode size
   1455 * @c: UBIFS file-system description object
   1456 * @e: inode size information for recovery
   1457 */
   1458static int inode_fix_size(struct ubifs_info *c, struct size_entry *e)
   1459{
   1460	struct inode *inode;
   1461	struct ubifs_inode *ui;
   1462	int err;
   1463
   1464	if (c->ro_mount)
   1465		ubifs_assert(c, !e->inode);
   1466
   1467	if (e->inode) {
   1468		/* Remounting rw, pick up inode we stored earlier */
   1469		inode = e->inode;
   1470	} else {
   1471		inode = ubifs_iget(c->vfs_sb, e->inum);
   1472		if (IS_ERR(inode))
   1473			return PTR_ERR(inode);
   1474
   1475		if (inode->i_size >= e->d_size) {
   1476			/*
   1477			 * The original inode in the index already has a size
   1478			 * big enough, nothing to do
   1479			 */
   1480			iput(inode);
   1481			return 0;
   1482		}
   1483
   1484		dbg_rcvry("ino %lu size %lld -> %lld",
   1485			  (unsigned long)e->inum,
   1486			  inode->i_size, e->d_size);
   1487
   1488		ui = ubifs_inode(inode);
   1489
   1490		inode->i_size = e->d_size;
   1491		ui->ui_size = e->d_size;
   1492		ui->synced_i_size = e->d_size;
   1493
   1494		e->inode = inode;
   1495	}
   1496
   1497	/*
   1498	 * In readonly mode just keep the inode pinned in memory until we go
   1499	 * readwrite. In readwrite mode write the inode to the journal with the
   1500	 * fixed size.
   1501	 */
   1502	if (c->ro_mount)
   1503		return 0;
   1504
   1505	err = ubifs_jnl_write_inode(c, inode);
   1506
   1507	iput(inode);
   1508
   1509	if (err)
   1510		return err;
   1511
   1512	rb_erase(&e->rb, &c->size_tree);
   1513	kfree(e);
   1514
   1515	return 0;
   1516}
   1517
   1518/**
   1519 * ubifs_recover_size - recover inode size.
   1520 * @c: UBIFS file-system description object
   1521 * @in_place: If true, do a in-place size fixup
   1522 *
   1523 * This function attempts to fix inode size discrepancies identified by the
   1524 * 'ubifs_recover_size_accum()' function.
   1525 *
   1526 * This functions returns %0 on success and a negative error code on failure.
   1527 */
   1528int ubifs_recover_size(struct ubifs_info *c, bool in_place)
   1529{
   1530	struct rb_node *this = rb_first(&c->size_tree);
   1531
   1532	while (this) {
   1533		struct size_entry *e;
   1534		int err;
   1535
   1536		e = rb_entry(this, struct size_entry, rb);
   1537
   1538		this = rb_next(this);
   1539
   1540		if (!e->exists) {
   1541			union ubifs_key key;
   1542
   1543			ino_key_init(c, &key, e->inum);
   1544			err = ubifs_tnc_lookup(c, &key, c->sbuf);
   1545			if (err && err != -ENOENT)
   1546				return err;
   1547			if (err == -ENOENT) {
   1548				/* Remove data nodes that have no inode */
   1549				dbg_rcvry("removing ino %lu",
   1550					  (unsigned long)e->inum);
   1551				err = ubifs_tnc_remove_ino(c, e->inum);
   1552				if (err)
   1553					return err;
   1554			} else {
   1555				struct ubifs_ino_node *ino = c->sbuf;
   1556
   1557				e->exists = 1;
   1558				e->i_size = le64_to_cpu(ino->size);
   1559			}
   1560		}
   1561
   1562		if (e->exists && e->i_size < e->d_size) {
   1563			ubifs_assert(c, !(c->ro_mount && in_place));
   1564
   1565			/*
   1566			 * We found data that is outside the found inode size,
   1567			 * fixup the inode size
   1568			 */
   1569
   1570			if (in_place) {
   1571				err = fix_size_in_place(c, e);
   1572				if (err)
   1573					return err;
   1574				iput(e->inode);
   1575			} else {
   1576				err = inode_fix_size(c, e);
   1577				if (err)
   1578					return err;
   1579				continue;
   1580			}
   1581		}
   1582
   1583		rb_erase(&e->rb, &c->size_tree);
   1584		kfree(e);
   1585	}
   1586
   1587	return 0;
   1588}